Intel Corporation

Clane2

Report No. INTE5221

Report Prepared By

www.nwemc.com 1-888-EMI-CERT

© 2010 Northwest EMC, Inc

Certificate of Test Last Date of Test: May 14, 2010 Intel Corporation Model: Clane2

Emissions					
Test Description	Specification	Test Method	Pass/Fail		
Spurious Radiated Emissions	FCC 15.247:2010	ANSI C63.10:2009	Pass		
Transmission Pulse Duration	FCC 15.247:2010	ANSI C63.10:2009	Pass		
Occupied Bandwidth	FCC 15.247:2010	ANSI C63.10:2009	Pass		
Output Power	FCC 15.247:2010	ANSI C63.10:2009	Pass		
Band Edge Compliance	FCC 15.247:2010	ANSI C63.10:2009	Pass		
Spurious Conducted Emissions	FCC 15.247:2010	ANSI C63.10:2009	Pass		
Power Spectral Density	FCC 15.247:2010	ANSI C63.10:2009	Pass		
AC Powerline Conducted Emissions	FCC 15.207:2010	ANSI C63.10:2009	Pass		

Modifications made to the product See the Modifications section of this report

Test Facility

The measurement facility used to collect the data is located at:

Northwest EMC, Inc. 22975 NW Evergreen Parkway, Suite 400 Hillsboro, OR 97124

Phone: (503) 844-4066

Fax: 844-3826

This site has been fully described in a report filed with and accepted by the FCC (Federal Communications Commission) and Industry Canada (Site filing #2834D-1).

Approved By:
Timitly P. Diff
Tim O'Shea, Operations Manager

NVLAP Lab Code: 200630-0

This report must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the federal government of the United States of America.

Product compliance is the responsibility of the client, therefore the tests and equipment modes of operation represented in this report were agreed upon by the client, prior to testing. This Report may only be duplicated in its entirety. The results of this test pertain only to the sample(s) tested. The specific description is noted in each of the individual sections of the test report supporting this certificate of test.

Revision Number	Description	Date	Page Number
00	None		

Barometric Pressure

The recorded barometric pressure has been normalized to sea level.

Accreditations and Authorizations

FCC

Accredited by NVLAP for performance of FCC radio, digital, and ISM device testing. Our Open Area Test Sites, certification chambers, and conducted measurement facilities have been fully described in reports filed with the FCC and accepted by the FCC in letters maintained in our files. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by the FCC as a Telecommunications Certification Body (TCB). This allows Northwest EMC to certify transmitters to FCC specifications in accordance with 47 CFR 2.960 and 2.962.

NVLAP

Northwest EMC, Inc. is accredited under the United States Department of Commerce, National Institute of Standards and Technology, and National Voluntary Laboratory Accreditation Program for satisfactory compliance with the requirements of ISO/IEC 17025 for Testing Laboratories. The NVLAP accreditation encompasses Electromagnetic Compatibility Testing in accordance with the European Union EMC Directive 2004/108/EC, and ANSI C63.4. Additionally, Northwest EMC is accredited by NVLAP to perform radio testing in accordance with the European Union R&TTE Directive 1999/5/EEC, the requirements of FCC, and the RSS radio standards for Industry Canada.

Industry Canada

Accredited by NVLAP for performance of Industry Canada RSS and ICES testing. Our Open Area Test Sites and certification chambers comply with RSS-Gen, Issue 2 and have been filed with Industry Canada and accepted. Northwest EMC has been accredited by ANSI to ISO / IEC Guide 65 as a product certifier. We have been designated by NIST and recognized by Industry Canada as a Certification Body (CB) per the APEC Mutual Recognition Arrangement (MRA). This allows Northwest EMC to certify transmitters to Industry Canada technical requirements. (*Site Filing Numbers - Hillsboro: 2834D-1, 2834D-2, Sultan: 2834C-1, Irvine: 2834B-1, 2834B-2, Brooklyn Park: 2834E-1*)

CAB

Designated by NIST and validated by the European Commission as a Conformity Assessment Body (CAB) to conduct tests and approve products to the EMC directive and transmitters to the R&TTE directive, as described in the U.S. - EU Mutual Recognition Agreement.

NEMKO

Assessed and accredited by NEMKO (Norwegian testing and certification body) for European emissions and immunity testing. As a result of NEMKO's laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification (Authorization No. ELA 119).

NVLAP LAB CODE 200629-0 NVLAP LAB CODE 200630-0 NVLAP LAB CODE 200676-0 NVLAP LAB CODE 200761-0 NVLAP LAB CODE 200881-0

Accreditations and Authorizations

Australia/New Zealand

The National Association of Testing Authorities (NATA), Australia has been appointed by the ACA as an accreditation body to accredit test laboratories and competent bodies for EMC standards. Accredited test reports or assessments by competent bodies must carry the NATA logo. Test reports made by an overseas laboratory that has been accredited for the relevant standards by an overseas accreditation body that has a Mutual Recognition Agreement (MRA) with NATA are also accepted as technical grounds for product conformity. The report should be endorsed with the respective logo of the accreditation body (NVLAP).

VCCI

Accepted as an Associate Member to the VCCI, Acceptance No. 564. Conducted and radiated measurement facilities have been registered in accordance with Regulations for Voluntary Control Measures, Article 8. (*Registration Numbers. - Hillsboro: C-1071, R-1025, G-84, C-2687, T-1658, and R-2318, Irvine: R-1943, G-85, C-2766, and T-1659, Sultan: R-871, G-83, C-1784, and T-1511, Brooklyn Park: R-3125, G-86, G-141, C-3464, and T-1634).*

BSMI

Northwest EMC has been designated by NIST and validated by C-Taipei (BSMI) as a CAB to conduct tests as described in the APEC Mutual Recognition Agreement (US0017). License No.SL2-IN-E-1017.

GOST

Northwest EMC, Inc. has been assessed and accredited by the Russian Certification bodies Certinform VNIINMASH, CERTINFO, SAMTES, and Federal CHEC, to perform EMC and Hygienic testing for Information Technology Products. As a result of their laboratory assessment, they will accept test results from Northwest EMC, Inc. for product certification

KCC

Northwest EMC, Inc is a CAB designated by MRA partners and recognized by Korea. (Assigned Lab Numbers: Hillsboro: US0017, Irvine: US0158, Sultan: US0157)

VIETNAM

Vietnam MIC has approved Northwest EMC as an accredited test lab. Per Decision No. 194/QD-QLCL (dated December 15, 2009), Northwest EMC test reports can be used for Vietnam approval submissions.

SCOPE For details on the Scopes of our Accreditations, please visit: http://www.nwemc.com/accreditations/

Northwest EMC Locations

Oregon Labs EV01-EV12 22975 NW Evergreen Pkwy Suite 400 Hillsboro, OR 97124 (503) 844-4066 California Labs OC01-OC13 41 Tesla Irvine, CA 92618 (949) 861-8918 Minnesota Labs MN01-MN08 9349 W Broadway Ave. Brooklyn Park, MN 55445 (763) 425-2281 Washington Labs SU01-SU07 14128 339th Ave. SE Sultan, WA 98294 (360) 793-8675 New York Labs WA01-WA04 4939 Jordan Rd. Elbridge, NY 13060 (315) 685-0796

Rev 11/17/06

Party Requesting the Test

Company Name:	Intel Corporation
Address:	5200 NE Elam Young Pkwy
City, State, Zip:	Hillsboro, OR 97124
Test Requested By:	Bob Hughes
Model:	Clane2
First Date of Test:	May 11, 2010
Last Date of Test:	May 14, 2010
Receipt Date of Samples:	May 11, 2010
Equipment Design Stage:	Preproduction
Equipment Condition:	No Damage

Information Provided by the Party Requesting the Test

Functional Description of the EUT (Equipment Under Test):

802.11b/g radio module

Testing Objective:

To demonstrate compliance with FCC 15.247 requirements

CONFIGURATION 1 INTE5221

EUT				
Description	Manufacturer	Model/Part Number	Serial Number	
EUT - 802.11(b/g) radio module	Intel	Clane2	5	

Peripherals in test setup boundary					
Description Manufacturer Model/Part Number Serial Number					
Battery Pack	Intel	none	none		

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC	No	0.3m	No	EUT - 802.11(b/g) radio module	Battery Pack
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

CONFIGURATION 2 INTE5221

EUT			
Description	Manufacturer	Model/Part Number	Serial Number
EUT - 802.11(b/g) radio module	Intel	Clane2	5

Peripherals in test setup boundary				
Description	Manufacturer	Model/Part Number	Serial Number	
Test fixture	Intel	UART Programmer Rev 1.1	none	

Remote Equipment Outside of Test Setup Boundary				
Description Manufacturer Model/Part Number Serial Number				
Host PC	unknown	unknown	unknown	

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
USB	Yes	1.0m	No	Test fixture	Host PC
PA = Cable	is permanently	attached to the device	e. Shielding ar	nd/or presence of ferrite m	ay be unknown.

CONFIGURATION 3 INTE5221

EUT					
Description	Manufacturer	Model/Part Number	Serial Number		
EUT - 802.11(b/g) radio module	Intel	Clane2	5		

Peripherals in test setup boundary						
Description Manufacturer		Model/Part Number	Serial Number			
Linear DC Supply	Topward	TPS-2000	TPD			

Cables					
Cable Type	Shield	Length (m)	Ferrite	Connection 1	Connection 2
DC	No	0.5m	No	EUT - 802.11(b/g) radio module	Linear DC Supply
PA = Cable is permanently attached to the device. Shielding and/or presence of ferrite may be unknown.					

Modifications

	Equipment modifications							
Item	Date	Test	Modification	Note	Disposition of EUT			
1	5/11/2010	Occupied Bandwidth	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.			
2	5/11/2010	Band Edge Compliance	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.			
3	5/11/2010	Output Power – Channel Power	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.			
4	5/12/2010	Power Spectral Density	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.			
5	5/12/2010	Transmission Pulse Duration	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.			
6	5/13/2010	Spurious Radiated Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.			
7	5/12/2010	Spurious Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	EUT remained at Northwest EMC following the test.			
8	5/14/2010	AC Powerline Conducted Emissions	Tested as delivered to Test Station.	No EMI suppression devices were added or modified during this test.	Scheduled testing was completed.			

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4407B	AAU	12/12/2008	24
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	7/21/2009	13
26 GHz DC Block, SMA	Pasternack	PE8210	AME	10/19/2009	13
EV01 Cables	N/A	Bilog Cables	EVA	7/10/2009	13

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

Per ANSI C63.10, for unlicensed wireless devices unable to be configured for 100 % duty cycle even in test mode, the system should be configured for the longest duration duty cycle supported. The transmission pulse duration is that time over which the unlicensed wireless device is on and transmitting at its maximum output power.

