

FCC Measurement/Technical Report on

WLAN and Bluetooth Module on M.2 card MAYA-W161-00B-00

FCC ID: XPYMAYAW161 IC: 8595A-MAYAW161

Test Report Reference: MDE_UBLOX_2222_FCC_01_rev01

Test Laboratory:

7layers GmbH Borsigstrasse 11 40880 Ratingen Germany

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbH

Borsigstraße 11 40880 Ratingen, Germany T +49 (0) 2102 749 0 F +49 (0) 2102 749 350 Geschäftsführer/ Managing Directors: Sebastian Doose Stefan Kischka Bernhard Retka

Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company

www.7layers.com

7	ᄗᆨᆝ	h	\sim	Λf.	\sim	n	+~	nts
	ıaı	וט	ıe	ΟI	Cυ	11	ιe	บเร

1	Applied Standards and Test Summary	3
1.1	Applied Standards	3
1.2	FCC-IC Correlation Table	4
1.3	Measurement Summary	5
2	Revision History / Signatures	7
3	Administrative Data	8
3.1	Testing Laboratory	8
3.2	Project Data	8
3.3	Applicant Data	8
3.4	Manufacturer Data	9
4	Test object Data	10
4.1	General EUT Description	10
4.2	EUT Main components	11
4.3	Ancillary Equipment	11
4.4 4.5	Auxiliary Equipment	11
4.5 4.6	EUT Setups Operating Modes / Test Channels	12 12
4.7	Product labelling	15
5	Test Results	16
5.1	Peak Power Output	16
5.2	Transmitter Spurious Radiated Emissions	23
5.3	Band Edge Compliance Radiated	40
6	Test Equipment	49
6.1	Test Equipment Hardware	49
6.2	Test Equipment Software	52
7	Antenna Factors, Cable Loss and Sample Calculations	53
7.1	LISN R&S ESH3-Z5 (150 kHz - 30 MHz)	53
7.2	Antenna R&S HFH2-Z2 (9 kHz – 30 MHz)	54
7.3	Antenna R&S HL562 (30 MHz – 1 GHz)	55
7.4	Antenna R&S HF907 (1 GHz – 18 GHz)	56
7.5	Antenna EMCO 3160-09 (18 GHz – 26.5 GHz)	57
7.6	Antenna EMCO 3160-10 (26.5 GHz – 40 GHz)	58
8	Measurement Uncertainties	59
a	Photo Penort	60

1 APPLIED STANDARDS AND TEST SUMMARY

1.1 APPLIED STANDARDS

Type of Authorization

Certification for an Intentional Radiator.

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15 (10-1-21 Edition). The following subparts are applicable to the results in this test report.

- Part 2, Subpart J Equipment Authorization Procedures, Certification
- Part 15, Subpart C Intentional Radiators
- § 15.201 Equipment authorization requirement
- § 15.207 Conducted limits
- § 15.209 Radiated emission limits; general requirements
- § 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz

Note:

The tests were selected and performed with reference to the FCC Public Notice "Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating under Section 15.247 of the FCC Rules, 558074 D01 15.247 Meas Guidance v05r02, 2019-04-02". ANSI C63.10–2013 is applied.

TEST REPORT REFERENCE: MDE_UBLOX_2222_FCC_01_rev01

1.2 FCC-IC CORRELATION TABLE

Correlation of measurement requirements for DTS (e.g. WLAN 2.4 GHz, BT LE) equipment from FCC and IC

DTS equipment

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 5: 8.8
Occupied bandwidth	§ 15.247 (a) (2)	RSS-247 Issue 2: 5.2 (a)
Peak conducted output power	§ 15.247 (b) (3), (4)	RSS-247 Issue 2: 5.4 (d)
Transmitter spurious RF conducted emissions	§ 15.247 (d)	RSS-Gen Issue 5: 6.13 / 8.9/8.10; RSS-247 Issue 2: 5.5
Transmitter spurious radiated emissions	§ 15.247 (d); § 15.209 (a)	RSS-Gen Issue 5: 6.13 / 8.9/8.10; RSS-247 Issue 2: 5.5
Band edge compliance	§ 15.247 (d)	RSS-247 Issue 2: 5.5
Power density	§ 15.247 (e)	RSS-247 Issue 2: 5.2 (b)
Antenna requirement	§ 15.203 / 15.204	RSS-Gen Issue 5: 8.3
Receiver spurious emissions	_	_

1.3 MEASUREMENT SUMMARY

47 CFR CHAPTER I FCC PART 15 § 15.247 (b) (3) Subpart C §15.247

Peak Power Output The measurement was performed according to ANSI C63.10, chapter **Final Result** 11.9.1.3 **OP-Mode FCC** IC Setup **Date** Radio Technology, Operating Frequency, Measurement method S01 AA01 2022-12-15 Passed Passed Bluetooth BDR, high, conducted 2022-12-15 Bluetooth BDR, low, conducted S01 AA01 Passed Passed Bluetooth BDR, mid, conducted S01_AA01 2022-12-15 Passed Passed Bluetooth EDR 2, high, conducted S01_AA01 2022-12-15 Passed Passed Bluetooth EDR 2, low, conducted S01 AA01 2022-12-15 Passed Passed S01_AA01 2022-12-15 Bluetooth EDR 2, mid, conducted Passed Passed Bluetooth EDR 3, high, conducted S01_AA01 2022-12-15 Passed Passed S01_AA01 2022-12-15 Passed Passed Bluetooth EDR 3, low, conducted Bluetooth EDR 3, mid, conducted S01_AA01 2022-12-15 Passed Passed Bluetooth LE 1 Mbps, high, conducted S01_AA01 2022-12-06 Passed **Passed** Bluetooth LE 1 Mbps, low, conducted S01_AA01 2022-12-06 Passed Passed Bluetooth LE 1 Mbps, mid, conducted S01_AA01 2022-12-06 Passed Passed 2022-12-06 Bluetooth LE 2 Mbps, high, conducted S01_AA01 Passed Passed 2022-12-06 Bluetooth LE 2 Mbps, low, conducted S01_AA01 Passed Passed Bluetooth LE 2 Mbps, mid, conducted S01_AA01 2022-12-06 Passed Passed WLAN b, high, conducted S01_AA01 2022-11-09 Passed Passed S01_AA01 2022-11-09 WLAN b, low, conducted Passed Passed S01_AA01 2022-11-09 WLAN b, mid, conducted Passed **Passed** S01_AA01 2022-11-09 Passed Passed WLAN g, high, conducted WLAN g, low, conducted S01_AA01 2022-11-09 Passed Passed Passed WLAN g, mid, conducted S01_AA01 2022-11-09 Passed S01_AA01 2022-11-09 WLAN n 20 MHz, high, conducted Passed Passed WLAN n 20 MHz, low, conducted S01_AA01 2022-11-09 Passed Passed 2022-11-09 S01_AA01 WLAN n 20 MHz, mid, conducted Passed Passed S01_AA01 2022-11-09 WLAN n 40 MHz, high, conducted Passed Passed WLAN n 40 MHz, low, conducted S01_AA01 2022-11-09 Passed Passed WLAN n 40 MHz, mid, conducted S01 AA01 2022-11-09 Passed Passed

47 CFR CHAPTER I FCC PART 15 § 15.247 (d) Subpart C §15.247

Transmitter Spurious Radiated Emissions The measurement was performed accord 6.4, 6.5, 6.6.5	Final Result				
OP-Mode Radio Technology, Operating Frequency, Measurement range	Setup	Date	FCC	IC	
Radiated Measurement:	CO2 AAO1	2022-11-10	Danad	Dagasad	
Bluetooth BDR, high, 1 GHz - 26 GHz	S02_AA01	2022-11-10	Passed	Passed	
Bluetooth BDR, mid, 30 MHz - 1 GHz	S02_AA01	2022-10-31	Passed	Passed	
Bluetooth BDR, mid, 9 kHz - 30 MHz	S02_AA01	2022-10-31	Passed	Passed	
WLAN b, high, 1 GHz - 26 GHz	S02_AA01	2022-11-10	Passed	Passed	
WLAN b, mid, 30 MHz - 1 GHz	S02_AA01		Passed	Passed	
WLAN b, mid, 9 kHz - 30 MHz	S02_AA01	2022-10-31	Passed	Passed	
Conducted Measurement:					
Bluetooth BDR, high, 1 GHz - 26 GHz	S01_AA01	2022-12-19	Passed	Passed	
Bluetooth BDR, low, 30 MHz - 1 GHz	S01_AA01	2022-12-19	Passed	Passed	
Bluetooth BDR, low, 9 kHz - 30 MHz	S01_AA01	2022-12-19	Passed	Passed	
WLAN b, high, 1 GHz - 26 GHz	S01_AA01	2022-12-19	Passed	Passed	
WLAN b, high, 30 MHz - 1 GHz	S01_AA01	2022-12-19	Passed	Passed	
WLAN b, low, 1 GHz - 26 GHz	S01_AA01	2022-12-19	Passed	Passed	
WLAN b, low, 30 MHz - 1 GHz	S01_AA01	2022-12-19	Passed	Passed	
WLAN b, low, 9 kHz - 30 MHz	S01_AA01	2022-12-19	Passed	Passed	
WLAN b, low, 9 kHz - 30 MHz	S01_AA01	2022-12-19	Passed	Passed	
WLAN b, mid, 1 GHz - 26 GHz	S01_AA01	2022-12-19	Passed	Passed	
WLAN b, mid, 30 MHz - 1 GHz	S01_AA01	2022-12-19	Passed	Passed	
47 CFR CHAPTER I FCC PART 15 § 15.247 (d) Subpart C §15.247					

Band Edge Compliance Radiated

The measurement was performed according to ANSI C63.10, chapter **Final Result** 6.6.5

OP-Mode Radio Technology, Operating Frequency, Band Edge	Setup	Date	FCC	IC
Bluetooth BDR, high, high Remark: measured radiated	S02_AA01	2022-11-10	Passed	Passed
Bluetooth EDR 3, high, high Remark: measured conducted	S01_AA01	2022-12-01	Passed	Passed
WLAN b, high, high Remark: measured conducted	S01_AA01	2022-12-01	Passed	Passed
WLAN b, high, high Remark: measured radiated	S02_AA01	2022-11-10	Passed	Passed
WLAN n 40 MHz, high, high Remark: measured conducted	S01_AA01	2022-12-02	Passed	Passed

N/A: Not applicable N/P: Not performed

2 REVISION HISTORY / SIGNATURES

Report version control				
Version	Release date	Change Description	Version validity	
initial	2023-01-04		invalid	
rev01	2023-01-16	Corrected Used output power table in chapter general EUT description, added note of used WLAN b power setting to Power Output and Band Edge test case.	valid	

COMMENT: The module MAYA-W161 mounted to the M.2 card has already been tested against this standard and according to the applicant corresponds to the previous setup in regards to the radio part. Due to this, only spot checks have been performed.

