
IEEE 802.11n HT40 MHz mode (Antenna 1) 6dB Bandwidth (CH Low) Keysight Spectru R I SENSE:INT ALIGN AUTO/NO RF Center Freq: 2.422000000 GHz Trig: Free Run Avg|Hold:>10/10 #Atten: 10 dB 01:17:57 PM Jun 01, 2016 Radio Std: None Center Freq 2.422000000 GHz #IFGain:Low Radio Device: BTS Ref 20.00 dBm 10 dB/div 0.0 10.0 20.1 Han and water war willy Amarka and a second 40. 50. 60.0 Center 2.422 GHz #Res BW 100 kHz Span 60 MHz #VBW 300 kHz Sweep 5.8 ms 20.7 dBm Total Power **Occupied Bandwidth** 36.574 MHz Transmit Freq Error -121.44 kHz % of OBW Power 99.00 % x dB Bandwidth 58.25 MHz x dB -26.00 dB STATUS 6dB Bandwidth (CH Mid) sight Spectrum An 05:22:26 PM Jun 02, 2016 Radio Std: None SENSE:INT ALIGN AUTO/NO RF Center Freq: 2.437000000 GHz Trig: Free Run Avg|Hold:>10/10 #Atten: 20 dB Center Freq 2.437000000 GHz Radio Device: BTS Ref 20.00 dBm dB/div 10 0.0 10.0 20.0 metricanonalitication with warmin with really 30 C 60.0 Center 2.437 GHz #Res BW 100 kHz Span 60 MHz #VBW 300 kHz Sweep 18.13 ms Total Power 23.7 dBm Occupied Bandwidth 36.075 MHz Transmit Freq Error -44.126 kHz % of OBW Power 99.00 % x dB Bandwidth 51.79 MHz x dB -26.00 dB STATUS

7.4. ANTENNA GAIN

MEASUREMENT

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module. For normal WLAN devices, the DSSS mode is used.

MEASUREMENT PARAMETERS

Measurement parameter						
Detector	Peak					
Sweep time	Auto					
Resolution bandwidth	3 MHz					
Video bandwidth	3 MHz					
Trace-Mode	Max hold					

LIMITS

FCC	IC
Antenna	a Gain
6 dl	Ві

TEST RESULTS

IEEE 802.11b mode (Antenna 1)

T _{nom}	V _{nom}	Lowest channel 2412MHz	Middle channel 2437MHz	Highest channel 2462MHz
Conducted power [dBm/MHz] Measured with DSSS modulation		3.83	3.62	-0.42
Radiated power [dBm/MHz] Measured with DSSS modulation		3.12	1.66	0.19
Gain [dBi] Calculated		-0.71	-1.96	0.61
Measurement uncertainty		± 1.5	dB (cond.) / ± 3 dB	(rad.)

IEEE 802.11b mode (Antenna 2)

T _{nom}	V _{nom}	Lowest channel 2412MHz	Middle channel 2437MHz	Highest channel 2462MHz
Conducted power [dBm/MHz] Measured with DSSS modulation		0.56	0.94	0.96
	Radiated power [dBm/MHz] Measured with DSSS modulation		1.36	0.47
Gain [dBi] Calculated		1.68	0.42	-0.49
Measurement uncertainty		± 1.5	dB (cond.) / ± 3 dB	(rad.)

7.5. PEAK OUTPUT POWER

7.5.1. LIMITS

The maximum peak output power of the intentional radiator shall not exceed the following:

- 1. According to \$15.247(b)(3), for systems using digital modulation in the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz: 1 Watt.
- 2. According to §15.247(b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

7.5.2. TEST INSTRUMENTS

Name of Equipment	Manufacturer	Model	Serial Number	Last Calibration	Calibration Due
Power Meter	Anritsu	ML2495A	1204003	02/21/2016	02/20/2017
Power Sensor	Anritsu	MA2411B	1126150	02/21/2016	02/20/2017

7.5.3. TEST PROCEDURES (please refer to measurement standard)

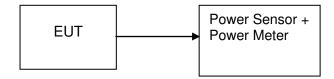
9.1.1 RBW ≥ *DTS* bandwidth

This procedure shall be used when the measurement instrument has available a resolution bandwidth that is greater than the *DTS bandwidth*.

- a) Set the RBW \geq *DTS* bandwidth.
- b) Set VBW \geq 3 RBW.
- c) Set span ≥ 3 x RBW
- d) Sweep time = auto couple.
- e) Detector = peak.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use peak marker function to determine the peak amplitude level.

9.1.2 Integrated band power method

This procedure may be used when the maximum available RBW of the measurement instrument is less than the *DTS bandwidth*.


- a) Set the RBW = 1 MHz.
- b) Set the VBW \geq 3 RBW
- c) Set the span \geq 1.5 x DTS bandwidth.
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.

h) Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges (for some instruments, this may require a manual override to select peak detector). If the instrument does not have a band power function, sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the DTS bandwidth.

9.1.3 PKPM1 Peak power meter method

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

7.5.4. TEST SETUP

7.5.5. TEST RESULTS

No non-compliance noted

Test Data

Test mode: IEEE 802.11b (Antenna 1)

Channel	Frequency (MHz)	Output Power Output Power (dBm) (W)		Limit (W)	Peak / AVG	Result
Low	2412	15.87	0.03864			PASS
Mid	2437	15.66	0.03681	1 Peak		PASS
High	2462	11.34	0.01361			PASS
Low	2412	12.22	0.01667			PASS
Mid	2437	12.06	0.01607	1 AVG		PASS
High	2462	7.37	0.00546			PASS

Test mode: IEEE 802.11b (Antenna 2)

Channel	Frequency (MHz)	Output Power Output Power (dBm) (W)		Limit (W)	Peak / AVG	Result
Low	2412	12.02	0.01592			PASS
Mid	2437	12.40	0.01738	1	Peak	PASS
High	2462	12.42	0.01746			PASS
Low	2412	8.36	0.00685			PASS
Mid	2437	8.54	0.00714	1	AVG	PASS
High	2462	8.69	0.00740			PASS

Test mode: IEEE 802.11g (Antenna 1)

Channel	Frequency (MHz)	Output Power Output Power (dBm) (W)		Limit (W)	Peak / AVG	Result
Low	2412	18.27	0.06714			PASS
Mid	2437	22.56	0.18030	1	Peak	PASS
High	2462	16.74	0.04721			PASS
Low	2412	10.22	0.01052			PASS
Mid	2437	13.56	0.02270	1	AVG	PASS
High	2462	8.63	0.00729			PASS

Test mode: IEEE 802.11g (Antenna 2)

Channel	FrequencyOutput PowerOutput Power(MHz)(dBm)(W)		Limit (W)	Peak / AVG	Result	
Low	2412	18.27	0.06714			PASS
Mid	2437	19.04	0.08017	1	Peak	PASS
High	2462	18.99	0.07925			PASS
Low	2412	9.24	0.00839			PASS
Mid	2437	9.20	0.00832	1	AVG	PASS
High	2462	9.32	0.00855	1		PASS

	· · · · · · · · · · · · · · · · · · ·										
Channel	Channel Frequency (MHz)	Οι	output Power (dBm)		Output Power	Limit (W)	Peak / AVG	Result			
	(10112)	Antenna 1	Antenna 2	Total	(W)	(**)	700				
Low	2412	17.91	17.85	20.89	0.12276			PASS			
Mid	2437	21.71	18.05	23.26	0.21208	1	Peak	PASS			
High	2462	16.57	18.06	20.39	0.10937			PASS			
Low	2412	10.57	9.20	12.95	0.01972			PASS			
Mid	2437	13.44	9.13	14.81	0.03026	1	AVG	PASS			
High	2462	8.55	9.16	11.88	0.01540			PASS			

Test mode: IEEE 802.11n HT20 MHz(Combine with Antenna 1 and Antenna 2)

Test mode: IEEE 802.11n HT40 MHz(Combine with Antenna 1 and Antenna 2)

Channel	Frequency (MHz)	Οι	utput Power (dBm)	r	Output Power	Limit (W)	Peak / AVG	Result
	(10112)	Antenna 1	Antenna 2	Total	(W)	(**)	710	
Low	2422	18.10	17.26	20.71	0.11778			PASS
Mid	2437	21.61	17.22	22.96	0.19760	1	Peak	PASS
High	2452	21.37	17.28	22.80	0.19054			PASS
Low	2422	11.92	8.62	13.5 9	0.02284			PASS
Mid	2437	13.11	8.58	14.42	0.02768	1	AVG	PASS
High	2452	12.93	8.55	14.28	0.02680			PASS

Due

02/20/2017

7.6. BAND EDGES MEASUREMENT

7.6.1. LIMITS

According to §15.247(d), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)).

