W66 N220 Commerce Court • Cedarburg, WI 53012 • USA Phone: 262.375.4400 • Fax: 262.375.4248

www.lsr.com

TEST REPORT #: 312105 LSR Job #: C-1463

Compliance Testing of:

NGRE

Test Date(s):

August 1-3, 2012

Prepared For:

Ingersoll Rand

Attn: Frank Nardelli

11819 North Pennsylvania Street

Carmel, IN 46032

In accordance with:

Federal Communications Commission (FCC)
Part 15, Subpart C, Section 15.249
Industry Canada (IC) RSS 210 Annex 2
Transmitters Operating in the
Frequency Band 902 MHz – 928 MHz

This Test Report is issued under the Authority of:

Peter Feilen, EMC Engineer

Signature: Peter Film

Date: 8/29/12

Test Report Reviewed by:

Ryan Urness, Lab Manager

Tested by:

Peter Feilen, EMC Engineer

Signature:

Date: 8/28/12

Signature: Peter Film

Date: 8/6/12

This Test Report may not be reproduced, except in full, without written approval of LS Research, LLC.

TABLE OF CONTENTS (page 1 of 2)

Contents

EXHIBIT	1. INTRODUCTION	4
1.1	SCOPE	4
1.2	NORMATIVE REFERENCES	4
1.3	LS Research, LLC TEST FACILITY	5
1.4	LOCATION OF TESTING	5
1.5	TEST EQUIPMENT UTILIZED	5
EXHIBIT	2. PERFORMANCE ASSESSMENT	6
2.1	CLIENT INFORMATION	6
2.2	EQUIPMENT UNDER TEST (EUT) INFORMATION	6
2.3	ASSOCIATED ANTENNA DESCRIPTION	6
2.4	EUT'S TECHNICAL SPECIFICATIONS	7
2.5	PRODUCT DESCRIPTION	7
EXHIBIT	3. EUT OPERATION CONDITIONS AND CONFIGURATION	9
3.1	CLIMATE TEST CONDITIONS	9
2.2	A DDI LOA DILITENIA A GUN A LA DIZI OFI FINA EN MAGNONI TERRE DEGLI I TO	0
3.2	APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS	9
3.2	MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURP	
	MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURP	OSES
3.3	MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURP 9 DEVIATIONS & EXCLUSIONS FROM TEST SPECIFICATIONS	OSES 9
3.3	MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURP 9 DEVIATIONS & EXCLUSIONS FROM TEST SPECIFICATIONS	OSES 9 10
3.3 3.4 EXHIBIT	MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURP 9 DEVIATIONS & EXCLUSIONS FROM TEST SPECIFICATIONS	OSES 9 10
3.3 3.4 EXHIBIT	MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPO 9 DEVIATIONS & EXCLUSIONS FROM TEST SPECIFICATIONS	OSES 9 10 11
3.3 3.4 EXHIBIT EXHIBIT 5.1	MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPO 9 DEVIATIONS & EXCLUSIONS FROM TEST SPECIFICATIONS	OSES 9 10 11 11 11
3.3 3.4 EXHIBIT EXHIBIT 5.1 5.2	MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURP 9 DEVIATIONS & EXCLUSIONS FROM TEST SPECIFICATIONS	OSES 9 10 11 11 12
3.3 3.4 EXHIBIT EXHIBIT 5.1 5.2 5.3	MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURP 9 DEVIATIONS & EXCLUSIONS FROM TEST SPECIFICATIONS	OSES910111112
3.3 3.4 EXHIBIT 5.1 5.2 5.3 5.4	MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURP 9 DEVIATIONS & EXCLUSIONS FROM TEST SPECIFICATIONS	OSES9101111121213
3.3 3.4 EXHIBITE 5.1 5.2 5.3 5.4 5.5	MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURP 9 DEVIATIONS & EXCLUSIONS FROM TEST SPECIFICATIONS	OSES9101111121213
3.3 3.4 EXHIBIT 5.1 5.2 5.3 5.4 5.5 5.6	MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPO 9 DEVIATIONS & EXCLUSIONS FROM TEST SPECIFICATIONS 4. DECLARATION OF CONFORMITY 5. RADIATED EMISSIONS TEST Test Setup Test Procedure Test Equipment Utilized Test Results CALCULATION OF RADIATED EMISSIONS LIMITS RADIATED EMISSIONS TEST DATA CHART	OSES910111112121314

Prepared For: Ingersoll Rand	EUT: NGRE	LS Research, LLC
Report # 312105	Model #: 23685159	
LSR Job #: C-1463	Serial #: Engineering Sample	Page 2 of 27

TABLE OF CONTENTS (page 2 of 2)

EXHIBIT 7. OCCUPIED BANDWIDTH:	23
7.1 Limits	23
7.2 Method of Measurements	23
7.3 Test Data	23
7.4 Screen Captures - OCCUPIED BANDWIDTH	23
EXHIBIT 8. BAND-EDGE MEASUREMENTS	24
8.1 Method of Measurements	24
APPENDIX A	25
APPENDIX B	26
TEST STANDARDS – CURRENT PUBLICATION DATES RADIO	26
APPENDIX C	27

Prepared For: Ingersoll Rand	EUT: NGRE	LS Research, LLC
Report # 312105	Model #: 23685159	
LSR Job #: C-1463	Serial #: Engineering Sample	Page 3 of 27