Report Reference: MDE_UBLOX_2110_FCC_01

(responsible for accreditation scope)
Dipl.-Ing. Marco Kullik

(responsible for testing and report)
Dipl.-Ing. Daniel Gall

Tayers GmbH, Borsigstr. 11 40880 Ratingen, Germany

Phone +49 (0)2102 749 0

TEST REPORT REFERENCE: MDE_UBLOX_2222_FCC_01_rev01

3 ADMINISTRATIVE DATA

3.1 TESTING LABORATORY

Company Name: 7layers GmbH

Address: Borsigstr. 11

40880 Ratingen

Germany

The test facility is accredited by the following accreditation organisation:

Laboratory accreditation no: DAkkS D-PL-12140-01-01| -02 | -03

FCC Designation Number: DE0015

FCC Test Firm Registration: 929146

ISED CAB Identifier DE0007; ISED#: 3699A

Responsible for accreditation scope: Dipl.-Ing. Marco Kullik

Report Template Version: 2022-05-25

3.2 PROJECT DATA

Responsible for testing and report: Dipl.-Ing. Daniel Gall

Employees who performed the tests: documented internally at 7Layers

Date of Report: 2023-01-16

Testing Period: 2022-10-31 to 2022-12-19

3.3 APPLICANT DATA

Company Name: u-blox AG

Address: Zürcherstrasse 68

> 8800 Thalwil Switzerland

Contact Person: Filip Kruzela

3.4 MANUFACTURER DATA

Company Name:	please see Applicant Data
Address:	
Contact Person:	

4 TEST OBJECT DATA

4.1 GENERAL EUT DESCRIPTION

Kind of Device product description	WLAN and Bluetooth Module on M.2 card			
Product name	MAYA-W161-00B-00			
Туре	MAYA-W161-00B-00			
Declared EUT data by	the supplier			
Voltage Type	DC			
Voltage Level	3.3 V			
Antenna / Gain	External / 2 dBi (No antennas were provided for the tests, radiated measurements were performed with 50 Ohm terminations)			
Tested Modulation Type	BT Classic: GFSK (BDR), Pi/4 DQPSK (EDR 2), 8DPSK (EDR 3) BT LE: GFSK WLANb: DSSS WLANg/n: OFDM			
Specific product description for the EUT	The EUT is a Bluetooth and WLAN module. In the 2.4 GHz band it supports SISO Mode only. Supported technologies are Bluetooth Classic, Bluetooth Low Energy and WLAN b, g, n 20 and 40 MHz bandwidth.			
EUT ports (connected cables during testing):	Enclosure Data DC Antenna The EUT is a module on an M.2 card. No cables were connected to the EUT itself except for u.fl to SMA adapter cables that were used for measurement or termination of the ports.			
Tested datarates	BT Classic: 1 (BDR), 2 (EDR 2) and 3 Mbps (EDR 3) BT LE: 1 and 2 Mbps WLAN b: 1 Mbps, g: 6 Mbps, n: MCS 0			
Special software used for testing	Scripts and labtool were provided on a computer board by the applicant.			
Used output power	BT Classic: 7 dBm BT LE: 8 dBm WLAN:			

4.2 EUT MAIN COMPONENTS

Sample Name	Sample Code	Description
EUT aa01	DE1015169aa01	
Sample Parameter	Valu	е
Serial No.	M416C1DEB9105A40400	
HW Version	04	
SW Version	W16.92.21.p22-16.92.21.p22-MXM	5X16298_V0
Comment		

NOTE: The short description is used to simplify the identification of the EUT in this test report.

4.3 ANCILLARY EQUIPMENT

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

	Details (Manufacturer, Type Model, OUT Code)	Description
-	-	-

4.4 AUXILIARY EQUIPMENT

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Device	Details (Manufacturer, Type Model, HW, SW, S/N)	Description
AUX01	UBLOX, M.2 card universal adapter, Rev. A, - , -	M.2 adapter
AUX02	Toradex, Ixora, V1.2A, - , 10629969	Board Computer for setting modes
AUX03	LogiLink, AU0002E, -, - , -	USB - RS232 adapter for remote control of AUX02
AUX04	Fujitsu Ltd., Lifebook U758 , 2018-07, Win10 Pro Engl. , DSAL009811	Laptop remote controlling AUX02

4.5 EUT SETUPS

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup	Combination of EUTs	Description and Rationale
S01_AA01	EUT aa01, AUX04, AUX02, AUX01, AUX03,	Conducted Setup
S02_AA01	EUT aa01, AUX01,	Radiated Setup

4.6 OPERATING MODES / TEST CHANNELS

This chapter describes the operating modes of the EUTs used for testing.

WLAN
20 MHz Test Channels:
Channel:
Frequency [MHz]

2.4 GHz ISM 2400 - 2483.5 MHz										
low	low mid high									
1	1 6 11									
2412	2437	2462								

40 MHz Test Channels: Channel:

Frequency [MHz]

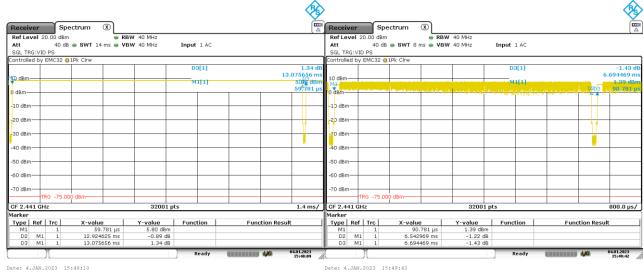
low	mid	high
3	6	9
2422	2437	2452

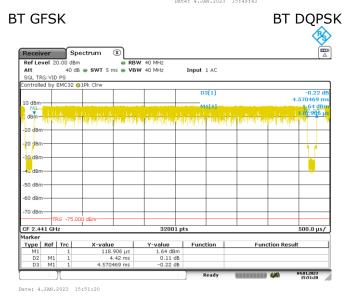
BT Test Channels: Channel:

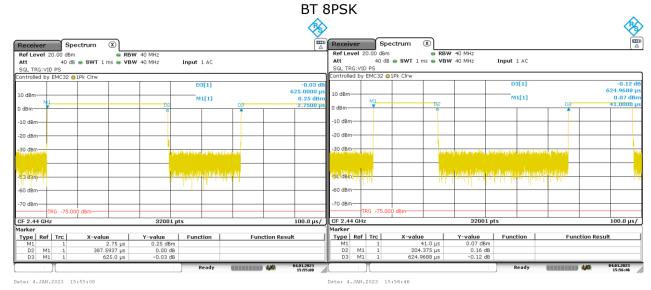
Frequency [MHz]

2.4 GHz ISM										
2400 - 2483.5 MHz										
low mid high										
0	0 39 78									
2402 2441 2480										

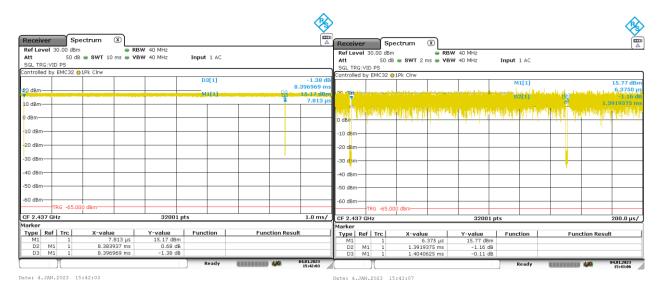
BT LE Test Channels:

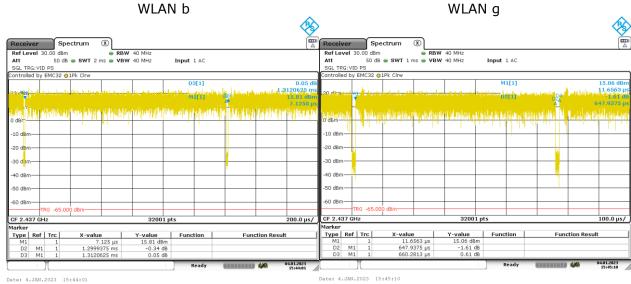

Channel:


Frequency [MHz]


2.4 GHz ISM 2400 - 2483.5 MHz											
low mid high											
0 19 39											
2402	2402 2440 2480										

Duty Cycle:





BT LE 1 Mbps

BT LE 2 Mbps

WLAN n 20 MHz WLAN n 40 MHz

				Resulting
				Field
	Full	Burst		Level DC
	Period	Length		Correction
Mode	[ms]	[ms]	DC	[dB]
BT GFSK (1-DH1)	13.0757	12.9246	0.9884	0.1
BT π/4 DQPSK (2-DH1)	6.69447	6.54297	0.9774	0.2
BT 8-DPSK (3-DH1)	4.57047	4.42	0.9671	0.3
BT LE 1 Mbps	0.625	0.38759	0.6201	4.2
BT LE 2 Mbps	0.62497	0.20438	0.3270	9.7
WLAN b-Mode; 20 MHz; 1 Mbit/s	8.39697	8.38394	0.9984	0.0
WLAN g-Mode; 20 MHz; 6 Mbit/s	1.40406	1.39194	0.9914	0.1
WLAN n-Mode; 20 MHz; MCS0	1.31206	1.29994	0.9908	0.1
WLAN n-Mode; 40 MHz; MCS0	0.66028	0.64794	0.9813	0.2

4.7 PRODUCT LABELLING

4.7.1 FCC ID LABEL

Please refer to the documentation of the applicant.

4.7.2 LOCATION OF THE LABEL ON THE EUT

Please refer to the documentation of the applicant.

Page 16 of 60

5 TEST RESULTS

5.1 PEAK POWER OUTPUT

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10, chapter 11.9.1.3

5.1.1 TEST DESCRIPTION

DTS EQUIPMENT:

The Equipment Under Test (EUT) was set up to perform the output power measurements. The results recorded were measured with the modulation which produces the worst-case (highest) output power.

Maximum peak conducted output power (e.g. Bluetooth Low Energy):

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered. The reference level of the spectrum analyser was set higher than the output power of the EUT.

Analyser settings:

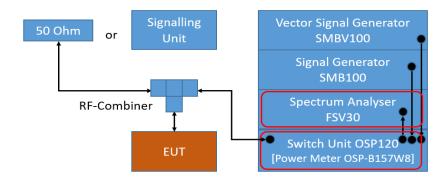
• Resolution Bandwidth (RBW): ≥ DTS bandwidth

• Video Bandwidth (VBW): ≥ 3 times RBW or maximum of analyzer

• Span: ≥ 3 times RBW

Trace: Maxhold

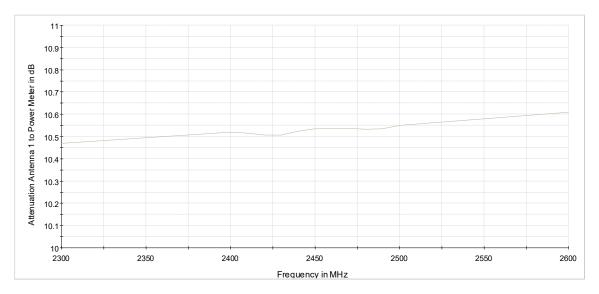
Sweeps: Till stable (min. 300, max. 15000)

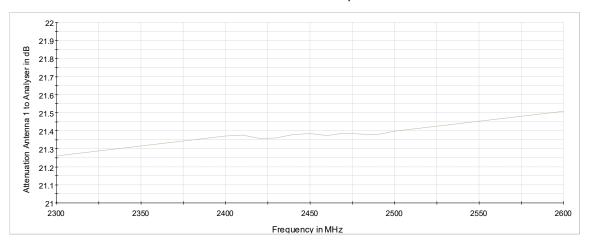

Sweeptime: AutoDetector: Peak

Maximum conducted average output power (e.g. WLAN):

module OSP-B157W8 with signal bandwidth >300 MHz.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.


