# RF TEST REPORT **Applicant** Tabletop Media, LLC d/b/a Ziosk FCC ID XOX-ZPRO600 **Product** Payment Tablet **Brand** Ziosk Model Z600 Pro **Report No.** R2106A0508-R1 Issue Date August 6, 2021 TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **FCC CFR47 Part 15C (2020)**. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report. Prepared by: Peng Tao Approved by: Kai Xu TA Technology (Shanghai) Co., Ltd. No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000 # **TABLE OF CONTENT** | 1. Te | est Laboratory | ∠ | |-------|--------------------------------------------|----| | 1.1. | Notes of the test report | | | 1.2. | Test facility | | | 1.3. | Testing Location | | | 2. Ge | eneral Description of Equipment under Test | 5 | | 2.1. | Applicant and Manufacturer Information | | | 2.2. | General information | | | 3. Ap | oplied Standards | 6 | | - | est Configuration | | | | est Case Results | | | 5.1. | Maximum output power | | | 5.2. | 99% Bandwidth and 6dB Bandwidth | | | 5.3. | Band Edge | 18 | | 5.4. | Power Spectral Density | 21 | | 5.5. | Spurious RF Conducted Emissions | | | 5.6. | Unwanted Emission | 40 | | 5.7. | Conducted Emission | 71 | | 6. Ma | ain Test Instruments | 74 | | ANNE | X A: The EUT Appearance | 75 | | | X B: Test Setup Photos | | # **Summary of measurement results** | Number | Test Case | Clause in FCC rules | Verdict | |--------|---------------------------------|-------------------------|---------| | 1 | Maximum output power | 15.247(b)(3) | PASS | | 2 | 6 dB bandwidth | 15.247(a)(2) | PASS | | 3 | Power spectral density | 15.247(e) | PASS | | 4 | Band Edge | 15.247(d) | PASS | | 5 | Spurious RF Conducted Emissions | 15.247(d) | PASS | | 6 | Unwanted Emissions | 15.247(d),15.205,15.209 | PASS | | 7 | Conducted Emissions | 15.207 | PASS | Date of Testing: July 1, 2021 ~August 3, 2021 Date of Sample Received: June 28, 2021 Note: All indications of Pass/Fail in this report are opinions expressed by TA Technology (Shanghai) Co., Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. 1. Test Laboratory 1.1. Notes of the test report This report shall not be reproduced in full or partial, without the written approval of TA technology (shanghai) co., Ltd. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein . Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above. 1.2. Test facility FCC (Designation number: CN1179, Test Firm Registration Number: 446626) TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform measurements. A2LA (Certificate Number: 3857.01) TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform measurement. 1.3. Testing Location Company: TA Technology (Shanghai) Co., Ltd. Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong City: Shanghai Post code: 201201 Country: P. R. China Contact: Xu Kai Telephone: +86-021-50791141/2/3 Fax: +86-021-50791141/2/3-8000 Website: http://www.ta-shanghai.com E-mail: xukai@ta-shanghai.com # 2. General Description of Equipment under Test # 2.1. Applicant and Manufacturer Information | Applicant | Tabletop Media, LLC d/b/a Ziosk | | |----------------------------------------------|------------------------------------------------------|--| | Applicant address | 12404 park central drive, suite 350 Dallas, TX 75251 | | | N. A. S. | SHANGHAI XIANGCHENG COMMUNICATION TECHNOLOGY | | | Manufacturer | CO.,LTD | | | Manufacturer address | ROOM 401,BUILDING 5,No.3000 LONGDONG | | | Manufacturer address | AVENUE,SHANGHAI CHINA | | # 2.2. General information | EUT Description | | | | |-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|--| | Model | Z600 Pro | | | | Lab internal SN | R2106A0508/S01 | | | | Hardware Version | V1.0A | | | | Software Version | 1.0 | | | | Power Supply | External power supply | | | | Antenna Type | Internal Antenna | | | | Antenna Connector | A permanently attached antenna (meet with the standard FCC Part 15.203 requirement) | | | | Antenna Gain | 3dBi | | | | additional beamforming gain | NA | | | | Test Mode | 802.802.11b, 802.802.11g, 802.11n(HT20)<br>Bluetooth LE V5.0 | | | | Modulation Type | 802.802.11b: DSSS<br>802.802.11g/n(HT20): OFDM<br>Bluetooth LE: GFSK | | | | Max. Conducted Power | Wi-Fi 2.4G: 17.82dBm<br>Bluetooth LE: -0.91dBm | | | | Operating Frequency Range(s) | 802.802.11b/g/n(HT20): 2412 ~ 2462 MHz<br>Bluetooth LE: 2402 ~2480 MHz | | | | Note: 1. The EUT is sent from the applicant to TA and the information of the EUT is declared by | | | | the applicant. TA-MB-04-005R TA Technology (Shanghai) Co., Ltd. Page 5 of 76 # 3. Applied Standards According to the specifications of the manufacturer, it must comply with the requirements of the following standards: Test standards: FCC CFR47 Part 15C (2020) Radio Frequency Devices ANSI C63.10 (2013) Reference standard: KDB 558074 D01 15.247 Meas Guidance v05r02 # 4. Test Configuration # **Test Mode** The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. The radiated emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in lie-down position (X axis) and the loop antenna is vertical, the others are vertical and horizontal. and the worst case was recorded. In order to find the worst case condition, Pre-tests are needed at the presence of different data rate. Preliminary tests have been done on all the configuration for confirming worst case. Data rate below means worst-case rate of each test item. Worst-case data rates are shown as following table. | Test Mode | Data Rate | |-----------------------|-------------| | Bluetooth(Low Energy) | 1Mbps,2Mbps | | 802.802.11b | 1 Mbps | | 802.802.11g | 6 Mbps | | 802.11n HT20 | MCS0 | # 5. Test Case Results # 5.1. Maximum output power #### Ambient condition | Temperature | Relative humidity | Pressure | | |-------------|-------------------|----------|--| | 23°C ~25°C | 45%~50% | 101.5kPa | | ### **Methods of Measurement** During the process of the testing, The EUT was connected to Power meter with a known loss. The EUT is max power transmission with proper modulation. # **Test Setup** #### Limits Rule Part 15.247 (b) (3) specifies that "For systems using digital modulation in the 902–928 MHz, 2400-2483.5 MHz: 1 Watt." | Average Output Power | ≤ 1W (30dBm) | |----------------------|--------------| |----------------------|--------------| # **Measurement Uncertainty** The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 0.44 dB. ### **Test Results** | Power Index | | | | | | |----------------------------------------------|----|------|------|--|--| | Channel 802.802.11b 802.802.11g 802.11n HT20 | | | | | | | CH1 | 17 | 16 | 14 | | | | CH6 | 17 | 17.5 | 17.5 | | | | CH11 | 17 | 16 | 14 | | | | Test Mode | T <sub>on</sub> (ms) | T <sub>(on+off)</sub> (ms) | Duty cycle | Duty cycle correction<br>Factor(dB) | |-------------------------------------------------------------------------|----------------------|----------------------------|------------|-------------------------------------| | 802.802.11b | 8.38 | 8.42 | 1.00 | NA | | 802.802.11g | 1.39 | 1.44 | 0.97 | 0.15 | | 802.11n HT20 | 1.3 | 1.34 | 0.97 | 0.13 | | Bluetooth LE (1M) | 2.12 | 2.50 | 0.848 | 0.716 | | Bluetooth LE (2M) | 1.07 | 