EXHIBIT 1. INTRODUCTION

1.1 SCOPE

References:	Title 47 CFR FCC Part 15, Subpart C, Section 15.249	
	RSS GEN and RSS 210 Annex 2	
Title:	FCC: Telecommunication – Code of Federal Regulations,	
	CFR 47, Part 15.	
	IC: Low-power License-exempt Radio-communication	
	Devices (All Frequency Bands): Category I Equipment	
Purpose of Test:	To gain FCC and IC Certification Authorization for Low-	
-	Power License-Exempt Transmitters.	
Test Procedures:	Radiated emissions measurements were performed in accordance with American National Standards Institute ANSI C63.4 – American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.	
Environmental Classification:	Commercial, Industrial or Business	
	Residential	

1.2 NORMATIVE REFERENCES

Publication	Title
47 CFR, Parts 0-15 (FCC)	Code of Federal Regulations - Telecommunications
RSS 210	Low-power License-exempt Radio-communication Devices (All Frequency Bands): Category I Equipment
ANSI C63.4	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.

Prepared For: Ingersoll Rand	EUT: NGRE	LS Research, LLC
Report # 312105	Model #: 23685159	
LSR Job #: C-1463	Serial #: Engineering Sample	Page 4 of 27

1.3 LS Research, LLC TEST FACILITY

LS Research, LLC is accredited by A2LA (American Association for Laboratory Accreditation) to conform to ISO/IEC 17025, 2005 "General Requirements for the Competence of Calibration and Testing Laboratories".

LS Research, LLC's scope of accreditation includes all test methods listed herein, unless otherwise noted. Accreditation status can be verified at A2LA's web site: www.a2la.net.

1.4 LOCATION OF TESTING

All testing was performed at LS Research, LLC, W66 N220 Commerce Court, Cedarburg, Wisconsin, 53012.

1.5 TEST EQUIPMENT UTILIZED

A complete list of equipment utilized in testing is provided in Appendix A of this test report. Calibration dates are indicated in Appendix A. All test equipment is calibrated by a calibration laboratory accredited to the requirements of ISO 17025, and is traceable to the SI standard.

Prepared For: Ingersoll Rand	EUT: NGRE	LS Research, LLC
Report # 312105	Model #: 23685159	
LSR Job #: C-1463	Serial #: Engineering Sample	Page 5 of 27

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1 CLIENT INFORMATION

Manufacturer Name:	Ingersoll Rand
Address:	11819 North Pennsylvania Street
Contact Name:	Carmel, IN 46032

2.2 EQUIPMENT UNDER TEST (EUT) INFORMATION

The following information has been supplied by the applicant.

Product Name:	Next Generation Residential Electronic (NGRE) deadbolt
Model Number:	23685159
Serial Number: Engineering Sample	

2.3 ASSOCIATED ANTENNA DESCRIPTION

A PCB trace inverted L antenna

Prepared For: Ingersoll Rand	EUT: NGRE	LS Research, LLC
Report # 312105	Model #: 23685159	
LSR Job #: C-1463	Serial #: Engineering Sample	Page 6 of 27

2.4 EUT'S TECHNICAL SPECIFICATIONS

EUT Operating Frequency	908.42 MHz
Field Strength at 3 meters	
Minimum:	75.8 dBuV/m @ 3m
Maximum:	86.7 dBuV/m @ 3m
EIRP (in mW)	
Minimum:	0.111 mW
Maximum:	0.141 mW
Type of Modulation	FSK
Occupied Bandwidth (99%) in kHz	148.46 kHz
Emission Designator	148KF1D
Transmitter Spurious (worst case) at 3 meters	49.3 dBuV/m @ 3m @ 3633.68 MHz
	Listed in section 5.6
Receiver Spurious (worst case) at 3 meters	44.2 @ 3m @ 1816.84 MHz
	Listed in section 5.8
Stepped (Yes/No)	No
Step Value:	N/A
Microprocessor Model # (if applicable)	Transceiver: ZW0301
,	Microcontroller: Microchip PIC18F87K22-I/PTRSL
Antenna Information	
Detachable/non-detachable	Non-detachable
Туре	PCB trace inverted L
EUT will be operated under FCC Rule Part(s)	15.249
EUT will be operated under RSS Rule Part(s)	RSS 210
Modular Filing	☐ Yes ☐ No
Portable or Mobile?	Mobile

RF Technical Information:

Type of		SAR Evaluation: Device Used in the Vicinity of the Human Head
Evaluation		SAR Evaluation: Body-worn Device
(check one)	Χ	RF Evaluation

If <u>RF Evaluation</u> checked above, test engineer to complete the following:

	Evaluated against exposure limits: General Public Use Controlled Use
•	Duty Cycle used in evaluation: %
•	Standard used for evaluation: OET 65
•	Measurement Distance: 20 cm
•	RF Value: 0.00027

Since the output power of the EUT, 0.00027mW, is less than 200mW, no SAR evaluation is necessary.

