

FCC Measurement/Technical Report on

WLAN and Bluetooth module JODY-W2

FCC ID: XPYJODYW263 IC: 8595A-JODYW263

Test Report Reference: MDE_UBLOX_2312_FCC_01_rev01

Test Laboratory:

7layers GmbH Borsigstrasse 11 40880 Ratingen Germany

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbH

Borsigstraße 11 40880 Ratingen, Germany T +49 (0) 2102 749 0 F +49 (0) 2102 749 350 Geschäftsführer/ Managing Directors: Sebastian Doose Bernhard Retka

Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385

a Bureau Veritas Group Company

www.7layers.com

7	ᄗᆨᆝ	h	\sim	Λf.	\sim	n	+~	nts
	ıaı	וט	ıe	ΟI	Cυ	11	ιe	บเร

1 A	pplied Standards and Test Summary	3
1.1	Applied Standards	3
1.2	FCC-IC Correlation Table	4
1.3	Measurement Summary	4
2 R	evision History / Signatures	6
3 A	dministrative Data	7
3.1	Testing Laboratory	7
3.2	Project Data	7
3.3	Applicant Data	7
3.4	Manufacturer Data	8
4 T	est object Data	9
4.1	General EUT Description	9
4.2	EUT Main components	9
4.3	Ancillary Equipment	10
4.4	Auxiliary Equipment	11
4.5	EUT Setups	11
4.6	Operating Modes / Test Channels	11
4.7	Product labelling	12
5 T	est Results	13
5.1	Peak Power Output	13
5.2	Transmitter Spurious Radiated Emissions	20
5.3	Band Edge Compliance Radiated	28
6 T	est Equipment	32
6.1	Test Equipment Hardware	32
6.2	Test Equipment Software	35
7 A	ntenna Factors, Cable Loss and Sample Calculations	36
7.1	LISN R&S ESH3-Z5 (150 kHz - 30 MHz)	36
7.2	Antenna R&S HFH2-Z2 (9 kHz – 30 MHz)	37
7.3	Antenna R&S HL562 (30 MHz – 1 GHz)	38
7.4	Antenna R&S HF907 (1 GHz – 18 GHz)	39
7.5	Antenna EMCO 3160-09 (18 GHz – 26.5 GHz)	40
7.6	Antenna EMCO 3160-10 (26.5 GHz – 40 GHz)	41
8 M	leasurement Uncertainties	42
9 P	hoto Report	43

1 APPLIED STANDARDS AND TEST SUMMARY

1.1 APPLIED STANDARDS

Type of Authorization

Certification for an Intentional Radiator.

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15 (10-1-22 Edition). The following subparts are applicable to the results in this test report.

- Part 2, Subpart J Equipment Authorization Procedures, Certification
- Part 15, Subpart C Intentional Radiators
- § 15.201 Equipment authorization requirement
- § 15.207 Conducted limits
- § 15.209 Radiated emission limits; general requirements
- § 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz

Note:

The tests were selected and performed with reference to the FCC Public Notice "Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating under Section 15.247 of the FCC Rules, 558074 D01 15.247 Meas Guidance v05r02, 2019-04-02". ANSI C63.10-2013 is applied.

TEST REPORT REFERENCE: MDE_UBLOX_2312_FCC_01_rev01

1.2 FCC-IC CORRELATION TABLE

Correlation of measurement requirements for FHSS (e.g. Bluetooth®) equipment from FCC and IC

FHSS equipment

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 5 & AMD 1 & AMD 2: 8.8
Occupied bandwidth	§ 15.247 (a) (1)	RSS-247 Issue 3: 5.1 (b)
Peak conducted output power	§ 15.247 (b) (1), (4)	RSS-247 Issue 3: 5.4 (b)
Transmitter spurious RF conducted emissions	§ 15.247 (d)	RSS-Gen Issue 5 & AMD 1 & AMD 2: 6.13/8.9/8.10; RSS-247 Issue 3: 5.5
Transmitter spurious radiated emissions	§ 15.247 (d); § 15.209 (a)	RSS-Gen Issue 5 & AMD 1 & AMD 2: 6.13 / 8.9/8.10; RSS-247 Issue 3: 5.5
Band edge compliance	§ 15.247 (d)	RSS-247 Issue 3: 5.5
Dwell time	§ 15.247 (a) (1) (iii)	RSS-247 Issue 3: 5.1 (d)
Channel separation	§ 15.247 (a) (1)	RSS-247 Issue 3: 5.1 (b)
No. of hopping frequencies	§ 15.247 (a) (1) (iii)	RSS-247 Issue 3: 5.1 (d)
Hybrid systems (only)	§ 15.247 (f); § 15.247 (e)	RSS-247 Issue 3: 5.3
Antenna requirement	§ 15.203 / 15.204	RSS-Gen Issue 5 & AMD 1 & AMD 2: 8.3
Receiver spurious emissions	_	-

1.3 MEASUREMENT SUMMARY

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (b)	(1) (2)		
Peak Power Output The measurement was performed according 11.9.1.3	ng to ANSI C63.	10, chapter	Final Re	esult
OP-Mode Radio Technology, Operating Frequency, Measurement method	Setup	Date	FCC	IC
Bluetooth BDR, high, conducted	S01_AA01	2024-02-05	Passed	Passed
Bluetooth BDR, low, conducted	S01_AA01	2024-02-05	Passed	Passed
Bluetooth BDR, mid, conducted	S01_AA01	2024-02-05	Passed	Passed
Bluetooth EDR 2, high, conducted	S01_AA01	2024-02-05	Passed	Passed
Bluetooth EDR 2, low, conducted	S01_AA01	2024-02-05	Passed	Passed
Bluetooth EDR 2, mid, conducted	S01_AA01	2024-02-05	Passed	Passed
Bluetooth EDR 3, high, conducted	S01_AA01	2024-02-05	Passed	Passed
Bluetooth EDR 3, low, conducted	S01_AA01	2024-02-05	Passed	Passed
Bluetooth EDR 3, mid, conducted	S01_AA01	2024-02-05	Passed	Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (d)			
Transmitter Courieus Dadiated Emissions				
Transmitter Spurious Radiated Emissions The measurement was performed according 6.4, 6.5, 6.6.5	ng to ANSI C63.	10, chapter	Final Re	esult
The measurement was performed according	ng to ANSI C63.: Setup	10, chapter Date	Final Re	esult IC
The measurement was performed according 6.4, 6.5, 6.6.5 OP-Mode Radio Technology, Operating Frequency,		,		
The measurement was performed according 6.4, 6.5, 6.6.5 OP-Mode Radio Technology, Operating Frequency, Measurement range	Setup	Date	FCC	IC
The measurement was performed according 6.4, 6.5, 6.6.5 OP-Mode Radio Technology, Operating Frequency, Measurement range Bluetooth BDR, mid, 1 GHz - 26 GHz	Setup S02_AA01	Date 2024-02-08	FCC Passed	IC Passed
The measurement was performed according 6.4, 6.5, 6.6.5 OP-Mode Radio Technology, Operating Frequency, Measurement range Bluetooth BDR, mid, 1 GHz - 26 GHz Bluetooth BDR, mid, 30 MHz - 1 GHz	Setup S02_AA01 S02_AB01	Date 2024-02-08 2024-02-08 2024-02-08	FCC Passed Passed	IC Passed Passed
The measurement was performed according 6.4, 6.5, 6.6.5 OP-Mode Radio Technology, Operating Frequency, Measurement range Bluetooth BDR, mid, 1 GHz - 26 GHz Bluetooth BDR, mid, 30 MHz - 1 GHz Bluetooth BDR, mid, 9 kHz - 30 MHz 47 CFR CHAPTER I FCC PART 15	Setup S02_AA01 S02_AB01 S02_AB01 § 15.247 (d)	Date 2024-02-08 2024-02-08 2024-02-08	FCC Passed Passed	IC Passed Passed Passed
The measurement was performed according 6.4, 6.5, 6.6.5 OP-Mode Radio Technology, Operating Frequency, Measurement range Bluetooth BDR, mid, 1 GHz - 26 GHz Bluetooth BDR, mid, 30 MHz - 1 GHz Bluetooth BDR, mid, 9 kHz - 30 MHz 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Band Edge Compliance Radiated The measurement was performed according	Setup S02_AA01 S02_AB01 S02_AB01 § 15.247 (d)	Date 2024-02-08 2024-02-08 2024-02-08	Passed Passed Passed	IC Passed Passed Passed
The measurement was performed according 6.4, 6.5, 6.6.5 OP-Mode Radio Technology, Operating Frequency, Measurement range Bluetooth BDR, mid, 1 GHz - 26 GHz Bluetooth BDR, mid, 30 MHz - 1 GHz Bluetooth BDR, mid, 9 kHz - 30 MHz 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Band Edge Compliance Radiated The measurement was performed according 6.6.5 OP-Mode Radio Technology, Operating Frequency, Band	Setup S02_AA01 S02_AB01 S02_AB01 § 15.247 (d)	Date 2024-02-08 2024-02-08 2024-02-08	Passed Passed Passed Final Re	IC Passed Passed Passed

N/A: Not applicable N/P: Not performed

2 REVISION HISTORY / SIGNATURES

Report version control			
Version	Release date	Change Description	Version validity
initial	2024-03-12		valid
rev01	2024-06-05	Added abbreviation HMN, FVIN, HVIN. Added 50 Ohm to antenna description, added	valid
*		labtool version	9

COMMENT: This is a spot check report for a C2PC. Not all tests were performed. See MDE_UBLOX_2008_FCC_01 for results of original certification.