Radiated Emission Test Site 966 (2) Serial Last **Model Number** Name of Equipment Manufacturer Number Calibration Calibration PSA Series Spectrum US44300399 02/20/2017 Agilent E4446A 02/21/2016 Analyzer EMI TEST RECEIVER ROHDE&SCHWARZ ESCI 100783 02/21/2016 02/20/2017 Amplifier EMEC EM330 060661 03/18/2016 03/17/2017 **High Noise Amplifier** 8449B 3008A01838 02/21/2016 02/20/2017 Agilent COM-POWER AL-130 121044 Loop Antenna 09/25/2015 09/24/2016 SCHAFFNER Bilog Antenna CBL6143 5082 02/21/2016 02/20/2017 Horn Antenna SCHWARZBECK **BBHA9120** 02/28/2016 D286 02/27/2017 Board-Band Horn Antenna Schwarzbeck **BBHA 9170** 9170-497 02/28/2016 02/27/2017 Turn Table N/A N/A N/A N.C.R N.C.R SUNOL Antenna Tower TLT2 N/A N.C.R N.C.R Controller Sunol Sciences SC104V 022310-1 N.C.R N.C.R Controller CT N/A N/A N.C.R N.C.R

7.6.2. TEST INSTRUMENTS

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

JR913

N/A

LZ-RF / CCS-SZ-3A2

02/21/2016

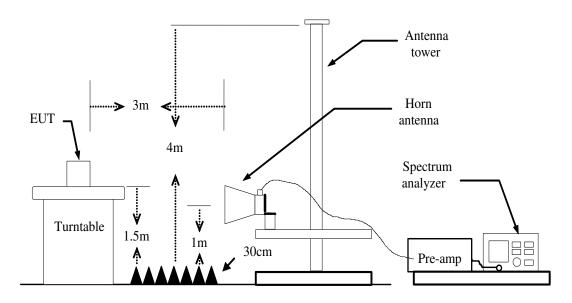
2. The FCC Site Registration number is 101879.

Anymetre

FARAD

3. N.C.R = No Calibration Required.

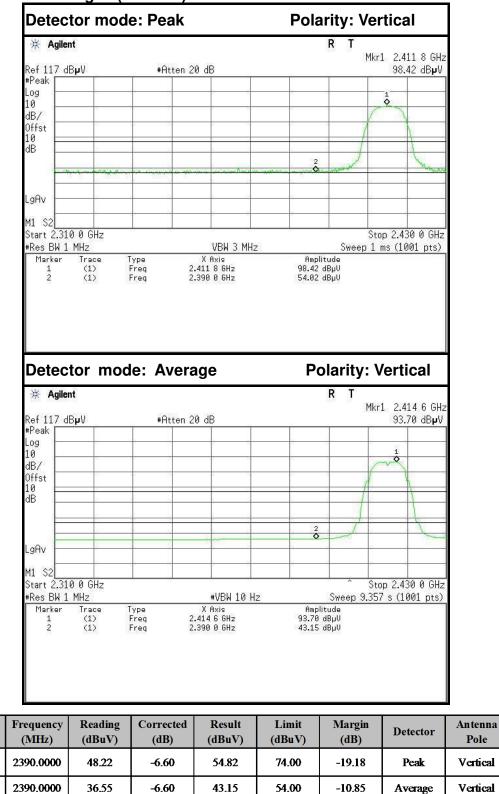
Temp. / Humidity Meter


Test S/W

7.6.3. TEST PROCEDURES (please refer to measurement standard)

- 1. The EUT is placed on a turntable, which is 1.5m above the ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
 - (a) PEAK: RBW=1MHz / VBW=3MHz / Sweep=AUTO
 - (b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO
- 5. Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are

7.6.4. TEST SETUP

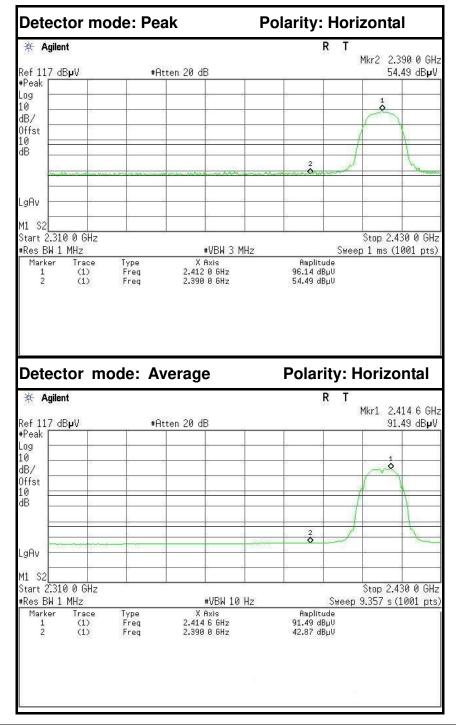


7.6.5. TEST RESULTS

Test Plot

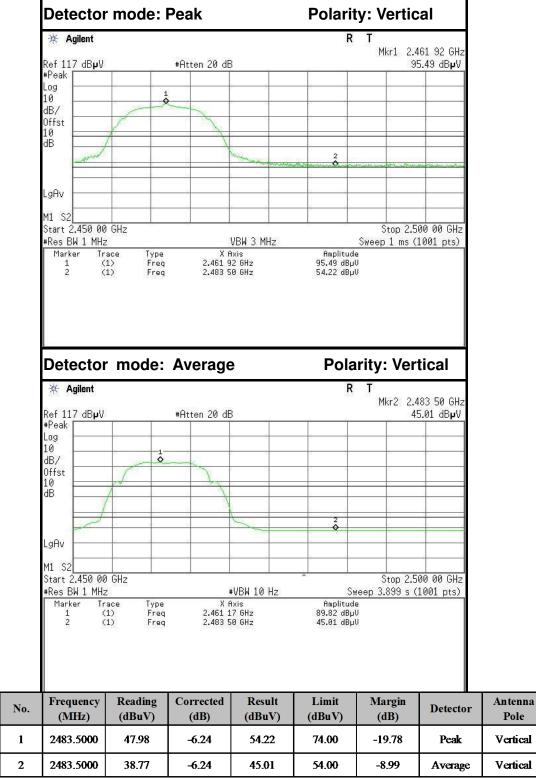
IEEE 802.11b mode (Antenna 1)

Band Edges (CH Low)

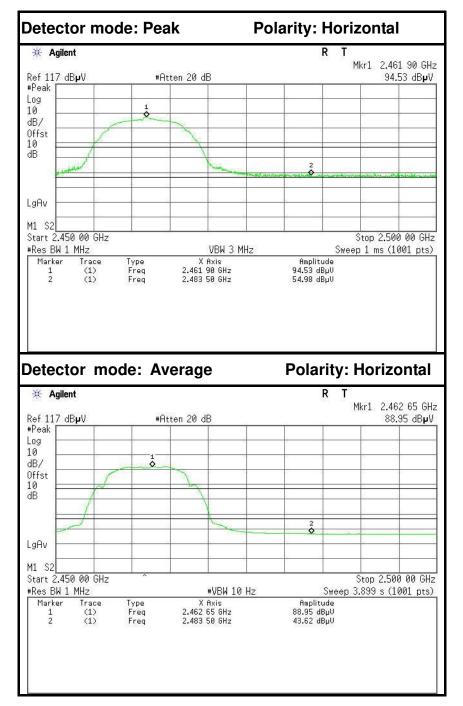


No.