2.5 PRODUCT DESCRIPTION

"The Next Generation Residential Electronic (NGRE) deadbolt is a deadbolt with integrated electronics for keyless access and remote control via Z-Wave radio. The Z-Wave radio operates in

Prepared For: Ingersoll Rand	EUT: NGRE	LS Research, LLC
Report # 312105	Model #: 23685159	
LSR Job #: C-1463	Serial #: Engineering Sample	Page 7 of 27

the 908.4 MHz band and provides a wireless link to a Z-Wave controller for deadbolt configuration, remote access, and status reports. The NGRE deadbolt is powered by four AA batteries."

Prepared For: Ingersoll Rand	EUT: NGRE	LS Research, LLC
Report # 312105	Model #: 23685159	
LSR Job #: C-1463	Serial #: Engineering Sample	Page 8 of 27

EXHIBIT 3. EUT OPERATION CONDITIONS AND CONFIGURATION

3.1 CLIMATE TEST CONDITIONS

Temperature:	22 ° C
Humidity:	44 %
Pressure:	752 mmHg

3.2 APPLICABILITY & SUMMARY OF EMC EMISSION TEST RESULTS

FCC and IC Paragraph	Test Requirements	Compliance (yes/no)
FCC: 15.207 IC: RSS GEN sect. 7.2.2	Power Line Conducted Emissions Measurements	N/A
IC : RSS GEN section 4.6.1	20 dB Bandwidth	YES
FCC: 15.249(A) & 1.1310 IC: RSS 210 A2.9 (a)	Maximum Output Power	YES
FCC: 1.1307, 1.1310, 2.1091 & 2.1093 IC: RSS 102	RF Exposure Limit	YES
FCC: 15.249(a) IC: RSS 210 A2.9(a)	Transmitter harmonics	YES
FCC: 15.249(d) & 15.205 IC: RSS 210 A2.9(b),	Transmitter Radiated Emissions	YES

The digital circuit portion of the EUT has been tested and verified to comply with FCC Part 15, Subpart B, Class B Digital Devices (RSS GEN and RSS 210 of IC) and the associated Radio Receiver has also been tested and found to comply with Part 15, Subpart B – Radio Receivers (RSS GEN and RSS 210 of IC). The Receiver Test Report is available upon request.

3.3	MODIFICATIONS 1	<u>INCORPORATED IN THE EUT I</u>	<u>FOR COMPLIANCE PURPOSES</u>
	⊠ None	☐ Yes (explain below)	
	_		
2 4	DEVIATIONS 8- EX	CLUSIONS FROM TEST SPECI	EICATIONS
3.4	DEVIATIONS & EA	CLUSIONS FROM TEST SPECT	FICATIONS
	⊠ None	Yes (explain below)	
		_ : cc (cxp:am bolon)	

Prepared For: Ingersoll Rand	EUT: NGRE	LS Research, LLC
Report # 312105	Model #: 23685159	
LSR Job #: C-1463	Serial #: Engineering Sample	Page 9 of 27

EXHIBIT 4. DECLARATION OF CONFORMITY

The EUT was found to MEET the requirements as described within the specification of FCC Title 47, CFR Part 15.249, and Industry Canada RSS-210, Annex 2.9.

If some emissions are seen to be within 3 dB of their respective limits:

As these levels are within the tolerances of the test equipment and site employed, there is a possibility that this unit, or a similar unit selected out of production may not meet the required limit specification if tested by another agency.

LS Research, LLC certifies that the data contained herein was taken under conditions that meet or exceed the requirements of the test specifications. The results in this Test Report apply only to the item(s) tested on the above-specified dates. Any modifications made to the EUT subsequent to the indicated test date(s) will invalidate the data herein, and void this certification.

Prepared For: Ingersoll Rand	EUT: NGRE	LS Research, LLC
Report # 312105	Model #: 23685159	
LSR Job #: C-1463	Serial #: Engineering Sample	Page 10 of 27

EXHIBIT 5. RADIATED EMISSIONS TEST

5.1 Test Setup

The test setup was assembled in accordance with Title 47, CFR FCC Part 15, RSS GEN and ANSI C63.4. The EUT was placed on an 80cm high non-conductive pedestal, centered on a flush mounted 2-meter diameter turntable inside a 3 meter Semi-Anechoic, FCC listed Chamber. The EUT was operated in continuously transmitting modulated mode using power as provided by a battery. The unit has the capability to operate on 1 channel.

The applicable limits apply at a 3 meter distance. Measurements above 5 GHz were performed at a 1.0 meter separation distance. The calculations to determine these limits are detailed in the following pages. Please refer to Appendix A for a complete list of test equipment. The test sample was operated on the standard channel: **908.42 MHz.**

5.2 Test Procedure

Radiated RF measurements were performed on the EUT in a 3 meter Semi-Anechoic, FCC listed Chamber. The frequency range from 30 MHz to 10000 MHz was scanned and investigated. The radiated RF emission levels were manually noted at the various fixed degree settings of azimuth on the turntable and antenna height. The EUT was placed on a non-conductive pedestal in the 3 meter Semi-Anechoic Chamber, with the antenna mast placed such that the antenna was 3 meters from the EUT. A Biconical Antenna was used to measure emissions from 30 MHz to 300 MHz, and a Log Periodic Antenna was used to measure emissions from 300 MHz to 1000 MHz. A Double-Ridged Waveguide Horn Antenna was used from 1 GHz to 10 GHz.