Measurement is performed using the gated RF average power meter integrated in the OSP 120


TS8997; Output Power

TEST REPORT REFERENCE: MDE_UBLOX_2222_FCC_01_rev01

Attenuation of the measurement path to Power Meter

Attenuation of the measurement path to Analyser

5.1.2 TEST REQUIREMENTS / LIMITS

DTS devices:

FCC Part 15, Subpart C, §15.247 (b) (3)

For systems using digital modulation techniques in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands: 1 watt.

==> Maximum conducted peak output power: 30 dBm (excluding antenna gain, if antennas with directional gains that do not exceed 6 dBi are used).

Frequency Hopping Systems:

FCC Part 15, Subpart C, §15.247 (b) (1)

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

FCC Part 15, Subpart C, §15.247 (b) (2)

For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

Used conversion factor: Limit (dBm) = $10 \log (Limit (W)/1mW)$

5.1.3 TEST PROTOCOL

Ambient temperature: 24 °C Air Pressure: 1002 hPa Humidity: 30 %

BT GFSK (1-DH1)

Band	Channel No.	Frequency [MHz]	Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]	Difference to initial MAYA-W161 certification 1) [dB]
2.4 GHz ISM	0	2402	7.9	30.0	22.1	7.9	-0.3
	39	2441	7.8	30.0	22.2	7.8	-0.6
	78	2480	7.6	30.0	22.4	7.6	-0.5

BT π/4 DQPSK (2-DH1)

Band	Channel No.	Frequency [MHz]	Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]	Difference to initial MAYA-W161 certification 1) [dB]
2.4 GHz ISM	0	2402	7.1	30.0	22.9	7.1	-0.5
	39	2441	7.0	30.0	23.0	7.0	-0.5
	78	2480	6.8	30.0	23.2	6.8	-0.5

BT 8-DPSK (3-DH1)

Band	Channel No.	Frequency [MHz]	Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]	Difference to initial MAYA-W161 certification 1) [dB]
2.4 GHz ISM	0	2402	7.4	30.0	22.6	7.4	-0.5
	39	2441	7.3	30.0	22.7	7.3	-0.6
	78	2480	7.1	30.0	22.9	7.1	-0.5

BT LE 1 Mbit/s

Band	Channel No.	Frequency [MHz]	Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]	Difference to initial MAYA-W161 certification 1) [dB]
2.4 GHz ISM	0	2402	8.0	30.0	22.0	8.0	0.1
	19	2440	7.9	30.0	22.1	7.9	0.0
	39	2480	7.8	30.0	22.2	7.8	-0.1

BT LE 2 Mbit/s

Band	Channel No.	Frequency [MHz]	Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]	Difference to initial MAYA-W161 certification 1) [dB]
2.4 GHz ISM	0	2402	8.1	30.0	21.9	8.1	0.0
	19	2440	7.9	30.0	22.1	7.9	0.0
	39	2480	7.8	30.0	22.2	7.8	-0.1

Ambient temperature: 25 °C
Air Pressure: 1002 hPa
Humidity: 40 %
WLAN b-Mode; 20 MHz; 1 Mbit/s

Band	Channel No.	Frequency [MHz]	Maximum Average Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]	Difference to initial MAYA-W161 certification 1) [dB]
2.4 GHz ISM	1	2412	18.3	30.0	11.7	18.3	0.1
	6	2437	18.2	30.0	11.8	18.2	0.2
	11	2462	18.1	30.0	11.9	18.1	0.3

WLAN g-Mode; 20 MHz; 6 Mbit/s

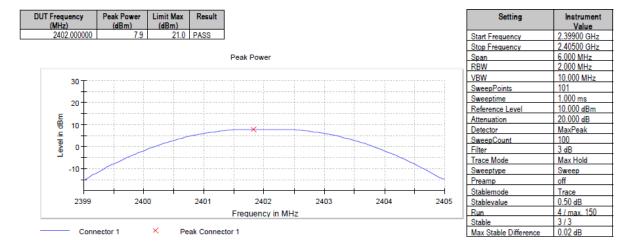
Band	Channel No.	Frequency [MHz]	Maximum Average Power [dBm]	Limit [dBm]	Margin to Limit [dB]		Difference to initial MAYA-W161 certification 1) [dB]
2.4 GHz ISM	1	2412	15.9	30.0	14.1	15.9	0.2
	6	2437	17.9	30.0	12.1	17.9	0.2
	11	2462	15.9	30.0	14.1	15.9	0.2

WLAN n-Mode; 20 MHz; MCS0

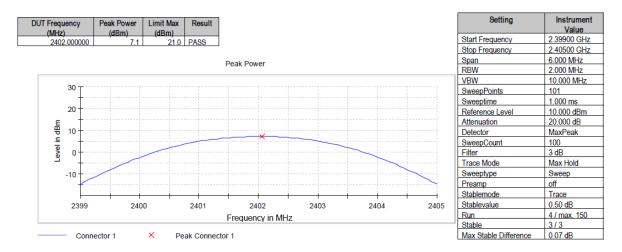
Band	Channel No.	Frequency [MHz]	Maximum Average Power [dBm]		Margin to Limit [dB]	E.I.R.P [dBm]	Difference to initial MAYA-W161 certification 1) [dB]
2.4 GHz ISM	1	2412	15.2	30.0	14.8	15.2	0.1
	6	2437	16.1	30.0	13.9	16.1	0.0
	11	2462	15.1	30.0	14.9	15.1	0.0

WLAN n-Mode; 40 MHz; MCS0

Band	Channel No.	Frequency [MHz]	Maximum Average Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]	Difference to initial MAYA-W161 certification 1) [dB]
2.4 GHz ISM	3	2422	14.0	30.0	16.0	14.0	0.2
	6	2437	16.0	30.0	14.0	16.0	0.2
	9	2452	14.9	30.0	15.1	14.9	0.3

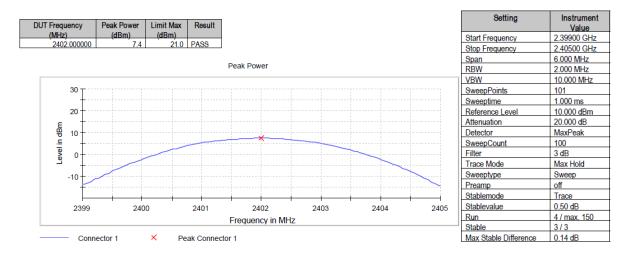

Remark: 1) Positive Difference = lower value than in original certification, negative value = higher value than in original certification.

For WLAN b mode all channels were tested at power level 18 dBm (initial MAYA-W161 certification setting). Please see next sub-clause for the measurement plot. No plots are given for WLAN (power meter measurement).

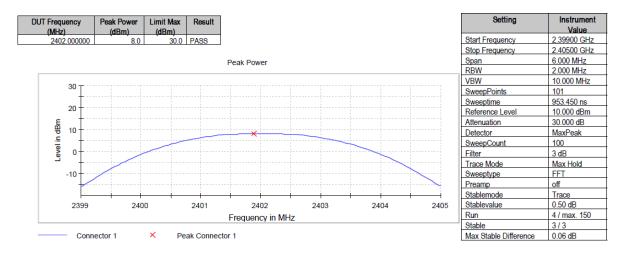


5.1.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

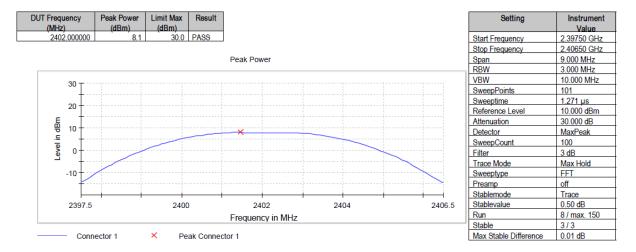
Radio Technology = Bluetooth BDR, Operating Frequency = low, Measurement method = conducted (S01_AA01)



Radio Technology = Bluetooth EDR 2, Operating Frequency = low, Measurement method = conducted (S01_AA01)



Radio Technology = Bluetooth EDR 3, Operating Frequency = low, Measurement method = conducted (S01_AA01)



Radio Technology = Bluetooth LE 1 Mbps, Operating Frequency = low, Measurement method = conducted (S01_AA01)

Radio Technology = Bluetooth LE 2 Mbps, Operating Frequency = low, Measurement method = conducted (S01_AA01)

5.1.5 TEST EQUIPMENT USED

- R&S TS8997

5.2 TRANSMITTER SPURIOUS RADIATED EMISSIONS

Standard FCC Part 15 Subpart C

The test was performed according to:

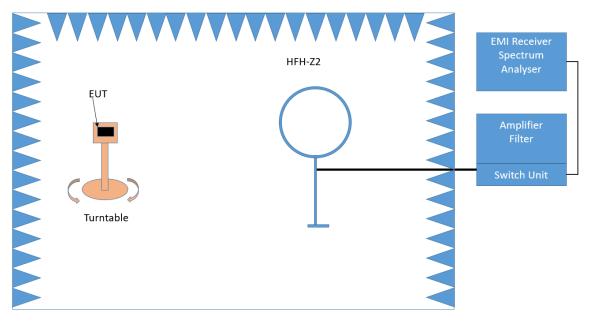
ANSI C63.10, chapter 6.4, 6.5, 6.6.5

5.2.1 TEST DESCRIPTION

The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The measurements were performed according the following subchapters of ANSI C63.10:

• < 30 MHz: Chapter 6.4

30 MHz – 1 GHz: Chapter 6.5


• > 1 GHZ: Chapter 6.6 (procedure according 6.6.5 used)

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered.

Below 1 GHz:

The Equipment Under Test (EUT) was set up on a non-conductive table in the semi-anechoic chamber. The influence of the EUT support table that is used between 30–1000 MHz was evaluated.

1. Measurement up to 30 MHz

Test Setup; Spurious Emission Radiated (SAC), 9 kHz – 30 MHz

The Loop antenna HFH2-Z2 is used.

Step 1: pre measurement

TEST REPORT REFERENCE: MDE_UBLOX_2222_FCC_01_rev01

Anechoic chamber

Antenna distance: 3 mAntenna height: 1 m

• Detector: Peak-Maxhold

Frequency range: 0.009 - 0.15 MHz and 0.15 - 30 MHz

• Frequency steps: 0.05 kHz and 2.25 kHz

• IF-Bandwidth: 0.2 kHz and 9 kHz

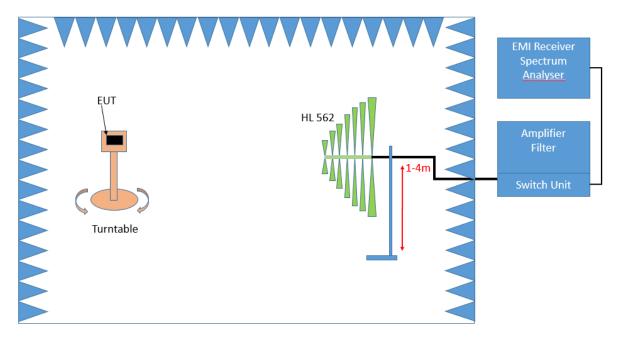
Measuring time / Frequency step: 100 ms (FFT-based)

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

• Detector: Quasi-Peak (9 kHz – 150 kHz, Peak / Average 150 kHz- 30 MHz)


• Frequency range: 0.009 – 30 MHz

• Frequency steps: measurement at frequencies detected in step 1

• IF-Bandwidth: 0.2 - 10 kHz

Measuring time / Frequency step: 1 s

2. Measurement above 30 MHz and up to 1 GHz

Test Setup; Spurious Emission Radiated (SAC), 30 MHz- 1GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit.