(responsible for accreditation scope)
Dipl.-Ing. Marco Kullik

(responsible for testing and report)
Dipl.-Ing. Daniel Gall

Mayers

7 layers GmbH, Borsigstr. 11 40880 Ratingen, Germany Phone +49 (0)2102 749 0

3 ADMINISTRATIVE DATA

3.1 TESTING LABORATORY

Company Name: 7layers GmbH

Address: Borsigstr. 11

40880 Ratingen

Germany

The test facility is accredited by the following accreditation organisation:

Laboratory accreditation no: DAkkS D-PL-12140-01-01| -02 | -03

FCC Designation Number: DE0015

FCC Test Firm Registration: 929146

ISED CAB Identifier DE0007; ISED#: 3699A

Responsible for accreditation scope: Dipl.-Ing. Marco Kullik

Report Template Version: 2023-09-29

3.2 PROJECT DATA

Responsible for testing and report: Dipl.-Ing. Daniel Gall

Employees who performed the tests: documented internally at 7Layers

Date of Report: 2024-06-05

Testing Period: 2024-02-05 to 2024-02-08

3.3 APPLICANT DATA

Company Name: u-blox AG

Address: Zürcherstrasse 68

> 8800 Thalwil Switzerland

Contact Person: Filip Kruzela

3.4 MANUFACTURER DATA

Company Name:	please see Applicant Data
Address:	
Contact Person:	

4 TEST OBJECT DATA

4.1 GENERAL EUT DESCRIPTION

Kind of Device product description	Host-based module with Wi-Fi and Bluetooth 5.0
Product name (PMN)	JODY-W263-01B
Type (HVIN)	JODY-W263-01B
Declared EUT data by	the supplier
Voltage Type	DC
Voltage Level	1.8 and 3.3 V at Module (voltage is generated on the auxiliary carrier board, which is supplied by SDIO from the computer board for conducted tests or external power supply at 5 or 12 V for radiated tests. For AC conducted emissions the module was supplied directly by a laboratory power supply)
Antenna / Gain	External single band antenna 50 Ohm with 2.2 dBi max. gain in the relevant 2.4 GHz ISM band.
Tested Modulation Type	BT Classic: GFSK Modulation, DHx packets n/4 DQPSK Modulation, 2-DHx packets 8-DPSK Modulation, 3-DHx packets
Specific product description for the EUT	The EUT is a Bluetooth and WLAN module. In the 2.4 GHz band it supports SISO Mode only. Supported technologies are Bluetooth Classic, Bluetooth Low Energy and WLAN b, g, n, ac Relevant for this report is Bluetooth Classic only.
EUT ports (connected cables during testing):	Enclosure Data DC Power Antenna
Tested datarates	GFSK modulation, 1 Mbit n/4 DQPSK Modulation, 2 Mbit 8-DPSK Modulation, 3 Mbit
Special software used for testing	The test modes were set by the software "labtool" version 1.0.0.146 provided by the applicant on an auxiliary computer board.

4.2 EUT MAIN COMPONENTS

Sample Name	Sample Code	Description
EUT aa01	DE1015184aa01	
Sample Parameter	Valu	e
Serial No.	BB55464DEDD28E40400	
HW Version	04	
SW Version (FVIN)	16.80.205.p164	
Comment	Mounted on JODY-MODULE Board F	REV. B S/N:
	10000003261021001006	

Sample Name	Sample Code	Description
EUT ab01	DE1015184ab01	
Sample Parameter	•	Value
Serial No.	BB55464DEDD29180400	
HW Version	04	
SW Version (FVIN)	16.80.205.p164	
Comment	Mounted on JODY-MODULE Board REV. B S/N:	
	10000003261021001002	

NOTE: The short description is used to simplify the identification of the EUT in this test report.

4.3 ANCILLARY EQUIPMENT

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

	Details (Manufacturer, Type Model, OUT Code)	Description
-	-	-

4.4 AUXILIARY EQUIPMENT

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Device	Details (Manufacturer, Type Model, HW, SW, S/N)	Description
AUX 01	UBLOX, JODY-Carrier Board, REV. D, - , 10000003247494016001	Carrier board for module providing ports
AUX 02	UBLOX, JODY-Carrier Board, Rev. D, - , 10000003370145009002	Carrier board for module providing ports
AUX 03	Linx, ANT-DB1-RAF-RPS, -, -, -	Dual band antenna used for WLAN
AUX 04	Linx, ANT-2.4-CW-RCT-RP, -, -, -	Single band antenna for Bluetooth in the 2.4 GHz ISM band
AUX 05	Toradex, Ixora, V1.1A, apalis- tk1_rocko_2023-07-27, 10592246	Board Computer

4.5 EUT SETUPS

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup	Combination of EUTs	Description and Rationale
S01_AA01	EUT aa01, AUX 01, AUX 05,	Conducted Setup
S02_AA01	EUT aa01, AUX 01, AUX 03, AUX 04	Radiated Setup
S02_AB01	EUT ab01, AUX 02, AUX 03, AUX 04	Radiated Setup

4.6 OPERATING MODES / TEST CHANNELS

This chapter describes the operating modes of the EUTs used for testing.

BT Test Channels: Channel: Frequency [MHz]

2.4 GHz ISM 2400 - 2483.5 MHz								
low	mid	high						
0	39	78						
2402	2441	2480						

4.7 PRODUCT LABELLING

4.7.1 FCC ID LABEL

Please refer to the documentation of the applicant.

4.7.2 LOCATION OF THE LABEL ON THE EUT

Please refer to the documentation of the applicant.

5 TEST RESULTS

5.1 PEAK POWER OUTPUT

Standard FCC Part 15 Subpart C

The test was performed according to:

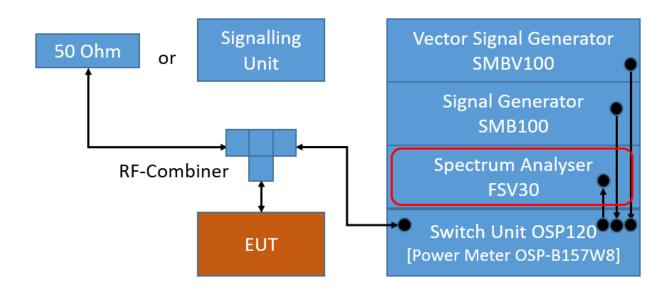
ANSI C63.10, chapter 11.9.1.3

5.1.1 TEST DESCRIPTION

FHSS EQUIPMENT:

The Equipment Under Test (EUT) was set up to perform the output power measurements. The results recorded were measured with the modulation which produces the worst-case (highest) output power. The reference level of the spectrum analyser was set higher than the output power of the EUT.

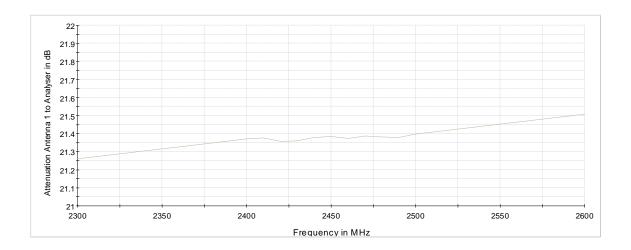
The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.