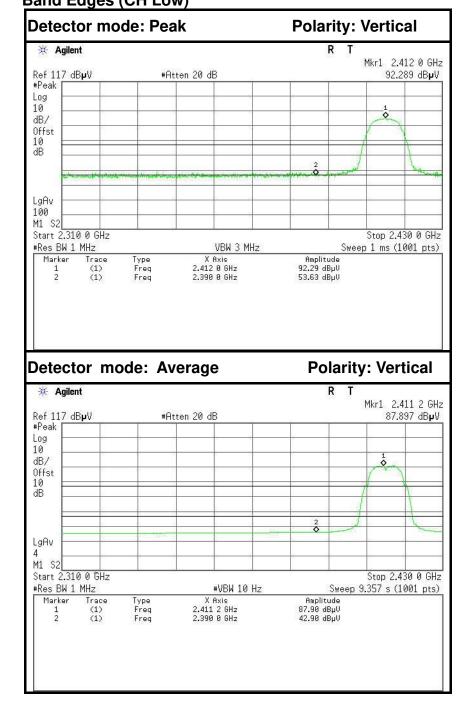
1


2

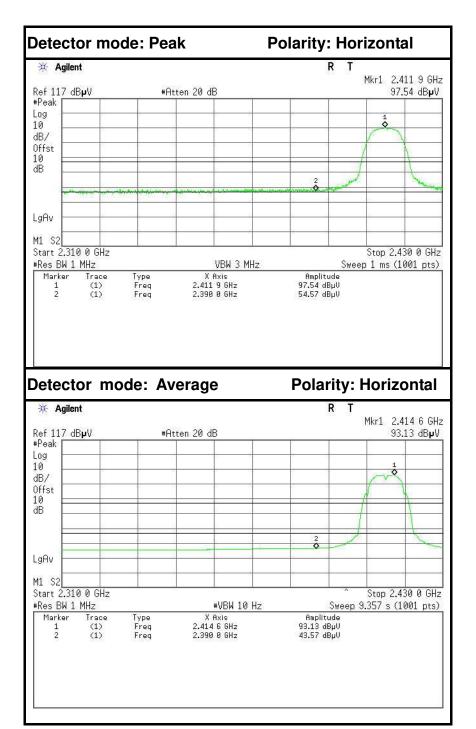
This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.



No.	Frequency (MHz)	Reading (dBuV)	Corrected (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Antenna Pole
1	2390.0000	47.89	-6.60	54.49	74.00	-19.51	Peak	Horizontal
2	2390.0000	36.27	-6.60	42.87	54.00	-11.13	Average	Horizontal

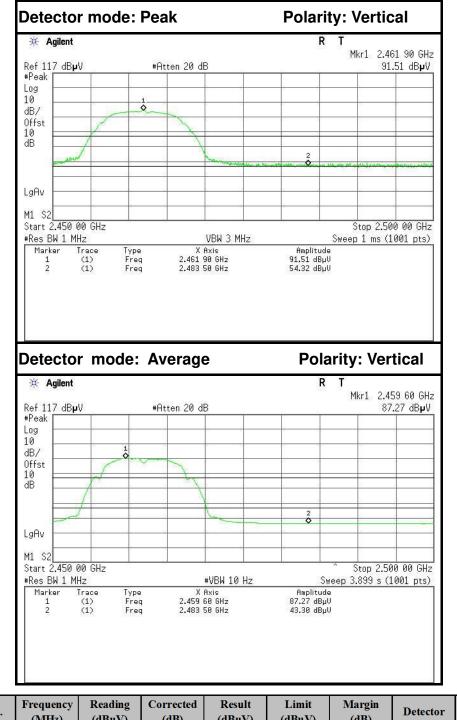


No.	Frequency (MHz)	Reading (dBuV)	Corrected (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Antenna Pole
1	2483.5000	48.74	-6.24	54.98	74.00	-19.02	Peak	Horizontal
2	2483.5000	37.38	-6.24	43.62	54.00	-10.38	Average	Horizontal

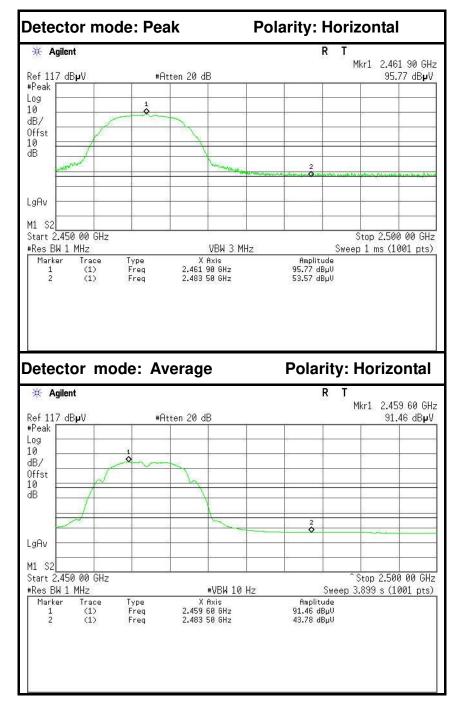

IEEE 802.11b mode (Antenna 2)

Band Edges (CH Low)

No.	Frequency (MHz)	Reading (dBuV)	Corrected (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Antenna Pole
1	2390.0000	47.03	-6.60	53.63	74.00	-20.37	Peak	Vertical
2	2390.0000	36.30	-6.60	42.90	54.00	-11.10	Average	Vertical



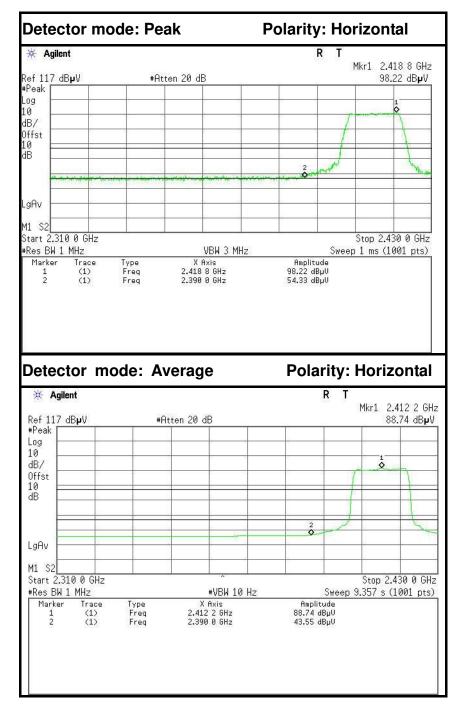
No.	Frequency (MHz)	Reading (dBuV)	Corrected (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Antenna Pole
1	2390.0000	47.97	-6.60	54.57	74.00	-19.43	Peak	Horizontal
2	2390.0000	36.97	-6.60	43.57	54.00	-10.43	Average	Horizontal


FCC ID: XPF-REG09-UTT Page 93 / 126 This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

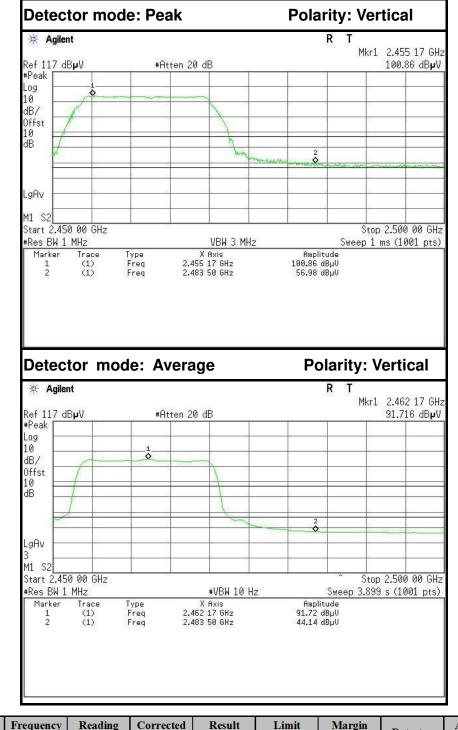
No.	Frequency (MHz)	Reading (dBuV)	Corrected (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Antenna Pole
1	2483.5000	48.08	-6.24	54.32	74.00	-19.68	Peak	Vertical
2	2483.5000	37.06	-6.24	43.30	54.00	-10.70	Average	Vertical