Settings for step 1:

- Antenna distance: 3 m

- Detector: Peak-Maxhold / Quasipeak (FFT-based)

- Frequency range: 30 - 1000 MHz

Frequency steps: 30 kHzIF-Bandwidth: 120 kHz

Measuring time / Frequency step: 100 ms
Turntable angle range: -180° to 90°

- Turntable step size: 90°

TEST REPORT REFERENCE: MDE_UBLOX_2222_FCC_01_rev01

Height variation range: 1 – 4 m
Height variation step size: 1.5 m
Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by 360° . During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary between 1-4 meter. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

IF - Bandwidth: 120 kHz
Measuring time: 100 ms
Turntable angle range: 360 °
Height variation range: 1 - 4 m

- Antenna Polarisation: max. value determined in step 1

Step 3: Final measurement with QP detector

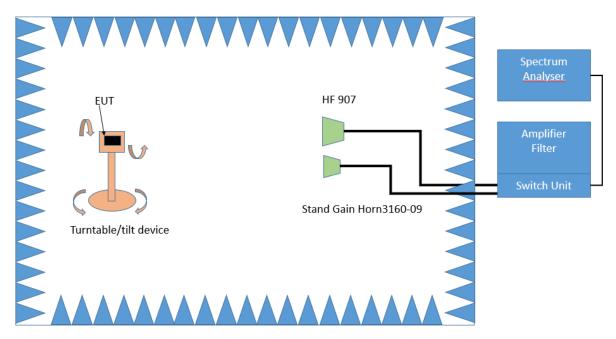
With the settings determined in step 2, the final measurement will be performed: EMI receiver settings for step 3:

- Detector: Quasi-Peak (< 1 GHz)

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHzMeasuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.



Above 1 GHz:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only.

3. Measurement above 1 GHz

Test Setup; Spurious Emission Radiated (FAC), 1 GHz-26.5 GHz

Step 1:

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90° .

The turn table step size (azimuth angle) for the preliminary measurement is 45 $^{\circ}$. Spectrum analyser settings:

- Detector: Peak, Average
- RBW = 1 MHz
- VBW = 3 MHz

Step 2:

The turn table azimuth will slowly vary by \pm 22.5°.

The elevation angle will slowly vary by $\pm 45^{\circ}$

Spectrum analyser settings:

- Detector: Peak

Step 3:

Spectrum analyser settings for step 3:

- Detector: Peak / CISPR Average
- Measured frequencies: in step 1 determined frequencies
- RBW = 1 MHz
- VBW = 3 MHz
- Measuring time: 1 s

5.2.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (μV/m)	Measurement distance (m)	Limits (dBµV/m)
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 - 13.8)@300m
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 - 23.0)@30m
1.705 - 30	30@30m	3	29.5@30m

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
30 - 88	100@3m	3	40.0@3m
88 - 216	150@3m	3	43.5@3m
216 - 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

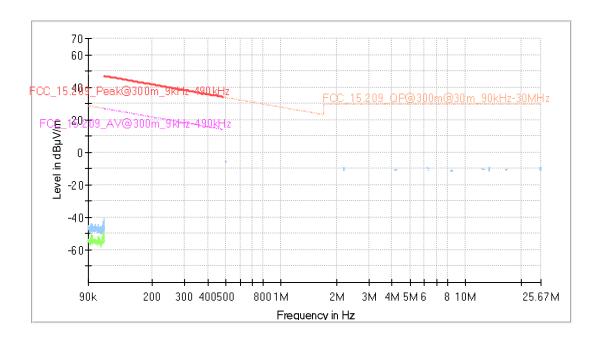
5.2.3 TEST PROTOCOL

 $\begin{array}{lll} \mbox{Ambient temperature:} & 24 \ ^{\circ}\mbox{C} \\ \mbox{Air Pressure:} & 1008 \ \mbox{hPa} \\ \mbox{Humidity:} & 41 \ \% \end{array}$

BT GFSK (1-DH1)
Applied duty cycle correction (AV): 0 dB

Mesaurement Method	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
radiated	2472							RB
conducted	2472							RB

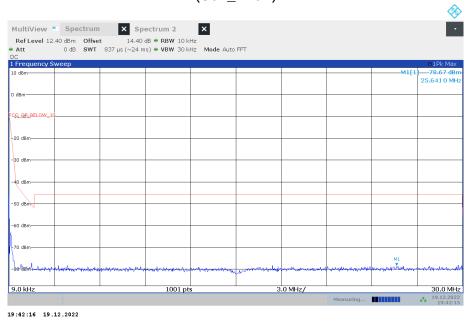
WLAN b-Mode; 20 MHz; 1 Mbit/s Applied duty cycle correction (AV): 0 dB


Mesaurement	Ch.	Spurious	Spurious	Detec-	RBW	Limit	Margin	Limit
Method	Center	Freq.	Level	tor	[kHz]	[dBµV/m]	to Limit	Type
	Freq.	[MHz]	[dBµV/m]				[dB]	
	[MHz]						22.2	
radiated	2462	12308.9	53.7	PEAK	1000	74.0	20.3	RB
radiated	2462	12308.9	45.1	AV	1000	54.0	8.9	RB
conducted	2412	805.7	45.8	PEAK	100	46.0	0.2	RB
conducted	2412	3617.9	53.5	PEAK	1000	74.0	20.5	RB
conducted	2412	3618.0	47.2	AV	1000	54.0	6.8	RB
conducted	2412	4018.8	59.1	PEAK	1000	74.0	14.9	RB
conducted	2412	4018.8	53.7	AV	1000	54.0	0.3	RB
conducted	2417	3625.4	52.9	PEAK	1000	74.0	21.1	RB
conducted	2417	3625.5	47.8	AV	1000	54.0	6.2	RB
conducted	2417	4026.3	58.4	PEAK	1000	74.0	15.6	RB
conducted	2417	4026.5	53.7	AV	1000	54.0	0.3	RB
conducted	2422	3633.4	54.3	PEAK	1000	74.0	19.7	RB
conducted	2422	3632.8	49.1	AV	1000	54.0	4.9	RB
conducted	2422	4038.1	58.4	PEAK	1000	74.0	15.6	RB
conducted	2422	4035.0	53.5	AV	1000	54.0	0.5	RB
conducted	2427	3640.4	55.8	PEAK	1000	74.0	18.2	RB
conducted	2427	3640.5	50.7	AV	1000	54.0	3.3	RB
conducted	2427	4043.3	58.5	PEAK	1000	74.0	15.5	RB
conducted	2427	4043.5	53.7	AV	1000	54.0	0.3	RB
conducted	2432	3648.4	57.0	PEAK	1000	74.0	17.0	RB
conducted	2432	3648.0	51.8	AV	1000	54.0	2.2	RB
conducted	2432	4052.1	58.6	PEAK	1000	74.0	15.4	RB
conducted	2432	4051.5	53.5	AV	1000	54.0	0.5	RB
conducted	2437	811.5	44.2	PEAK	100	46.0	1.8	RB
conducted	2437	3655.9	58.6	PEAK	1000	74.0	15.4	RB
conducted	2437	3655.5	53.7	AV	1000	54.0	0.3	RB
conducted	2437	4060.6	58.3	PEAK	1000	74.0	15.7	RB
conducted	2437	4060.3	53.0	AV	1000	54.0	1.0	RB
conducted	2462	822.2	41.0	PEAK	100	46.0	5.0	RB
conducted	2462	3692.9	58.9	PEAK	1000	74.0	15.1	RB
conducted	2462	3693.0	54.0	AV	1000	54.0	0.0	RB
conducted	2462	4105.1	52.5	PEAK	1000	74.0	21.5	RB
conducted	2462	4102.3	46.2	AV	1000	54.0	7.8	RB

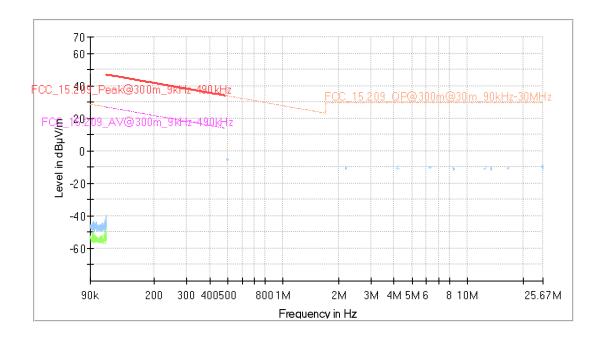
Remark: Please see next sub-clause for the measurement plot.

5.2.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Bluetooth BDR, Operating Frequency = mid, Measurement range = 9 kHz - 30 MHz (S02_AA01)

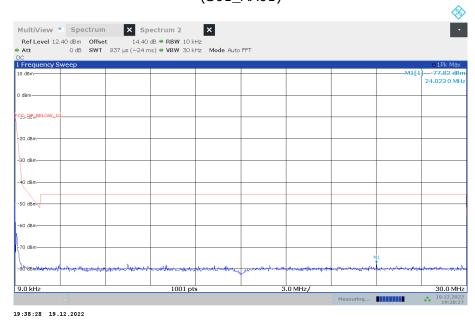


Final Result

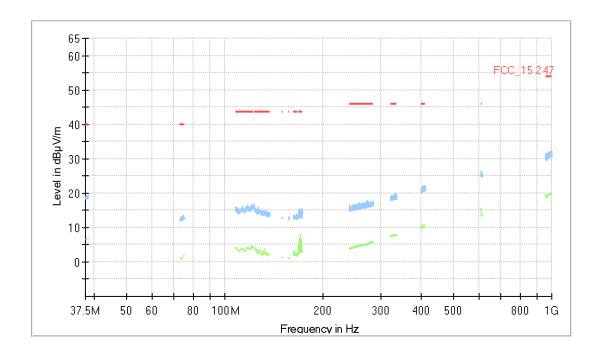

Frequency (MHz)	MaxPeak (dBµV/m)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Azimut h (deg)	Corr. (dB/m)

Radio Technology = Bluetooth BDR, Operating Frequency = mid, Measurement range = 9 kHz - 30 MHz (S01_AA01)

Radio Technology = WLAN b, Operating Frequency = mid, Measurement range = 9 kHz - 30 MHz(S02_AA01)