Analyser settings:

Resolution Bandwidth (RBW): ≥ 20 dB BW
 Video Bandwidth (VBW): ≥ 3 times RBW

• Trace: Maxhold

• Sweeps: Till stable (min. 300, max. 15000)


Sweeptime: AutoDetector: Peak

TS8997; Output Power

TEST REPORT REFERENCE: MDE_UBLOX_2312_FCC_01_rev01

Attenuation Output power

5.1.2 TEST REQUIREMENTS / LIMITS

DTS devices:

FCC Part 15, Subpart C, §15.247 (b) (3)

For systems using digital modulation techniques in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands: 1 watt.

==> Maximum conducted peak output power: 30 dBm (excluding antenna gain, if antennas with directional gains that do not exceed 6 dBi are used).

Frequency Hopping Systems:

FCC Part 15, Subpart C, §15.247 (b) (1)

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

FCC Part 15, Subpart C, §15.247 (b) (2)

For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

Used conversion factor: Limit (dBm) = $10 \log (Limit (W)/1mW)$

5.1.3 TEST PROTOCOL

 $\begin{array}{lll} \mbox{Ambient temperature:} & 25 \ \mbox{°C} \\ \mbox{Air Pressure:} & 1027 \ \mbox{hPa} \\ \mbox{Humidity:} & 40 \ \% \end{array}$

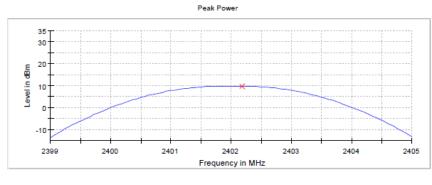
BT GFSK (1-DH1)

Frequency [MHz]	Measured Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]	Peak Power Original Module Certification [dBm]	Margin [dB]
2402	9.8	21.0	11.2	12.0	10.4	-0.6
2441	10.6	21.0	10.4	12.8	10.6	0.0
2480	9.6	21.0	11.4	11.8	10.8	-1.2

BT n/4 DOPSK (2-DH1)

Frequency [MHz]	Measured Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]	Peak Power Original Module Certification [dBm]	Margin [dB]
2402	9.0	21.0	12.0	11.2	9.6	-0.6
2441	9.9	21.0	11.1	12.1	9.9	0.0
2480	8.8	21.0	12.2	11.0	10.0	-1.2

BT 8-DPSK (3-DH1)

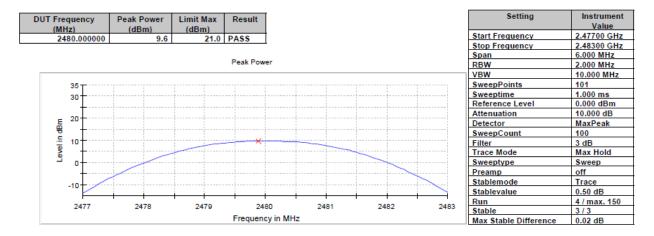

Frequency [MHz]	Measured Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]	Peak Power Original Module Certification [dBm]	Margin [dB]
2402	9.3	21.0	11.7	11.5	9.9	-0.6
2441	10.2	21.0	10.8	12.4	10.0	0.2
2480	9.2	21.0	11.8	11.4	10.2	-1.0

Remark: Please see next sub-clause for the measurement plot.

5.1.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Bluetooth BDR, Operating Frequency = low, Measurement method = conducted (S01_AA01)

9.8	21.0	PASS
	8.0	21.0


Setting	Instrument
	Value
Start Frequency	2.39900 GHz
Stop Frequency	2.40500 GHz
Span	6.000 MHz
RBW	2.000 MHz
VBW	10.000 MHz
SweepPoints	101
Sweeptime	1.000 ms
Reference Level	0.000 dBm
Attenuation	10.000 dB
Detector	MaxPeak
SweepCount	100
Filter	3 dB
Trace Mode	Max Hold
Sweeptype	Sweep
Preamp	off
Stablemode	Trace
Stablevalue	0.50 dB
Run	4 / max. 150
Stable	3/3
Max Stable Difference	0.02 dB

Radio Technology = Bluetooth BDR, Operating Frequency = mid, Measurement method = conducted (S01_AA01)

DUT Frequency (MHz) Peak Power Limit Max Result Setting Instrument Value (dBm) (dBm) 2441.000000 10.6 21.0 PASS Start Frequency 2.43800 GHz Stop Frequency 2.44400 GHz Span 2.000 MHz RBW VBW 10.000 MHz 35 **SweepPoints** 101 30 Sweeptime Reference Level 1.000 ms 10.000 dB Attenuation 20 Level in dBm Detector MaxPeak SweepCount 100 10 Filter 3 dB Trace Mode Max Hold Sweep Sweeptype Stablemode Trace -10 0.50 dB Stablevalue Run Stable 4 / max. 150 2438 2439 2440 2441 2442 2443 Frequency in MHz Max Stable Difference 0.01 dB

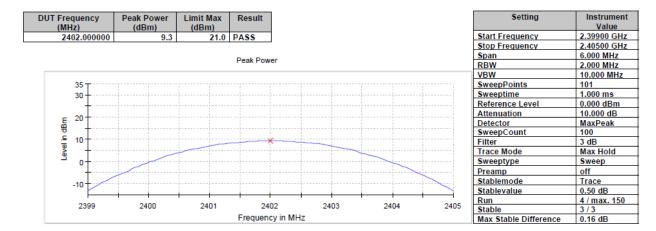
Radio Technology = Bluetooth BDR, Operating Frequency = high, Measurement method = conducted (S01_AA01)

0.06 dB

Radio Technology = Bluetooth EDR 2, Operating Frequency = low, Measurement method = conducted (S01_AA01)

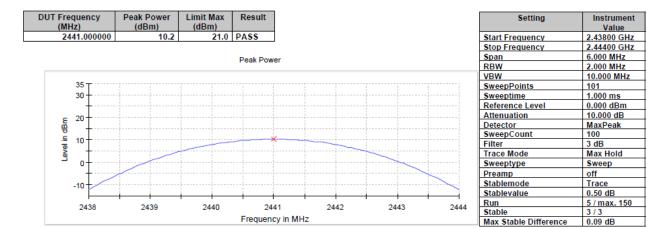
DUT Frequency Peak Power Limit Max Result Setting Instrument Value (dBm) Start Frequency 2.39900 GHz 2402.000000 21.0 PASS Stop Frequency 2.40500 GHz 6.000 MHz Span Peak Power RBW 2.000 MHz VBW 10.000 MHz SweepPoints 101 Sweeptime Reference Level 1.000 ms 30 0.000 dBm Attenuation 10.000 dB Level in dBm Detector MaxPeak SweepCount 100 10 Filter 3 dB Trace Mode Max Hold Sweeptype Sweep Preamp off Stablemode Trace Stablevalue 0.50 dB 4 / max. 150 Run 2399 2400 2401 2402 2403 2404 2405 Frequency in MHz Max Stable Difference

Radio Technology = Bluetooth EDR 2, Operating Frequency = mid, Measurement method = conducted (S01_AA01)


Max Stable Difference 0.09 dB

Radio Technology = Bluetooth EDR 2, Operating Frequency = high, Measurement method = conducted (S01_AA01)

DUT Frequer (MHz)	ncy	Peak Power (dBm)	Limit Max (dBm)	Result					Setting	Instrument Value
2480.0	00000	8.8	21.0	PASS	I				Start Frequency	2.47700 GHz
					•				Stop Frequency	2.48300 GHz
				Peak Pow					Span	6.000 MHz
				reak row	ei				RBW	2.000 MHz
									VBW	10.000 MHz
35 7	Γ		·	;;		;			SweepPoints	101
30									Sweeptime	1.000 ms
			. į						Reference Level	0.000 dBm
- 20-	L								Attenuation	10.000 dB
₩ 20 T									Detector	MaxPeak
<u> </u>			T					T	SweepCount	100
evel 10-			1		×		· · · · · · · · · · · · · · · · · · ·	1	Filter	3 dB
8			-				4		Trace Mode	Max Hold
_ o-									Sweeptype	Sweep
	Li							-ii	Preamp	off
-10-									Stablemode	Trace
-10			1 1						Stablevalue	0.50 dB
		2470	2470	24	00	2404	0400	2400	Run	4 / max. 150
24	11	2478	2479	248	80	2481	2482	2483	Stable	3/3