Measurement methods defined in ANSI C63.10 are often based upon the relationship between the EUT transmission pulse duration and the sweep speed of the measurement analyzer.

The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The hopping function of the EUT was enabled.

NORTHWEST						XMit 2010.01.14
		TRANSMISSION P	UI SE DURATI	ON		
EMC						
EUT:	Clane2				Work Order: INTE5221	
Serial Number:	5				Date: 05/12/10	
Customer:	Intel Corporation			1	Temperature: 23°C	
Attendees:	Bob Hughes				Humidity: 38%	
Project:	None			Baro	metric Pres.: 30.05 in	
Tested by:	Rod Peloquin		Power: 5 VDC via USB		Job Site: EV06	
TEST SPECIFICATI	ONS		Test Method			
FCC 15.247:2010			ANSI C63.10:200	19		
COMMENTS						
None						
DEVIATIONS FROM	I TEST STANDARD					
No Deviations						
		101.	Pl			
Configuration #	2	Morting ter	teling			
		Signature	V			
				Value	Limit	Results
802.11(b) 1 Mbps						
	Pulse Width			4.188 ms	N/A	N/A
	Period			4.275 ms	N/A	N/A
802.11(b) 11 Mbps						
	Pulse Width			0.455 ms	N/A	N/A
	Period			0.543 ms	N/A	N/A
802.11(g) 6 Mbps	-					
	Pulse Width			0.681 ms	N/A	N/A
	Period			0.780 ms	N/A	N/A
802.11(g) 36 Mbps						
	Pulse Width			0.122 ms	N/A	N/A
	Period			0.220 ms	N/A	N/A
802.11(g) 54 Mbps				0.000	N1/A	
	Pulse Width			0.086 ms	N/A	N/A
	Period			0.183 ms	N/A	N/A

NORTHWEST

	802.11(b) 1 Mbps, Pulse Width	
Result: N/A	Value: 4.188 ms	Limit: N/A

🔆 🔆 Ag	jilent 1	5:25:35	11 May 2	2010			I	RТ		
Ref 10	dBm		#A	tten 10 dl	В				Mkr1 ∆ 0	4.188 ms 0.965 dB
Peak Log										
5 dB/ Affst		lphand diving the	l'i'nhulp (de la ferta de la f erta de la ferta de		n <mark>han handa</mark> n	
23.2 dB						n an	╺╷╷ ┑ <mark>╷╷╷</mark> ╻╺┝╴╓╷┚┙┠╷			
W1 S2 S3 FS										
Center Res Bk	2.412 (1 MHz	GHz		#	VBW 100	kHz	SI	weep 10.	S) 05 ms (30	oan 0 Hz 000 pts)

	802.11(b) 1 Mbps, Period		
Result: N/A	Value: 4.275 ms	Limit:	N/A

🔆 🔆 Ag	j ilent 15	5:27:49 1	l1 May â	2010			I	RT		
Ref 10	dBm		#A	tten 10 c	B				Mkr1 ∆ −1	4.275 ms .349 dB
Peak Log										
5 dB/ Offst 23.2			<mark>i i pini</mark> t							
dB						<mark>₩<mark>₩₩₩₩₩₩</mark>₩</mark>				
W1 S2 S3 FS										
Center Res Bk	2.412 GI 1 MHz	Hz		+	VBW 100	kHz	S	weep 10.	Sp 05 ms (30	pan 0 Hz)00 pts)

Result:

TRANSMISSION PULSE DURATION

	802.11(b) 11 Mbps, Pulse Width		
Result: N/A	Value: 0.455 ms	Limit:	N/A

Limit:

N/A

	802.11(b) 11 Mbps, Pe			
N/A	Value:	0.543 ms		

N/A

N/A

Limit:

802.11(g) 36 Mbps, Pulse Width Result: N/A Value: 0.122 ms Limit:

> R T 🔆 Agilent 14:19:40 11 May 2010 121.5 µs 0.985 dB Mkr1 ∆ Ref 10_dBm #Atten 10 dB Peak Log 5 dB/ 0ffst 23.2 dB chi. 111 s L 111 pal. <mark>I</mark>I) 14 A^bud 1 N W1 S2 S3 FS Center 2.412 GHz Res BW 1 MHz Span 0 Hz Sweep 1.949 ms (3000 pts) **#VBW** 100 kHz 802.11(g) 36 Mbps, Period

Rocult	ΝΙ/Δ	
nesun.		

Value: 0.220 ms

	802.11(g) 6 Mbps, Pulse Width		
Result: N/A	Value: 0.681 ms	Limit:	N/A

Result: N/A

Value: 0.780 ms

莱	Ag	ilent	14	4:24:25 1	11 May 20	010					RΤ			
Ref	10	dBm			#At	ten 10 d	В					Mkr1	∆ −0	780 µs .609 dB
Peak Log 5	<													
dB/ Offs 23.2 dB	t					liniki _{du} dalihi Manakari ji dalihi		LR �						
				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1									[][
W1 :	S2													
S3	FS													
Cent Res	ter BW	2.41 1 M	.2 GI Hz	Hz		#	VBW :	100	kHz	s	weep 1.9	49 m	Sp s (30	oan 0 Hz)00 pts)

		802.11(g)	54 Mbps, Pulse Width		
Result:	N/A	Value:	0.086 ms	Limit:	N/A

Result: N/A

Value: 0.183 ms

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4407B	AAU	12/12/2008	24
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	7/21/2009	13
26 GHz DC Block, SMA	Pasternack	PE8210	AME	10/19/2009	13
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The occupied bandwidth was measured with the EUT set to low, medium, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at each of the required data rate and modulations for an 802.11(b/g) radio.

NORTHWEST					XMit 2010.01.14
		OCCUPIED BAN	DWIDTH		
ENIC					
EUT:	Clane2			Work Order:	INTE5221
Serial Number:	5			Date:	05/11/10
Customer:	Intel Corporation			Temperature:	23°C
Attendees:	Bob Hughes			Humidity:	38%
Project:	None			Barometric Pres.:	30.05 in
Tested by:	Rod Peloquin	Pov	ver: 5 VDC via USB	Job Site:	EV06
TEST SPECIFICATI	IONS		Test Method		
FCC 15.247:2010			ANSI C63.10:2009		
COMMENTS					
Adapter cable loss	of 1.3 dB added to measure	rement analyzer reference level offset.			
		,,			
DEVIATIONS FROM	I TEST STANDARD				
No Deviations					
		10, 20			
Configuration #	2	Rocky le Keleng	>		
Ŭ		Signature			
			vai	ue Li	mit Results
802.11(b) 1 Mbps			Val	ue Li	mit Results
802.11(b) 1 Mbps	Low Channel			MHz > 50	mit Results 0 kHz Pass
802.11(b) 1 Mbps	Low Channel Mid Channel		10.130 10.083	ue Li 0 MHz > 50 3 MHz > 50	mit Results 0 kHz Pass 0 kHz Pass
802.11(b) 1 Mbps	Low Channel Mid Channel High Channel		10.130 10.083 10.130	ue Li MHz > 50 MHz > 50 MHz > 50 MHz > 50	0 kHz Pass 0 kHz Pass 0 kHz Pass 0 kHz Pass
802.11(b) 1 Mbps 802.11(b) 11 Mbps	Low Channel Mid Channel High Channel		Vai 10.130 10.083 10.130	ue Li MHz > 50 MHz > 50 MHz > 50	mit Results 0 kHz Pass 0 kHz Pass 0 kHz Pass 0 kHz Pass
802.11(b) 1 Mbps 802.11(b) 11 Mbps	Low Channel Mid Channel High Channel Low Channel		Vai 10.130 10.083 10.130 10.363	ue Li MHz > 50	mit Results 0 kHz Pass
802.11(b) 1 Mbps 802.11(b) 11 Mbps	Low Channel Mid Channel High Channel Low Channel Mid Channel		Vai 10.130 10.083 10.130 10.363 11.005	ue Li MHz > 50	mit Results 0 kHz Pass
802.11(b) 1 Mbps 802.11(b) 11 Mbps	Low Channel Mid Channel High Channel Low Channel Mid Channel High Channel		Vai 10.130 10.083 10.130 10.363 11.005 10.363	ue Li MHz > 50	mit Results 0 kHz Pass
802.11(b) 1 Mbps 802.11(b) 11 Mbps 802.11(q) 6 Mbps	Low Channel Mid Channel High Channel Low Channel Mid Channel High Channel		Vai 10.130 10.083 10.130 10.363 11.005 10.363	ue Li MHz > 50	mit Results 0 kHz Pass
802.11(b) 1 Mbps 802.11(b) 11 Mbps 802.11(g) 6 Mbps	Low Channel Mid Channel High Channel Low Channel Mid Channel High Channel Low Channel		Vai 10.130 10.083 10.130 10.363 11.005 10.363 16.292	ue Li MHz > 50	mit Results 0 kHz Pass
802.11(b) 1 Mbps 802.11(b) 11 Mbps 802.11(g) 6 Mbps	Low Channel Mid Channel High Channel Low Channel Mid Channel High Channel Low Channel Mid Channel		Vai 10.130 10.083 10.130 10.363 11.005 10.363 16.292 16.164	ue Li MHz > 50	mit Results 0 kHz Pass
802.11(b) 1 Mbps 802.11(b) 11 Mbps 802.11(g) 6 Mbps	Low Channel Mid Channel High Channel Low Channel High Channel Low Channel Mid Channel Mid Channel High Channel		Vai 10.130 10.083 10.130 10.363 11.005 10.363 16.292 16.164 16.304 16.304	ue Li MHz > 50	mit Results mit Results 0 kHz Pass
802.11(b) 1 Mbps 802.11(b) 11 Mbps 802.11(g) 6 Mbps 802.11(g) 36 Mbps	Low Channel Mid Channel High Channel Low Channel High Channel Low Channel Mid Channel High Channel High Channel		Vai 10.130 10.083 10.130 10.363 11.005 10.363 16.292 16.164 16.304	ue Li MHz > 50	mit Results 0 kHz Pass
802.11(b) 1 Mbps 802.11(b) 11 Mbps 802.11(g) 6 Mbps 802.11(g) 36 Mbps	Low Channel Mid Channel High Channel Low Channel High Channel Low Channel Mid Channel High Channel High Channel		Vai 10.130 10.083 10.130 10.363 11.005 10.363 16.292 16.164 16.304 16.397	ue Li MHz > 50	mit Results 0 kHz Pass
802.11(b) 1 Mbps 802.11(b) 11 Mbps 802.11(g) 6 Mbps 802.11(g) 36 Mbps	Low Channel Mid Channel High Channel Low Channel Mid Channel High Channel Mid Channel High Channel High Channel Low Channel Mid Channel Mid Channel		Vai 10.130 10.083 10.130 10.363 11.005 10.363 16.292 16.164 16.304 16.397 16.385 16.397 16.385	ue Li MHz > 50	mit Results mit Results 0 kHz Pass
802.11(b) 1 Mbps 802.11(b) 11 Mbps 802.11(g) 6 Mbps 802.11(g) 36 Mbps	Low Channel Mid Channel High Channel Low Channel High Channel Low Channel High Channel High Channel Mid Channel Mid Channel Mid Channel High Channel		Vai 10.130 10.083 10.130 10.363 11.005 10.363 16.292 16.164 16.304 16.397 16.385 16.385 16.385 16.385 16.385	ue Li MHz > 50	mit Results mit Results 0 kHz Pass
802.11(b) 1 Mbps 802.11(b) 11 Mbps 802.11(g) 6 Mbps 802.11(g) 36 Mbps 802.11(g) 54 Mbps	Low Channel Mid Channel High Channel Low Channel High Channel Low Channel Mid Channel High Channel Low Channel Mid Channel Mid Channel High Channel		Vai 10.130 10.083 10.130 10.363 11.005 10.363 11.005 10.363 16.292 16.164 16.304 16.397 16.385 16.385 16.362	ue Li MHz > 50	mit Results mit Results 0 kHz Pass
802.11(b) 1 Mbps 802.11(b) 11 Mbps 802.11(g) 6 Mbps 802.11(g) 36 Mbps 802.11(g) 54 Mbps	Low Channel Mid Channel High Channel Low Channel High Channel Low Channel Mid Channel High Channel Low Channel Mid Channel Mid Channel High Channel High Channel		Vai 10.130 10.083 10.130 10.363 11.005 10.363 16.292 16.164 16.304 16.397 16.385 16.362 16.444	ue Li MHz > 50 MHz > 50	mit Results 0 kHz Pass
802.11(b) 1 Mbps 802.11(b) 11 Mbps 802.11(g) 6 Mbps 802.11(g) 36 Mbps 802.11(g) 54 Mbps	Low Channel Mid Channel High Channel Low Channel Mid Channel High Channel Mid Channel High Channel Low Channel Mid Channel High Channel High Channel High Channel High Channel Mid Channel		Vai 10.130 10.083 10.130 10.363 11.005 10.363 16.292 16.164 16.397 16.385 16.362 16.444 16.444 16.444	ue Li MHz > 50	mit Results mit Results 0 kHz Pass
802.11(b) 1 Mbps 802.11(b) 11 Mbps 802.11(g) 6 Mbps 802.11(g) 36 Mbps 802.11(g) 54 Mbps	Low Channel Mid Channel High Channel Low Channel Mid Channel Mid Channel Mid Channel Mid Channel Mid Channel Mid Channel High Channel High Channel Mid Channel Mid Channel Mid Channel		Vai 10.130 10.083 10.130 10.363 11.005 10.363 16.292 16.164 16.397 16.385 16.397 16.385 16.397 16.344 16.444 16.444 16.444 16.444 16.444	ue Li MHz > 50	mit Results mit Results 0 kHz Pass 0 kHz Pass