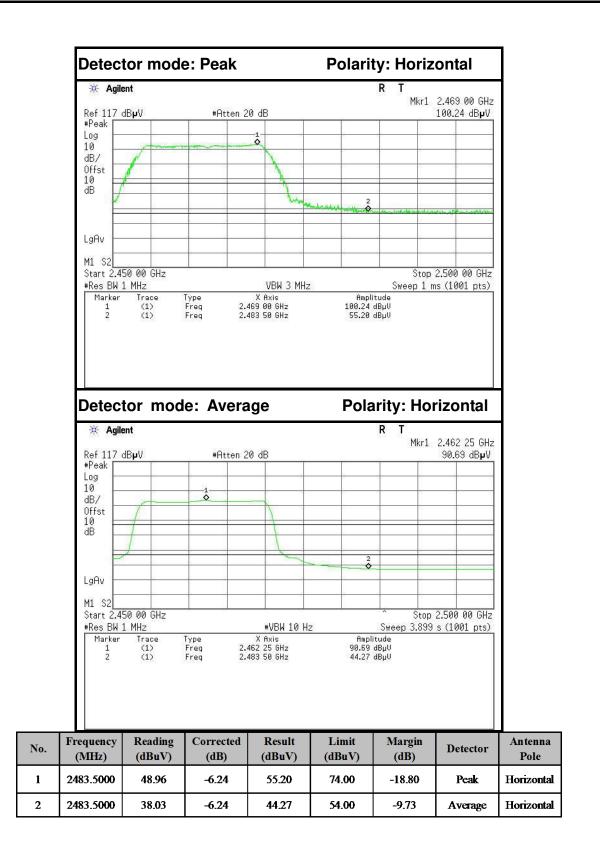
No.	Frequency (MHz)	Reading (dBuV)	Corrected (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Antenna Pole
1	2483.5000	47.33	-6.24	53.57	74.00	-20.43	Peak	Horizontal
2	2483.5000	37.54	-6.24	43.78	54.00	-10.22	Average	Horizontal

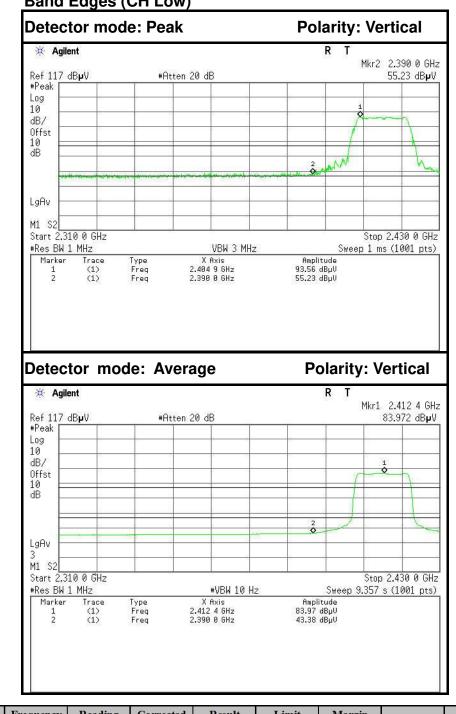
FCC ID: XPF-REG09-UTT Page 95 / 126 This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

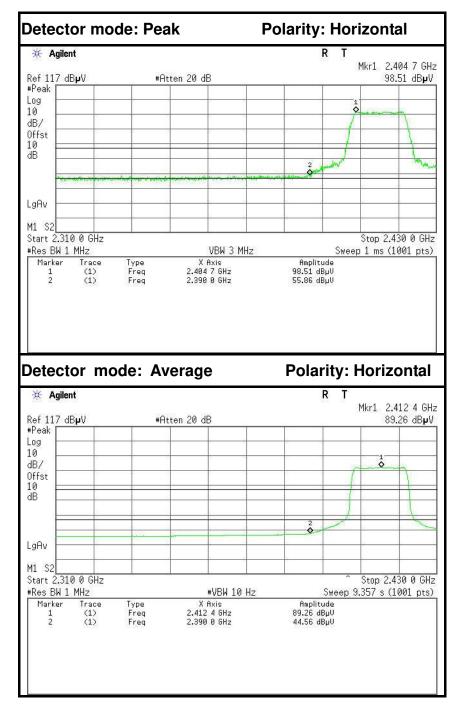

IEEE 802.11g mode (Antenna 1)

Band Edges (CH Low)

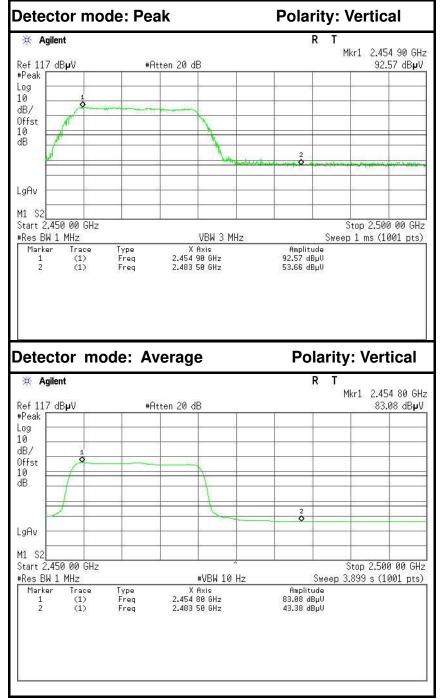

No.	Frequency (MHz)	Reading (dBuV)	Corrected (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Antenna Pole
1	2390.0000	49.57	-6.60	56.17	74.00	-17.83	Peak	Vertical
2	2390.0000	37.82	-6.60	44.42	54.00	-9.58	Average	Vertical


No.	Frequency (MHz)	Reading (dBuV)	Corrected (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Antenna Pole
1	2390.0000	47.73	-6.60	54.33	74.00	-19.67	Peak	Horizontal
2	2390.0000	36.95	-6.60	43.55	54.00	-10.45	Average	Horizontal

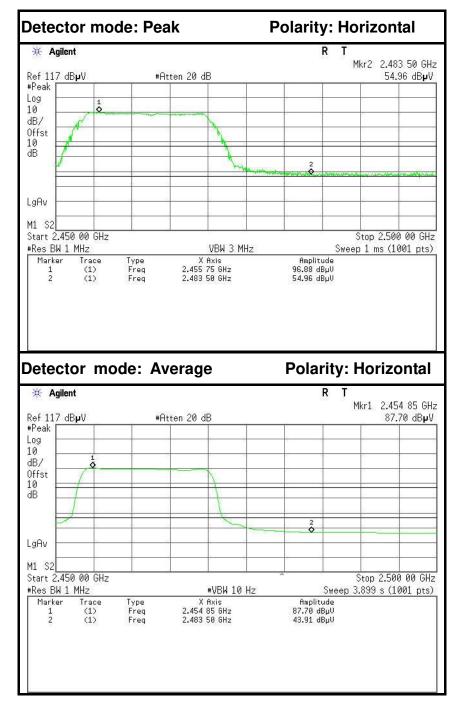

No.	Frequency (MHz)	Reading (dBuV)	Corrected (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Antenna Pole
1	2483.5000	50.74	-6.24	56.98	74.00	-17.02	Peak	Vertical
2	2483.5000	37.90	-6.24	44.14	54.00	-9.86	Average	Vertical


IEEE 802.11g mode (Antenna 2)

Band Edges (CH Low)

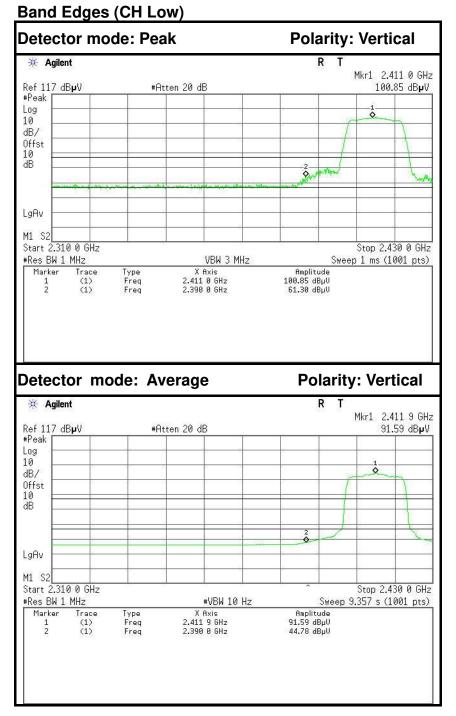

No.	Frequency (MHz)	Reading (dBuV)	Corrected (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Antenna Pole
1	2390.0000	48.63	-6.60	55.23	74.00	-18.77	Peak	Vertical
2	2390.0000	36.78	-6.60	43.38	54.00	-10.62	Average	Vertical

No.	Frequency (MHz)	Reading (dBuV)	Corrected (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Antenna Pole
1	2390.0000	49.26	-6.60	55.86	74.00	-18.14	Peak	Horizontal
2	2390.0000	37.96	-6.60	44.56	54.00	-9.44	Average	Horizontal