Frequency in MHz

Radio Technology = Bluetooth EDR 3, Operating Frequency = low, Measurement method = conducted (S01_AA01)

Radio Technology = Bluetooth EDR 3, Operating Frequency = mid, Measurement method = conducted (S01_AA01)

Radio Technology = Bluetooth EDR 3, Operating Frequency = high, Measurement method = conducted (S01_AA01)

DUT Freque		Peak Power (dBm)	Limit Max (dBm)	Result				Setting	Instrument Value
	.000000	9.2		PASS				Start Frequency	2.47700 GHz
								Stop Frequency	2.48300 GHz
				Peak Power				Span	6.000 MHz
				reak rowei				RBW	2.000 MHz
								VBW	10.000 MHz
35	5 T · · · · · · ·	T	r					SweepPoints	101
30) 🕂	ļ	ļ					Sweeptime	1.000 ms
	+	ļ	ļ					Reference Level	0.000 dBm
c 20	,	ļ	ļ					Attenuation	10.000 dB
E 20	<u>'</u>	i						Detector	MaxPeak
P	. T							SweepCount	100
<u>≒</u> 10) †			×				Filter	3 dB
Level in	+	ii	-			4		Trace Mode	Max Hold
() 					-		Sweeptype	Sweep
	+		ļ					Preamp	off
-10	1+-/	ļ	ļ					Stablemode	Trace
								Stablevalue	0.50 dB
	2477	2478	2479	2490	2481	2482	2483	Run	5 / max. 150
4	411	24/8	2479	2480		2482	2483	Stable	3/3
				Frequency in	MHZ			Max Stable Difference	0.19 dB

5.1.5 TEST EQUIPMENT USED

- R&S TS8997

5.2 TRANSMITTER SPURIOUS RADIATED EMISSIONS

Standard FCC Part 15 Subpart C

The test was performed according to:

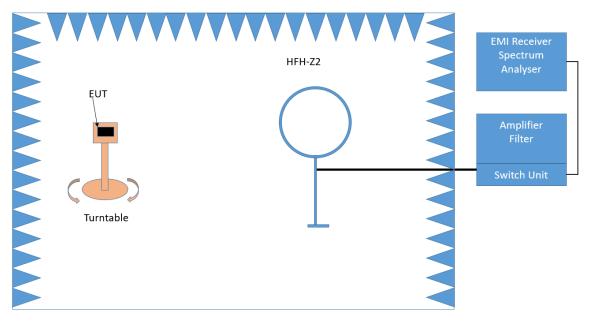
ANSI C63.10, chapter 6.4, 6.5, 6.6.5

5.2.1 TEST DESCRIPTION

The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The measurements were performed according the following subchapters of ANSI C63.10:

• < 30 MHz: Chapter 6.4

30 MHz – 1 GHz: Chapter 6.5


• > 1 GHZ: Chapter 6.6 (procedure according 6.6.5 used)

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered.

Below 1 GHz:

The Equipment Under Test (EUT) was set up on a non-conductive table in the semi-anechoic chamber. The influence of the EUT support table that is used between 30–1000 MHz was evaluated.

1. Measurement up to 30 MHz

Test Setup; Spurious Emission Radiated (SAC), 9 kHz – 30 MHz

The Loop antenna HFH2-Z2 is used.

Step 1: pre measurement

TEST REPORT REFERENCE: MDE_UBLOX_2312_FCC_01_rev01

Anechoic chamber

Antenna distance: 3 m

Antenna height: 1 mDetector: Peak-Maxhold

Frequency range: 0.009 - 0.15 MHz and 0.15 - 30 MHz

Frequency steps: 0.05 kHz and 2.25 kHz

• IF-Bandwidth: 0.2 kHz and 9 kHz

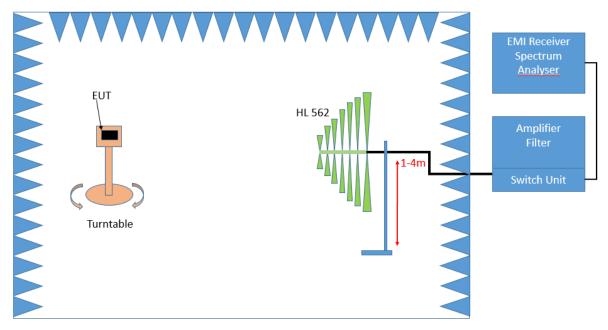
• Measuring time / Frequency step: 100 ms (FFT-based)

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

• Detector: Quasi-Peak (9 kHz - 150 kHz, Peak / Average 150 kHz- 30 MHz)


• Frequency range: 0.009 – 30 MHz

• Frequency steps: measurement at frequencies detected in step 1

• IF-Bandwidth: 0.2 - 10 kHz

Measuring time / Frequency step: 1 s

2. Measurement above 30 MHz and up to 1 GHz

Test Setup; Spurious Emission Radiated (SAC), 30 MHz- 1GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit.

Settings for step 1:

- Antenna distance: 3 m

- Detector: Peak-Maxhold / Quasipeak (FFT-based)

- Frequency range: 30 - 1000 MHz

Frequency steps: 30 kHzIF-Bandwidth: 120 kHz

Measuring time / Frequency step: 100 ms
Turntable angle range: -180° to 90°

- Turntable step size: 90°

TEST REPORT REFERENCE: MDE_UBLOX_2312_FCC_01_rev01

Height variation range: 1 – 4 m
Height variation step size: 1.5 m
Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by 360° . During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary between 1-4 meter. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

IF - Bandwidth: 120 kHz
Measuring time: 100 ms
Turntable angle range: 360 °
Height variation range: 1 - 4 m

- Antenna Polarisation: max. value determined in step 1

Step 3: Final measurement with QP detector

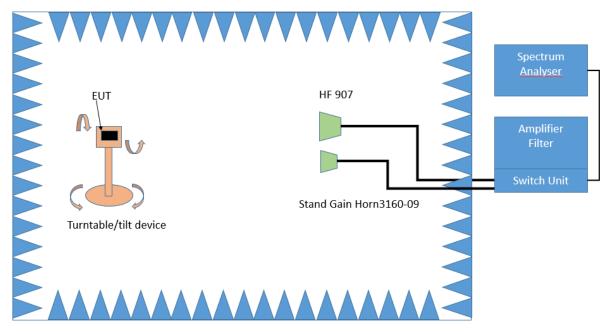
With the settings determined in step 2, the final measurement will be performed: EMI receiver settings for step 3:

- Detector: Quasi-Peak (< 1 GHz)

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHzMeasuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.



Above 1 GHz:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only.

3. Measurement above 1 GHz

Test Setup; Spurious Emission Radiated (FAC), 1 GHz-26.5 GHz

Step 1:

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90° .

The turn table step size (azimuth angle) for the preliminary measurement is 45 $^{\circ}$. Spectrum analyser settings:

- Detector: Peak, Average
- RBW = 1 MHz
- VBW = 3 MHz

Step 2:

The turn table azimuth will slowly vary by \pm 22.5°.

The elevation angle will slowly vary by $\pm 45^{\circ}$

Spectrum analyser settings:

- Detector: Peak

Step 3:

Spectrum analyser settings for step 3:

- Detector: Peak / CISPR Average
- Measured frequencies: in step 1 determined frequencies
- RBW = 1 MHz
- VBW = 3 MHz
- Measuring time: 1 s

5.2.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 - 13.8)@300m
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 - 23.0)@30m
1.705 - 30	30@30m	3	29.5@30m

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
30 - 88	100@3m	3	40.0@3m
88 - 216	150@3m	3	43.5@3m
216 - 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

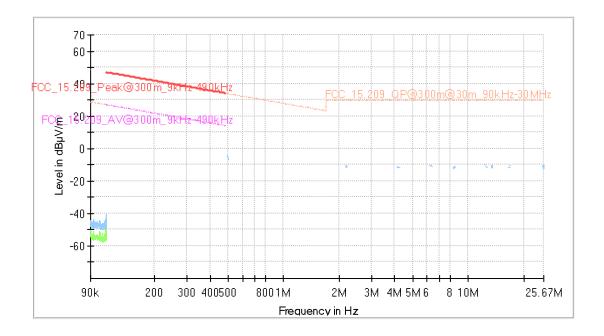
§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit (dB μ V/m) = 20 log (Limit (μ V/m)/1 μ V/m)

5.2.3 TEST PROTOCOL

Ambient temperature: 22 °C
Air Pressure: 992 hPa
Humidity: 41 %

BT GFSK (1-DH5)

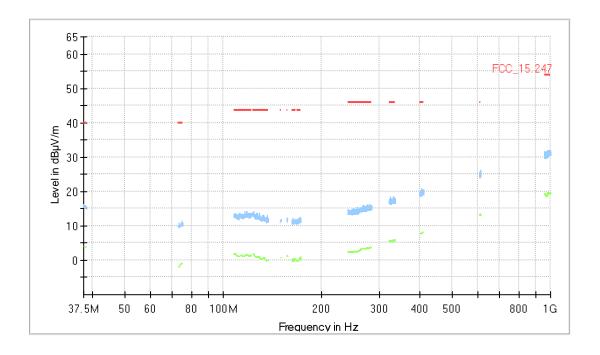

Applied duty cycle correction (AV): 0 dB

Ch. No.	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Margin to Limit [dB]	Limit Type
39	2441					 	RB

Remark: Please see next sub-clause for the measurement plot.

