Compliance Certification Services Inc.
Report No: C140516R01-RPB
FCC ID: XPF-REG03-UTT
Date of Issue : September 20, 2014

RADIO FREQUENCY EXPOSURE

LIMIT

According to $\S 15.247(\mathrm{i})$ and $\S 15.407(\mathrm{f})$, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b) of this chapter.

EUT Specification

EUT	AC650W
Frequency band (Operating)	WLAN: $2.412 \mathrm{GHz} \sim 2.462 \mathrm{GHz}$ WLAN: $5.15 \mathrm{GHz} \sim 5.25 \mathrm{GHz}$ WLAN: $5.25 \mathrm{GHz} \sim 5.35 \mathrm{GHz}$ WLAN: $5.47 \mathrm{GHz} \sim 5.725 \mathrm{GHz}$ WLAN: $5.725 \mathrm{GHz} \sim 5.85 \mathrm{GHz}$ Others
Device category	Portable (<20cm separation) Mobile (>20cm separation) Others
Exposure classification	Occupational/Controlled exposure ($\mathrm{S}=5 \mathrm{~mW} / \mathrm{cm}^{2}$) General Population/Uncontrolled exposure ($\mathrm{S}=1 \mathrm{~mW} / \mathrm{cm}^{2}$)
Antenna diversity	Single antenna Multiple antennas Tx diversity Rx diversity Tx/Rx diversity
Max. output power	2.412-2.462GHz IEEE 802.11b mode: 24.51 dBm IEEE 802.11 g mode: 20.79 dBm IEEE 802.11n Standard-20 MHz Channel mode: 21.14 dBm IEEE 802.11n Wide-40 MHz Channel mode: 19.74 dBm $5.725-5.85 \mathrm{GHz}$: 802.11a mode: 20.65 dBm 802.11an 20 MHz mode: 20.09 dBm 802.11an 40 MHz mode: 18.01 dBm
Antenna gain (Max)	Dipole antennas for 2.4 GHz Gain 5.0 dBi and Dipole antennas for 5 GHz Gain 5.0 dBi
Evaluation applied	MPE Evaluation* SAR Evaluation N/A
Remark: 1. The maximum output power is $24.51 \mathrm{dBm}(282.49 \mathrm{~mW})$ at 2412 MHz (with 5.0 numeric antenna gain.); $20.65 \mathrm{dBm}(116.14 \mathrm{~mW})$ at 5745 MHz (with 5.0 numeric antenna gain.) 2. DTS device is not subject to routine RF evaluation; MPE estimate is used to justify the compliance. 3. For mobile or fixed location transmitters, no SAR consideration applied. The maximum power density is $1.0 \mathrm{~mW} / \mathrm{cm} 2$ even if the calculation indicates that the power density would be larger. 4. All two antennas are completely uncorrelated with each other.	

TEST RESULTS

No non-compliance noted.

Calculation

Given

$$
\begin{aligned}
& E=\frac{\sqrt{30 \times P \times G}}{d} \& S=\frac{E^{2}}{3770} \\
& \text { Where } E=\text { Field strength in Volts / meter } \\
& P=\text { Power in Watts } \\
& G=\text { Numeric antenna gain } \\
& d=\text { Distance in meters } \\
& S=\text { Power density in milliwatts / square centimeter }
\end{aligned}
$$

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$
S=\frac{30 \times P \times G}{3770 d^{2}}
$$

Changing to units of mW and cm , using:

$$
\begin{aligned}
& P(m W)=P(W) / 1000 \text { and } \\
& d(\mathrm{~cm})=d(m) / 100
\end{aligned}
$$

Yields

$$
S=\frac{30 \times(P / 1000) \times G}{3770 \times(d / 100)^{2}}=0.0796 \times \frac{P \times G}{d^{2}} \quad \text { Equation } 1
$$

Where $d=$ Distance in cm
$P=$ Power in mW
$G=$ Numeric antenna gain
$S=$ Power density in $\mathrm{mW} / \mathrm{cm}^{2}$

Maximum Permissible Exposure

Substituting the MPE safe distance using $\mathrm{d}=20 \mathrm{~cm}$ into Equation 1:
Yields

$$
S=0.000199 \times P \times G
$$

Where $P=$ Power in mW
$G=$ Numeric antenna gain
S = Power density in $\mathrm{mW} / \mathrm{cm}^{2}$

Compliance Certification Services Inc.
Report No: C140516R01-RPB
FCC ID: XPF-REG03-UTT
Date of Issue : September 20, 2014

Modulation Mode	Frequency band (MHz)	Max. Conducted output power(dBm)	Antenna gain (dBi)	Distance (cm)	Power density (mW/cm2)	Limit (mW/cm2)
802.11b	2412-2462	24.51	5.0	20	0.1778	1
802.11g		20.79	5.0	20	0.0755	1
$802.11 \mathrm{n}(20 \mathrm{MHz})$		21.14	5.0	20	0.0818	1
$802.11 \mathrm{n}(40 \mathrm{MHz})$		19.74	5.0	20	0.0593	1
802.11a	5725-5850	20.65	5.0	20	0.0731	1
$802.11 \mathrm{an}(20 \mathrm{MHz})$		20.09	5.0	20	0.0642	1
802.11 an(40MHz)		18.01	5.0	20	0.0398	1

Note:

Both of the WLAN 2.4G\&5.0G can transmit simultaneously, the formula of calculated the MPE is:
CPD1 / LPD1 + CPD2 / LPD2 + .etc. < 1
CPD = Calculation power density
LPD = Limit of power density
WLAN 2.4G+ WLAN 5G=0.1778+0.0731=0.2509
(For mobile or fixed location transmitters, the maximum power density is $1.0 \mathrm{~mW} / \mathrm{cm}^{2}$ even if the calculation indicates that the power density would be larger.)