802.11(b) 1 Mbps, Low Channel				
Result: Pas	s Value:	10.130 MHz	Limit:	> 500 kHz

Result: Pass	Value:	10.083 MHz	Limit:	> 500 kHz

802.11	b) 1 Mbps, High Channel		
Result: Pass Valu	: 10.130 MHz	Limit:	> 500 kHz

	802.11(b) 11 Mbps, Low Channel				
Result:	Pass	Value:	10.363 MHz	Limit:	> 500 kHz

	802.11(b) 11 Mbps, Mid Channel		
Result: Pass	Value: 11.005 MHz	Limit:	> 500 kHz

		802.11(D)	TT Mops, High Channel		
Result:	Pass	Value:	10.363 MHz	Limit:	> 500 kHz
-					

	802.11(g) 6 Mbps, Low Channel			
Result:	Pass	Value: 16.292	MHz Limit: > 500 kHz	

		802.11(g) 6 Mbp	os, Mid Channel		
Result:	Pass	Value: 16.16	64 MHz	Limit:	> 500 kHz

Result:

	802.1	1(g) 6 Mbps, High Channel		
Result: F	Pass Val	ue: 16.304 MHz	Limit:	> 500 kHz

	802.11(g)	36 Mbps, Low Channel		
Pass	Value:	16.397 MHz	Limit:	> 500 kHz

Result

802.11(g) 36 Mbps, Mid Channel				
Result:	Pass	Value: 16.385 MHz Limit:	> 500 kHz	

	802.11(g) 30	6 Mbps, High Channel		
: Pass	Value:	16.362 MHz	Limit:	> 500 kHz

EMC

Result:

		802.11(g) 54 Mbps, Low Channel		
Result:	Pass	Value: 16.444 MHz	Limit:	> 500 kHz

	802.11(g)	54 Mops, Mid Channel		
Pass	Value:	16.444 MHz	Limit:	> 500 kHz

NORTHWEST

802.11(g) 54 Mbps, High Channel				
Result: Pass	Value: 16.444 MHz	Limit: > 500 kHz		

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4407B	AAU	12/12/2008	24
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0
26 GHz DC Block, SMA	Pasternack	PE8210	AME	10/19/2009	13
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	7/21/2009	13
Attenuator, 6 dB, 'SMA'	N/A	93459 3330A-6	AUF	4/1/2010	13
Power Meter	Gigatronics	8651A	SPM	1/7/2010	13
Power Sensor	Gigatronics	80701A	SPL	1/7/2010	13
Signal Generator	Agilent	E8257D	TGX	12/10/2008	24

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

EMC

The transmit frequency was set to the lowest, the middle, and the highest channels available. The transmit power was set to its default maximum. A direct connection was made between the RF output of the EUT and a spectrum analyzer. Attenuation and a DC block were used. The reference level offset on the spectrum analyzer was adjusted to compensate for cable loss and the external attenuation used between the RF output and the spectrum analyzer input. The amplitude accuracy of the spectrum analyzer was further enhanced by calibrating the setup using the power meter and synthesized signal generator.

Prior to measuring peak transmit power; the emission bandwidth (B) and the transmission pulse duration (T) were measured. Both are required to determine the method of measuring Maximum Conducted Output Power. The Integration Bandwidth under the Channel Power measurement function of the analyzer was set to the widest emission bandwidth of the modes tested The transmission pulse duration (T) was measured using a zero span on the spectrum analyzer to see the pulses in the time domain. This data is contained elsewhere in the report.

Method #3 found in ANSI C63.10 section 6.10.3.3 was used because the analyzer sweep time was greater than T for the operating mode which has the shortest transmission pulse duration and the Emission Bandwidth was greater than the largest RBW on the analyzer.

The spectrum analyzer settings were as follows:

- > The span was set to encompass entire emission bandwidth (B), centered on the transmit channel.
- The RBW = 1 MHz, VBW > / = 1/T
- > Sample detector mode because the bin width (span / number of spectral points) < 0.5 RBW.
- > Power was integrated across "B", by using the channel power function of the analyzer.

NODTHINEST						XMit 2010 01 14
NORTHWEST		OUTPUT POWER - CHANNEL POW	FR			7.0012010.01.14
EMC						
EUT:	Clane2			Work Order:	INTE5221	
Serial Number:	5			Date:	05/11/10	
Customer:	Intel Corporation			Temperature:	23°C	
Attendees:	Bob Hughes			Humidity:	38%	
Project:	None			Barometric Pres.:	30.05 in	
Tested by:	Rod Peloquin	Power: 5 VDC via USB		Job Site:	EV06	
TEST SPECIFICAT	IONS	Test Method				
FCC 15.247:2010		ANSI C63.10:2009				
COMMENTS						
Adapter cable loss	s of 1.3 dB added to measu	urement analyzer reference level offset.				
DEVIATIONS FROM	M TEST STANDARD					
No Deviations						
		101 PC				
Configuration #	2	Volling her Filling				
		Signature				
			Value	Li	mit	Results
802.11(b) 1 Mbps						_
	Low Channel		9.2 dBm	30	dBm	Pass
	Mid Channel		9.4 dBm	30	dBm	Pass
	High Channel		9.3 dBm	30	dBm	Pass
802.11(b) 11 Mbps						_
	Low Channel		9.1 dBm	30	dBm	Pass
	Mid Channel		9.2 dBm	30	dBm	Pass
	High Channel		9.0 dBm	30	dBm	Pass
802.11(g) 6 Mbps						_
	Low Channel		5.7 dBm	30	dBm	Pass
	Mid Channel		5.7 dBm	30	dBm	Pass
	High Channel		5.6 dBm	30	dBm	Pass
802.11(g) 36 Mbps						_
	Low Channel		3.7 dBm	30	dBm	Pass
	Mid Channel		3.8 dBm	30	dBm	Pass
	High Channel		3.5 dBm	30	dBm	Pass
802.11(g) 54 Mbps						_
	Low Channel		3.5 dBm	30	dBm	Pass
						_
	Mid Channel		3.1 dBm	30	dBm	Pass

OUTPUT POWER - CHANNEL POWER

802.11(b) 1 Mbps, Low Channel						
Result: Pass	Value: 9.2 dBm	Limit:	30 dBm			

		802.11(b	c)	1 Mbps, Mid Channel		
Result:	Pass	Value:		9.4 dBm	Limit:	30 dBm

OUTPUT POWER - CHANNEL POWER

		802.11(b) 1 Mbps, High Channel	l	
Result:	Pass	Value: 9.3 dBm	Limit:	30 dBm

		802.11(b)) 1	1 Mbps, Low Channel		
Result:	Pass	Value:		9.1 dBm	Limit:	30 dBm

Result: Pass

OUTPUT POWER - CHANNEL POWER

30 dBm

Result: Pass Value: 9.2 dBm Limit: 30 dBm		802.	.11(b) 1	1 Mbps, Mid Channel		
	Result: F	Pass Va	alue:	9.2 dBm	Limit:	30 dBm

802.11(b) 11 Mbps, High Channel Value: 9.0 dBm Limit:

OUTPUT POWER - CHANNEL POWER

	802.11(g) 6 Mbps, Low Channel			
Result: Pass	Value: 5.7 dBm	Limit:	30 dBm	

		802.11(g) 6 Mbps, Mid Channel		
Result:	Pass	Value:	5.7 dBm	Limit:	30 dBm

Result: Pass

OUTPUT POWER - CHANNEL POWER

		802.11(g)	6 Mbps, High Ch	annel		
Result:	Pass	Value:	5.6 dBm	Limit:	30 dBm	

802.11(g) 36 Mbps, Low Channel Value: 3.7 dBm Limit: 30 dBm

EMC

		802.11(g)	36 Mbps, Mid Channel		
Result:	Pass	Value:	3.8 dBm	Limit:	30 dBm

		802.11(g)) 3(6 Mbps, High Channel		
Result:	Pass	Value:		3.5 dBm	Limit:	30 dBm

EMC

		802.11(g) :	54 Mbps, Low (Channel		
Result:	Pass	Value:	3.5 dBm	Limit:	30 dBm	

	802.11(g) 54 Mbps, Mid Channel							
Result:	Pass	Value	:	3.1 dBm	Limit:	30 dBm		

OUTPUT POWER - CHANNEL POWER

	802.11(g) 54 Mbps, High Channe	el	
Result: Pass	Value: 3.3 dBm	Limit:	30 dBm

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4407B	AAU	12/12/2008	24
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	7/21/2009	13
26 GHz DC Block, SMA	Pasternack	PE8210	AME	10/19/2009	13
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The spurious RF conducted emissions at the edges of the authorized bands were measured with the EUT set to low and high transmit frequencies in each available band. The channels closest to the band edges were selected. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at the required FCC modulation data rates.