5.2.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

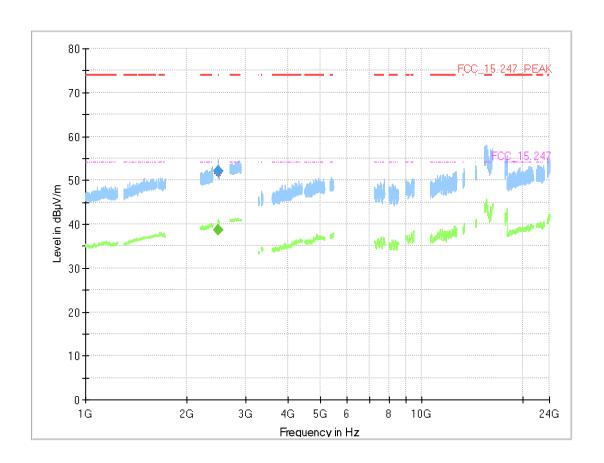
Radio Technology = Bluetooth BDR, Operating Frequency = mid, Measurement range = 9 kHz - 30 MHz (S01_AB01)



Final Result

Frequency (MHz)	MaxPeak (dBµV/m)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Azimut h (deg)	Corr. (dB/m)

Radio Technology = Bluetooth BDR, Operating Frequency = mid, Measurement range = 30 $\,$ MHz - 1 GHz $\,$ (S01_AB01)



Final_Result

-										
	Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
		-								

Radio Technology = Bluetooth BDR, Operating Frequency = mid, Measurement range = 1 GHz - 26 GHz (S01_AA01)

Final Result

-												
	Frequency	MaxPeak	CAverag	Limit	Margi	Meas.	Bandwidt	Heigh	Pol	Azimut	Elevatio	Corr.
	(MHz)	(dBµV/m)	е	(dBµ	n	Time	h	t		h	n	(dB/
			(dBµV/m)	V/m)	(dB)	(ms)	(kHz)	(cm)		(deg)	(deg)	m)
	2485.975		38.6	54.00	15.44	1000.0	1000.000	150.0	V	2.0	-8.0	7.9
	2485.975	52.0		74.00	22.04	1000.0	1000.000	150.0	V	2.0	-8.0	7.9

5.2.5 TEST EQUIPMENT USED

- Radiated Emissions FAR 2.4 GHz FCC
- Radiated Emissions SAC H-Field
- Radiated Emissions SAC up to 1 GHz

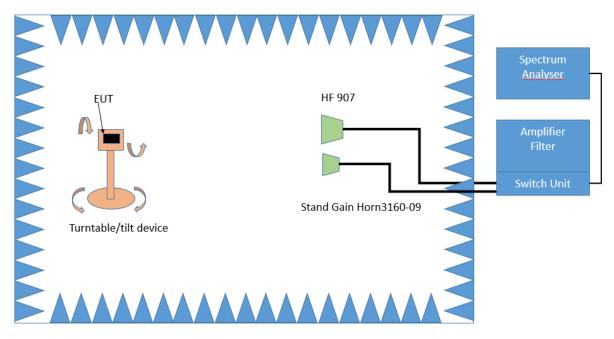
5.3 BAND EDGE COMPLIANCE RADIATED

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10, chapter 6.6.5

5.3.1 TEST DESCRIPTION


The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The measurements were performed according the following subchapter of ANSI C63.10:

• Chapter 6.10.5

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only (procedure according ANSI C63.10, chapter 6.6.5.

3. Measurement above 1 GHz

Test Setup; Spurious Emission Radiated (FAC), 1 GHz-26.5 GHz

Step 1:

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 °.

The turn table step size (azimuth angle) for the preliminary measurement is 45 $^{\circ}$. Spectrum analyser settings:

- Detector: Peak, Average
- RBW = 1 MHz
- -VBW = 3MHz

Step 2:

The turn table azimuth will slowly vary by \pm 22.5°. The elevation angle will slowly vary by \pm 45°

TEST REPORT REFERENCE: MDE_UBLOX_2312_FCC_01_rev01

Spectrum analyser settings:

- Detector: Peak

Step 3:

Spectrum analyser settings for step 3:

- Detector: Peak / CISPR Average

- Measured frequencies: in step 1 determined frequencies

- RBW = 1 MHz - VBW = 3 MHz - Measuring time: 1 s

5.3.2 TEST REQUIREMENTS / LIMITS

For band edges connected to a restricted band, the limits are specified in Section 15.209(a)

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (μV/m)	Measurement distance (m)	Limits (dBµV/m)
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 - 13.8)@300m
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 - 23.0)@30m
1.705 - 30	30@30m	3	29.5@30m

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
30 - 88	100@3m	3	40.0@3m
88 - 216	150@3m	3	43.5@3m
216 - 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

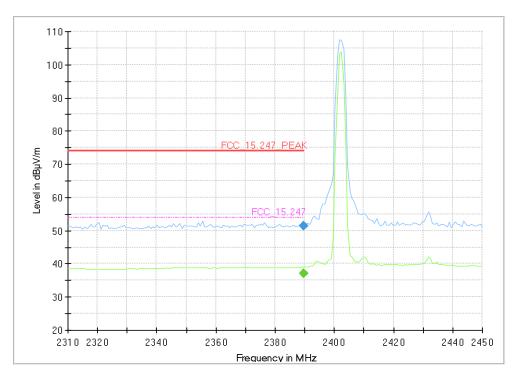
§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

5.3.3 TEST PROTOCOL

Ambient temperature: 24 °C
Air Pressure: 999 hPa
Humidity: 37 %

BT GFSK (1-DH5)

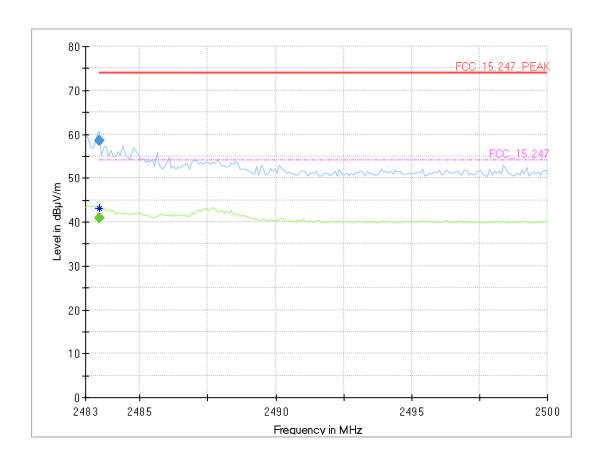

Applied duty cycle correction (AV): 0 dB

Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Level Original Module Certification [dBµV/m]	Margin [dB]
2402	2390.0	51.3	PEAK	1000	74.0	22.7	-	-
2402	2390.0	37.1	AV	1000	54.0	16.9	=	=
2480	2483.5	58.6	PEAK	1000	74.0	15.4	57.8	0.8
2480	2483.5	41.0	AV	1000	54.0	13.0	36.3	4.7

Remark: Please see next sub-clause for the measurement plot.