1.87 | 0.571 | 2.437 | | Note: when Duty cycle ≥0.98, Duty cycle correction Factor not required. | | | | | **Average Power Average Power Carrier frequency** Limit **Test Mode** with duty factor Measured Conclusion (MHz) (dBm) (dBm) (dBm) 17.61 **PASS** 2412 17.61 30 802.802.11b 2437 17.32 17.32 30 **PASS** 2462 17.4 17.40 **PASS** 30 2412 16.24 **PASS** 16.39 30 802.802.11g 2437 17.67 17.82 **PASS** 30 2462 15.97 16.12 30 **PASS** 2412 13.92 14.05 30 **PASS** 802.11n 2437 17.51 17.64 30 PASS HT20 2462 13.95 14.08 30 **PASS** 2402 -2.14 -1.42 30 **PASS** Bluetooth (Low Energy) 2440 -1.77 -1.05 30 **PASS** (1M) **PASS** 2480 -1.63 -0.91 30 2402 -3.92 -1.48 30 **PASS** Bluetooth (Low Energy) 2440 -3.42 -0.98 30 **PASS** (2M) -3.39 **PASS** 2480 -0.95 30 Note: Average Power with duty factor = Average Power Measured +Duty cycle correction factor TA Technology (Shanghai) Co., Ltd. TA-MB-04-005R Page 9 of 76 5.2. 99% Bandwidth and 6dB Bandwidth #### **Ambient condition** | Temperature | Relative humidity | Pressure | |-------------|-------------------|----------| | 23°C ~25°C | 45%~50% | 101.5kPa | Report No.: R2106A0508-R1 #### **Method of Measurement** The EUT was connected to the spectrum analyzer through an external attenuator (20dB) and a known loss cable. RBW is set to 100 kHz; VBW is set to 300 kHz on spectrum analyzer. Dector=Peak, Trace mode=max hold. The EUT was connected to the spectrum analyzer through a known loss cable. The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / x dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. ### **Test Setup** ### Limits Rule Part 15.247 (a) (2) specifies that "Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz." # **Measurement Uncertainty** The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 936 Hz. # **Test Results:** | Test Mode | Carrier frequency<br>(MHz) | 99%<br>bandwidth<br>(MHz) | Minimum 6 dB<br>bandwidth<br>(MHz) | Limit<br>(kHz) | Conclusion | |-----------------|----------------------------|---------------------------|------------------------------------|----------------|------------| | | 2412 | 12.851 | 7.640 | 500 | PASS | | 802.11b | 2437 | 12.855 | 8.120 | 500 | PASS | | | 2462 | 12.845 | 8.120 | 500 | PASS | | | 2412 | 17.008 | 15.800 | 500 | PASS | | 802.11g | 2437 | 16.937 | 15.840 | 500 | PASS | | | 2462 | 17.038 | 13.880 | 500 | PASS | | | 2412 | 17.888 | 14.840 | 500 | PASS | | 802.11n<br>HT20 | 2437 | 17.966 | 15.720 | 500 | PASS | | 20 | 2462 | 17.928 | 15.760 | 500 | PASS | | Bluetooth | 2402 | 1.052 | 0.672 | 500 | PASS | | (Low Energy) | 2440 | 1.040 | 0.724 | 500 | PASS | | (1M) | 2480 | 1.043 | 0.668 | 500 | PASS | | Bluetooth | 2402 | 2.101 | 1.156 | 500 | PASS | | (Low Energy) | 2440 | 2.099 | 1.176 | 500 | PASS | | (2M) | 2480 | 2.104 | 1.156 | 500 | PASS | # 99%bandwidth 802.11b, Carrier frequency (MHz): 2412 802.11g, Carrier frequency (MHz): 2412 802.11b, Carrier frequency (MHz): 2437 802.11g, Carrier frequency (MHz): 2437 802.11b, Carrier frequency (MHz):2462 802.11g, Carrier frequency (MHz):2462 802.11n(HT20), Carrier frequency (MHz): 2437 802.11n(HT20), Carrier frequency (MHz):2462 # Bluetooth LE (1M) Carrier frequency (MHz): 2402 Bluetooth LE (2M) Carrier frequency (MHz): 2402 Bluetooth LE (1M) Carrier frequency (MHz): 2440 Bluetooth LE (2M) Carrier frequency (MHz): 2440 Bluetooth LE (1M) Carrier frequency (MHz): 2480 Bluetooth LE (2M) Carrier frequency (MHz): 2480 TA Technology (Shanghai) Co., Ltd. TA-MB-04-005R This report shall not be reproduced except in full, without the written approval of TA