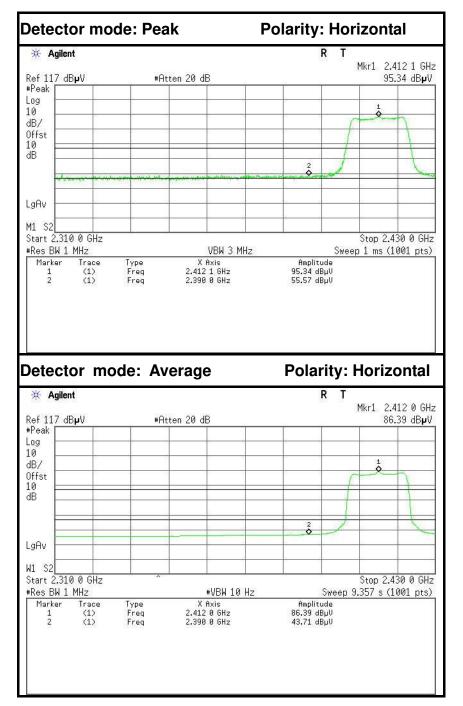
No.	Frequency (MHz)	Reading (dBuV)	Corrected (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Antenna Pole
1	2483.5000	47.42	-6.24	53.66	74.00	-20.34	Peak	Vertical
2	2483.5000	37.14	-6.24	43.38	54.00	-10.62	Average	Vertical

FCC ID: XPF-REG09-UTT Page 102 / 126 This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

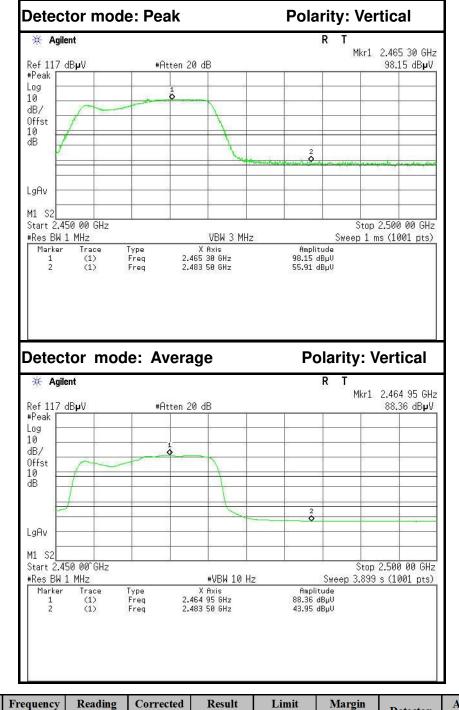


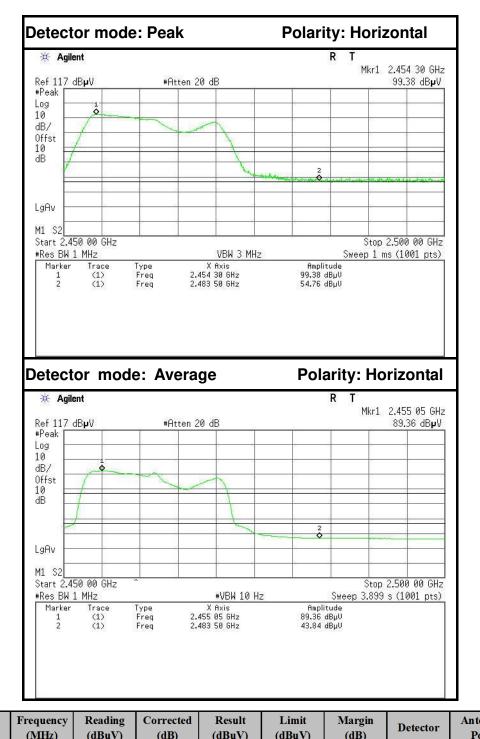
No.	Frequency (MHz)	Reading (dBuV)	Corrected (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Antenna Pole
1	2483.5000	48.72	-6.24	54.96	74.00	-19.04	Peak	Horizontal
2	2483.5000	37.67	-6.24	43.91	54.00	-10.09	Average	Horizontal

FCC ID: XPF-REG09-UTT Page 103 / 126 This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

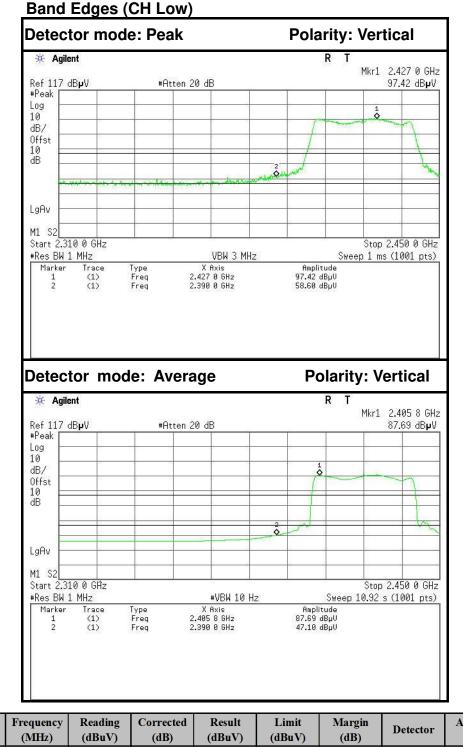


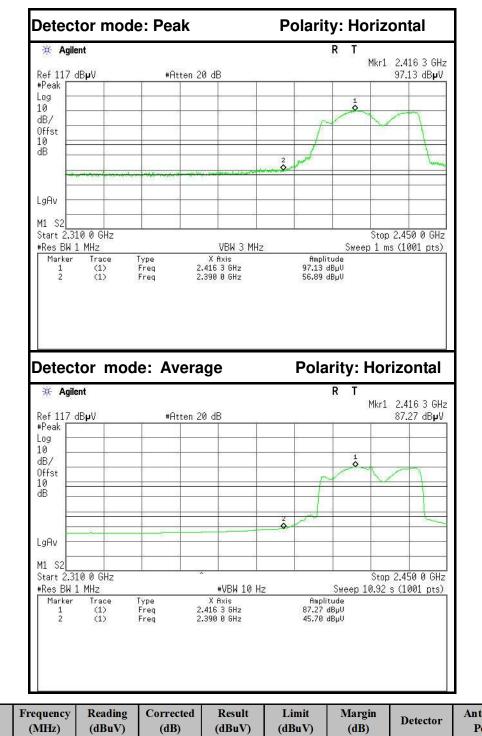
IEEE 802.11n HT20 MHz mode (Combine with Antenna 1 and Antenna 2)


No.	Frequency (MHz)	Reading (dBuV)	Corrected (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Antenna Pole
1	2390.0000	54.70	-6.60	61.30	74.00	-12.70	Peak	Vertical
2	2390.0000	38.18	-6.60	44.78	54.00	-9.22	Average	Vertical

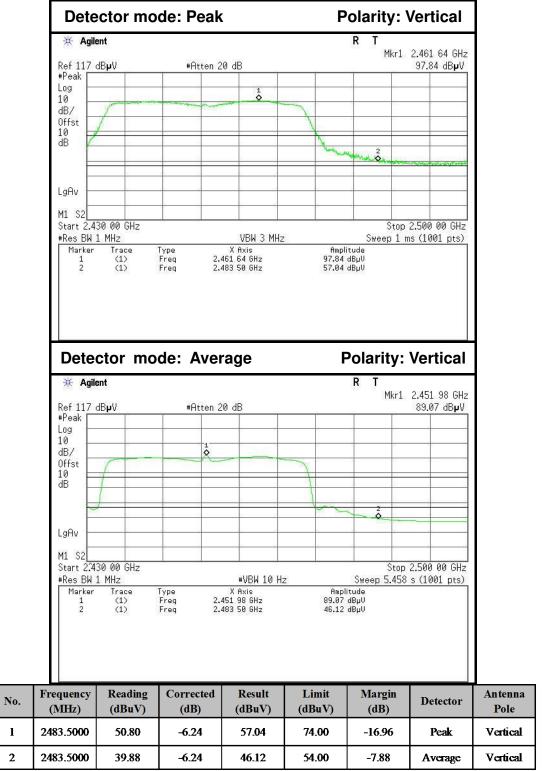


No.	Frequency (MHz)	Reading (dBuV)	Corrected (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Antenna Pole
1	2390.0000	48.97	-6.60	55.57	74.00	-18.43	Peak	Horizontal
2	2390.0000	37.11	-6.60	43.71	54.00	-10.29	Average	Horizontal