The spectrum was scanned across each band edge from at least 25 MHz below the band edge to 25 MHz above the band edge.

Per FCC 15.247, a sample detector was used due to use of averaging method of measuring output power (ANSI C63.10-2009, 6.10.3.3)

NORTHWEST					XMit 2010.01.14
EMC		BAND EDGE (COMPLIANCE		
EUT:	Clane2			Work Order	INTE5221
Serial Number:	5			Date	05/11/10
Customer:	Intel Corporation			Temperature	23°C
Attendees:	Bob Hughes			Humidity	38%
Project:	None			Barometric Pres.	30.05 in
Tested by:	Rod Peloquin		Power: 5 VDC via USB	Job Site:	EV06
TEST SPECIFICAT	IONS		Test Method		
FCC 15.247:2010			ANSI C63.10:2009		
COMMENTS					
Adapter cable loss	of 1.3 dB added to measu	urement analyzer reference level offse	t.		
-					
DEVIATIONS FROM	I TEST STANDARD				
No Deviations					
		Reli	Pl		
Configuration #	2	thing le .	cereng		
		Signature	U		
				Value Li	mit Results
802.11(b) 1 Mbps					
	Low Channel			36.0 dBc ≤ -3	0 dBc Pass
	High Channel		-{	55.6 dBc ≤ -3	0 dBc Pass
802.11(b) 11 Mbps					
	Low Channel		-:	36.5 dBc ≤ -3	0 dBc Pass
	High Channel		-{	56.4 dBc ≤ -3	0 dBc Pass
802.11(g) 6 Mbps					
	Low Channel			33.7 dBc ≤ -3	0 dBc Pass
	High Channel		-4	48.4 dBc ≤ -3	0 dBc Pass
802.11(g) 36 Mbps					
	Low Channel			33.7 dBc ≤ -3	0 dBc Pass
	High Channel		-4	49.5 dBc ≤ -3	0 dBc Pass
802.11(g) 54 Mbps					
	Low Channel			32.9 dBC ≤ -3	UdBC Pass
	High Channel		-{	50.2 dBc ≤ -3	0 dBc Pass

Result:

		802.11(b) 1 Mbps, Low Channel			
Result:	Pass	Value: -36.0 dBc	Limit:	≤ -30 dBc	

	002.11(D)	r mops, righ Channel		
Pass	Value:	-55.6 dBc	Limit:	≤ -30 dBc

Result:

		802.11(b)	11 Mbps, Low Channel		
Result:	Pass	Value:	-36.5 dBc	Limit:	≤ -30 dBc

	802.11(D)	T I wops, Fign Channel		
Pass	Value:	-56.4 dBc	Limit:	≤ -30 dBc

		802.11(g)	6 Mbps, Low Channel		
Result:	Pass	Value:	-33.7 dBc	Limit:	≤ -30 dBc

	002.11(9	/ o mopo, riigii onannoi		
Result: Pass	Value:	-48.4 dBc	Limit:	≤ -30 dBc

BAND EDGE COMPLIANCE

 802.11(g) 36 Mbps, Low Channel

 Result:
 Pass
 Value:
 -33.7 dBc
 Limit:
 ≤ -30 dBc

	pe, ingine energies
Result: Pass Value: -49	5 dBc Limit: ≤ -30 dBc

🔆 🔆 Ag	jilent 0	9:11:40	12 May 20	010				R	Т				
Ref 10	dBm		#F	Atten 5 dl	В				Mł	kr1 ∆	28.2 -49	229 9.47	MHz dB
#Samp Log	1.8												
10 dB/	. Jule laute	Larlum palantin	larborning										
Offst 23.1													
dB													
				\									
				W WW	Hills Halden	1							
V1 S2 S3 FC							a ilina da dina		d get de	lastin tite			
Center #Res B	2.483 G 3W 100 kH	Hz Hz		*	VBW 300	kHz	s	weep	29.	S 99 ms	pan (300	60 M 00 pt	1Hz ts)

		802.11(g)	54 Mbps, Low Channel		
Result:	Pass	Value:	-32.9 dBc	Limit:	≤ -30 dBc

		602.11(g)	54 Mops, righ Channel		
Result:	Pass	Value:	-50.2 dBc	Limit:	≤ -30 dBc

🔆 🗮 🗛	gilent 0	9:26:35	12 May 20	010				RT		
Ref 10	0 dBm		#F	itten 5 di	В				Mkr1 ∆ 2≀ -	8.489 MHz 50.23 dB
#Samp Log ≁A	1R									
10 dB∕ Offst	MANNAM	Lolm What	dun harlandy							
23.1 dB										
				WAW						
V1 S2 S3 FC					and the state of t		فبالاردور أيداء ذاو		ويودونه المرو	en dinada un din da lar
Conto	- 2.483.0	11-J								- 60 MU→
#Res E	2.403 G 3W 100 kl	HZ HZ		#	VBW 300	kHz	S	weep 2	эра 9.99 ms (3	n 60 mm2 000 pts)

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4407B	AAU	12/12/2008	24
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	7/21/2009	13
26 GHz DC Block, SMA	Pasternack	PE8210	AME	10/19/2009	13
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The spurious RF conducted emissions were measured with the EUT set to low, medium, and high transmit frequencies. The measurements were made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate using direct sequence modulation. For each transmit frequency, the spectrum was scanned throughout the specified frequency range.

	SPL	JRIOUS CONDUCTE	D EMISSIONS		XMit 2010.01.14
EINO	Clane2			Work Order:	INTE5221
Serial Number	r: 5			Date:	05/12/10
Custome	r: Intel Corporation			Temperature:	23°C
Attendees	s: Bob Hughes			Humidity: Baromotric Pros	38% 30.05 in
Tested by	/: Rod Peloguin	Powe	r: 5 VDC via USB	Job Site:	EV06
TEST SPECIFICA	TIONS		Test Method		
FCC 15.247:2010			ANSI C63.10:2009		
COMMENTS					
None					
DEVIATIONS FRO No Deviations	OM TEST STANDARD				
Configuration #	2	Rocky to Reling			
			Val	ue Lir	mit Results
802.11(b) 1 Mbps	Low Channel				
	20MHz - 12 5CHz			dBc <-30) dBc Pass
	12.4GHz-25GHz		< -40	dBc ≤ -30) dBc Pass
	Mid Channel				
	30MHz - 12.5GHz		< -40	dBc ≤ -30) dBc Pass
	12.4GHz-25GHz High Channel		< -40	dBc ≤ -30) dBc Pass
	30MHz - 12.5GHz		< -40	dBc ≤ -30) dBc Pass
	12.4GHz-25GHz		< -40	dBc ≤ -30) dBc Pass
802.11(b) 11 Mbps	; 				
	Low Channel		- 40	dDo < 00	dDa Daaa
	3000HZ - 12.5GHZ 12 4GHz-25GHz		< -40 < -40	dBc ≤-30) dBc Pass
	Mid Channel		< +0	420 2 00	1400
	30MHz - 12.5GHz		< -40	dBc ≤ -30) dBc Pass
	12.4GHz-25GHz		< -40	dBc ≤ -30) dBc Pass
	High Channel 30MHz - 12 5GHz		40	dBc <-30) dBc Pass
	12.4GHz-25GHz		< -40	dBc ≤ -30) dBc Pass
802.11(g) 6 Mbps					
	Low Channel		10		AD- D
	30MHZ - 12.5GHZ 12.4GHz-25GHz		< -40 < -40	dBc ≤ -30 dBc ≤ -30) dBC Pass
	Mid Channel		V 40	420 - 00	1400
	30MHz - 12.5GHz		< -40	dBc ≤ -30) dBc Pass
	12.4GHz-25GHz		< -40	dBc ≤ -30) dBc Pass
	High Channel		40	dBc <-30) dBc Pass
	12.4GHz-25GHz		< -40	dBc ≤ -30) dBc Pass
802.11(g) 36 Mbps	i				
	Low Channel		40	10	
	30MHz - 12.5GHz 12.4GHz-25GHz		< -40	dBc ≤ -30) dBc Pass
	Mid Channel		< -40	ubc 3-50	
	30MHz - 12.5GHz		< -40	dBc ≤ -30) dBc Pass
	12.4GHz-25GHz		< -40	dBc ≤ -30) dBc Pass
	High Channel		10	dBc <-30) dBc Bass
	12.4GHz-25GHz		< -40 < -40	dBc ≤-30) dBc Pass
802.11(g) 54 Mbps	· · · · · · · · · · · · · · · · · · ·				
	Low Channel				-
	30MHz - 12.5GHz		< -40	dBc ≤ -30	dBc Pass
	12.4GHz-25GHz Mid Channel		< -40	авс ≤-30	Dabc Pass
	30MHz - 12.5GHz		< -40	dBc ≤ -30) dBc Pass
	12.4GHz-25GHz		< -40	dBc ≤ -30) dBc Pass
	High Channel				-
	30MHz - 12.5GHz		< -40	aBc ≤ -30	dBc Pass
	12.4GHZ-25GHZ		< -40	ubc ≦-30	Pass

XMit 2010.01.14

	802.11(b) 1 Mbps,	Low Channel, 30MHz - 12.5G	Hz	
Result: Pas	S Value:	< -40 dBc	Limit:	≤ -30 dBc