Technology (Shanghai) Co., Ltd. ### 6 dB bandwidth 802.11b, Carrier frequency (MHz): 2412 802.11g, Carrier frequency (MHz): 2412 802.11b, Carrier frequency (MHz): 2437 802.11g, Carrier frequency (MHz): 2437 802.11b, Carrier frequency (MHz):2462 802.11g, Carrier frequency (MHz):2462 802.11n(HT20), Carrier frequency (MHz): 2437 802.11n(HT20), Carrier frequency (MHz):2462 # Bluetooth LE (1M) Carrier frequency (MHz): 2402 Bluetooth LE (2M) Carrier frequency (MHz): 2402 Bluetooth LE (1M) Carrier frequency (MHz): 2440 Bluetooth LE (2M) Carrier frequency (MHz): 2440 Bluetooth LE (1M) Carrier frequency (MHz): 2480 Bluetooth LE (2M) Carrier frequency (MHz): 2480 TA Technology (Shanghai) Co., Ltd. TA-MB-04-005R This report shall not be reproduced except in full, without the written approval of TA Technology (Shanghai) Co., Ltd. # 5.3. Band Edge #### **Ambient condition** | Temperature | Relative humidity | Pressure | |-------------|-------------------|----------| | 23°C ~25°C | 45%~50% | 101.5kPa | #### **Method of Measurement** The EUT was connected to the spectrum analyzer through an external attenuator (20dB) and a known loss cable the band edge of the lowest and highest channels were measured. The peak detector is used and RBW is set to 100 kHz and VBW is set to 300 kHz on spectrum analyzer. Spectrum analyzer plots are included on the following pages. #### **Test Setup** ### Limits Rule Part 15.247(d) specifies that "In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits." If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB." ### **Measurement Uncertainty** The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96. | Frequency | Uncertainty | |-----------|-------------| | 2GHz-3GHz | 1.407 dB | # **Test Results: PASS** FTest Report Report No.: R2106A0508-R1 # 5.4. Power Spectral Density #### **Ambient condition** | Temperature | Relative humidity | Pressure | |-------------|-------------------|----------| | 23°C ~25°C | 45%~50% | 101.5kPa | #### **Method of Measurement** During the process of the testing, The EUT was connected to Spectrum Analyzer with a known loss. Method AVGPSD-2 was used for this test. - a) Measure the duty cycle(D)of the transmitter output signal as described in 11.6 - b) Set instrument center frequency to DTS channel center frequency - c)Set span to at least 1.5 times the OBW - d) Set RBW to:3kHz≤RBW≤100Kh - e) Set VBW ≥ [3x RBW] - f )Detector= power averaging(rms) or sample detector (when rms not available) - g) Ensure that the number of measurement points in the sweep 2[2 X span/RBW] - h) Sweep time =auto couple - i) Do not use sweep triggering; allow sweep to "free run" - j) Employ trace averaging(rms) mode over a minimum of 100 traces - k) Use the peak marker function to determine the maximum amplitude level - I) Add [10 log(1/ D)], where D is the duty cycle measured in step a), to the measured PSD to compute the average PSD during the actual transmission time - m) If measured value exceeds requirement specified by regulatory agency then reduce RBW(but o less than 3 kHz) and repeat(note that this may require zooming in on the emission of interest and reducing the span to meet the minimum measurement point requirement as the RBW is reduced) #### **Test setup** # Limits Rule Part 15.247(e) specifies that" For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. " # **Measurement Uncertainty** The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 0.75dB. #### Test Results | Test Mode | Channel<br>Number | Read Value<br>(dBm / 3kHz) | Power Spectral<br>Density<br>(dBm / 