5.3.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Radio Technology = Bluetooth BDR, Operating Frequency = low, Band Edge = low (S01_AA01)



Final Result

•	a											
	Frequency	MaxPeak	CAverag	Limit	Margi	Meas.	Bandwidt	Heigh	Pol	Azimut	Elevatio	Corr.
	(MHz)	(dBµV/m)	е	(dBµ	n	Time	h	t		h	n	(dB/
			(dBµV/m)	V/m)	(dB)	(ms)	(kHz)	(cm)		(deg)	(deg)	m)
	2389.800		37.1	54.00	16.85	1000.0	1000.000	150.0	Н	-71.0	102.0	7.6
	2389.800	51.3		74.00	22.65	1000.0	1000.000	150.0	Н	-71.0	102.0	7.6

Radio Technology = Bluetooth BDR, Operating Frequency = high, Band Edge = high (S01_AA01)

Final_Result

Frequency (MHz)	MaxPeak (dBµV/m)	CAverag e (dBµV/m)	Limit (dBµ V/m)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heigh t (cm)	Pol	Azimut h (deg)	Elevatio n (deg)	Corr. (dB/ m)
2483.510		41.0	54.00	13.02	1000.0	1000.000	150.0	V	-11.0	-8.0	7.8
2483.510	58.6		74.00	15.35	1000.0	1000.000	150.0	V	-11.0	-8.0	7.8

5.3.5 TEST EQUIPMENT USED

- Radiated Emissions FAR 2.4 GHz FCC

6 TEST EQUIPMENT

6.1 TEST EQUIPMENT HARDWARE

1 R&S TS8997 2.4 and 5 GHz Bands Conducted Test Lab

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last	Calibration
		_			Calibration	Due
1.1	Opus10 TPR (8253.00)		Lufft Mess- und Regeltechnik GmbH	13936	2023-12	2025-12
1.2	SMB100A	Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	107695	2021-06	2024-06
1.3	EX520	Digital Multimeter 12	Extech Instruments Corp	05157876	2022-06	2024-06
1.4	FSV30	Signal Analyzer 10 Hz - 30 GHz	Rohde & Schwarz	103005	2023-08	2025-08
1.5	NGSM 32/10	Power Supply	Rohde & Schwarz GmbH & Co. KG	3456		
1.6	Temperature Chamber VT 4002	Temperature Chamber Vötsch 03	Vötsch	58566002150010	2022-05	2024-05
1.7	FSW43	Signal Analyser	Rohde & Schwarz GmbH & Co. KG	102013	2023-07	2025-07
1.8	Opus10 THI (8152.00)		Lufft Mess- und Regeltechnik GmbH	13993	2023-12	2025-12
1.9	SMBV100A	Vector Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	259291	2023-01	2026-01
1.10	OSP120	Contains Power Meter and Switching Unit OSP- B157W8 PLUS	Rohde & Schwarz	101158	2021-08	2024-08
1.11	CS-RUB6	Rubidium Frequency Standard	Rohde & Schwarz GmbH & Co. KG	100321	2023-10	2024-10

2 Radiated Emissions FAR 2.4 GHz FCC Radiated emission tests for 2.4 GHz ISM devices in a fully anechoic room

Ref.No.	Device Name	Description	Manufacturer	Serial Number		Calibration
					Calibration	Due
2.1	Opus10 TPR (8253.00)		Lufft Mess- und Regeltechnik GmbH	13936	2023-12	2025-12
	Innco Systems CO3000	Controller for bore sight mast FAC	regerees emb.	CO3000/1460/54 740522/P	N/A	N/A
2.3	7D00101800-	Broadband Amplifier 100 MHz - 18 GHz	Miteq		N/A	N/A
	Chamber 03	FAR, 8.80m x 4.60m x 4.05m (l x w x h)	J	P26971-647-001- PRB	N/A	N/A

TEST REPORT REFERENCE: MDE_UBLOX_2312_FCC_01_rev01

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.5	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2023-08	2025-08
2.6	JS4-18002600- 32-5P	Broadband Amplifier 18 GHz - 26 GHz	Miteq	849785	N/A	N/A
2.7	FSW43	Spectrum Analyzer	Rohde & Schwarz GmbH & Co. KG	103779	2023-04	2025-04
2.8	EP 1200/B, NA/B1	AC Source, Amplifier with integrated variable Oscillator	Spitzenberger & Spies GmbH & Co. KG	B6278	N/A	N/A
2.9	3160-09	Standard Gain / Pyramidal Horn Antenna 26.5 GHz	EMCO Elektronic GmbH	00083069	N/A	N/A
2.10	WHKX 7.0/18G- 8SS	High Pass Filter	Wainwright Instruments GmbH	09	N/A	N/A
2.11		Bore Sight Antenna Mast			N/A	N/A
2.12	TT 1.5 WI	Turn Table	Maturo GmbH	-	N/A	N/A
2.13	5HC3500/18000 -1.2-KK	High Pass Filter	Trilithic	200035008	N/A	N/A
2.14	Opus 20 THI (8120.00)		Lufft Mess- und Regeltechnik GmbH		2023-08	2025-08
2.15	TD1.5-10kg	EUT Tilt Device (Rohacell)	Maturo GmbH	TD1.5- 10kg/024/37907 09	N/A	N/A
2.16	AFS42- 00101800-25-S- 42		Miteq	2035324	N/A	N/A
2.17	HF 907		Rohde & Schwarz	102444	2021-09	2024-09

Radiated Emissions SAC H-Field Radiated emission tests in the H-Field in a semi anechoic room

Ref.No.	Device Name	Description	Manufacturer	Serial Number		Calibration
3.1	N5000/NP	Filter for EUT, 2 Lines, 250 V, 16 A	ETS-LINDGREN	241515	N/A	N/A
	Opus10 TPR (8253.00)	. 55	Lufft Mess- und Regeltechnik GmbH	13936	2023-12	2025-12
3.3		EMI Receiver /	Rohde & Schwarz GmbH & Co. KG	101603		
_	Chamber 01		undefined, undefined	none	N/A	N/A
3.5		Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2023-08	2025-08
3.6	Opus10 THI (8152.00)		Lufft Mess- und Regeltechnik GmbH	12488	2023-12	2025-12

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
	NA/B1	Amplifier with	Spitzenberger & Spies GmbH & Co. KG	B6278	N/A	N/A
3.8	DS 420S	Turn Table 2 m diameter	HD GmbH	420/573/99	N/A	N/A
3.9	HFH2-Z2		Rohde & Schwarz GmbH & Co. KG	829324/006		
3.10			Rohde & Schwarz GmbH & Co. KG	100321	2023-10	2024-10

4 Radiated Emissions SAC up to 1 GHz
Radiated emission tests up to 1 GHz in a semi anechoic room

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
4.1	N5000/NP	Filter for EUT, 2 Lines, 250 V, 16 A	ETS-LINDGREN	241515	N/A	N/A
4.2	Opus10 TPR (8253.00)		Lufft Mess- und Regeltechnik GmbH	13936	2023-12	2025-12
4.3	ESW44	EMI Receiver / Spectrum Analyzer	Rohde & Schwarz GmbH & Co. KG	101603		
4.4	Anechoic Chamber 01	SAC/FAR, 10.58 m x 6.38 m x 6.00 m	undefined, undefined	none	N/A	N/A
4.5	HL 562 ULTRALOG	Biconical-log- per antenna (30 MHz - 3 GHz) with HL 562E biconicals	Rohde & Schwarz GmbH & Co. KG	830547/003	2021-09	2024-09
4.6	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2023-08	2025-08
4.7	Opus10 THI (8152.00)		Lufft Mess- und Regeltechnik GmbH	12488	2023-12	2025-12
4.8	EP 1200/B, NA/B1	AC Source, Amplifier with integrated variable Oscillator	Spitzenberger & Spies GmbH & Co. KG	B6278	N/A	N/A
4.9	DS 420S	Turn Table 2 m diameter	HD GmbH	420/573/99	N/A	N/A
4.10	CS-RUB6	Rubidium Frequency Standard	Rohde & Schwarz GmbH & Co. KG	100321	2023-10	2024-10
4.11	AM 4.0	Antenna Mast 4 m	Maturo GmbH	AM4.0/180/1192 0513	N/A	N/A

The calibration interval is the time interval between "Last Calibration" and "Calibration Due"