 802.11(b) 1 Mbps, Low Channel, 12.4GHz-25GHz

 Result:
 Pass
 Value:
 < -40 dBc</th>
 Limit:
 ≤ -30 dBc

🔆 🔆 🕹	gilent 0	8:33:35	14 May 20	010	R T					
Ref 10) dBm		#Ati	ten 10 df	3					
#Peak Log										
10 dB7										
0ffst 23.1										
dB										
M1 S2 S3 FS						in suide bai ait				
Start 1 #Res E	12.4 GHz 3W 100 k	Hz		#1	VBW 300 I	kНz		Sweep 1.	Stop 305 s (81) 25 GHz .92 pts)

	802.11(b) 1 Mbps,	Mid Channel, 30MHz -	12.5GHz	
Result: P	ass Value:	< -40 dBc	Limit:	≤ -30 dBc

		802.11(b) 1 Mbp	s, Mid Channel	, 12.4GHz-25GHz		
Result:	Pass	Value	< -40 dBc	Limit:	≤ -30 dBc	

** A	gilent 0	8:49:13	14 May 20	010	RT					
Ref 10	0 dBm		#At	ten 10 d	В					
#Peak Log										
10 dB/										
Uffst 23.1 dB										
uв										
M1 00	and the second state					da an ibailea tek				and all the set
MI 52 S3 FS										
Cente	r 187 GH								Snan 1	26 647
#Res E	BW 100 ki	Hz		#	VBW 300	kHz		Sweep 1	.305 s (81	.92 pts)

XMit 2010.01.14

	802.11(b) 1 Mbps,	High Channel, 30MHz - 12.5G	iHz	
Result: Pas	s Value:	< -40 dBc	Limit:	≤ -30 dBc

 802.11(b) 1 Mbps, High Channel, 12.4GHz-25GHz

 Result:
 Pass
 Value:
 < -40 dBc</th>
 Limit:
 ≤ -30 dBc

🔆 🗮 🔆	jilent 08	3:51:13 1	14 May 20	010			RT		
Ref 10	∣dBm		#At	ten 10 df	3				
#Peak Log									
10 dB/									
0ffst 23.1									
dΒ									
		a ta ta alba ad ta	atoreta i e di .						ر مرابع مربع مربع المربع
M1 S2 S3 FS									
Center #Res B	18.7 GH: W 100 kH	z Iz		#	VBW 300 I	kHz	Sweep 1.	Span 1 305 s (81	.2.6 GHz .92 pts)

SPURIOUS CONDUCTED EMISSIONS

XMit 2010.01.14

		802.11(b) 11 Mbps	s, Low C	hannel, 30	MHz - 12.5GHz		
Result:	Pass	Value	< -40) dBc	Limit:	≤ -30 dBc	

802.11(b) 11 Mbps, Low Channel, 12.4GHz-25GHz Value: < -Limit:

40 dBc	

≤ -30 dBc

🔆 🔆 🗛	jilent 03	9:16:13 1	L4 May 20	010			RT		
Ref 10	dBm		#At	ten 10 df	3				
#Peak Log									
10 dB/									
0ffst 23.1 JP									
аD									
M1 00	an a shi u shi ki sh			tillining southe	amania, ashiri	Hillorin and Apres			
MI 52 S3 FS									
Start 1	.2.4 GHz							Stop	25 GHz
#Res B	W 100 kH	z		#'	VBW 300	kHz	Sweep 1.	305 s (81	.92 pts)

SPURIOUS CONDUCTED EMISSIONS

XMit 2010.01.14

	802.11(b) 11 Mbps	, Mid Channel, 3	0MHz - 12.5GHz		
Result: Pass	Value:	< -40 dBc	Limit:	≤ -30 dBc	

802.11(b) 11 Mbps, Mid Channel, 12.4GHz-25GHz Value: < -40 dBc Limit: ≤ -30 dBc

₩ A	gilent (9:14:15	14 May 20	010			RT		
Ref 1	0_dBm		#At	ten 10 di	В				
#Peak									
10 10 dB/									
Offst 23.1 dB									
aD									
		nd auto da malat Ur W. H							
M1 S2			and the second sec						and a state of the
ээ F.									
Start #Res	12.4 GHz BW 100 <u>k</u>	Hz		#	VBW 30 <u>0</u> I	kHz	Sweep <u>1</u> .	Stop 305 s (81	025 GHz .92 pts <u>)</u>

SPURIOUS CONDUCTED EMISSIONS

XMit 2010.01.14

	802.11(b) 11 Mbps,	High Channel, 30M	MHz - 12.5GHz		
Result: Pass	Value:	< -40 dBc	Limit:	≤ -30 dBc	

802.11(b) 11 Mbps, High Channel, 12.4GHz-25GHz Value: < -40 dBc Limi

Limit:	≤ -30 dBc

🔆 🔆 Ag	j ilent 0	9:11:26	14 May 20	010			RT		
Ref 10	dBm		#At	ten 10 di	3				
#Peak Log									
10 dB/									
Offst 23.1									
dB									
	L								
M1 S2 S3 FS							unite de la fili de la sec		
Start 1 #Res B	2.4 GHz W 100 k	Hz		#	VBW 300 I	kHz	Sweep 1.	Stop 305 s (81) 25 GHz .92 pts)

		802.11(g) 6 Mbps	, Low Channe	l, 30MHz - 12.5GHz		
Result:	Pass	Value	< -40 dBc	Limit:	≤ -30 dBc	

 802.11(g) 6 Mbps, Low Channel, 12.4GHz-25GHz

 Result:
 Pass
 Value:
 < -40 dBc</th>
 Limit:
 ≤ -30 dBc

🔆 🗮 Aç	jilent 09	9:20:39 1	.4 May 20	010				RT		
Ref 10	∣dBm		#At	ten 10 df	3					
#Peak										
10 10 dB/										
Offst 23.1 dB										
aD										
M1 S2	Nashini atau	dina Nadin			initia na dia	den a Millio ha ele	u ja di	inini, mininyi d	abla _d a (^{sala} liki	
S3 FS										
Start 1 #Res B	12.4 GHz WW 100 kH	z		#	VBW 300 I	kHz		Sweep 1.	Stop 305 s (81	25 GHz 92 pts)

		802.11(g) 6 Mbps	s, I	Mid Channel, 30MH	lz - 12.5GHz	
Result:	Pass	Value	:	< -40 dBc	Limit:	≤ -30 dBc

 802.11(g) 6 Mbps, Mid Channel, 12.4GHz-25GHz

 Result:
 Pass
 Value:
 < -40 dBc</th>
 Limit:
 ≤ -30 dBc

* A	gilent 0	9:24:34 1	14 May 20	010			RT		
Ref 10) dBm		#At	ten 10 df	3				
#Peak Log									
10 dB/									
0ffst 23.1									
dΒ									
M1 S2 S3 FS									
Start∶ #Res E	12.4 GHz 3W 100 kH	łz		#!	VBW 300 I	kНz	Sweep 1.	Stop 305 s (81	25 GHz 92 pts)

XMit 2010.01.14

		802.11(g) 6 Mbps, H	ligh Channel, 30M	Hz - 12.5GHz		
Result: I	Pass	Value:	< -40 dBc	Limit:	≤ -30 dBc	

	802.11(g) 6 Mbps, High Channel, 12.4	4GHz-25GHz	
Result: Pass	Value: < -40 dBc	Limit:	≤ -30 dBc

🔆 👫	gilent 0	9:42:46 1	14 May 20	010			RT					
Ref 10) dBm		#At	ten 10 di	В							
#Peak Log												
10 dB/												
Offst 23.1												
dВ												
										أفاقها والارز		
M1 S2 S3 FC		تكت										
Start 1 #Res B	12.4 GHz 8W 100 kH	lz		#	VBW 300	kНz		Sweep 1.	Stop 305 s (81	25 GHz 92 pts)		

SPURIOUS CONDUCTED EMISSIONS

XMit 2010.01.14

802.11(g) 36 Mbps, Low Channel, 30MHz - 12.5GHz									
Result:	Pass	Value:	< -40 dBc	Limit:	≤ -30 dBc				

802.11(g) 36 Mbps, Low Channel, 12.4GHz-25GHz Value: < -40 dBc Limit: ≤ -30 dBc

🔆 👫 Ag	gilent 1	0:05:34 1	L4 May 20	010			RT		
Ref 10) dBm		#At	ten 10 df	3				
#Peak Log									
10 dB/									
Offst 23.1 dB									
uD									
		holos da <mark>buta a</mark>	uht						
M1 S2									
<u></u> зэ гэ									
Start 1 #Res E	12.4 GHz 3W 100 kH	Iz		#	VBW 300 I	кНz	Sweep 1.	Stop 305 s (81	25 GHz 92 pts)

SPURIOUS CONDUCTED EMISSIONS

XMit 2010.01.14

		802.11(g) 36 Mbps,	Mid Channel, 30	MHz - 12.5GHz		
Result: F	Pass	Value:	< -40 dBc	Limit:	≤ -30 dBc	

802.11(g) 36 Mbps, Mid Channel, 12.4GHz-25GHz

Value: <	<
----------	---

-40 dBc

Limit: ≤ -30 dBc

🔆 🔆 Ag	jilent 1	0:07:31 1	L4 May 20	010			RT			
Ref 10	dBm		#At	ten 10 df	3					
#Peak Log										
10 dB/										
Offst 23.1										
dB										
м1 ср				interfect in the	data basilgan da	and the distance in the				
91 52 93 E9					a hills and a second second	والمسار والمطر الأساطر				
00 10										
Start 1	2.4 GHz								Stop	25 GHz
#Res B	3W 100 k⊦	lz		#	VBW 300	kHz		Sweep 1.	305 s (81	.92 pts)

XMit 2010.01.14

	802.11(g) 36 Mbps, High 0	hannel, 30MHz - 12.5GHz	
Result: Pass	Value: < -40	dBc Limit:	≤ -30 dBc

Result: Pass

802.11(g) 36 Mbps, High Channel, 12.4GHz-25GHz Value: < -40 dBc Li

1z Limit: ≤ -30 dBc

🔆 🔆 Ag	jilent 1	0:14:53	14 May 20	010			RT		
D_f 10	dBm		# 0+	ton 10 di	>				
#Dook	udiii		#ni	ten ie ui					
#rea⊼ Loα									
L09 10									
dR7									
Affet									
23.1									
dB									
M1 S2	alikiti ak								and the second second
S3 FS									
Start 1	2.4 GHz	-					~ 4	Stop	25 GHz
#Res B	W 100 k	HZ		#	ARM 300	KHZ	Sweep 1.	305 s (81	.92 pts)
Query	/ INTER	RUPTED							
4							 		