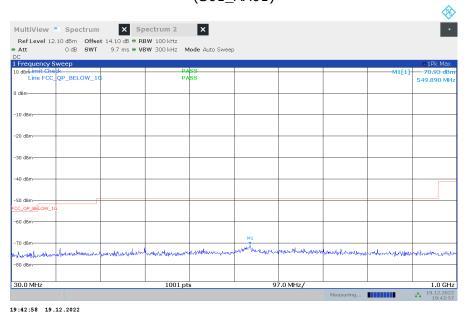


Final_Result

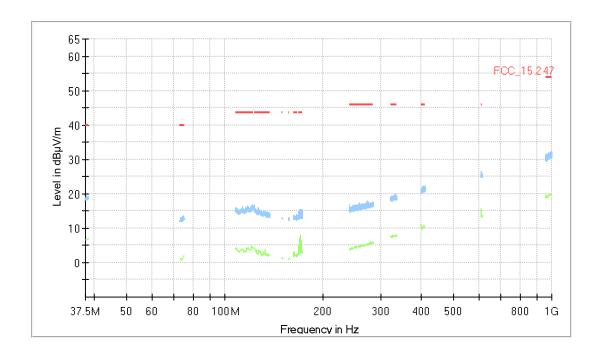

Frequency (MHz)	MaxPeak (dBµV/m)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Azimut h (deg)	Corr. (dB/m)

Radio Technology = WLAN b, Operating Frequency = low, Measurement range = 9 kHz - 30 MHz (S01_AA01)

Radio Technology = Bluetooth BDR, Operating Frequency = mid, Measurement range = 30 MHz - 1 GHz (S02_AA01)

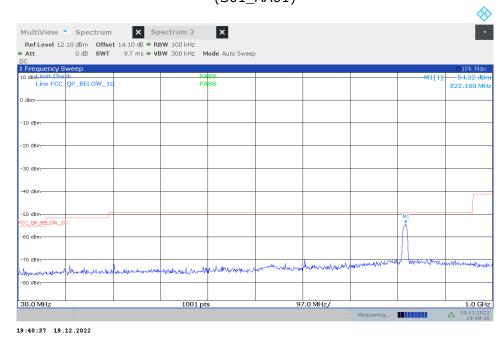


Final Result

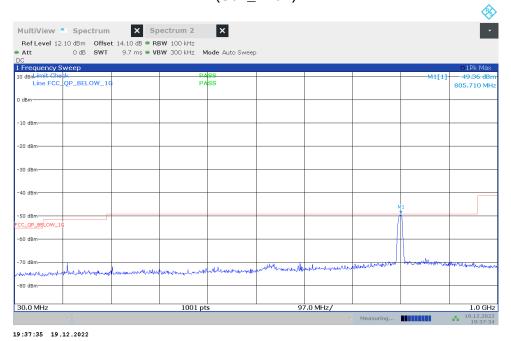

-		~								
	Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)

Radio Technology = Bluetooth BDR, Operating Frequency = low, Measurement range = 30 MHz $^{\circ}$ 1 GHz (S01_AA01)

Radio Technology = WLAN b, Operating Frequency = mid, Measurement range = 30 MHz - 1 GHz (S02_AA01)

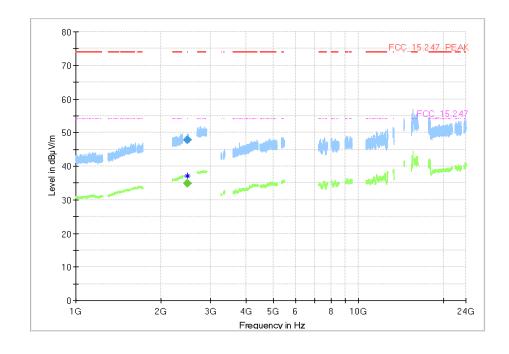


Final Result


-		~								
	Frequency (MHz)	QuasiPeak (dΒμV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)

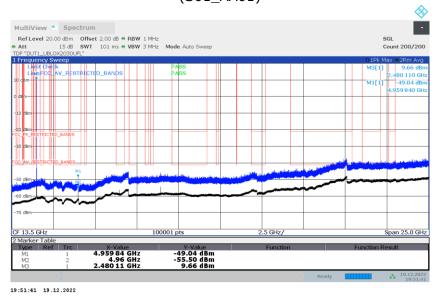
Radio Technology = WLAN b, Operating Frequency = high, Measurement range = 30 MHz - 1 GHz (S01_AA01)

Radio Technology = WLAN b, Operating Frequency = low, Measurement range = 30 MHz - 1 GHz (S01_AA01)

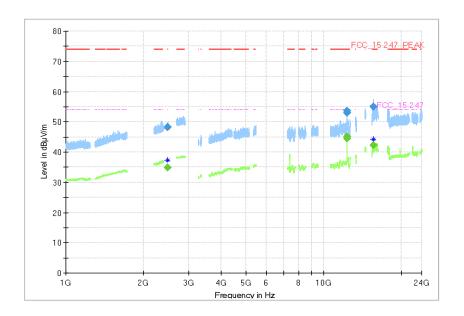


Radio Technology = WLAN b, Operating Frequency = mid, Measurement range = 30 MHz - 1 GHz (S01_AA01)

Radio Technology = Bluetooth BDR, Operating Frequency = high, Measurement range = 1 GHz - 26 GHz (S02_AA01)

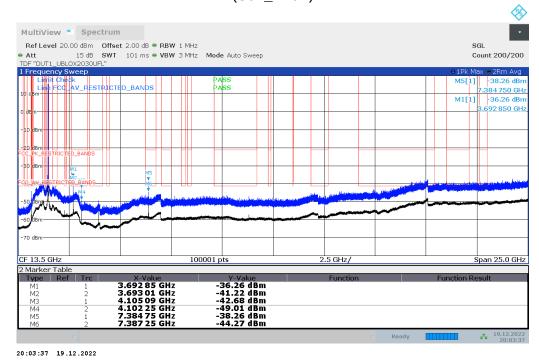


Final Result

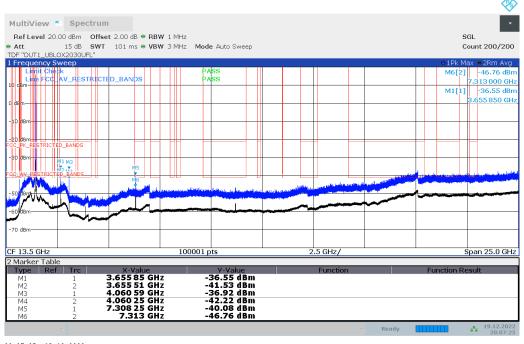

Frequency (MHz)	MaxPeak (dBµV/m)	CAverag e (dBµV/m)	Limit (dBµ V/m)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heigh t (cm)	Pol	Azimut h (deg)	Elevatio n (deg)	Corr. (dB/ m)
2485.398		34.8	54.00	19.21	1000.0	1000.000	150.0	Н	-144.0	102.0	5.3
2485.398	47.8		74.00	26.25	1000.0	1000.000	150.0	Н	-144.0	102.0	5.3

Radio Technology = Bluetooth BDR, Operating Frequency = high, Measurement range = 1 GHz - 26 GHz $(S01_AA01)$

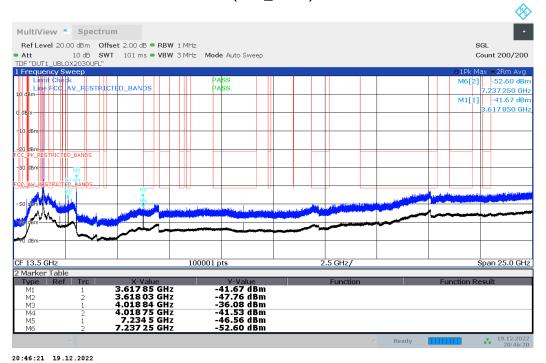
Radio Technology = WLAN b, Operating Frequency = high, Measurement range = 1 GHz - 26 $\,$ GHz $\,$ (S02_AA01)

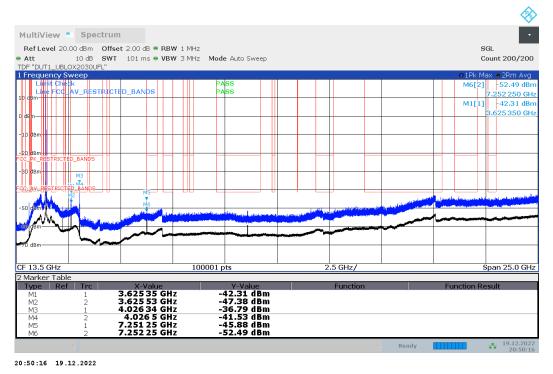


Final Result

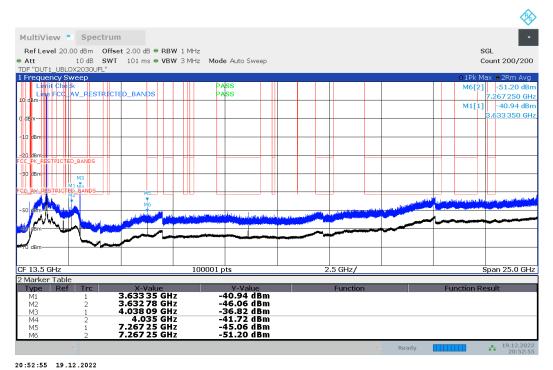

Frequency (MHz)	MaxPeak (dBµV/m)	CAverag e (dBµV/m)	Limit (dBµ V/m)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heigh t (cm)	Pol	Azimut h (deg)	Elevatio n (deg)	Corr. (dB/ m)
12308.875	53.7		74.00	20.26	1000.0	1000.000	150.0	Н	-30.0	105.0	-7.0
12308.875		45.1	54.00	8.94	1000.0	1000.000	150.0	Н	-30.0	105.0	-7.0
12310.765		44.5	54.00	9.55	1000.0	1000.000	150.0	Н	-24.0	105.0	-7.0
12310.765	53.0		74.00	21.00	1000.0	1000.000	150.0	Н	-24.0	105.0	-7.0
15594.800	55.0		74.00	18.97	1000.0	1000.000	150.0	V	126.0	-4.0	-1.1
15594.800		42.2	54.00	11.75	1000.0	1000.000	150.0	V	126.0	-4.0	-1.1

Radio Technology = WLAN b, Operating Frequency = high, Measurement range = 1 GHz - 26 GHz (S01_AA01)

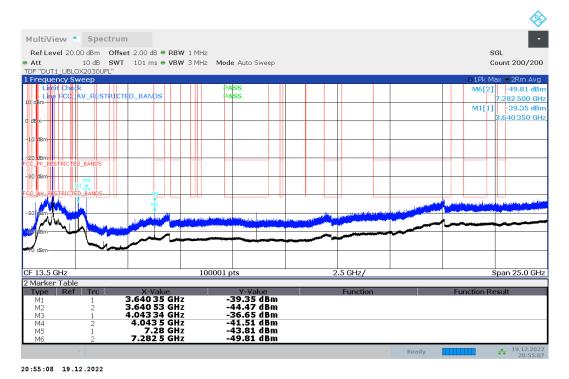

Radio Technology = WLAN b, Operating Frequency = mid, Measurement range = 1 GHz - 26 $\,$ GHz $\,$ (S01_AA01)