3kHz) | Limit<br>(dBm / 3kHz) | Conclusion | |-----------------|-------------------|----------------------------|-------------------------------------------|-----------------------|------------| | | 1 | -13.83 | -13.83 | 8 | PASS | | 802.11b | 6 | -14.15 | -14.15 | 8 | PASS | | | 11 | -13.72 | -13.72 | 8 | PASS | | | 1 | -17.11 | -16.96 | 8 | PASS | | 802.11g | 6 | -16.05 | -15.90 | 8 | PASS | | | 11 | -17.80 | -17.65 | 8 | PASS | | | 1 | -19.91 | -19.78 | 8 | PASS | | 802.11n<br>HT20 | 6 | -16.19 | -16.06 | 8 | PASS | | = | 11 | -20.00 | -19.87 | 8 | PASS | | Bluetooth | 0 | -23.85 | -23.14 | 8 | PASS | | (Low Energy) | 19 | -22.98 | -22.27 | 8 | PASS | | (1M) | 39 | -22.83 | -22.11 | 8 | PASS | | Bluetooth | 0 | -28.14 | -25.70 | 8 | PASS | | (Low Energy) | 19 | -26.94 | -24.50 | 8 | PASS | | (2M) | 39 | -27.01 | -24.58 | 8 | PASS | Note: 1.Power Spectral Density =Read Value+Duty cycle correction factor 2.Result[dBm/3kHz]= Result[dBm/30kHz]-10lg(30/3) 802.11g, Channel No.: 1 802.11b, Channel No.: 6 802.11g, Channel No.: 6 802.11b, Channel No.: 11 802.11g, Channel No.: 11 # 802.11n(HT20), Channel No. 11 # 5.5. Spurious RF Conducted Emissions #### **Ambient condition** | Temperature | Relative humidity | Pressure | |-------------|-------------------|----------| | 23°C ~25°C | 45%~50% | 101.5kPa | #### **Method of Measurement** The EUT was connected to the spectrum analyzer with a known loss. The spectrum analyzer scans from 30MHz to the 10th harmonic of the carrier. The peak detector is used. Set RBW to 100 kHz and VBW to 300 kHz, Sweep is set to ATUO. The test is in transmitting mode. ### **Test setup** #### Limits Rule Part 15.247(d) pacifies that "In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB." | Test Mode | Carrier frequency<br>(MHz) | Reference value (dBm) | Limit | |-----------------|----------------------------|-----------------------|--------| | | 2412 | 9.00 | -21.00 | | 802.11b | 2437 | 9.30 | -20.70 | | | 2462 | 9.37 | -20.63 | | 802.11g | 2412 | 7.22 | -22.78 | | | 2437 | 6.90 | -23.10 | | | 2462 | 5.76 | -24.24 | | 000 115 | 2412 | 3.84 | -26.16 | | 802.11n<br>HT20 | 2437 | 7.12 | -22.88 | | | 2462 | 3.87 | -26.13 | | Bluetooth | 2402 | -2.18 | -32.18 | | (Low Energy) | 2440 | -0.85 | -30.85 | | (1M) | 2480 | -1.24 | -31.24 | TA Technology (Shanghai) Co., Ltd. TA-MB-04-005R Page 27 of 76 | Bluetooth | 2402 | -2.22 | -32.22 | | |--------------|------|-------|--------|--| | (Low Energy) | 2440 | -4.02 | -34.02 | | | (2M) | 2480 | -1.93 | -31.93 | | # **Measurement Uncertainty** The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96. | Frequency | Uncertainty | |-------------|-------------| | 100kHz-2GHz | 0.684 dB | | 2GHz-26GHz | 1.407 dB | ### **Test Results:** # 802.11b\_2412\_1000~26500 ### 802.11b\_2437\_0~Reference 802.11b\_2437\_30~1000 # 802.11b\_2437\_1000~26500 ### 802.11b\_2462\_0~Reference 802.11b\_2462\_30~1000 # 802.11b\_2462\_1000~26500 ### 802.11g\_2412\_0~Reference 802.11g\_2412\_30~1000 # 802.11g\_2412\_1000~26500 ### 802.11g\_2437\_0~Reference 802.11g\_2437\_30~1000 # 802.11g\_2437\_1000~26500 ### 802.11g\_2462\_0~Reference 802.11g\_2462\_30~1000 # 802.11g\_2462\_1000~26500 ### 802.11n HT20\_2412\_0~Reference 802.11n HT20\_2412\_30~1000 # 802.11n HT20\_2412\_1000~26500 ### 802.11n HT20\_2437\_0~Reference 802.11n HT20\_2437\_30~1000 ### 802.11n HT20\_2437\_1000~26500 ### 802.11n HT20\_2462\_0~Reference 802.11n HT20\_2462\_30~1000 Report No.: R2106A0508-R1 ### 5.6. Unwanted Emission #### **Ambient condition** | Temperature | Relative humidity | Pressure | |-------------|-------------------|----------| | 23°C ~25°C | 45%~50% | 102.5kPa | #### **Method of Measurement** The test set-up was made in accordance to the general provisions of ANSI C63.10. The Equipment Under Test (EUT) was set up on a non-conductive table in the semi-anechoic chamber. The test was performed at the distance of 3 m between the EUT and the receiving antenna. The turntable shall be rotated from 0 to 360 degrees for detecting the maximum of radiated spurious signal level. The measurements shall be repeated with orthogonal polarization of the test antenna. The data of cable loss and antenna factor has been calibrated in full testing frequency range before the testing. Sweep the Restricted Band and the emissions less than 20 dB below the permissible value are reported. The radiated emissions measurements were made in a typical installation configuration. Sweep the whole frequency band through the range from 9 kHz to the 10th harmonic of the carrier, and the emissions less than 20 dB below the permissible value are reported. This method refer to ANSI C63.10. The procedure for peak unwanted emissions measurements above 1000 MHz is as follows: Set the spectrum analyzer in the following: 9kHz~150 kHz RBW=200Hz, VBW=1kHz/ Sweep=AUTO 150 kHz~30MHz RBW=9KHz, VBW=30KHz,/ Sweep=AUTO Below 1GHz RBW=100kHz / VBW=300kHz / Sweep=AUTO a) Peak emission levels are measured by setting the instrument as follows: Above 1GHz PEAK: RBW=1MHz VBW=3MHz/ Sweep=AUTO b) Average emission levels are measured by setting the instrument as follows: Above 1GHz AVERAGE: RBW=1MHz / VBW=3MHz / Sweep=AUTO - c) Detector: The measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. - d) Averaging type = power (i.e., rms) (As an alternative, the detector and averaging type may be set for linear voltage averaging. Some instruments require linear display mode to use linear voltage averaging. Log or dB averaging shall not be used.) - e) Sweep time = auto. - f) Perform a trace average of at least 100 traces if the transmission is continuous. If the transmission is not continuous, then the number of traces shall be increased by a factor of 1 / D, where D is the duty cycle. For example, with 50% duty cycle, at least 200 traces shall be averaged. (If a specific emission is demonstrated to be continuous—i.e., 100% duty cycle—then rather than turning ON and OFF with the transmit cycle, at least 100 traces shall be averaged.) - g) If tests are performed with the EUT transmitting at a duty cycle less than 98%, then a correction factor shall be added to the measurement results prior to comparing with the emission limit, to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows: - 1) If power averaging (rms) mode was used in the preceding step e), then the correction factor is [10 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 3 dB shall be added to the measured emission levels. - 2) If linear voltage averaging mode was used in the preceding step e), then the correction factor is [20 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 6 dB shall be added to the measured emission levels. - 3) If a specific emission is demonstrated to be continuous (100% duty cycle) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission. The test is in transmitting mode. Test setup 9KHz ~ 30MHz ### 30MHz ~ 1GHz ### **Above 1GHz** Note: Area side:2.4mX3.6m ### Limits Rule Part 15.247(d) specifies that "In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c))." Limit in restricted band | Frequency of emission (MHz) | Field strength(uV/m) | Field