SPURIOUS CONDUCTED EMISSIONS

XMit 2010.01.14

802.11(g) 54 Mbps, Low Channel, 30MHz - 12.5GHz									
Result:	Pass	Value	< -40 dBc	Limit:	≤ -30 dBc				

802.11(g) 54 Mbps, Low Channel, 12.4GHz-25GHz Value: < -40 dBc Limit: ≤ -30 dBc

🔆 🔆 Ag	jilent 1	0:25:05 1	L4 May 20	010		RT				
Ref 10	dBm		#At	ten 10 di	3					
#Peak Log										
10 dB/										
0ffst 23.1 JP										
аb										
		,						1 1 1	ulate stilled as	a ta da
M1 S2 S3 FS										
Start 1 #Res B	12.4 GHz W 100 kH	Iz		#	VBW 300 I	kHz		Sweep 1.	Stop 305 s (81	92 GHz 92 pts)

SPURIOUS CONDUCTED EMISSIONS

XMit 2010.01.14

≤ -30 dBc

		802.11(g) 54 Mbps,	Mid Channel,	30MHz - 12.5GHz		
Result: F	Pass	Value:	< -40 dBc	Limit:	≤ -30 dBc	

802.11(g) 54 Mbps, Mid Channel, 12.4GHz-25GHz Value: < -40 dBc Limit:

兼	Agilent (0:23:34	14 May 20	010			RT		
Ref 1	0_dBm		#At	ten 10 di	3				
#Peak Log	·								
10 dB/									
0ffst 23.1									
dB									
				ni de la calencia					
M1 S S3 F	2 S								
Start #Res	12.4 GHz BW 100 k	2 Hz		#	VBW 30 <u>0</u>	kHz	Sweep <u>1</u> .	Stop 305 s (81) 25 GHz .92 pts)

SPURIOUS CONDUCTED EMISSIONS

XMit 2010.01.14

		802.11(g) 54 Mbps, I	High Channel	, 30MHz - 12.5GHz		
Result:	Pass	Value:	< -40 dBc	Limit:	≤ -30 dBc	

802.11(g) 54 Mbps, High Channel, 12.4GHz-25GHz Value: < -40 dBc Li

0112	
Limit:	≤ -30 dBc

🔆 Agilent 16:25:24 12 May 2010					RT					
Ref 10	dBm		#At	ten 10 df	3					
#Peak Ina										
10 dB/										
0ffst 23.1										
dB										
		ktore tribucet		the design of the second		والمراجع المراجع	and the second		and appreciately format	فالمالغ فالمعادين
M1 S2 S3 FS							in the second			
Start 1 #Res B	L2.4 GHz W 100 k⊦	Iz		#1	VBW 300 I	kHz		Sweep 1.	Stop 305 s (81	25 GHz 92 pts)

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4407B	AAU	12/12/2008	24
Attenuator 20 dB, SMA M/F 26GHz	S.M. Electronics	SA26B-20	AUY	7/21/2009	13
26 GHz DC Block, SMA	Pasternack	PE8210	AME	10/19/2009	13
EV06 Direct Connect Cable	ESM Cable Corp.	TT	ECA	NCR	0
Attenuator, 6 dB, 'SMA'	N/A	93459 3330A-6	AUF	4/1/2010	13
Power Meter	Gigatronics	8651A	SPM	1/7/2010	13
Power Sensor	Gigatronics	80701A	SPL	1/7/2010	13
Signal Generator	Agilent	E8257D	TGX	12/10/2008	24

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

The power spectral density measurements were measured with the EUT set to low, mid, and high transmit frequencies. The measurement was made using a direct connection between the RF output of the EUT and the spectrum analyzer. The EUT was transmitting at its maximum data rate for each modulation type available. While the average output power was measured as defined in section ANSI C63.10:2009, section 6.10.2.2, procedure 6.11.2.4, (d), 2) could not be met due to low pulse duration. Section 6.11.2.3 was followed. The the spectrum analyzer was set as follows:

The emission peak was located and zoomed in on within the passband.

- a) RBW = 3 kHz
- b) VBW = 10 kHz
- c) Span = 300 kHz
- d) Sweep time = 100s
- e) Trace set to MAX

f) The 1 hz Marker Noise function on the analyzer was used. The data was corrected to 3 kHz by adding 34.8 dB to the reading.

NORTHWEST					XMit 2010.01.14
EMC		POWER SPECTRAL	DENSITY		
	1				
EUT	: Clane2			Work Order: INTE5221	
Serial Number	5			Date: 05/12/10	
Customer	Intel Corporation			Temperature: 23°C	
Attendees	Bob Hugnes			Humidity: 38%	
Project	None		B	arometric Pres.: 30.05 in	
lested by	Rod Peloquin	Power:	5 VDC Via USB	Job Site: EV06	
TEST SPECIFICA	IONS		l est Method		
FCC 15.247:2010			ANSI C63.10:2009		
COMMENTS					
COMMENTS					
None					
DEVIATIONS ERO	M TEST STANDARD				
No Deviations	In reor or And And				
No Deviations					
Configuration #	2	Rocking to Relenge			
oonngulation #	-	Signature			
	N N	olghatare			
		oignatare	Value	Limit	Results
802.11(b) 1 Mbps		oighatare	Value	Limit	Results
802.11(b) 1 Mbps	Low Channel	oighatare	Value -13.9 dBm / 3 kHz	Limit 8 dBm / 3 kHz	Results Pass
802.11(b) 1 Mbps	Low Channel Mid Channel	oignatore	Value -13.9 dBm / 3 kHz -13.6 dBm / 3 kHz	Limit 8 dBm / 3 kHz 8 dBm / 3 kHz	Results Pass Pass
802.11(b) 1 Mbps	Low Channel Mid Channel High Channel	oignaid/e	Value -13.9 dBm / 3 kHz -13.6 dBm / 3 kHz -13.9 dBm / 3 kHz	Limit 8 dBm / 3 kHz 8 dBm / 3 kHz 8 dBm / 3 kHz	Results Pass Pass Pass
802.11(b) 1 Mbps 802.11(b) 11 Mbps	Low Channel Mid Channel High Channel	oignaid/e	Value -13.9 dBm / 3 kHz -13.6 dBm / 3 kHz -13.9 dBm / 3 kHz	Limit 8 dBm / 3 kHz 8 dBm / 3 kHz 8 dBm / 3 kHz	Results Pass Pass Pass
802.11(b) 1 Mbps 802.11(b) 11 Mbps	Low Channel Mid Channel High Channel Low Channel	oignaid/e	Value -13.9 dBm / 3 kHz -13.6 dBm / 3 kHz -13.9 dBm / 3 kHz -13.2 dBm / 3 kHz	Limit 8 dBm / 3 kHz 8 dBm / 3 kHz 8 dBm / 3 kHz 8 dBm / 3 kHz	Results Pass Pass Pass Pass
802.11(b) 1 Mbps 802.11(b) 11 Mbps	Low Channel Mid Channel High Channel Low Channel Mid Channel	oignaid/e	Value -13.9 dBm / 3 kHz -13.6 dBm / 3 kHz -13.9 dBm / 3 kHz -13.2 dBm / 3 kHz -12.0 dBm / 3 kHz	Limit 8 dBm / 3 kHz 8 dBm / 3 kHz 8 dBm / 3 kHz 8 dBm / 3 kHz 8 dBm / 3 kHz	Results Pass Pass Pass Pass Pass
802.11(b) 1 Mbps 802.11(b) 11 Mbps	Low Channel Mid Channel High Channel Low Channel Mid Channel High Channel	oignaid/e	Value -13.9 dBm / 3 kHz -13.6 dBm / 3 kHz -13.9 dBm / 3 kHz -13.2 dBm / 3 kHz -12.0 dBm / 3 kHz -12.0 dBm / 3 kHz	Limit 8 dBm / 3 kHz 8 dBm / 3 kHz	Results Pass Pass Pass Pass Pass Pass Pass
802.11(b) 1 Mbps 802.11(b) 11 Mbps 802.11(g) 6 Mbps	Low Channel Mid Channel High Channel Low Channel Mid Channel High Channel	oignaid/e	Value -13.9 dBm / 3 kHz -13.6 dBm / 3 kHz -13.9 dBm / 3 kHz -13.2 dBm / 3 kHz -12.0 dBm / 3 kHz -12.0 dBm / 3 kHz	Limit 8 dBm / 3 kHz 8 dBm / 3 kHz	Results Pass Pass Pass Pass Pass Pass
802.11(b) 1 Mbps 802.11(b) 11 Mbps 802.11(g) 6 Mbps	Low Channel Mid Channel High Channel Low Channel Mid Channel High Channel Low Channel		Value -13.9 dBm / 3 kHz -13.6 dBm / 3 kHz -13.9 dBm / 3 kHz -13.2 dBm / 3 kHz -12.0 dBm / 3 kHz -12.0 dBm / 3 kHz -12.1 dBm / 3 kHz	Limit 8 dBm / 3 kHz 8 dBm / 3 kHz	Results Pass Pass Pass Pass Pass Pass Pass Pa
802.11(b) 1 Mbps 802.11(b) 11 Mbps 802.11(g) 6 Mbps	Low Channel Mid Channel High Channel Low Channel Mid Channel High Channel Low Channel Mid Channel		Value -13.9 dBm / 3 kHz -13.6 dBm / 3 kHz -13.9 dBm / 3 kHz -13.2 dBm / 3 kHz -12.0 dBm / 3 kHz -12.0 dBm / 3 kHz -17.1 dBm / 3 kHz -16.7 dBm / 3 kHz	Limit 8 dBm / 3 kHz 8 dBm / 3 kHz	Results Pass Pass Pass Pass Pass Pass Pass Pa
802.11(b) 1 Mbps 802.11(b) 11 Mbps 802.11(g) 6 Mbps	Low Channel Mid Channel High Channel Low Channel High Channel Low Channel Mid Channel High Channel High Channel		Value -13.9 dBm / 3 kHz -13.6 dBm / 3 kHz -13.9 dBm / 3 kHz -13.2 dBm / 3 kHz -12.0 dBm / 3 kHz -12.0 dBm / 3 kHz -17.1 dBm / 3 kHz -16.7 dBm / 3 kHz -16.9 dBm / 3 kHz	Limit 8 dBm / 3 kHz 8 dBm / 3 kHz	Results Pass Pass Pass Pass Pass Pass Pass Pa
802.11(b) 1 Mbps 802.11(b) 11 Mbps 802.11(g) 6 Mbps 802.11(g) 36 Mbps	Low Channel Mid Channel High Channel Mid Channel High Channel Low Channel Mid Channel Mid Channel High Channel		Value -13.9 dBm / 3 kHz -13.6 dBm / 3 kHz -13.9 dBm / 3 kHz -13.2 dBm / 3 kHz -12.0 dBm / 3 kHz -12.0 dBm / 3 kHz -17.1 dBm / 3 kHz -16.7 dBm / 3 kHz -16.9 dBm / 3 kHz	Limit 8 dBm / 3 kHz 8 dBm / 3 kHz	Results Pass Pass Pass Pass Pass Pass Pass Pa
802.11(b) 1 Mbps 802.11(b) 11 Mbps 802.11(g) 6 Mbps 802.11(g) 36 Mbps	Low Channel Mid Channel High Channel Low Channel Mid Channel High Channel Mid Channel High Channel High Channel Low Channel		Value -13.9 dBm / 3 kHz -13.6 dBm / 3 kHz -13.9 dBm / 3 kHz -13.2 dBm / 3 kHz -13.2 dBm / 3 kHz -12.0 dBm / 3 kHz -12.0 dBm / 3 kHz -17.1 dBm / 3 kHz -16.7 dBm / 3 kHz -16.9 dBm / 3 kHz	Limit 8 dBm / 3 kHz 8 dBm / 3 kHz	Results Pass Pass Pass Pass Pass Pass Pass Pa
802.11(b) 1 Mbps 802.11(b) 11 Mbps 802.11(g) 6 Mbps 802.11(g) 36 Mbps	Low Channel Mid Channel High Channel Low Channel High Channel Low Channel Mid Channel High Channel Low Channel Mid Channel Mid Channel		Value -13.9 dBm / 3 kHz -13.6 dBm / 3 kHz -13.9 dBm / 3 kHz -13.9 dBm / 3 kHz -12.0 dBm / 3 kHz -12.0 dBm / 3 kHz -17.1 dBm / 3 kHz -16.7 dBm / 3 kHz -16.9 dBm / 3 kHz -16.7 dBm / 3 kHz -16.7 dBm / 3 kHz	Limit 8 dBm / 3 kHz 8 dBm / 3 kHz	Results Pass Pass Pass Pass Pass Pass Pass Pa
802.11(b) 1 Mbps 802.11(b) 11 Mbps 802.11(g) 6 Mbps 802.11(g) 36 Mbps	Low Channel Mid Channel High Channel Mid Channel High Channel High Channel High Channel High Channel Mid Channel Mid Channel High Channel High Channel		Value -13.9 dBm / 3 kHz -13.6 dBm / 3 kHz -13.9 dBm / 3 kHz -13.2 dBm / 3 kHz -12.0 dBm / 3 kHz -12.0 dBm / 3 kHz -16.7 dBm / 3 kHz -16.9 dBm / 3 kHz -16.7 dBm / 3 kHz -16.7 dBm / 3 kHz -16.8 dBm / 3 kHz	Limit 8 dBm / 3 kHz 8 dBm / 3 kHz	Results Pass Pass Pass Pass Pass Pass Pass Pa
802.11(b) 1 Mbps 802.11(b) 11 Mbps 802.11(g) 6 Mbps 802.11(g) 36 Mbps 802.11(g) 54 Mbps	Low Channel Mid Channel High Channel Mid Channel High Channel Low Channel Mid Channel High Channel Low Channel Mid Channel Mid Channel High Channel		Value -13.9 dBm / 3 kHz -13.6 dBm / 3 kHz -13.9 dBm / 3 kHz -13.9 dBm / 3 kHz -12.0 dBm / 3 kHz -12.0 dBm / 3 kHz -16.7 dBm / 3 kHz -16.9 dBm / 3 kHz -16.9 dBm / 3 kHz -16.9 dBm / 3 kHz -16.8 dBm / 3 kHz	Limit 8 dBm / 3 kHz 8 dBm / 3 kHz	Results Pass Pass Pass Pass Pass Pass Pass Pa
802.11(b) 1 Mbps 802.11(b) 11 Mbps 802.11(g) 6 Mbps 802.11(g) 36 Mbps 802.11(g) 54 Mbps	Low Channel Mid Channel High Channel Low Channel Mid Channel High Channel Mid Channel High Channel Low Channel Mid Channel High Channel High Channel Low Channel		Value -13.9 dBm / 3 kHz -13.6 dBm / 3 kHz -13.9 dBm / 3 kHz -13.9 dBm / 3 kHz -13.2 dBm / 3 kHz -12.0 dBm / 3 kHz -16.7 dBm / 3 kHz -16.9 dBm / 3 kHz -16.7 dBm / 3 kHz -16.8 dBm / 3 kHz -16.8 dBm / 3 kHz	Limit 8 dBm / 3 kHz 8 dBm / 3 kHz	Results Pass Pass Pass Pass Pass Pass Pass Pa
802.11(b) 1 Mbps 802.11(b) 11 Mbps 802.11(g) 6 Mbps 802.11(g) 36 Mbps 802.11(g) 54 Mbps	Low Channel Mid Channel High Channel Low Channel Mid Channel High Channel Mid Channel High Channel Mid Channel Mid Channel High Channel Mid Channel Mid Channel Mid Channel		Value -13.9 dBm / 3 kHz -13.6 dBm / 3 kHz -13.6 dBm / 3 kHz -13.9 dBm / 3 kHz -13.2 dBm / 3 kHz -12.0 dBm / 3 kHz -17.1 dBm / 3 kHz -16.7 dBm / 3 kHz -16.9 dBm / 3 kHz -16.7 dBm / 3 kHz -16.8 dBm / 3 kHz -16.8 dBm / 3 kHz -16.7 dBm / 3 kHz -16.7 dBm / 3 kHz	Limit 8 dBm / 3 kHz 8 dBm / 3 kHz	Results Pass Pass Pass Pass Pass Pass Pass Pa