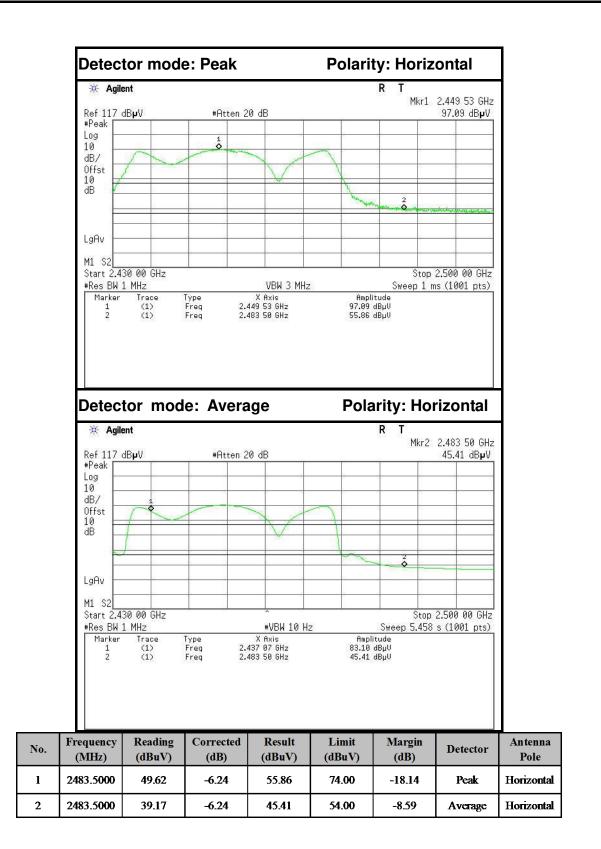

No.	Frequency (MHz)	Reading (dBuV)	Corrected (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Antenna Pole
1	2483.5000	49.67	-6.24	55.91	74.00	-18.09	Peak	Vertical
2	2483.5000	37.71	-6.24	43.95	54.00	-10.05	Average	Vertical


No.	Frequency (MHz)	Reading (dBuV)	Corrected (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Antenna Pole
1	2483.5000	48.52	-6.24	54.76	74.00	-19.24	Peak	Horizontal
2	2483.5000	37.60	-6.24	43.84	54.00	-10.16	Average	Horizontal

IEEE 802.11n HT40 MHz mode (Combine with Antenna 1 and Antenna 2)



No.	Frequency (MHz)	Reading (dBuV)	Corrected (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Antenna Pole
1	2390.0000	52.00	-6.60	58.60	74.00	-15.40	Peak	Vertical
2	2390.0000	40.50	-6.60	47.10	54.00	-6.90	Average	Vertical



No.	Frequency (MHz)	Reading (dBuV)	Corrected (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)	Detector	Antenna Pole
1	2390.0000	50.29	-6.60	56.89	74.00	-17.11	Peak	Horizontal
2	2390.0000	39.10	-6.60	45.70	54.00	-8.30	Average	Horizontal

7.7. PEAK POWER SPECTRAL DENSITY MEASUREMENT

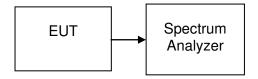
7.7.1. LIMITS

According to §15.247(e), for digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

According to §15.247(f), the digital modulation operation of the hybrid system, with the frequency hopping turned off, shall comply with the power density requirements of paragraph (d) of this section.

7.7.2. TEST INSTRUMENTS

Name of Equipment	Manufacturer	Model	Serial Number	Last Calibration	Calibration Due
Spectrum Analyzer	Agilent	N9010A	MY55370330	02/21/2016	02/20/2017


7.7.3. TEST PROCEDURES (please refer to measurement standard)

\$15.247(e)specifies a conducted power spectral density (PSD) limit of 8 dBm in any 3 kHz band segment within the fundamental EBW during any time interval of continuous transmission. The same method as used to determine the conducted output power shall be used to determine the power spectral density (i.e., if peak-detected fundamental power was measured then use the peak PSD procedure and if average fundamental power was measured then use the average PSD procedure).

10.2 Method PKPSD (peak PSD)

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

7.7.4. TEST SETUP

7.7.5. TEST RESULTS

No non-compliance noted

<u>Test Data</u>

Test mode: IEEE 802.11b (Antenna 1)

Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Test Result
Low	2412	-1.812		PASS
Mid	2437	-2.271	8	PASS
High	2462	-3.249		PASS

Test mode: IEEE 802.11b (Antenna 2)

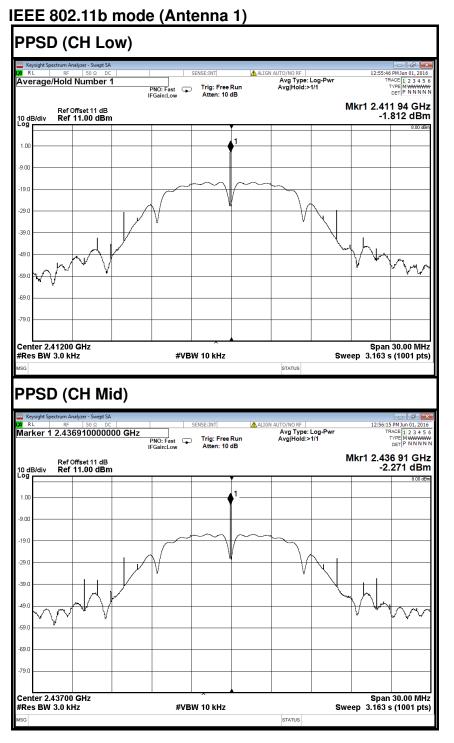
Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Test Result
Low	2412	-18.190		PASS
Mid	2437	-18.360	8	PASS
High	2462	-18.680		PASS

Test mode: IEEE 802.11g (Antenna 1)

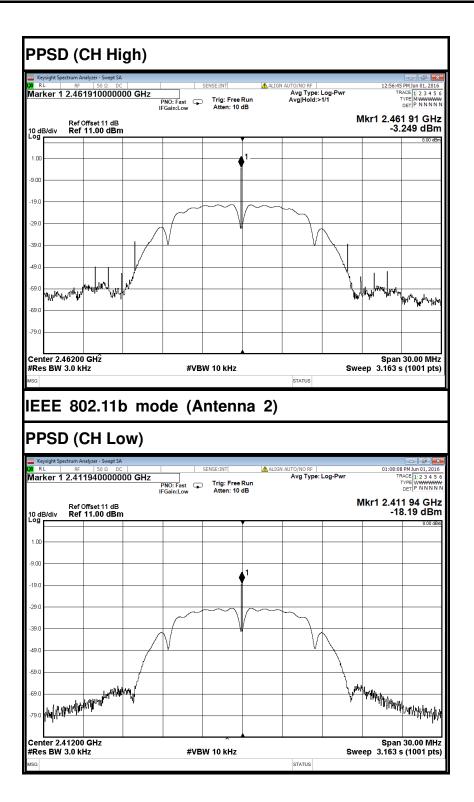
Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Test Result
Low	2412	-0.891		PASS
Mid	2437	-1.407	8	PASS
High	2462	-2.450		PASS

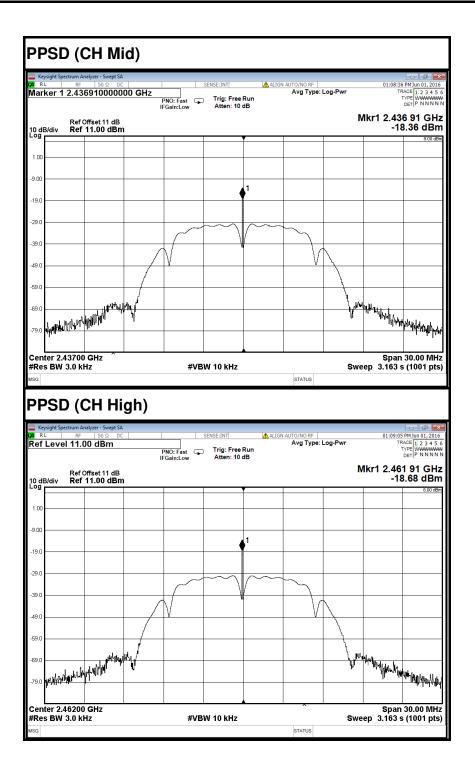
Test mode: IEEE 802.11g (Antenna 2)