20:07:25 19.12.2022

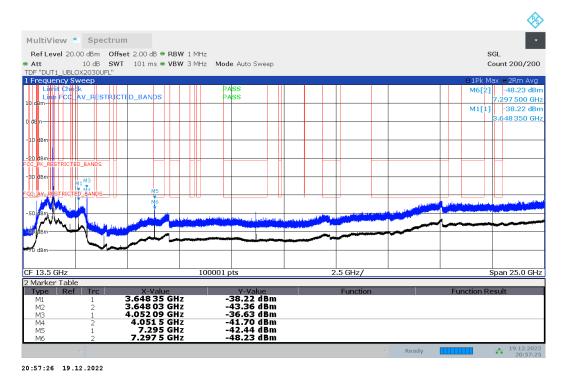
Radio Technology = WLAN b, Operating Frequency = low, Measurement range = 1 GHz - 26 $\,$ GHz $\,$ (S01_AA01)



TX on Ch. 1



TX on Ch. 2



TX on Ch. 3

TX on Ch. 4

TX on Ch. 5

5.2.5 TEST EQUIPMENT USED

- Radiated Emissions FAR 2.4 GHz FCC
- Radiated Emissions SAC H-Field
- Radiated Emissions SAC up to 1 GHz
- R&S TS8997

5.3 BAND EDGE COMPLIANCE RADIATED

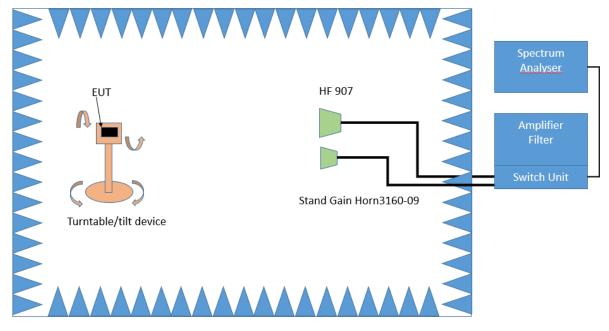
Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10, chapter 6.6.5

5.3.1 TEST DESCRIPTION

Radiated Measurement with 50 Ohm termination at antenna ports


The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The measurements were performed according the following subchapter of ANSI C63.10:

• Chapter 6.10.5

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only (procedure according ANSI C63.10, chapter 6.6.5.

3. Measurement above 1 GHz

Test Setup; Spurious Emission Radiated (FAC), 1 GHz-26.5 GHz

Step 1:

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 °.

The turn table step size (azimuth angle) for the preliminary measurement is 45 °. Spectrum analyser settings:

- Detector: Peak, Average
- RBW = 1 MHz
- VBW = 3 MHz

Step 2:

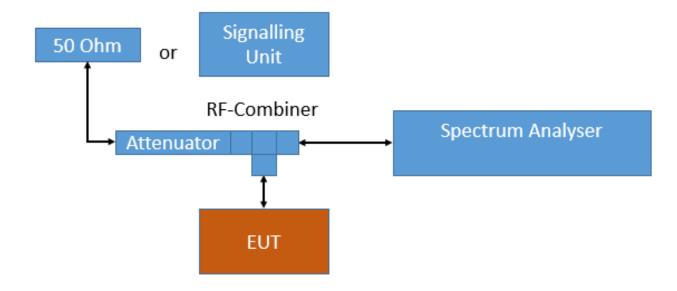
The turn table azimuth will slowly vary by \pm 22.5°. The elevation angle will slowly vary by \pm 45° Spectrum analyser settings:

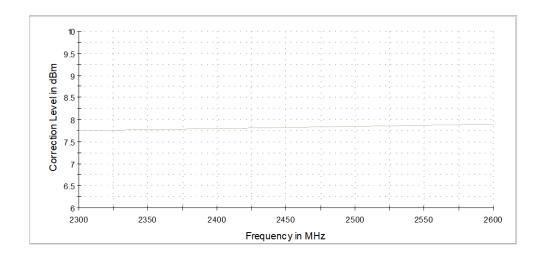
- Detector: Peak

Step 3:

Spectrum analyser settings for step 3:

- Detector: Peak / CISPR Average


- Measured frequencies: in step 1 determined frequencies


- RBW = 1 MHz - VBW = 3 MHz - Measuring time: 1 s

Conducted Measurements at antenna ports

The Equipment Under Test (EUT) was set up to perform the spurious emissions measurements.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Analyser settings:

Frequency range: 2350 – 2500 MHz
Resolution Bandwidth (RBW): 1000 kHz
Video Bandwidth (VBW): 3000 kHz

Trace: Maxhold, Average Power

Sweeps: 10000Sweep Time: coupledDetector: Peak, RMS

For the conducted emissions in restricted bands the Value is measured in dBm and then converted to $dB\mu V/m$ as given in KDB 558074:

- 1. Measure the conducted output power in dBm.
- 2. Add the maximum antenna gain in dBi. (Included in measurement result by offset)
- 3. Add the appropriate ground reflection factor (0 for measured range)
 - 6 dB for frequencies ≤ 30 MHz;
 - 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive; and
 - 0 dB for frequencies > 1000 MHz).
- 4. Convert the resultant EIRP level to an equivalent electric field strength level using the following relationship:

 $E = EIRP - 20 \log D + 104.8$

Where E is the electric field strength in dBµV/m,

EIRP is the equivalent isotropically radiated power in dBm

D is the specified measurement distance in m

Value [dB μ V/m] = Measured value [dBm] (including gain and ground reflection factor) – 20 log D + 104.8

5.3.2 TEST REQUIREMENTS / LIMITS

For band edges connected to a restricted band, the limits are specified in Section 15.209(a)

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (μV/m)	Measurement distance (m)	Limits (dBµV/m)
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 - 13.8)@300m
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 - 23.0)@30m
1.705 - 30	30@30m	3	29.5@30m

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (μV/m)	Measurement distance (m)	Limits (dBµV/m)
30 - 88	100@3m	3	40.0@3m
88 - 216	150@3m	3	43.5@3m
216 - 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

5.3.3 TEST PROTOCOL

Ambient temperature: 24 °C Air Pressure: 1008 hPa Humidity: 41 %

BT GFSK (1-DH1)

Applied duty cycle correction (AV): 0.1 dB

Mesaurement Method	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]
radiated	2480	2483.5	47.8	PEAK	1000	74.0	26.2
radiated	2480	2483.5	34.9	AV	1000	54.0	19.1

BT 8-DPSK (3-DH1)

Applied duty cycle correction (AV): 0.3 dB

Mesaurement Method	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]
conducted	2480	2483.5	59.0	PEAK	1000	74.0	15.0
conducted	2480	2483.5	44.0	AV	1000	54.0	10.0

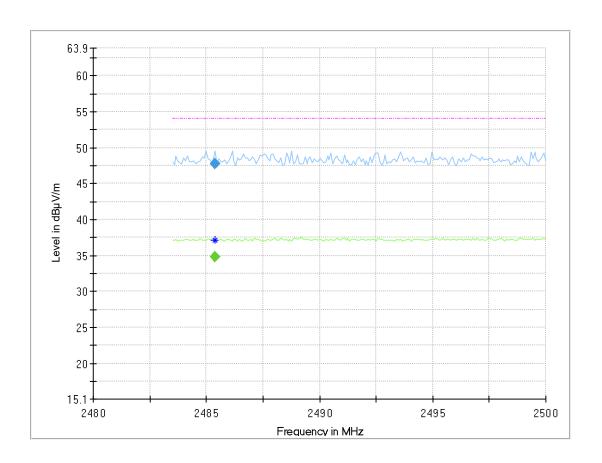
WLAN b-Mode; 20 MHz; 1 Mbit/s Applied duty cycle correction (AV): 0 dB

Mesaurement Method	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]
radiated	2462	2483.5	48.4	PEAK	1000	74.0	25.6
radiated	2462	2483.5	34.8	AV	1000	54.0	19.2
conducted	2412	2390.0	58.8	PEAK	1000	74.0	15.2
conducted	2412	2390.0	50.5	AV	1000	54.0	3.5

WLAN n-Mode; 40 MHz; MCS0

Applied duty cycle correction (AV): 0.2 dB

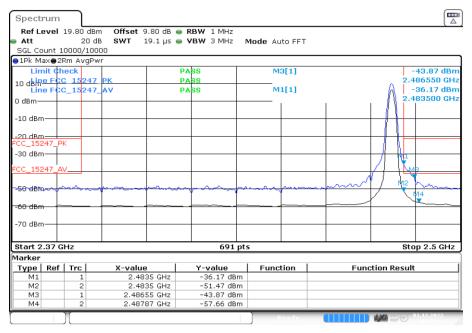
Mesaurement Method	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]
conducted	2452	2483.5	73.6	PEAK	1000	74.0	0.4
conducted	2452	2483.5	52.3	AV	1000	54.0	1.7


Remark: WLAN b mode was tested at higher power setting 18 dBm (worse case and initial MAYA-W161 certification setting).

Please see next sub-clause for the measurement plot.

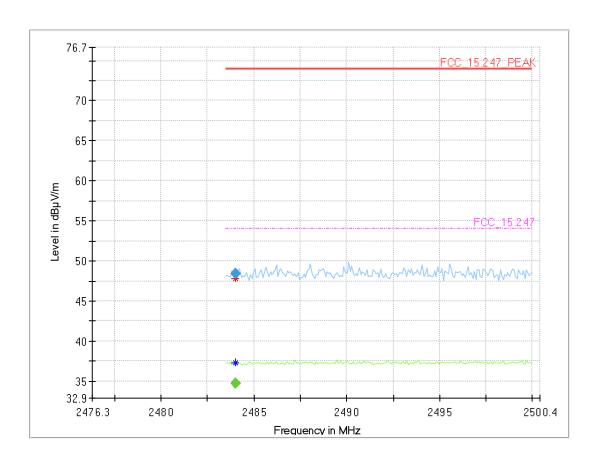
5.3.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Bluetooth BDR, Operating Frequency = high, Band Edge = high (S02_AA01)



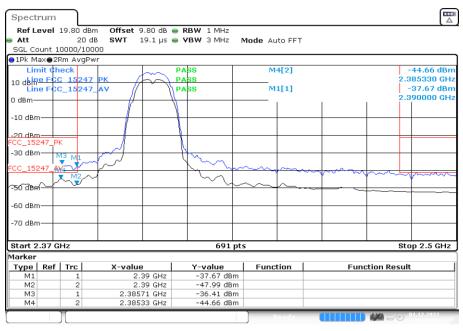
Final Result

Frequency (MHz)	MaxPeak (dBµV/m)	CAverag e (dBµV/m)	Limit (dBµ V/m)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heigh t (cm)	Pol	Azimut h (deg)	Elevatio n (deg)	Corr. (dB/ m)
2485.398		34.8	54.00	19.21	1000.0	1000.000	150.0	Н	-144.0	102.0	5.3
2485.398	47.8		74.00	26.25	1000.0	1000.000	150.0	Н	-144.0	102.0	5.3


Radio Technology = Bluetooth EDR 3, Operating Frequency = high, Band Edge = high (S01_AA01)

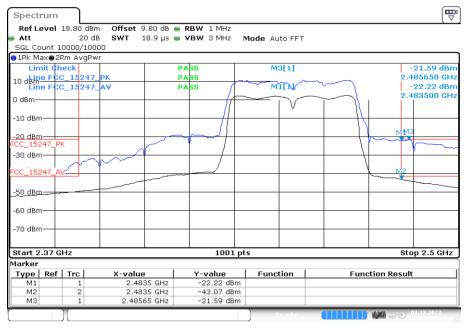
Date: 1.DEC.2022 16:45:24

Radio Technology = WLAN b, Operating Frequency = high, Band Edge = high (S02_AA01)