6.2 TEST EQUIPMENT SOFTWARE

Semi-Anechoic Chamber:	
Software	Version
EMC32 Measurement Software	10.60.10
INNCO Mast Controller	1.02.62
MATURO Mast Controller	12.19
MATURO Turn-Table Controller	30.10
Fully-Anechoic Chamber:	
Software	Version
EMC32 Measurement Software	10.60.10
MATURO Turn-Unit Controller	11.10
MATURO Mast Controller	12.10
MATURO Turntable Controller	12.11
INNCO Mast Controller	1.02.62
TS 8997	
WMC32 Measurement Software	11.40.00
Conducted AC Emissions:	
Software	Version
EMC32 Measurement Software	10.60.20

7 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

7.1 LISN R&S ESH3-Z5 (150 KHZ - 30 MHZ)

Frequency	Corr.
MHz	dB
0.15	10.1
5	10.3
7	10.5
10	10.5
12	10.7
14	10.7
16	10.8
18	10.9
20	10.9
22	11.1
24	11.1
26	11.2
28	11.2
30	11.3

LISN insertion loss ESH3- Z5	cable loss (incl. 10 dB atten- uator)
dB	dB
0.1	10.0
0.1	10.2
0.2	10.3
0.2	10.3
0.3	10.4
0.3	10.4
0.4	10.4
0.4	10.5
0.4	10.5
0.5	10.6
0.5	10.6
0.5	10.7
0.5	10.7
0.5	10.8

Sample calculation

 U_{LISN} (dB μ V) = U (dB μ V) + Corr. (dB)

U = Receiver reading

LISN Insertion loss = Voltage Division Factor of LISN

Corr. = sum of single correction factors of used LISN, cables, switch units (if used)

Linear interpolation will be used for frequencies in between the values in the table.

7.2 ANTENNA R&S HFH2-Z2 (9 KHZ - 30 MHZ)

AF Frequency HFH-Z2) Corr MHz dB (1/m) dB 0.009 20.50 -79 0.01 20.45 -79	
Frequency HFH-Z2) Corr MHz dB (1/m) dB 0.009 20.50 -79	
MHz dB (1/m) dB 0.009 20.50 -79	
MHz dB (1/m) dB 0.009 20.50 -79	9.6
0.009 20.50 -79	9.6
0.01 20.45 -79	
	9.6
0.015 20.37 -79	9.6
0.02 20.36 -79	9.6
0.025 20.38 -79	9.6
0.03 20.32 -79	9.6
0.05 20.35 -79	9.6
0.08 20.30 -79	9.6
0.1 20.20 -79	9.6
0.2 20.17 -79	9.6
0.3 20.14 -79	9.6
0.49 20.12 -79	
0.490001 20.12 -39	9.6
0.5 20.11 -39	9.6
0.8 20.10 -39	9.6
1 20.09 -39	9.6
2 20.08 -39	9.6
3 20.06 -39	9.6
4 20.05 -39	9.5
5 20.05 -39	
6 20.02 -39	
8 19.95 -39	
10 19.83 -39	9.4
12 19.71 -39	9.4
14 19.54 -39	9.4
16 19.53 -39	9.3
18 19.50 -39	9.3
20 19.57 -39	9.3
22 19.61 -39	9.3
24 19.61 -39	9.3
26 19.54 -39	
28 19.46 -39	9.2
30 19.73 -39	

(<u>'</u>				
cable	cable	cable	cable	distance	d_{Limit}	d_{used}
loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.
(inside	(outside	(switch	(to	(-40 dB/	distance	distance
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-80	300	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.1	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.1	0.1	-40	30	3
0.2	0.1	0.2	0.1	-40	30	3
0.2	0.1	0.2	0.1	-40	30	3
0.2	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.2	0.1	-40	30	3
0.3	0.1	0.3	0.1	-40	30	3
0.4	0.1	0.3	0.1	-40	30	3
				<u> </u>		<u> </u>

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = -40 * LOG (d_{Limit}/d_{used})

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values

7.3 ANTENNA R&S HL562 (30 MHZ - 1 GHZ)

 $(d_{Limit} = 3 m)$

$d_{Limit} = 3 m)$		
Frequency	AF R&S HL562	Corr.
MHz	dB (1/m)	dB
30	18.6	0.6
50	6.0	0.9
100	9.7	1.2
150	7.9	1.6
200	7.6	1.9
250	9.5	2.1
300	11.0	2.3
350	12.4	2.6
400	13.6	2.9
450	14.7	3.1
500	15.6	3.2
550	16.3	3.5
600	17.2	3.5
650	18.1	3.6
700	18.5	3.6
750	19.1	4.1
800	19.6	4.1
850	20.1	4.4
900	20.8	4.7
950	21.1	4.8
1000	21.6	4.9

cable	cable	cable	cable	distance	d_{Limit}	d_{used}
loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.
(inside	(outside	(switch	(to	(-20 dB/	distance	distance
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
0.29	0.04	0.23	0.02	0.0	3	3
0.39	0.09	0.32	0.08	0.0	3	3
0.56	0.14	0.47	0.08	0.0	3	3
0.73	0.20	0.59	0.12	0.0	3	3
0.84	0.21	0.70	0.11	0.0	3	3
0.98	0.24	0.80	0.13	0.0	3	3
1.04	0.26	0.89	0.15	0.0	3	3
1.18	0.31	0.96	0.13	0.0	3	3
1.28	0.35	1.03	0.19	0.0	3	3
1.39	0.38	1.11	0.22	0.0	3	3
1.44	0.39	1.20	0.19	0.0	3	3
1.55	0.46	1.24	0.23	0.0	3	3
1.59	0.43	1.29	0.23	0.0	3	3
1.67	0.34	1.35	0.22	0.0	3	3
1.67	0.42	1.41	0.15	0.0	3	3
1.87	0.54	1.46	0.25	0.0	3	3
1.90	0.46	1.51	0.25	0.0	3	3
1.99	0.60	1.56	0.27	0.0	3	3
2.14	0.60	1.63	0.29	0.0	3	3
2.22	0.60	1.66	0.33	0.0	3	3
2.23	0.61	1.71	0.30	0.0	3	3

 $(d_{Limit} = 10 m)$

(<u>d_{Limit} = 10 m</u>	1)								
30	18.6	-9.9	0.29	0.04	0.23	0.02	-10.5	10	3
50	6.0	-9.6	0.39	0.09	0.32	0.08	-10.5	10	3
100	9.7	-9.2	0.56	0.14	0.47	0.08	-10.5	10	3
150	7.9	-8.8	0.73	0.20	0.59	0.12	-10.5	10	3
200	7.6	-8.6	0.84	0.21	0.70	0.11	-10.5	10	3
250	9.5	-8.3	0.98	0.24	0.80	0.13	-10.5	10	3
300	11.0	-8.1	1.04	0.26	0.89	0.15	-10.5	10	3
350	12.4	-7.9	1.18	0.31	0.96	0.13	-10.5	10	3
400	13.6	-7.6	1.28	0.35	1.03	0.19	-10.5	10	3
450	14.7	-7.4	1.39	0.38	1.11	0.22	-10.5	10	3
500	15.6	-7.2	1.44	0.39	1.20	0.19	-10.5	10	3
550	16.3	-7.0	1.55	0.46	1.24	0.23	-10.5	10	3
600	17.2	-6.9	1.59	0.43	1.29	0.23	-10.5	10	3
650	18.1	-6.9	1.67	0.34	1.35	0.22	-10.5	10	3
700	18.5	-6.8	1.67	0.42	1.41	0.15	-10.5	10	3
750	19.1	-6.3	1.87	0.54	1.46	0.25	-10.5	10	3
800	19.6	-6.3	1.90	0.46	1.51	0.25	-10.5	10	3
850	20.1	-6.0	1.99	0.60	1.56	0.27	-10.5	10	3
900	20.8	-5.8	2.14	0.60	1.63	0.29	-10.5	10	3
950	21.1	-5.6	2.22	0.60	1.66	0.33	-10.5	10	3
1000	21.6	-5.6	2.23	0.61	1.71	0.30	-10.5	10	3

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-20 * LOG (d_{Limit}/d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

7.4 ANTENNA R&S HF907 (1 GHZ - 18 GHZ)

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
1000	24.4	-19.4
2000	28.5	-17.4
3000	31.0	-16.1
4000	33.1	-14.7
5000	34.4	-13.7
6000	34.7	-12.7
7000	35.6	-11.0

cable loss 1 (relay + cable inside	cable loss 2 (outside	cable loss 3 (switch unit, atten- uator &	cable	
chamber)	chamber)	pre-amp)	receiver)	
dB	dB	dB	dB	
0.99	0.31	-21.51	0.79	
1.44	0.44	-20.63	1.38	
1.87	0.53	-19.85	1.33	
2.41	0.67	-19.13	1.31	
2.78	0.86	-18.71	1.40	
2.74	0.90	-17.83	1.47	
2.82	0.86	-16.19	1.46	