In the frequency range of 30 MHz to 5 GHz, the maximum radiated RF emissions were found by raising and lowering the antenna between 1 and 4 meters in height while for the range of 5 GHz to 10 GHz the antenna was raised and lowered between 1 and 1.8 meters in height. In addition, the polarity of the antenna was switched between horizontal and vertical polarity.

The EUT was positioned in one position for the test, as it has one orientation for use.

Battery Voltage was periodically checked to ensure sufficient supply.

Prepared For: Ingersoll Rand	EUT: NGRE	LS Research, LLC
Report # 312105	Model #: 23685159	
LSR Job #: C-1463	Serial #: Engineering Sample	Page 11 of 27

5.3 Test Equipment Utilized

A list of the test equipment and antennas utilized for the Radiated Emissions test can be found in Appendix A. This list includes calibration information and equipment descriptions. All equipment is calibrated and used according to the operation manuals supplied by the manufacturers. All calibrations of the antennas used were performed at an IEC/ISO 17025 accredited calibration laboratory, traceable to the SI standard. In addition, the Connecting Cables were measured for losses using a calibrated Signal Generator and an EMI Receiver. The resulting correction factors and the cable loss factors from these calibrations were entered into the EMI Receiver database. As a result, the data taken from the EMI Receiver accounts for the antenna correction factor as well as cable loss or other corrections, and can therefore be entered into the database as a corrected meter reading. The EMI Receiver was operated with resolution bandwidths as described in ANSI C63.4.

5.4 Test Results

The EUT was found to **MEET** the Radiated Emissions requirements of Title 47 CFR, FCC Part 15.249 and Canada RSS-210, Annex 2.9. The frequencies with significant RF signal strength were recorded and plotted as shown in the Data Charts and Graphs.

Prepared For: Ingersoll Rand	EUT: NGRE	LS Research, LLC
Report # 312105	Model #: 23685159	
LSR Job #: C-1463	Serial #: Engineering Sample	Page 12 of 27

5.5 CALCULATION OF RADIATED EMISSIONS LIMITS

Field Strength of Fundamental Frequencies:

The fundamental emissions for an intentional radiator in the 902-928 MHz band, operating under FCC part 15.249 and RSS 210 A2.9 limits, must have electric field strength of no greater than 50 mV/m, for the fundamental frequency, when measured at 3 meters, and harmonic field strength of no greater than 500 μ V/m, when measured at 3 meters. Spurious emissions outside the 902-928 MHz band shall be attenuated by at least 50 dB below the level of the fundamental, or meet the limits expressed in FCC part 15.209 under general emission limits.

Field Strength of Fundamental Frequencies is Limited to 50,000 μ V/m, or 94 dB μ V/m. Field Strength of Harmonic and Spurious Frequencies is Limited by FCC 15.249 a and d

The harmonic limit of –50 dBc with respect to the fundamental limit would be:

 $94 \text{ dB}\mu\text{V/m} - 50 \text{ dB} = 44 \text{ dB}\mu\text{V/m},$

*with the exception of where FCC 15.209 allows for a higher limit to be used.

Frequency (MHz)	3 m Limit (μV/m)	3 m Limit (dBμV/m)
902-928	50,000	94.0
30-88 ; 88-216	159	44.0
216-902 ; 928-960	500	46.0*
960-40,000	500	54.0*

The following table depicts the general radiated emission limits obtained from Title 47 CFR, part 15.209a, for radiated emissions measurements, including restricted band limits as expressed in 47 CFR, part 15.205.

Frequency (MHz)	3 m Limit (μV/m)	3 m Limit (dBμV/m)
30-88	100	40.0
88-216	150	43.5
216-960	200	46.0
960-40,000	500	54.0

Sample conversion from field strength µV/m to dBµV/m:

 $dB\mu V/m = 20 \log_{10} (3m limit)$

from 30 - 88 MHz for example: $dB\mu V/m = 20 \log_{10} (100)$

 $40.0 \text{ dB}\mu\text{V/m} = 20 \log_{10} (100)$

For measurements made at 1 meter, a 9.5 dB correction may be been invoked.

960 MHz to 40.000 MHz

 $500 \mu V/m \text{ or } 54.0 \text{ dB}\mu V/m \text{ at } 3 \text{ meters}$ $54.0 + 9.5 = 63.5 \text{ dB}\mu V/m \text{ at } 1 \text{ meter}$

Note: Limits are conservatively rounded to the nearest tenth of a whole number.

Prepared For: Ingersoll Rand	EUT: NGRE	LS Research, LLC
Report # 312105	Model #: 23685159	
LSR Job #: C-1463	Serial #: Engineering Sample	Page 13 of 27

RADIATED EMISSIONS TEST DATA CHART

Measurements of Electromagnetic Radiated Emissions Frequency Range Inspected: 30 MHz to 10000 MHz

Manufacturer:	Inger	Ingersoll Rand					
Date(s) of Test:	Augu	st 1-3, 2012					
Project Engineer:	Peter	· Feilen					
Test Engineer(s):	Peter	· Feilen					
Voltage:	6 VD	C					
Operation Mode:	Norm	al, Continuously Modula	ated N	/lode			
Environmental	Temperature: 71°F						
Conditions in the Lab:	Relative Humidity: 42 %						
EUT Power:		Single Phase 120 VAC	\mathcal{L}		3 Phase _	V	4C
EUT FOWEI.	Χ	Battery			Other:		
EUT Placement:	Χ	80cm non-conductive	table		10cm Space	cers	
EUT Test Location:	X 3 Meter Semi-Anechoic			3/10m OATS			
EGT Test Eccation:	FCC Listed Chamber			0/ TOTT			
Measurements:	Pre-Compliance		Prelir	ninary	Χ	Final	
Detectors Used:	Χ	Peak	Χ	Quas	i-Peak	Χ	Average