Final Result

	Frequency (MHz)	MaxPeak (dBµV/m)	CAverag e (dBµV/m)	Limit (dBµ V/m)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heigh t (cm)	Pol	Azimut h (deg)	Elevatio n (deg)	Corr. (dB/ m)
	2483.995	48.4		74.00	25.63	1000.0	1000.000	150.0	V	-184.0	15.0	5.3
ĺ	2483.995		34.8	54.00	19.24	1000.0	1000.000	150.0	V	-184.0	15.0	5.3



Radio Technology = WLAN b, Operating Frequency = high, Band Edge = high (S01_AA01)

Date: 1.DEC.2022 18:20:50

Radio Technology = WLAN n 40 MHz, Operating Frequency = high, Band Edge = high (S01_AA01)

Date: 2.DEC.2022 11:23:54

5.3.5 TEST EQUIPMENT USED

- Radiated Emissions FAR 2.4 GHz FCC
- R&S TS8997

6 TEST EQUIPMENT

6.1 TEST EQUIPMENT HARDWARE

1 R&S TS8997 2.4 and 5 GHz Bands Conducted Test Lab

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last	Calibration
		-			Calibration	Due
1.1	MFS	Rubidium Frequency Normal	Datum GmbH	002		
1.2	Opus10 TPR (8253.00)		Lufft Mess- und Regeltechnik GmbH	13936	2021-10	2023-10
1.3	FSV30	Signal Analyzer 10 Hz - 30 GHz	Rohde & Schwarz	103005	2022-06	2024-06
1.4	NGSM 32/10	Power Supply	Rohde & Schwarz GmbH & Co. KG	3456	2022-01	2024-01
1.5	FSW43	- 3 -	Rohde & Schwarz GmbH & Co. KG	102013	2021-06	2023-06
1.6	Opus10 THI (8152.00)		Lufft Mess- und Regeltechnik GmbH	13993	2021-08	2023-08
1.7	OSP120	Contains Power Meter and Switching Unit OSP- B157W8 PLUS	Rohde & Schwarz	101158	2021-08	2024-08

2 Radiated Emissions FAR 2.4 GHz FCC Radiated emission tests for 2.4 GHz ISM devices in a fully anechoic room

Ref.No.	Device Name	Description	Manufacturer	Serial Number		Calibration
2.1	Opus10 TPR (8253.00)	, 55	Lufft Mess- und Regeltechnik GmbH	13936	Calibration 2021-10	Due 2023-10
2.2	ÀMF-		Miteq			
2.3	Anechoic Chamber 03	FAR, 8.80m x 4.60m x 4.05m (I x w x h)	Albatross Projects	P26971-647-001- PRB	2021-04	2023-04
2.4	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2022-06	2024-06
2.5	JS4-18002600- 32-5P	Broadband Amplifier 18 GHz - 26 GHz	Miteq	849785		
2.6	FSW43		Rohde & Schwarz GmbH & Co. KG	103779	2021-06	2023-06
2.7	EP 1200/B, NA/B1	Amplifier with	Spitzenberger & Spies GmbH & Co. KG	B6278		

TEST REPORT REFERENCE: MDE_UBLOX_2222_FCC_01_rev01

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.8	3160-09		EMCO Elektronic GmbH	00083069		
	WHKX 7.0/18G- 8SS	High Pass Filter	Wainwright Instruments GmbH	09		
2.10	TT 1.5 WI	Turn Table	Maturo GmbH	-		
2.11	5HC3500/18000 -1.2-KK	High Pass Filter	Trilithic	200035008		
2.12	FSW43	- 3 -	Rohde & Schwarz GmbH & Co. KG	102013	2021-06	2023-06
2.13	Opus 20 THI (8120.00)	, ,	Lufft Mess- und Regeltechnik GmbH	115.0318.0802.0 33		
2.14	TD1.5-10kg	EUT Tilt Device (Rohacell)	Maturo GmbH	TD1.5- 10kg/024/37907 09		
2.15	PAS 2.5 - 10 kg	Antenna Mast	Maturo GmbH	-		
	00101800-25-S-		Miteq	2035324		
2.17	HF 907	Double-ridged horn	Rohde & Schwarz	102444	2021-09	2024-09

Radiated Emissions SAC H-Field Radiated emission tests in the H-Field in a semi anechoic room

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last	Calibration
		_			Calibration	Due
3.1	N5000/NP	Filter for EUT, 2 Lines, 250 V, 16 A	ETS-LINDGREN	241515		
3.2	Opus10 TPR (8253.00)	T/P Logger 13	Lufft Mess- und Regeltechnik GmbH	13936	2021-10	2023-10
3.3	ESW44	EMI Receiver / Spectrum Analyzer	Rohde & Schwarz GmbH & Co. KG	101603	2022-01	2024-01
	Anechoic Chamber 01	SAC/FAR, 10.58 m x 6.38 m x 6.00 m	Frankonia	none		
3.5	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2022-06	2024-06
3.6	Opus10 THI (8152.00)	T/H Logger 10	Lufft Mess- und Regeltechnik GmbH	12488	2021-08	2023-08
3.7	EP 1200/B, NA/B1	AC Source, Amplifier with integrated variable Oscillator	Spitzenberger & Spies GmbH & Co. KG	B6278		
3.8	DS 420S	Turn Table 2 m diameter	HD GmbH	420/573/99		
3.9	HFH2-Z2	Loop Antenna + 3 Axis Tripod	Rohde & Schwarz GmbH & Co. KG	829324/006	2021-01	2024-01

4 Radiated Emissions SAC up to 1 GHz

TEST REPORT REFERENCE: MDE_UBLOX_2222_FCC_01_rev01 Page 50 of 60

Radiated emission tests up to 1 GHz in a semi anechoic room

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
4.1	N5000/NP	Filter for EUT, 2 Lines, 250 V, 16 A	ETS-LINDGREN	241515		
4.2	Opus10 TPR (8253.00)	T/P Logger 13	Lufft Mess- und Regeltechnik GmbH	13936	2021-10	2023-10
4.3	ESW44	EMI Receiver / Spectrum Analyzer	Rohde & Schwarz GmbH & Co. KG	101603	2022-01	2024-01
4.4	Anechoic Chamber 01	SAC/FAR, 10.58 m x 6.38 m x 6.00 m	Frankonia	none		
4.5	HL 562 ULTRALOG	Biconical-log- per antenna (30 MHz - 3 GHz) with HL 562E biconicals	Rohde & Schwarz GmbH & Co. KG	830547/003	2021-09	2024-09
4.6	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2022-06	2024-06
4.7	Opus10 THI (8152.00)		Lufft Mess- und Regeltechnik GmbH	12488	2021-08	2023-08
4.8	EP 1200/B, NA/B1	AC Source, Amplifier with integrated variable Oscillator	Spitzenberger & Spies GmbH & Co. KG	B6278		
4.9	DS 420S	Turn Table 2 m diameter	HD GmbH	420/573/99		
4.10	AM 4.0	Antenna Mast 4 m	Maturo GmbH	AM4.0/180/1192 0513		

The calibration interval is the time interval between "Last Calibration" and "Calibration Due"

6.2 TEST EQUIPMENT SOFTWARE

Semi-Anechoic Chamber:	Semi-Anechoic Chamber:				
Software	Version				
EMC32 Measurement Software	10.60.10				
INNCO Mast Controller	1.02.62				
MATURO Mast Controller	12.19				
MATURO Turn-Table Controller	30.10				
Fully-Anechoic Chamber:					
Software	Version				
EMC32 Measurement Software	10.60.10				
MATURO Turn-Unit Controller	11.10				
MATURO Mast Controller	12.10				
MATURO Turntable Controller	12.11				
Conducted AC Emissions:					
Software	Version				
EMC32 Measurement Software	10.60.20				

7 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

7.1 LISN R&S ESH3-Z5 (150 KHZ - 30 MHZ)

Frequency	Corr.
MHz	dB
0.15	10.1
5	10.3
7	10.5
10	10.5
12	10.7
14	10.7
16	10.8
18	10.9
20	10.9
22	11.1
24	11.1
26	11.2
28	11.2
30	11.3

LISN insertion loss ESH3- Z5	cable loss (incl. 10 dB atten- uator)
dB	dB
0.1	10.0
0.1	10.2
0.2	10.3
0.2	10.3
0.3	10.4
0.3	10.4
0.4	10.4
0.4	10.5
0.4	10.5
0.5	10.6
0.5	10.6
0.5	10.7
0.5	10.7
0.5	10.8

Sample calculation

 U_{LISN} (dB μ V) = U (dB μ V) + Corr. (dB)

U = Receiver reading

LISN Insertion loss = Voltage Division Factor of LISN

Corr. = sum of single correction factors of used LISN, cables, switch units (if used)

Linear interpolation will be used for frequencies in between the values in the table.

7.2 ANTENNA R&S HFH2-Z2 (9 KHZ - 30 MHZ)

	AF	
Frequency	HFH-Z2)	Corr.
MHz	dB (1/m)	dB
0.009	20.50	-79.6
0.01	20.45	-79.6
0.015	20.37	-79.6
0.02	20.36	-79.6
0.025	20.38	-79.6
0.03	20.32	-79.6
0.05	20.35	-79.6
0.08	20.30	-79.6
0.1	20.20	-79.6
0.2	20.17	-79.6
0.3	20.14	-79.6
0.49	20.12	-79.6
0.490001	20.12	-39.6
0.5	20.11	-39.6
0.8	20.10	-39.6
1	20.09	-39.6
2	20.08	-39.6
3	20.06	-39.6
4	20.05	-39.5
5	20.05	-39.5
6	20.02	-39.5
8	19.95	-39.5
10	19.83	-39.4
12	19.71	-39.4
14	19.54	-39.4
16	19.53	-39.3
18	19.50	-39.3
20	19.57	-39.3
22	19.61	-39.3
24	19.61	-39.3
26	19.54	-39.3
28	19.46	-39.2
30	19.73	-39.1

(3 11112	30 11112	<u>'</u>				
cable	cable	cable	cable	distance	d_{Limit}	d_{used}
loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.
(inside	(outside	(switch	(to	(-40 dB/	distance	distance
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.2	0.1	-40	30	3
0.2	0.1	0.2	0.1	-40	30	3
0.2	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.3	0.1	-40	30	3
0.4	0.1	0.3	0.1	-40	30	3
	•					•

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = -40 * LOG (d_{Limit}/d_{used})