EMC

802.11(b) 1 Mbps, Low Channel Result: Pass Value: -13.9 dBm / 3 kHz

Limit: 8 dBm / 3 kHz

Result: Pass

802.11(b) 1 Mbps, Mid Channel Value: -13.6 dBm / 3 kHz

EMC

	802.11(b) 1 M	ops, High Channel		
Result: Pass	Value: -13	3.9 dBm / 3 kHz	Limit:	8 dBm / 3 kHz

Result: Pass

802.11(b) 11 Mbps, Low Channel Value: -13.2 dBm / 3 kHz

802.11(b) 11 Mbps, Mid Channel

Result: Pass

Value: -12.0 dBm / 3 kHz Limit: 8 dBm / 3 kHz

Result: Pass

802.11(b) 11 Mbps, High Channel Value: -12.0 dBm / 3 kHz

Limit: 8 dBm / 3 kHz

EMC

802.11(g) 6 Mbps, Low Channel

Result: Pass

Value: -17.1 dBm / 3 kHz

Limit: 8 dBm / 3 kHz

Result: Pass

802.11(g) 6 Mbps, Mid Channel Value: -16.7 dBm / 3 kHz

802.11(g) 6 Mbps, High Channel

Result: Pass

Value: -16.9 dBm / 3 kHz

Limit: 8 dBm / 3 kHz

Result: Pass

802.11(g) 36 Mbps, Low Channel Value: -16.9 dBm / 3 kHz

EMC

	802.11(g)	36 Mbps, Mid Channel		
Result: Pass	Value:	-16.7 dBm / 3 kHz	Limit:	8 dBm / 3 kHz

Result: Pass

802.11(g) 36 Mbps, High Channel Value: -16.8 dBm / 3 kHz

EMC

802.11(g) 54 Mbps, Low Channel					
Result:	Pass	Value: -16.	8 dBm / 3 kHz	Limit:	8 dBm / 3 kHz

Result: Pass

802.11(g) 54 Mbps, Mid Channel Value: -16.7 dBm / 3 kHz

NORTHWEST

	802.11(g) 54 Mbps, High Channel				
Result:	Pass	Value:	-16.8 dBm / 3 kHz	Limit:	8 dBm / 3 kHz

SPURIOUS RADIATED EMISSIONS

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION	
802.11(b), 1 Mbps	
802.11(b), 11 Mbps	
802.11(g), 6 Mbps	
802.11(g), 54 Mbps	
802.11(g), 36 Mbps	

CHANNELS TESTED	
Channel 1, 2412 MHz	
Channel 6, 2437 MHz	
Channel 11, 2462 MHz	

POWER SETTINGS INVESTIGATED							
Battery							
FREQUENCY RANGE INVESTIGATED							
Start Frequency	30 MHz	Stop Frequency	25 GHz				

SAMPLE CALCULATIONS

Radiated Emissions: Field Strength = Measured Level + Antenna Factor + Cable Factor - Amplifier Gain + Distance Adjustment Factor + External Attenuation

TEST EQUIPMENT					
Description	Manufacturer	Model	ID	Last Cal.	Interval
Spectrum Analyzer	Agilent	E4446A	AAQ	1/6/2010	13
High Pass Filter	Micro-Tronics	HPM50111	HFO	7/10/2009	13
Low Pass Filter 0-1000 MHz	Micro-Tronics	LPM50004	LFD	7/10/2009	13
Pre-Amplifier	Miteq	AM-1616-1000	AOL	7/10/2009	13
Antenna, Biconilog	EMCO	3141	AXE	1/14/2010	13
EV01 Cables	N/A	Bilog Cables	EVA	7/10/2009	13
Pre-Amplifier	Miteq	AMF-4D-010100-24-10P	APW	7/10/2009	13
Antenna, Horn	EMCO	3115	AHC	8/12/2008	24
EV01 Cables	N/A	Double Ridge Horn Cables	EVB	7/10/2009	13
Pre-Amplifier	Miteq	AMF-6F-08001200-30-10P	AVC	7/10/2009	13
Antenna, Horn	ETS	3160-07	AHU	NCR	0
EV01 Cables	N/A	Standard Gain Horns Cables	EVF	4/2/2010	13
Pre-Amplifier	Miteq	AMF-6F-18002650-25-10P	AVU	5/19/2009	13
Antenna, Horn	ETS Lindgren	3160-09	AIV	NCR	0
Pre-Amplifier	Miteq	AM-1616-1000	AVY	7/1/2009	13

MEASUREMENT BANDWIDTHS					
	Frequency Range	BWI			
	(MHz)	(kHz)			
	0.15 - 30.0	1.0			
	30.0 - 400.0	10.0			
	400.0 - 1000.0	100.0			
	1000.0 - 6000.0	1000.0			

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4. The measurement uncertainty estimation is available upon request.