The following table depicts the level of radiated fundamental:

Frequency	Antenna	EUT	Height	Azimuth	Peak	Quasi-Peak	Limit	Margin
MHz			(m)	(0° - 360°)	(dBuV/m)	(dBuV/m)	(dBuV/m)	(dB)
908.4	V	v	1.41	347	87.0	86.7	94.0	7.3
908.4	h	V	1.25	300	82.6	82.2	94.0	13.3

The following table depicts the level of significant spurious radiated RF emissions (other than harmonics) found:

Frequency (MHz)	Height (m)	Azimuth (degree)	Quasi Peak Reading (dBμV/m)	Quasi Peak Limit (dBμV/m)	Margin (dB)	Antenna Polarity	EUT orientation
900.4	1.49	343	29.4	46.0	16.6	v	v
544.0	1.00	0	27.7	46.0	18.3	v	v
528.1	1.00	346	27.0	46.0	19.0	V	v
265.0	1.05	5	25.1	46.0	20.9	v	v
279.0	1.06	348	25.0	46.0	21.0	V	v
72.1	1.00	188	14.2	40.0	25.8	h	v

Frequency (GHz)	Height (m)	Azimuth (degree)	Peak Reading (dBμV/m)	Average Reading (dBµV/m)	Average Limit (dBμV/m)	Margin (dB)	Antenna Polarity	EUT orientation
1445.0	1.00	0	59.4	47.7	54.0	6.3	h	V

Note 1.: h= horizontal, v = vertical Note 2.: Worst case emissions reported.

Prepared For: Ingersoll Rand	EUT: NGRE	LS Research, LLC
Report # 312105	Model #: 23685159	
LSR Job #: C-1463	Serial #: Engineering Sample	Page 14 of 27

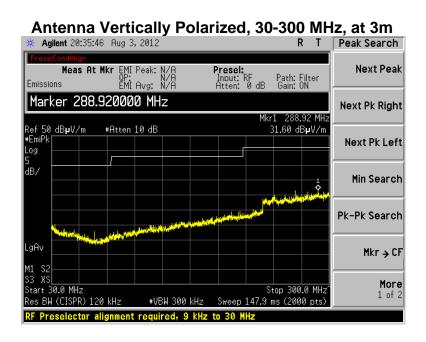
RADIATED EMISSIONS DATA CHARTS (continued)

The following tables depicts the level of harmonic emissions observed:

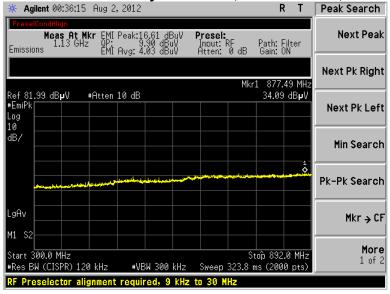
Frequency (MHz)	Height (m)	Azimuth (degree)	Peak Reading (dBµV/m)	Avg Reading (dBμV/m)	Avg Limit (dBμV/m)	Margin (dB)	Antenna Polarity	EUT orientation
1816.84	1.14	0	50.2	40.7	54.0	13.3	Horizontal	Vertical
2725.26	1.09	9	51.3	48.3	54.0	5.8	Horizontal	Vertical
3633.68	1.24	0	51.9	47.3	54.0	6.7	Horizontal	Vertical
4542.10	1.05	313	43.7	34.3	54.0	19.7	Horizontal	Vertical
5450.52	Note 1				63.5	-	Horizontal	Vertical
6358.94	Note 1				63.5	ı	Horizontal	Vertical
7267.36	Note 1				63.5	I	Horizontal	Vertical
8175.78	Note 1				63.5	ı	Horizontal	Vertical
9084.20	Note 1				63.5	-	Horizontal	Vertical

Frequency (MHz)	Height (m)	Azimuth (degree)	Peak Reading (dBµV/m)	Avg Reading (dBμV/m)	Avg Limit (dBμV/m)	Margin (dB)	Antenna Polarity	EUT orientation
1816.84	1.00	330	46.0	39.6	54.0	14.4	Vertical	Vertical
2725.26	1.00	312	48.8	44.6	54.0	9.5	Vertical	Vertical
3633.68	1.09	44	53.0	49.3	54.0	4.7	Vertical	Vertical
4542.10	1.08	358	42.3	31.2	54.0	22.8	Vertical	Vertical
5450.52	Note 1				63.5	ı	Vertical	Vertical
6358.94	Note 1				63.5	ı	Vertical	Vertical
7267.36	Note 1				63.5	-	Vertical	Vertical
8175.78	Note 1				63.5	-	Vertical	Vertical
9084.20	Note 1				63.5	-	Vertical	Vertical

Notes:


- 1) Measurement at receiver system noise floor.
- 2) A Peak Detector was used in measurements above 1 GHz, for average measurement, the peak detector was used with lower VBW. The peak detector was used to ensure the peak emissions did not exceed 20 dB above the limits.
- 3) Measurements above 5 GHz were made at 1 meter of separation from the EUT.