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values

7.3 ANTENNA R&S HL562 (30 MHZ - 1 GHZ)

$d_{Limit} = 3 m$		
Frequency	AF R&S HL562	Corr.
MHz	dB (1/m)	dB
30	18.6	0.6
50	6.0	0.9
100	9.7	1.2
150	7.9	1.6
200	7.6	1.9
250	9.5	2.1
300	11.0	2.3
350	12.4	2.6
400	13.6	2.9
450	14.7	3.1
500	15.6	3.2
550	16.3	3.5
600	17.2	3.5
650	18.1	3.6
700	18.5	3.6
750	19.1	4.1
800	19.6	4.1
850	20.1	4.4
900	20.8	4.7
950	21.1	4.8
1000	21.6	4.9

cable	cable	cable	cable	distance	d_{Limit}	d_{used}
loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.
(inside	(outside	(switch	(to	(-20 dB/	distance	distance
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
0.29	0.04	0.23	0.02	0.0	3	3
0.39	0.09	0.32	0.08	0.0	3	3
0.56	0.14	0.47	0.08	0.0	3	3
0.73	0.20	0.59	0.12	0.0	3	3
0.84	0.21	0.70	0.11	0.0	3	3
0.98	0.24	0.80	0.13	0.0	3	3
1.04	0.26	0.89	0.15	0.0	3	
1.18	0.31	0.96	0.13	0.0	3	3
1.28	0.35	1.03	0.19	0.0	3	3
1.39	0.38	1.11	0.22	0.0	3	3
1.44	0.39	1.20	0.19	0.0	3	3
1.55	0.46	1.24	0.23	0.0	3	3
1.59	0.43	1.29	0.23	0.0	3	3
1.67	0.34	1.35	0.22	0.0	3	3
1.67	0.42	1.41	0.15	0.0	3	3
1.87	0.54	1.46	0.25	0.0	3	3
1.90	0.46	1.51	0.25	0.0	3	3
1.99	0.60	1.56	0.27	0.0	3	3
2.14	0.60	1.63	0.29	0.0	3	3
2.22	0.60	1.66	0.33	0.0	3	3
2.23	0.61	1.71	0.30	0.0	3	3

 $(d_{Limit} = 10 \text{ m})$

$(d_{Limit} = 10 \text{ m})$	1)								
30	18.6	-9.9	0.29	0.04	0.23	0.02	-10.5	10	3
50	6.0	-9.6	0.39	0.09	0.32	0.08	-10.5	10	3
100	9.7	-9.2	0.56	0.14	0.47	0.08	-10.5	10	3
150	7.9	-8.8	0.73	0.20	0.59	0.12	-10.5	10	3
200	7.6	-8.6	0.84	0.21	0.70	0.11	-10.5	10	3
250	9.5	-8.3	0.98	0.24	0.80	0.13	-10.5	10	3
300	11.0	-8.1	1.04	0.26	0.89	0.15	-10.5	10	3
350	12.4	-7.9	1.18	0.31	0.96	0.13	-10.5	10	3
400	13.6	-7.6	1.28	0.35	1.03	0.19	-10.5	10	3
450	14.7	-7.4	1.39	0.38	1.11	0.22	-10.5	10	3
500	15.6	-7.2	1.44	0.39	1.20	0.19	-10.5	10	3
550	16.3	-7.0	1.55	0.46	1.24	0.23	-10.5	10	3
600	17.2	-6.9	1.59	0.43	1.29	0.23	-10.5	10	3
650	18.1	-6.9	1.67	0.34	1.35	0.22	-10.5	10	3
700	18.5	-6.8	1.67	0.42	1.41	0.15	-10.5	10	3
750	19.1	-6.3	1.87	0.54	1.46	0.25	-10.5	10	3
800	19.6	-6.3	1.90	0.46	1.51	0.25	-10.5	10	3
850	20.1	-6.0	1.99	0.60	1.56	0.27	-10.5	10	3
900	20.8	-5.8	2.14	0.60	1.63	0.29	-10.5	10	3
950	21.1	-5.6	2.22	0.60	1.66	0.33	-10.5	10	3
1000	21.6	-5.6	2.23	0.61	1.71	0.30	-10.5	10	3

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-20 * LOG (d_{Limit}/ d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

7.4 ANTENNA R&S HF907 (1 GHZ - 18 GHZ)

	AF R&S	
Frequency	HF907	Corr.
MHz	dB (1/m)	dB
1000	24.4	-19.4
2000	28.5	-17.4
3000	31.0	-16.1
4000	33.1	-14.7
5000	34.4	-13.7
6000	34.7	-12.7
7000	35.6	-11.0

cable loss 1 (relay + cable inside	cable loss 2 (outside	cable loss 3 (switch unit, atten- uator &	cable	
chamber)	chamber)	pre-amp)	receiver)	
dB	dB	dB	dB	
0.99	0.31	-21.51	0.79	
1.44	0.44	-20.63	1.38	
1.87	0.53	-19.85	1.33	
2.41	0.67	-19.13	1.31	
2.78	0.86	-18.71	1.40	
2.74	0.90	-17.83	1.47	
2.82	0.86	-16.19	1.46	

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
3000	31.0	-23.4
4000	33.1	-23.3
5000	34.4	-21.7
6000	34.7	-21.2
7000	35.6	-19.8

cable loss 1 (relay inside	cable loss 2 (inside	cable loss 3 (outside	cable loss 4 (switch unit, atten- uator &	cable loss 5 (to	used for FCC
chamber)	chamber)	chamber)	pre-amp)	receiver)	15.247
dB	dB	dB	dB	dB	
0.47	1.87	0.53	-27.58	1.33	
0.56	2.41	0.67	-28.23	1.31	
0.61	2.78	0.86	-27.35	1.40	
0.58	2.74	0.90	-26.89	1.47	
0.66	2.82	0.86	-25.58	1.46	

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
7000	35.6	-57.3
8000	36.3	-56.3
9000	37.1	-55.3
10000	37.5	-56.2
11000	37.5	-55.3
12000	37.6	-53.7
13000	38.2	-53.5
14000	39.9	-56.3
15000	40.9	-54.1
16000	41.3	-54.1
17000	42.8	-54.4
18000	44.2	-54.7

cable					
loss 1	cable	cable	cable	cable	cable
(relay	loss 2	loss 3	loss 4	loss 5	loss 6
inside	(High	(pre-	(inside	(outside	(to
chamber)	Pass)	amp)	chamber)	chamber)	receiver)
dB	dB	dB	dB	dB	dB
0.56	1.28	-62.72	2.66	0.94	1.46
0.69	0.71	-61.49	2.84	1.00	1.53
0.68	0.65	-60.80	3.06	1.09	1.60
0.70	0.54	-61.91	3.28	1.20	1.67
0.80	0.61	-61.40	3.43	1.27	1.70
0.84	0.42	-59.70	3.53	1.26	1.73
0.83	0.44	-59.81	3.75	1.32	1.83
0.91	0.53	-63.03	3.91	1.40	1.77
0.98	0.54	-61.05	4.02	1.44	1.83
1.23	0.49	-61.51	4.17	1.51	1.85
1.36	0.76	-62.36	4.34	1.53	2.00
1.70	0.53	-62.88	4.41	1.55	1.91

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

7.5 ANTENNA EMCO 3160-09 (18 GHZ - 26.5 GHZ)

	AF EMCO	
Frequency	3160-09	Corr.
MHz	dB (1/m)	dB
18000	40.2	-23.5
18500	40.2	-23.2
19000	40.2	-22.0
19500	40.3	-21.3
20000	40.3	-20.3
20500	40.3	-19.9
21000	40.3	-19.1
21500	40.3	-19.1
22000	40.3	-18.7
22500	40.4	-19.0
23000	40.4	-19.5
23500	40.4	-19.3
24000	40.4	-19.8
24500	40.4	-19.5
25000	40.4	-19.3
25500	40.5	-20.4
26000	40.5	-21.3
26500	40.5	-21.1

, , _ 0 0		O,		
cable	cable	cable	cable	cable
loss 1	loss 2	loss 3	loss 4	loss 5
(inside	(pre-	(inside	(switch	(to
chamber)	amp)	chamber)	unit)	receiver)
dB	dB	dB	dB	dB
0.72	-35.85	6.20	2.81	2.65
0.69	-35.71	6.46	2.76	2.59
0.76	-35.44	6.69	3.15	2.79
0.74	-35.07	7.04	3.11	2.91
0.72	-34.49	7.30	3.07	3.05
0.78	-34.46	7.48	3.12	3.15
0.87	-34.07	7.61	3.20	3.33
0.90	-33.96	7.47	3.28	3.19
0.89	-33.57	7.34	3.35	3.28
0.87	-33.66	7.06	3.75	2.94
0.88	-33.75	6.92	3.77	2.70
0.90	-33.35	6.99	3.52	2.66
0.88	-33.99	6.88	3.88	2.58
0.91	-33.89	7.01	3.93	2.51
0.88	-33.00	6.72	3.96	2.14
0.89	-34.07	6.90	3.66	2.22
0.86	-35.11	7.02	3.69	2.28
0.90	-35.20	7.15	3.91	2.36

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

7.6 ANTENNA EMCO 3160-10 (26.5 GHZ - 40 GHZ)

Frequency	AF EMCO 3160-10	Corr.
GHz	dB (1/m)	dB
26.5	43.4	-11.2
27.0	43.4	-11.2
28.0	43.4	-11.1
29.0	43.5	-11.0
30.0	43.5	-10.9
31.0	43.5	-10.8
32.0	43.5	-10.7
33.0	43.6	-10.7
34.0	43.6	-10.6
35.0	43.6	-10.5
36.0	43.6	-10.4
37.0	43.7	-10.3
38.0	43.7	-10.2
39.0	43.7	-10.2
40.0	43.8	-10.1

cable loss 1 (inside chamber)	cable loss 2 (outside chamber)	cable loss 3 (switch unit)	cable loss 4 (to receiver)	distance corr. (-20 dB/ decade)	d _{Limit} (meas. distance (limit)	d _{used} (meas. distance (used)
dB	dB	dB	dB	dB	m	m
4.4				-9.5	3	1.0
4.4				-9.5	3	1.0
4.5				-9.5	3	1.0
4.6				-9.5	3	1.0
4.7				-9.5	3	1.0
4.7				-9.5	3	1.0
4.8				-9.5	3	1.0
4.9				-9.5	3	1.0
5.0				-9.5	3	1.0
5.1				-9.5	3	1.0
5.1				-9.5	3	1.0
5.2				-9.5	3	1.0
5.3				-9.5	3	1.0
5.4				-9.5	3	1.0
5.5				-9.5	3	1.0

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable)

Linear interpolation will be used for frequencies in between the values in the table.

distance correction = -20 * LOG (d_{Limit}/d_{used}) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

8 MEASUREMENT UNCERTAINTIES

Test Case	Parameter	Uncertainty
AC Power Line	Power	± 3.4 dB
Field Strength of spurious radiation	Power	± 5.5 dB
6 dB / 26 dB / 99% Bandwidth	Power Frequency	± 2.9 dB ± 11.2 kHz
Conducted Output Power	Power	± 2.2 dB
Band Edge Compliance	Power Frequency	± 2.2 dB ± 11.2 kHz
Frequency Stability	Frequency	± 25 Hz
Power Spectral Density	Power	± 2.2 dB

The measurement uncertainties for all parameters are calculated with an expansion factor (coverage factor) k = 1.96. This means, that the true value is in the corresponding interval with a probability of 95 %.

The verdicts in this test report are given according the above diagram:

Case	Measured Value	Uncertainty Range	Verdict
1	below pass mark	below pass mark	Passed
2	below pass mark	within pass mark	Passed
3	above pass mark	within pass mark	Failed
4	above pass mark	above pass mark	Failed

That means, the laboratory applies, as decision rule (see ISO/IEC 17025:2017), the so called shared risk principle.

9 PHOTO REPORT

Please see separate photo report.