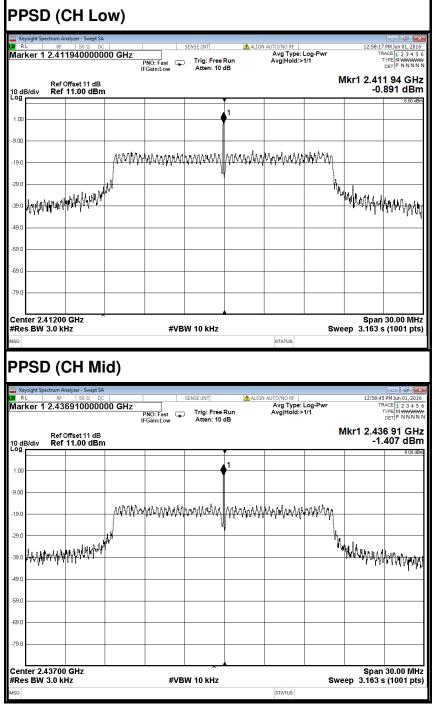
Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Test Result
Low	2412	-16.500		PASS
Mid	2437	-17.560	8	PASS
High	2462	-17.500		PASS

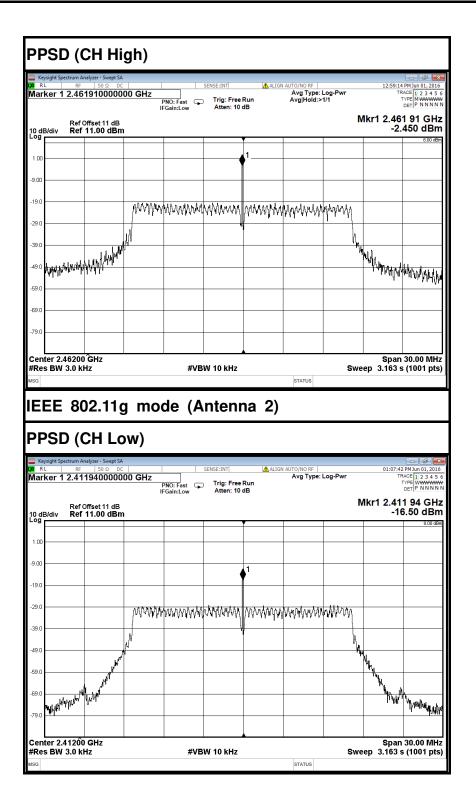

Test mode: IEEE 802.11n HT20 MHz (Combine with Antenna 1 and Antenna 2)

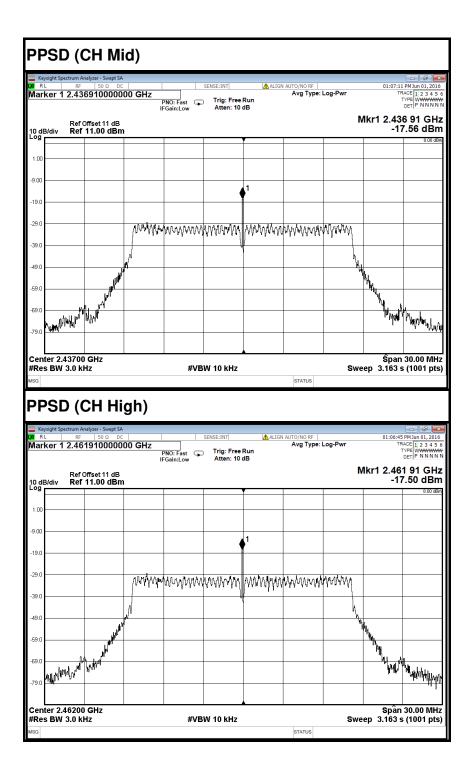
Channel	Frequency (MHz)		PPSD (dBm)		Limit (dBm)	Test Result
	(10112)	Antenna 1	Antenna 2	Total	(abiii)	
Low	2412	-0.980	-16.690	-0.865		PASS
Mid	2437	-1.400	-17.270	-1.289	8	PASS
High	2462	-2.420	-17.700	-2.293		PASS
Test mode	IEEE 802.1	1n HT40 MF	Iz (Combine	e with Ante	nna 1 and	d Antenna 2

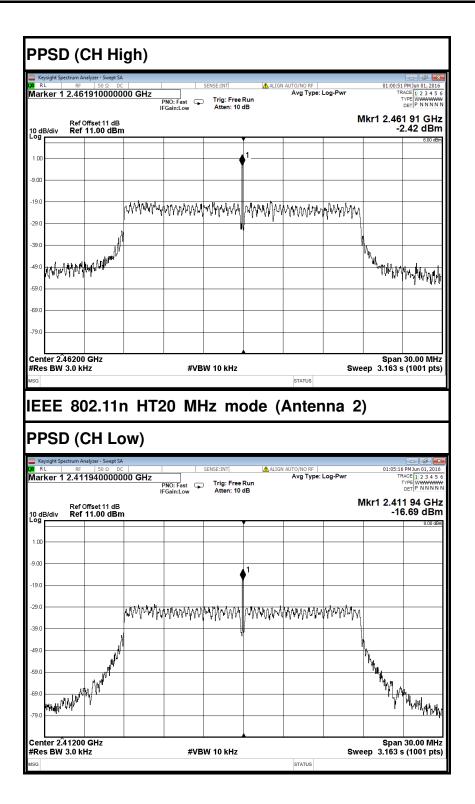

Channel	Frequency (MHz)		PPSD (dBm)		Limit (dBm)	Test Result
	(11112)	Antenna 1	Antenna 2	Total	(abiii)	
Low	2422	-0.550	-17.940	-0.472		PASS
Mid	2437	-1.120	-17.670	-1.025	8	PASS
High	2452	-1.610	-18.210	-1.516		PASS

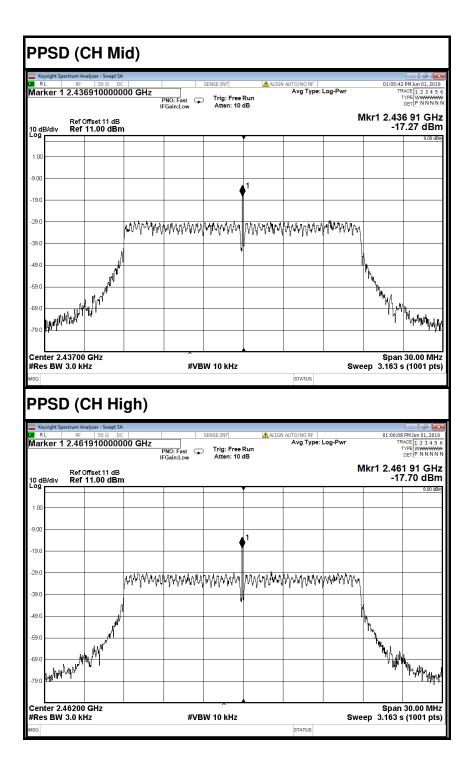

<u>Test Plot</u>



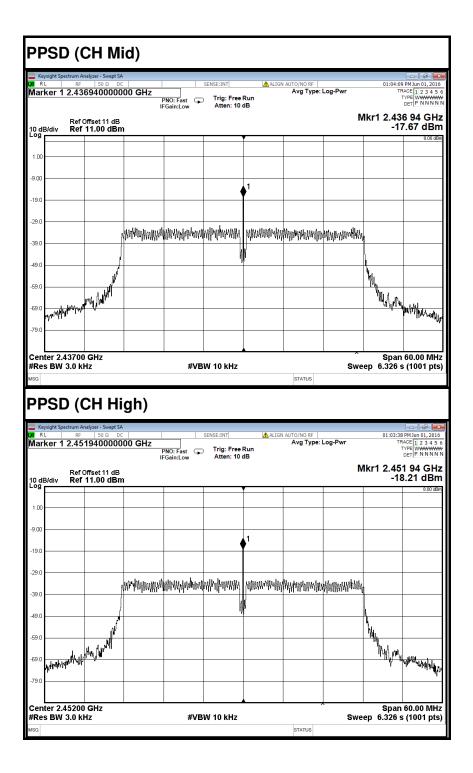



IEEE 802.11g mode (Antenna 1)