Prepared For: Ingersoll Rand	EUT: NGRE	LS Research, LLC
Report # 312105	Model #: 23685159	
LSR Job #: C-1463	Serial #: Engineering Sample	Page 15 of 27

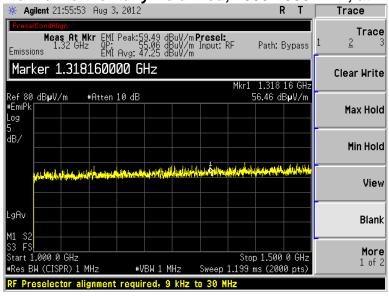

5.7 Screen Captures - Radiated Emissions Test - Transmitter

These screen captures represent Peak Emissions. For radiated emission measurements, a Quasi-Peak detector function is utilized when measuring frequencies below 1 GHz, and a peak detector with video averaging is utilized when measuring frequencies above 1 GHz.

The signature scans shown here are from worst-case emissions, as measured on one standard operating channel, with the sense antenna both in vertical and horizontal polarity for worst case presentations.

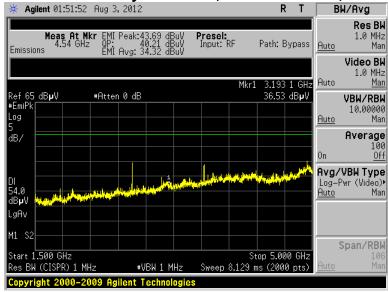
Prepared For: Ingersoll Rand	EUT: NGRE	LS Research, LLC
Report # 312105	Model #: 23685159	
LSR Job #: C-1463	Serial #: Engineering Sample	Page 16 of 27

Screen Captures - Radiated Emissions Testing (continued)

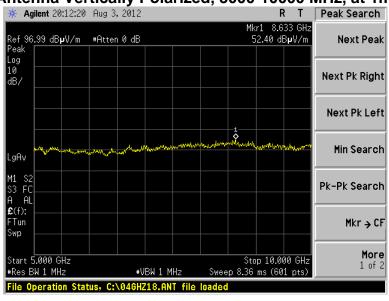

Antenna Vertically Polarized, 892-902 MHz, at 3m

Please see Exhibit 8

Antenna Horizontally Polarized, 928-1000 MHz, at 3m


Please see Exhibit 8

Antenna Horizontally Polarized, 1000-1500 MHz, at 1m

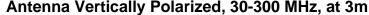


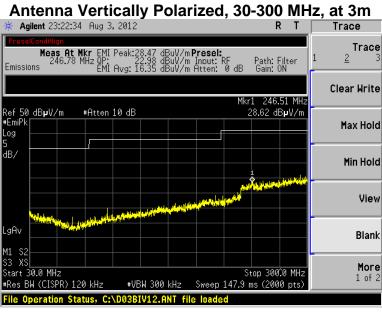
Prepared For: Ingersoll Rand	EUT: NGRE	LS Research, LLC
Report # 312105	Model #: 23685159	
LSR Job #: C-1463	Serial #: Engineering Sample	Page 17 of 27

Antenna Vertically Polarized, 1500-5000 MHz, at 1m

Antenna Vertically Polarized, 5000-10000 MHz, at 1m

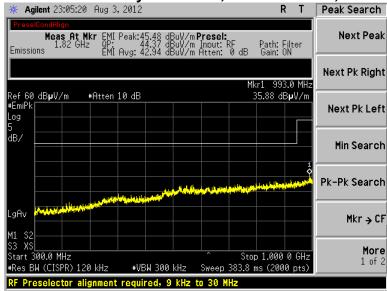
Prepared For: Ingersoll Rand	EUT: NGRE	LS Research, LLC
Report # 312105	Model #: 23685159	
LSR Job #: C-1463	Serial #: Engineering Sample	Page 18 of 27

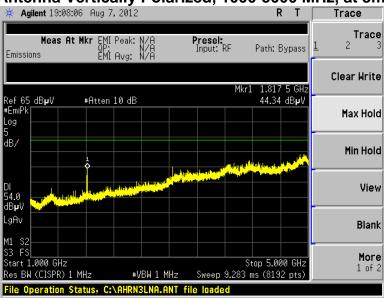

Radiated Emissions Test - Receiver


Refer to section 5.1-5.4 for test setup and details.