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
3000	31.0	-23.4
4000	33.1	-23.3
5000	34.4	-21.7
6000	34.7	-21.2
7000	35.6	-19.8

			cable		
			loss 4		
cable			(switch		
loss 1	cable	cable	unit,		used
(relay	loss 2	loss 3	atten-	cable	for
inside	(inside	(outside	uator &	loss 5 (to	FCC
chamber)	chamber)	chamber)	pre-amp)	receiver)	15.247
dB	dB	dB	dB	dB	
0.47	1.87	0.53	-27.58	1.33	
0.56	2.41	0.67	-28.23	1.31	
0.61	2.78	0.86	-27.35	1.40	
0.58	2.74	0.90	-26.89	1.47	
0.66	2.82	0.86	-25.58	1.46	

Frequency	AF R&S HF907	Corr.
MHz	dB (1/m)	dB
7000	35.6	-57.3
8000	36.3	-56.3
9000	37.1	-55.3
10000	37.5	-56.2
11000	37.5	-55.3
12000	37.6	-53.7
13000	38.2	-53.5
14000	39.9	-56.3
15000	40.9	-54.1
16000	41.3	-54.1
17000	42.8	-54.4
18000	44.2	-54.7

aabla					
cable	aabla	aabla	aabla	aabla	anhla
loss 1	cable	cable	cable	cable	cable
(relay	loss 2	loss 3	loss 4	loss 5	loss 6
inside	(High	(pre-	(inside	(outside	(to
chamber)	Pass)	amp)	chamber)	chamber)	receiver)
dB	dB	dB	dB	dB	dB
0.56	1.28	-62.72	2.66	0.94	1.46
0.69	0.71	-61.49	2.84	1.00	1.53
0.68	0.65	-60.80	3.06	1.09	1.60
0.70	0.54	-61.91	3.28	1.20	1.67
0.80	0.61	-61.40	3.43	1.27	1.70
0.84	0.42	-59.70	3.53	1.26	1.73
0.83	0.44	-59.81	3.75	1.32	1.83
0.91	0.53	-63.03	3.91	1.40	1.77
0.98	0.54	-61.05	4.02	1.44	1.83
1.23	0.49	-61.51	4.17	1.51	1.85
1.36	0.76	-62.36	4.34	1.53	2.00
1.70	0.53	-62.88	4.41	1.55	1.91

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

7.5 ANTENNA EMCO 3160-09 (18 GHZ - 26.5 GHZ)

	AF EMCO	
Frequency	3160-09	Corr.
MHz	dB (1/m)	dB
18000	40.2	-23.5
18500	40.2	-23.2
19000	40.2	-22.0
19500	40.3	-21.3
20000	40.3	-20.3
20500	40.3	-19.9
21000	40.3	-19.1
21500	40.3	-19.1
22000	40.3	-18.7
22500	40.4	-19.0
23000	40.4	-19.5
23500	40.4	-19.3
24000	40.4	-19.8
24500	40.4	-19.5
25000	40.4	-19.3
25500	40.5	-20.4
26000	40.5	-21.3
26500	40.5	-21.1

•		•		
cable	cable	cable	cable	cable
loss 1	loss 2	loss 3	loss 4	loss 5
(inside	(pre-	(inside	(switch	(to
chamber)	amp)	chamber)	unit)	receiver)
dB	dB	dB	dB	dB
0.72	-35.85	6.20	2.81	2.65
0.69	-35.71	6.46	2.76	2.59
0.76	-35.44	6.69	3.15	2.79
0.74	-35.07	7.04	3.11	2.91
0.72	-34.49	7.30	3.07	3.05
0.78	-34.46	7.48	3.12	3.15
0.87	-34.07	7.61	3.20	3.33
0.90	-33.96	7.47	3.28	3.19
0.89	-33.57	7.34	3.35	3.28
0.87	-33.66	7.06	3.75	2.94
0.88	-33.75	6.92	3.77	2.70
0.90	-33.35	6.99	3.52	2.66
0.88	-33.99	6.88	3.88	2.58
0.91	-33.89	7.01	3.93	2.51
0.88	-33.00	6.72	3.96	2.14
0.89	-34.07	6.90	3.66	2.22
0.86	-35.11	7.02	3.69	2.28
0.90	-35.20	7.15	3.91	2.36

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

7.6 ANTENNA EMCO 3160-10 (26.5 GHZ - 40 GHZ)

Frequency	AF EMCO 3160-10	Corr.
GHz	dB (1/m)	dB
26.5	43.4	-11.2
27.0	43.4	-11.2
28.0	43.4	-11.1
29.0	43.5	-11.0
30.0	43.5	-10.9
31.0	43.5	-10.8
32.0	43.5	-10.7
33.0	43.6	-10.7
34.0	43.6	-10.6
35.0	43.6	-10.5
36.0	43.6	-10.4
37.0	43.7	-10.3
38.0	43.7	-10.2
39.0	43.7	-10.2
40.0	43.8	-10.1

cable loss 1 (inside chamber)	cable loss 2 (outside chamber)	cable loss 3 (switch unit)	cable loss 4 (to receiver)	distance corr. (-20 dB/ decade)	d _{Limit} (meas. distance (limit)	d _{used} (meas. distance (used)
dB	dB	dB	dB	dB	m	m
4.4				-9.5	3	1.0
4.4				-9.5	3	1.0
4.5				-9.5	3	1.0
4.6				-9.5	3	1.0
4.7				-9.5	3	1.0
4.7				-9.5	3	1.0
4.8				-9.5	3	1.0
4.9				-9.5	3	1.0
5.0				-9.5	3	1.0
5.1				-9.5	3	1.0
5.1				-9.5	3	1.0
5.2				-9.5	3	1.0
5.3				-9.5	3	1.0
5.4				-9.5	3	1.0
5.5				-9.5	3	1.0

Sample calculation

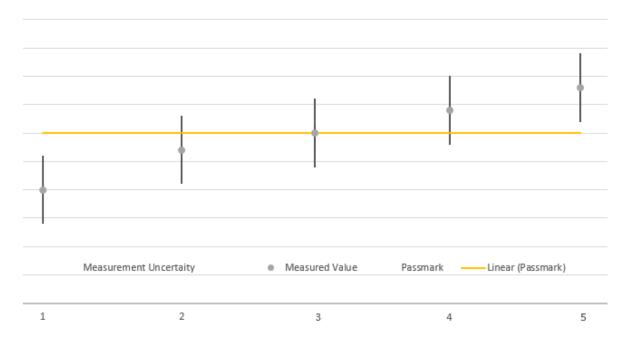
E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

distance correction = -20 * LOG (d_{Limit}/d_{used}) Linear interpolation will be used for frequencies in between the values in the table.


Table shows an extract of values.

8 MEASUREMENT UNCERTAINTIES

Test Case	Parameter	Uncertainty
AC Power Line	Power	± 3.4 dB
Field Strength of spurious radiation	Power	± 5.5 dB
6 dB / 26 dB / 99% Bandwidth	Power Frequency	± 2.9 dB ± 11.2 kHz
Conducted Output Power	Power	± 2.2 dB
Band Edge Compliance	Power Frequency	± 2.2 dB ± 11.2 kHz
Frequency Stability	Frequency	± 25 Hz
Power Spectral Density	Power	± 2.2 dB

The measurement uncertainties for all parameters are calculated with an expansion factor (coverage factor) k = 1.96. This means, that the true value is in the corresponding interval with a probability of 95 %.

The verdicts in this test report are given according the above diagram:

Case	Measured Value	Uncertainty Range	Verdict
1	below pass mark	below pass mark	Passed
2	below pass mark	within pass mark	Passed
3	on pass mark	within pass mark	Passed
4	above pass mark	within pass mark	Failed
5	above pass mark	above pass mark	Failed

That means, the laboratory applies, as decision rule (see ISO/IEC 17025:2017), the so-called shared risk principle.

TEST REPORT REFERENCE: MDE_UBLOX_2312_FCC_01_rev01

9	P	н	U.	TC) R	F	PO)R	т
			v	-	, 17	_		/ I \	

Please see separate photo report.