TEST DESCRIPTION

The highest gain of each type of antenna to be used with the EUT was tested. The EUT was configured for low, mid, and high band transmit frequencies. For each configuration, the spectrum was scanned throughout the specified range. In addition, measurements were made in the restricted bands to verify compliance. While scanning, emissions from the EUT were maximized by rotating the EUT on a turntable, adjusting the position of the EUT and the EUT antenna in three orthogonal axis, and adjusting measurement antenna height and polarization, and manipulating the EUT antenna in 3 orthogonal planes (per ANSI C63.10:2009). A preamp and high pass filter were used for this test in order to provide sufficient measurement sensitivity.

EMC

7387.600	25.8	16.6	229.0	1.0	3.0	0.0	V-Horn	AV	0.0	42.4	54.0	-11.6	High channel, 1 Mbps, EUT vertical - antenna on side
7309.900	25.8	16.2	249.0	1.2	3.0	0.0	V-Horn	AV	0.0	42.0	54.0	-12.0	Mid channel, 1 Mbps, EUT vertical - antenna on side
7388.200	25.1	16.6	252.0	1.4	3.0	0.0	V-Horn	AV	0.0	41.7	54.0	-12.3	High channel, 11 Mbps, EUT vertical - antenna on side
7312.617	24.7	16.2	157.0	1.0	3.0	0.0	H-Horn	AV	0.0	40.9	54.0	-13.1	Mid channel, 1 Mbps, EUT on side - antenna at top
7388.375	24.0	16.6	250.0	1.3	3.0	0.0	V-Horn	AV	0.0	40.6	54.0	-13.4	High channel, 6 Mbps, EUT vertical - antenna on side
7387.567	23.9	16.6	327.0	1.2	3.0	0.0	H-Horn	AV	0.0	40.5	54.0	-13.5	High channel, 1 Mbps, EUT on side - antenna at top
7375.975	23.7	16.6	98.0	1.3	3.0	0.0	V-Horn	AV	0.0	40.3	54.0	-13.7	High channel, 54 Mbps, EUT vertical - antenna on side
7389.375	23.7	16.6	221.0	1.1	3.0	0.0	H-Horn	AV	0.0	40.3	54.0	-13.7	High channel, 6 Mbps, EUT on side - antenna at top
7374.175	23.7	16.5	67.0	1.2	3.0	0.0	V-Horn	AV	0.0	40.2	54.0	-13.8	High channel, 36 Mbps, EUT vertical - antenna on side
7392.850	23.7	16.5	326.0	1.2	3.0	0.0	H-Horn	AV	0.0	40.2	54.0	-13.8	High channel, 6 Mbps, EUT on side - antenna at top
4923.977	26.7	9.9	255.0	1.0	3.0	0.0	H-Horn	AV	0.0	36.6	54.0	-17.4	High channel, 1 Mbps, EUT on side - antenna at top
4873.983	25.5	9.7	240.0	1.5	3.0	0.0	H-Horn	AV	0.0	35.2	54.0	-18.8	Mid channel, 1 Mbps, EUT on side - antenna at top
4923.957	25.2	9.9	183.0	1.1	3.0	0.0	V-Horn	AV	0.0	35.1	54.0	-18.9	High channel, 1 Mbps, EUT vertical - antenna on side
7387.000	38.5	16.6	229.0	1.0	3.0	0.0	V-Horn	PK	0.0	55.1	74.0	-18.9	High channel, 1 Mbps, EUT vertical - antenna on side
4823.943	25.2	9.6	126.0	1.7	3.0	0.0	H-Horn	AV	0.0	34.8	54.0	-19.2	Low channel, 1 Mbps, EUT on side - antenna at top
7391.425	37.5	16.6	250.0	1.3	3.0	0.0	V-Horn	PK	0.0	54.1	74.0	-19.9	High channel, 6 Mbps, EUT vertical - antenna on side
7309.383	37.8	16.2	249.0	1.2	3.0	0.0	V-Horn	PK	0.0	54.0	74.0	-20.0	Mid channel, 1 Mbps, EUT vertical - antenna on side
7315.017	37.7	16.2	157.0	1.0	3.0	0.0	H-Horn	PK	0.0	53.9	74.0	-20.1	Mid channel, 1 Mbps, EUT on side - antenna at top
7383.525	37.3	16.6	252.0	1.4	3.0	0.0	V-Horn	PK	0.0	53.9	74.0	-20.1	High channel, 11 Mbps, EUT vertical - antenna on side
4924.117	23.9	9.9	243.0	1.0	3.0	0.0	H-Horn	AV	0.0	33.8	54.0	-20.2	High channel, 6 Mbps, EUT on side - antenna at top
7380.625	37.0	16.6	67.0	1.2	3.0	0.0	V-Horn	PK	0.0	53.6	74.0	-20.4	High channel, 36 Mbps, EUT vertical - antenna on side
7393.250	36.9	16.6	221.0	1.1	3.0	0.0	H-Horn	PK	0.0	53.5	74.0	-20.5	High channel, 6 Mbps, EUT on side - antenna at top
7382.625	36.7	16.6	326.0	1.2	3.0	0.0	H-Horn	PK	0.0	53.3	74.0	-20.7	High channel, 6 Mbps, EUT on side - antenna at top
7393.350	36.7	16.6	98.0	1.3	3.0	0.0	V-Horn	PK	0.0	53.3	74.0	-20.7	High channel, 54 Mbps, EUT vertical - antenna on side
4823.870	23.6	9.6	306.0	1.1	3.0	0.0	V-Horn	AV	0.0	33.2	54.0	-20.8	Low channel, 1 Mbps, EUT vertical - antenna on side
7388.200	36.6	16.6	327.0	1.2	3.0	0.0	H-Horn	PK	0.0	53.2	74.0	-20.8	High channel, 1 Mbps, EUT on side - antenna at top
4874.035	23.3	9.7	72.0	1.2	3.0	0.0	V-Horn	AV	0.0	33.0	54.0	-21.0	Mid channel, 1 Mbps, EUT vertical - antenna on side
4923.692	22.9	9.9	144.0	1.0	3.0	0.0	V-Horn	AV	0.0	32.8	54.0	-21.2	High channel, 6 Mbps, EUT vertical - antenna on side
4923.663	38.3	9.9	255.0	1.0	3.0	0.0	H-Horn	PK	0.0	48.2	74.0	-25.8	High channel, 1 Mbps, EUT on side - antenna at top
4873.977	38.1	9.7	240.0	1.5	3.0	0.0	H-Horn	PK	0.0	47.8	74.0	-26.2	Mid channel, 1 Mbps, EUT on side - antenna at top
4924.033	37.8	9.9	183.0	1.1	3.0	0.0	V-Horn	PK	0.0	47.7	74.0	-26.3	High channel, 1 Mbps, EUT vertical - antenna on side
4824.057	38.1	9.6	126.0	1.7	3.0	0.0	H-Horn	PK	0.0	47.7	74.0	-26.3	Low channel, 1 Mbps, EUT on side - antenna at top
4873.957	37.2	9.7	72.0	1.2	3.0	0.0	V-Horn	PK	0.0	46.9	74.0	-27.1	Mid channel, 1 Mbps, EUT vertical - antenna on side
4923.925	37.0	9.9	243.0	1.0	3.0	0.0	H-Horn	PK	0.0	46.9	74.0	-27.1	High channel, 6 Mbps, EUT on side - antenna at top
4824.210	36.7	9.6	306.0	1.1	3.0	0.0	V-Horn	PK	0.0	46.3	74.0	-27.7	Low channel, 1 Mbps, EUT vertical - antenna on side
4923.592	35.8	9.9	144.0	1.0	3.0	0.0	V-Horn	PK	0.0	45.7	74.0	-28.3	High channel, 6 Mbps, EUT vertical - antenna on side

Comments

NORTHWEST EMC

Testing was performed using the mode(s) of operation and configuration(s) noted within the report. The individuals and/or the organization requesting the test provided the modes, configurations and settings used to complete the evaluation. The actual test parameters are specified in the test data, this includes items such as investigated frequency range (scanned) and test levels. The testing methods and performance specifications, as well as the test site used for the evaluation are indicated in the test data.

MODES OF OPERATION

Transmitting, high channel, 1 Mbps Transmitting, mid channel, 1 Mbps Transmitting, low channel, 1 Mbps

POWER SETTINGS INVESTIGATED 120VAC/60Hz

CONFIGURATIONS INVESTIGATED

INTE5221 - 3

SAMPLE CALCULATIONS

Conducted Emissions: Adjusted Level = Measured Level + Transducer Factor + Cable Attenuation Factor + External Attenuator

TEST EQUIPMENT									
Description	Manufacturer	Model	ID	Last Cal.	Interval				
Receiver	Rohde & Schwarz	ESCI	ARE	4/29/2010	12 mo				
Attenuator	Coaxicom	66702 2910-20	ATO	7/21/2009	13 mo				
High Pass Filter	TTE	H97-100K-50-720B	HFX	2/16/2010	13 mo				
LISN	Solar	9252-50-R-24-BNC	LIP	3/2/2010	13 mo				
EV07 Cables	N/A	Conducted Cables	EVG	6/1/2009	13 mo				

MEASUREMENT BANDWIDTHS

	Frequency Range	Peak Data	Quasi-Peak Data	Average Data				
	(MHz)	(kHz)	(kHz)	(kHz)				
	0.01 - 0.15	1.0	0.2	0.2				
	0.15 - 30.0	10.0	9.0	9.0				
	30.0 - 1000	100.0	120.0	120.0				
	Above 1000	1000.0	N/A	1000.0				
Measurements were made using the handwidths and detectors specified. No video filter was used								

MEASUREMENT UNCERTAINTY

A measurement uncertainty estimation has been performed for each test per our internal quality document WP 342. The estimation is used to compare the measured result with its "true" or theoretically correct value. The expanded measurement uncertainty for radiated emissions measurements is less than +/- 4 dB, and for conducted emissions measurements is less than +/- 2.7 dB. Our measurement data meets or exceeds the measurement uncertainty requirements of CISPR 16-4; therefore, the test data can be compared directly to the specification limit to determine compliance. The calculations for measurement uncertainty are available upon request.

TEST DESCRIPTION

Using the mode of operation and configuration noted within this report, conducted emissions tests were performed. The frequency range investigated (scanned), is also noted in this report. Conducted power line measurements are made, unless otherwise specified, over the frequency range from 150 kHz to 30 MHz to determine the line-to-ground radio-noise voltage that is conducted from the EUT power-input terminals that are directly (or indirectly via separate transformer or power supplies) connected to a public power network. Equipment is tested with power cords that are normally used or that have electrical or shielding characteristics that are the same as those cords normally used. Typically those measurements are made using a LISN (Line Impedance Stabilization Network), the 50ohm measuring port is terminated by a 50ohm EMI meter or a 50ohm resistive load. All 50ohm measuring ports of the LISN are terminated by 50ohm.