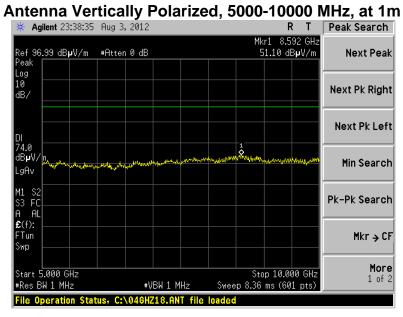
Test Data

Frequency (GHz)	Height (m)	Azimuth (degree)	Peak Reading (dBµV/m)	Average Reading (dBµV/m)	Average Limit (dBµV/m)	Margin (dB)	Antenna Polarity	EUT orientation
1817.2	1.21	10	45.5	42.7	54.0	11.3	h	v
1817.2	1.00	340	47.0	44.2	54.0	9.8	V	v


<u>5.9</u> **Screen Captures - Radiated Emissions Test - Receiver**



Prepared For: Ingersoll Rand	EUT: NGRE	LS Research, LLC
Report # 312105	Model #: 23685159	
LSR Job #: C-1463	Serial #: Engineering Sample	Page 19 of 27


Antenna Vertically Polarized, 300-1000 MHz, at 3m

Antenna Vertically Polarized, 1000-5000 MHz, at 3m

Prepared For: Ingersoll Rand	EUT: NGRE	LS Research, LLC
Report # 312105	Model #: 23685159	
LSR Job #: C-1463	Serial #: Engineering Sample	Page 20 of 27

Prepared For: Ingersoll Rand	EUT: NGRE	LS Research, LLC
Report # 312105	Model #: 23685159	
LSR Job #: C-1463	Serial #: Engineering Sample	Page 21 of 27

EXHIBIT 6. CONDUCTED EMISSIONS TEST, AC POWER LINE

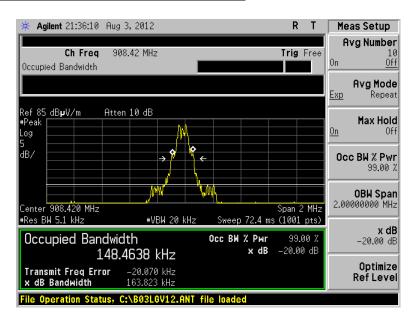
This test is not applicable for a battery-only operated device and was therefore not tested.

Prepared For: Ingersoll Rand	EUT: NGRE	LS Research, LLC
Report # 312105	Model #: 23685159	
LSR Job #: C-1463	Serial #: Engineering Sample	Page 22 of 27

EXHIBIT 7. OCCUPIED BANDWIDTH:

7.1 Limits

There are no limits specified. The occupied bandwidth need only be reported.


7.2 Method of Measurements

This test was performed radiated in a 3-meter semi-anechoic chamber. The resolution bandwidth was then set to a value that was greater than or equal to 1% of the bandwidth. Using the 20dBc and 99% Occupied Bandwidth measurement function of the spectrum analyzer, the bandwidth was measured.

7.3 Test Data

Center	Measured	Measured		
Frequency	99% Occ.Bw	-20 dBc Occ.Bw		
(MHz)	(kHz)	(kHz)		
908.42	148.46	163.82		

7.4 Screen Captures - OCCUPIED BANDWIDTH

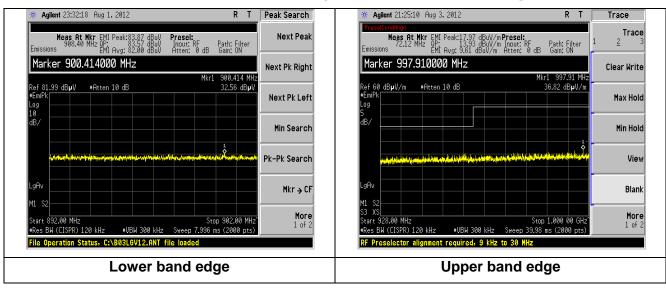

Prepared For: Ingersoll Rand	EUT: NGRE	LS Research, LLC
Report # 312105	Model #: 23685159	
LSR Job #: C-1463	Serial #: Engineering Sample	Page 23 of 27

EXHIBIT 8. BAND-EDGE MEASUREMENTS

8.1 Method of Measurements

FCC 15.249(d) require a measurement of spurious emission levels to be at least 20 dB lower than the fundamental emission level, in particular at the Band-Edges where the intentional radiator operates. Also, RSS 210 Section 2.2 requires that unwanted emissions meet limits listed in tables 2 and 3 of the same standard and also to the limits in the applicable annex. The following screen captures demonstrate compliance of the intentional radiator at the 902-928 MHz Band-Edges. The EUT was operated in continuous transmit mode with continuous modulation, with internally generated data as the modulating source. The EUT was operated at the lowest channel for the investigation of the lower Band-Edge, and at the highest channel for the investigation of the higher Band-Edge.

Screen Capture Demonstrating Compliance at the Band-Edges

Prepared For: Ingersoll Rand	EUT: NGRE	LS Research, LLC
Report # 312105	Model #: 23685159	
LSR Job #: C-1463	Serial #: Engineering Sample	Page 24 of 27

APPENDIX A

EQUIPMENT LIST

Date : 1-Aug-2012	Type Test:	Radiated Output power	Job#:	C-1463
Prepared By: Peter	Customer:	Ingersoll Rand	Quote #:	312105

No.	Asset#	Description	Manufacturer	Model#	Serial#	Cal Date	Cal Due Date	Equipment Status
1	EE 960158	RF Preselecter	Agilent	N9039A	MY46520110	6/29/2012	6/29/2013	Active Calibration
2	EE 960157	100kHz-1GHz Analog Signal Generator	Agilent	N5181A	MY49060062	6/30/2012	6/30/2013	Active Calibration
3	EE 960156	100kHz-1GHz Analog Signal Generator	Agilent	N5181A	MY49060062	6/30/2012	6/30/2013	Active Calibration
4	AA 960078	Log Periodic Antenna	EMCO	93146	9701-4855	11/15/2011	11/15/2012	Active Calibration