PPSD (CH Low) ALIGN AU 12:59:48 PM Jun 01, 2016 TRACE 1 2 3 4 5 6 TVPE WWWWW DET P N N N N Marker 1 2.411940000000 GHz Avg Type: Log-Pwr PNO: Fast Trig: Free Run IFGain:Low Atten: 10 dB Mkr1 2.411 94 GHz Ref Offset 11 dB Ref 11.00 dBm -0.98 dBm 10 dB/div Log 1.0 9.0 19. hipton of the providence 39.1 49 59. Center 2.41200 GHz #Res BW 3.0 kHz Span 30.00 MHz Sweep 3.163 s (1001 pts) #VBW 10 kHz STATUS PPSD (CH Mid) 01:00:16 PM Jun 01, 2016 TRACE 1 2 3 4 5 6 Marker 1 2.436940000000 GHz Avg Type: Log-Pw TYPE WWWWW Trig: Free Run Atten: 10 dB PNO: Fast 😱 IFGain:Low Mkr1 2.436 94 GHz -1.40 dBm Ref Offset 11 dB Ref 11.00 dBm 10 dB/div 1.0 9.0 antimetal and an antiputation of the second se 19. maranthanthantant 39.0 59. Center 2.43700 GHz Span 30.00 MHz #VBW 10 kHz #Res BW 3.0 kHz Sweep 3.163 s (1001 pts) STATUS

IEEE 802.11n HT20 MHz mode (Antenna 1)


PPSD (CH Low) ALIGN AU 01:01:31 PM Jun 01, 2016 TRACE 1 2 3 4 5 6 TVPE WWWWW DET P N N N N Marker 1 2.421940000000 GHz Avg Type: Log-Pwr PNO: Fast Trig: Free Run IFGain:Low Atten: 10 dB Mkr1 2.421 94 GHz -0.55 dBm Ref Offset 11 dB Ref 11.00 dBm 10 dB/div Log 1.0 9.00 19.1 an have open all the property of the state of the Walnumberstamprotous when here a start and the star 49 59. Center 2.42200 GHz #Res BW 3.0 kHz Span 60.00 MHz Sweep 6.326 s (1001 pts) #VBW 10 kHz STATUS PPSD (CH Mid) 01:01:59 PM Jun 01, 2016 TRACE 1 2 3 4 5 6 TVPE WWWWW DET P N N N N N Marker 1 2.436940000000 GHz Avg Type: Log-Pwr Trig: Free Run Atten: 10 dB PNO: Fast G Mkr1 2.436 94 GHz Ref Offset 11 dB Ref 11.00 dBm -1.12 dBm 10 dB/div 1.0 9.0 19. an second second second second second a second s 39 49 -59. Center 2.43700 GHz Span 60.00 MHz #VBW 10 kHz #Res BW 3.0 kHz Sweep 6.326 s (1001 pts) STATUS

IEEE 802.11n HT40 MHz mode (Antenna 1)

	D (Cl	H HI	gh)							
arker 1	2.45194 Ref Offs	50 Ω DC 400000		PNO: Fast IFGain:Low	SENSE:INT Trig: Free Atten: 10	Run	IGN AUTO/NO RF Avg Type: I		/lkr1 2.4	27 PM Jun 01, 201 TRACE 1 2 3 4 5 TYPE WWWW DET P NNNN 51 94 GH -1.61 dBr
dB/div		.00 0.011				Y				8.00 dB
						∳ ¹				
0										
0		Ņ	NUMPAN AND	Majawaralia	www.white	NIMANAMA	NWINAMARANANANANANANANANANANANANANANANANANA	HUMANNA	l.	
0						₩				
° malinit	WINN	white the							կ Կետանի	4 1 1 1 1
0 Alt .1 ak.1	till, and su								a.thelauthi	Merkela Merilan
0							_			
.0										
							STATUS			
	802	2.11r	ו HT	40 MI	Hz mo	ode	(Anten	ina 2)	
PSI	D (Cl	H Lo		40 MI	Hz mo	ode		ina 2)	
PS[D (Cl	HLC er - Swept SA 50 Ω DC)W) 00 GHz	PNO: Fast	SENSE:INT	AL Run			01:04	41 PM Jun 01, 20 TRACE 1 2 3 4 TYPE WWWW
	C (Cl ectrum Analyze RF 2.42194 Ref Offs	H LC er - Swept SA 50 Ω DC 4000000)W) 00 GHz		SENSE:INT	AL Run	(Anten	Log-Pwr	01:04: //kr1 2.4	12 94 GF
BEE PSI RL arker 1	C (Cl ectrum Analyze RF 2.42194 Ref Offs	H LC 50 Ω DC 400000 et 11 dB)W) 00 GHz	PNO: Fast	SENSE:INT	AL Run	(Anten	Log-Pwr	01:04: //kr1 2.4	41 PMJun 01, 20 TRACE 1 2 3 4 TYPE WWWW DET P N N N 21 94 GH 17.94 dB
Ceysight Spr RL urker 1	C (Cl ectrum Analyze RF 2.42194 Ref Offs	H LC 50 Ω DC 400000 et 11 dB)W) 00 GHz	PNO: Fast	SENSE:INT	AL Run	(Anten	Log-Pwr	01:04: //kr1 2.4	41 PMJun 01, 20 TRACE 1 2 3 4 TYPE WWWW DET P N N N 21 94 GH 17.94 dB
	C (Cl ectrum Analyze RF 2.42194 Ref Offs	H LC 50 Ω DC 400000 et 11 dB)W) 00 GHz	PNO: Fast	SENSE:INT	AL Run	(Anten	Log-Pwr	01:04: //kr1 2.4	41 PMJun 01, 20 TRACE 1 2 3 4 TYPE WWWW DET P N N N 21 94 GH 17.94 dB
	C (Cl ectrum Analyze RF 2.42194 Ref Offs	H LC 50 Ω DC 400000 et 11 dB)W) 00 GHz	PNO: Fast	SENSE:INT	Run dB	(Anten	Log-Pwr	01:04: //kr1 2.4	41 PMJun 01, 20 TRACE 1 2 3 4 TYPE WWWW DET P N N N 21 94 GH 17.94 dB
BEE PSI RL A	C (Cl ectrum Analyze RF 2.42194 Ref Offs	H LC 50 Ω DC 400000 et 11 dB .00 dBm	000 GHz	PNO: Fast	SENSE:INT Trig: Free Atten: 10	IA AL Run dB ↓ ↓		Log-Pwr	01:04 Akr1 2.4	41 PMJun 01, 20 TRACE 1 2 3 4 TYPE WWWW DET P N N N 21 94 GH 17.94 dB
AB/div	C (Cl ectrum Analyze RF 2.42194 Ref Offs	H LC 50 Ω DC 400000 et 11 dB .00 dBm	000 GHz	PNO: Fast	SENSE:INT	Run dB 1	(Anten	Log-Pwr	01:04 Akr1 2.4	41 PMJun 01, 20 TRACE 1 2 3 4 TYPE WWWW DET P N N N 21 94 GH 17.94 dB
BEE PSI	C (Cl ectrum Analyze RF 2.42194 Ref Offs	H LC 50 Ω DC 400000 et 11 dB .00 dBm	000 GHz	PNO: Fast	SENSE:INT	IA AL Run dB ↓ ↓		Log-Pwr	01:04 Akr1 2.4	1990 00 00 00 00 00 00 00 00 00 00 00 00
	Ref Offs Ref 11.	H Lc	000 GHz	PNO: Fast	SENSE:INT	Run dB 1		Log-Pwr	01:04 Akr1 2.4 -1	41 PNJ un 01, 202 41 PNJ un 01
Absolution of the second secon	Ref Offs Ref 11.	H Lc	000 GHz	PNO: Fast	SENSE:INT	Run dB 1		Log-Pwr	01:04 Akr1 2.4 -1	41 PNJ un 01, 202 41 PNJ un 01
	C (Cl ectrum Analyze RF 2.42194 Ref Offs	H Lc	000 GHz	PNO: Fast	SENSE:INT	Run dB 1		Log-Pwr	01:04 Akr1 2.4 -1	41 PMJun 01, 20 TRACE 1 2 3 4 TYPE WWWW DET P N N N 21 94 GH 17.94 dB
BEE BSI BSI BSI BSI BSI BSI B	Ref Offs Ref 11.	H Lc	000 GHz	PNO: Fast	SENSE:INT	Run dB 1		Log-Pwr	01:04	41 PMJ un 01, 20 41 PMJ