Project Engineer: Peter Fisher Quality Assurance:

 Date : 1-Aug-2012
 Type Test : Radiated Spurious Emissions
 Job # : C-1463

 Prepared By: Peter
 Customer : Ingersoll Rand
 Quote #: 312105

No.	Asset#	Description	Manufacturer	Model#	Serial#	Cal Date	Cal Due Date	Equipment Status
1	EE 960156	100kHz-1GHz Analog Signal Generator	Agilent	N5181A	MY49060062	6/30/2012	6/30/2013	Active Calibration
2	EE 960157	3Hz-13.2GHz Spectrum Analyzer	Agilent	E4445A	MY48250225	6/29/2012	6/29/2013	Active Calibration
3	EE 960158	RF Preselecter	Agilent	N9039A	MY46520110	6/29/2012	6/29/2013	Active Calibration
4	AA 960005	Biconical Antenna	EMCO	93110B	9601-2280	6/26/2012	6/26/2013	Active Calibration
5	AA 960078	Log Periodic Antenna	EMCO	93146	9701-4855	11/15/2011	11/15/2012	Active Calibration
6	AA 960155	900MHz High Pass Filter	KWM	HPF-L-14185	7272-03	3/5/2012	3/5/2013	Active Calibration
7	AA 960081	Double Ridge Horn Antenna	EMCO	3115	6907	1/6/2012	1/6/2013	Active Calibration
8	EE 960147	Pre-Amp	Adv. Micro	WLA612	123101	1/6/2012	1/6/2013	Active Calibration
9	AA 960007	Double Ridge Horn Antenna	EMCO	3115	9311-4138	5/16/2012	5/16/2013	Active Calibration
10	EE 960160	0.8-21GHz LNA	Mini-Circuits	ZVA-213X-S+	977711030	5/16/2012	5/16/2013	Active Calibration

Project Engineer: Peter Fielen Quality Assurance:

 Date:
 1-Aug-2012
 Type Test:
 Occupied Bandwidth (6dB & 20dB)
 Job #:
 C-1463

 Prepared By:
 Peter
 Customer:
 Ingersoll Rand
 Quote #:
 312105

No.	Asset#	Description	Manufacturer	Model#	Serial#	Cal Date	Cal Due Date	Equipment Status
1	AA 960078	Log Periodic Antenna	EMCO	93146	9701-4855	11/15/2011	11/15/2012	Active Calibration
2	EE 960156	100kHz-1GHz Analog Signal Generator	Agilent	N5181A	MY49060062	6/30/2012	6/30/2013	Active Calibration
3	EE 960157	3Hz-13.2GHz Spectrum Analyzer	Agilent	E4445A	MY48250225	6/29/2012	6/29/2013	Active Calibration
4	EE 960158	RF Preselecter	Agilent	N9039A	MY46520110	6/29/2012	6/29/2013	Active Calibration

Project Engineer: lette Fishen Quality Assurance:

Prepared For: Ingersoll Rand	EUT: NGRE	LS Research, LLC
Report # 312105	Model #: 23685159	
LSR Job #: C-1463	Serial #: Engineering Sample	Page 25 of 27

<u>APPENDIX B</u> <u>TEST STANDARDS – CURRENT PUBLICATION DATES RADIO</u>

STANDARD#	DATE	Am. 1	Am. 2
ANSI C63.4	2003		
RSS GEN	2007-06		
RSS 210	2007-06		
FCC 47 CFR, Parts 0-15,			
18, 90, 95	2009		

Prepared For: Ingersoll Rand	EUT: NGRE	LS Research, LLC
Report # 312105	Model #: 23685159	
LSR Job #: C-1463	Serial #: Engineering Sample	Page 26 of 27

APPENDIX C Uncertainty Statement

This uncertainty represents an expanded uncertainty expressed at approximately the 95 % confidence level, using a coverage factor of k=2.

Table of Expanded Uncertainty Values, (K=2) for Specified Measurements

Measurement Type	Particular Configuration	Uncertainty Values
Radiated Emissions	3 – Meter chamber, Biconical Antenna	4.82 dB
	3-Meter Chamber, Log Periodic	
Radiated Emissions	Antenna	4.88 dB
Radiated Emissions	3-Meter Chamber, Horn Antenna	4.85 dB
Radiated Emissions	10-Meter OATS, Biconical Antenna	4.32 dB
Radiated Emissions	10-Meter OATS, Log Periodic Antenna	3.63 dB
Absolute Conducted Emissions	Agilent PSA/ESA Series	1.38 dB
AC Line Conducted Emissions	Shielded Room/EMCO LISN	3.20 dB
Radiated Immunity	3 Volts/Meter in 3-Meter Chamber	2.05 Volts/Meter
Conducted Immunity	3 Volts level	2.33 V
EFT Burst, Surge, VDI	230 VAC	54.4 V
ESD Immunity	Discharge at 15kV	3200 V
Temperature/Humidity	Thermo-hygrometer	0.64° / 2.88 %RH

Prepared For: Ingersoll Rand	EUT: NGRE	LS Research, LLC
Report # 312105	Model #: 23685159	
LSR Job #: C-1463	Serial #: Engineering Sample	Page 27 of 27