strength(dBuV/m) | |-----------------------------|----------------------|------------------------| | 0.009-0.490 | 2400/F(kHz) | 1 | | 0.490–1.705 | 24000/F(kHz) | 1 | | 1.705–30.0 | 30 | 1 | | 30-88 | 100 | 40 | | 88-216 | 150 | 43.5 | | 216-960 | 200 | 46 | | Above960 | 500 | 54 | TA Technology (Shanghai) Co., Ltd. TA-MB-04-005R Page 42 of 76 §15.35(b) There is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit. Peak Limit=74 dBuV/m Average Limit=54 dBuV/m Spurious Radiated Emissions are permitted in any of the frequency bands listed below: | MHz | MHz | MHz | GHz | |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------| | 0.090 - 0.110<br>10.495 - 0.505<br>2.1735 - 2.1905<br>4.125 - 4.128<br>4.17725 - 4.17775<br>4.20725 - 4.20775<br>6.215 - 6.218<br>6.26775 - 6.26825 | MHz<br>16.42 - 16.423<br>16.69475 - 16.69525<br>16.80425 - 16.80475<br>25.5 - 25.67<br>37.5 - 38.25<br>73 - 74.6<br>74.8 - 75.2<br>108 - 121.94 | MHz 399.9 - 410 608 - 614 960 - 1240 1300 - 1427 1435 - 1626.5 1645.5 - 1646.5 1660 - 1710 1718.8 - 1722.2 | 4.5 - 5.15<br>5.35 - 5.46<br>7.25 - 7.75<br>8.025 - 8.5<br>9.0 - 9.2<br>9.3 - 9.5<br>10.6 - 12.7<br>13.25 - 13.4 | | 6.20775 - 6.20825<br>6.31175 - 6.31225<br>8.291 - 8.294<br>8.362 - 8.366<br>8.37625 - 8.38675<br>8.41425 - 8.41475<br>12.29 - 12.293<br>12.51975 - 12.52025<br>12.57675 - 12.57725<br>13.36 - 13.41 | 123 - 138<br>149.9 - 150.05<br>156.52475 - 156.52525<br>156.7 - 156.9<br>162.0125 - 167.17<br>167.72 - 173.2<br>240 - 285<br>322 - 335.4 | 2200 - 2300<br>2310 - 2390<br>2483.5 - 2500<br>2690 - 2900<br>3260 - 3267<br>3332 - 3339<br>3345.8 - 3358<br>3600 - 4400 | 15.25 - 15.4<br>14.47 - 14.5<br>15.35 - 16.2<br>17.7 - 21.4<br>22.01 - 23.12<br>23.6 - 24.0<br>31.2 - 31.8<br>36.43 - 36.5<br>( <sup>2</sup> ) | ### **Measurement Uncertainty** The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96. | Frequency | Uncertainty | |---------------|-------------| | 9KHz-30MHz | 3.55 dB | | 30MHz-200MHz | 4.17 dB | | 200MHz-1GHz | 4.84 dB | | 1-18GHz | 4.35 dB | | 18-26.5GHz | 5.90 dB | | 26.5GHz~40GHz | 5.92 dB | TA Technology (Shanghai) Co., Ltd. TA-MB-04-005R Report No.: R2106A0508-R1 ### **Test Results:** #### Result of RE #### Test result Sweep the whole frequency band through the range from 9kHz to the 10th harmonic of the carrier, the Emissions in the frequency band 9kHz-30MHz and 18GHz-26.5GHz are more than 20dB below the limit are not reported. The following graphs display the maximum values of horizontal and vertical by software. For above 1GHz, Blue trace uses the peak detection, Green trace uses the average detection. During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes with all channels, 802.11b CH6 are selected as the worst condition. The test data of the worst-case condition was recorded in this report. A font (Level in $dB\mu V/m$ ) in the test plot =(level in $dB \mu V/m$ ) #### Continuous TX mode: Radiates Emission from 30MHz to 1GHz | Frequency<br>(MHz) | Quasi-Peak<br>(dBuV/m) | Height (cm) | Polarization | Azimuth (deg) | Correct<br>Factor (dB) | Margin<br>(dB) | Limit<br>(dBuV/m) | |--------------------|------------------------|-------------|--------------|---------------|------------------------|----------------|-------------------| | 48.917500 | 18.93 | 100.0 | V | 33.0 | -5.0 | 21.07 | 40.00 | | 79.995000 | 26.45 | 125.0 | V | 118.0 | -12.3 | 13.55 | 40.00 | | 160.020000 | 22.95 | 100.0 | V | 175.0 | -9.2 | 20.55 | 43.50 | | 288.151250 | 22.54 | 109.0 | Н | 0.0 | -3.8 | 23.46 | 46.00 | | 479.998750 | 32.09 | 100.0 | Н | 243.0 | -0.1 | 13.91 | 46.00 | | 906.559250 | 29.67 | 109.0 | V | 316.0 | 5.6 | 16.33 | 46.00 | Remark: 1. Correction Factor = Antenna factor+ Insertion loss(cable loss+amplifier gain) 2. Margin = Limit - Quasi-Peak ### 802.11b CH1 Radiates Emission from 3GHz to 18GHz 2958.466667 --- Meas. Frequency Peak **Average** Limit Margin Height Azimuth Corr. **Time** Pol (dBuV/m) (dBuV/m) (dBuV/m) (cm) (MHz) (dB) (deg) (dB) (ms) -7.6 1134.666667 34.19 54.00 19.81 500.0 200.0 245.0 ---1176.600000 44.19 74.00 29.81 500.0 200.0 238.0 -7.4 ---Н 1393.333333 45.00 74.00 29.00 500.0 200.0 Н 125.0 -6.2 54.00 18.92 500.0 100.0 Н 120.0 1402.066667 35.08 -6.1 100.0 -5.0 1616.266667 ---36.17 54.00 17.83 500.0 Н 288.0 1684.266667 46.39 74.00 27.61 500.0 100.0 Н 237.0 -4.6 ---47.37 242.0 -2.5 2026.133333 ---74.00 26.63 500.0 200.0 ٧ 2030.133333 37.48 54.00 16.52 500.0 100.0 ٧ 221.0 -2.5 2179.266667 48.49 74.00 25.51 500.0 200.0 ٧ 161.0 -1.8 2184.933333 37.69 54.00 16.31 500.0 200.0 42.0 -1.8 Η 2788.933333 74.00 23.69 500.0 200.0 Н 198.0 50.31 0.9 Report No.: R2106A0508-R1 Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) 54.00 13.67 500.0 200.0 V 0.0 1.6 40.33 ### 802.11b CH6 Radiates Emission from 3GHz to 18GHz Meas. Frequency Peak **Average** Limit Margin Height Azimuth Corr. **Time** Pol (dBuV/m) (dBuV/m) (dBuV/m) (cm) (MHz) (dB) (deg) (dB) (ms) 500.0 1000.266667 44.37 74.00 29.63 200.0 0.0 -8.5 ---34.22 54.00 19.78 500.0 100.0 0.0 -7.5 1168.200000 ---٧ 1430.200000 35.25 54.00 18.75 500.0 200.0 ٧ 323.0 -6.0 1437.733333 ---74.00 29.10 500.0 100.0 ٧ 176.0 -5.9 44.90 46.83 74.00 200.0 ٧ -4.6 1677.400000 ---27.17 500.0 323.0 1678.000000 37.03 54.00 16.97 500.0 100.0 183.0 -4.6 37.74 -2.7 1992.466667 ---54.00 16.26 500.0 200.0 ٧ 270.0 2004.600000 48.05 74.00 25.95 500.0 200.0 ٧ 256.0 -2.6 ---27.19 -1.7 2243.266667 46.81 74.00 500.0 200.0 Η 143.0 2246.600000 ---37.64 54.00 16.36 500.0 200.0 ٧ 203.0 -1.7 2507.066667 41.08 54.00 12.92 500.0 200.0 30.0 -0.6 Н 2778.400000 50.48 74.00 23.52 500.0 200.0 Н 82.0 0.9 Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) ### 802.11b CH11 Radiates Emission from 3GHz to 18GHz Meas. Frequency Peak **Average** Limit Margin Height Azimuth Corr. **Time** Pol (dBuV/m) (dBuV/m) (dBuV/m) (cm) (MHz) (dB) (deg) (dB) (ms) 1039.133333 44.13 74.00 29.87 500.0 200.0 124.0 -8.2 ---1129.666667 34.23 54.00 19.77 500.0 200.0 227.0 -7.6 ٧ 1280.133333 35.51 54.00 18.49 500.0 100.0 ٧ 130.0 -6.8 ---74.00 28.87 500.0 100.0 Н 224.0 -6.4 1364.000000 45.13 54.00 200.0 -5.4 1525.466667 36.28 17.72 500.0 Η 294.0 1725.000000 46.13 ---74.00 27.87 500.0 100.0 ٧ 73.0 -4.3 ---37.59 -2.5 2029.933333 54.00 16.41 500.0 100.0 ٧ 328.0 2079.533333 48.22 74.00 25.78 500.0 100.0 ٧ 226.0 -2.3 16.26 2268.266667 37.74 54.00 500.0 100.0 224.0 -1.6 2297.866667 45.52 74.00 28.48 500.0 100.0 Н 302.0 -1.5 2689.933333 38.72 54.00 15.28 500.0 200.0 Н 194.0 0.5 2713.400000 48.75 74.00 25.25 500.0 200.0 V 175.0 0.6 Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) Note: The signal beyond the limit is carrier. Radiates Emission from 1GHz to 3GHz Radiates Emission from 3GHz to 18GHz 47.62 --- 2627.600000 2637.000000 Meas. Frequency Peak **Average** Limit Margin Height Azimuth Corr. **Time** Pol (dBuV/m) (dBuV/m) (dBuV/m) (cm) (MHz) (dB) (deg) (dB) (ms) 500.0 1020.533333 43.18 74.00 30.82 100.0 250.0 -8.3 ---1097.066667 33.39 54.00 20.61 500.0 200.0 312.0 -7.8 Н 1403.400000 44.17 74.00 29.83 500.0 200.0 Н 225.0 -6.1 1427.733333 34.58 54.00 19.42 500.0 200.0 ٧ 72.0 -6.0 74.00 500.0 100.0 -4.5 1706.600000 45.54 28.46 Н 285.0 1708.133333 36.24 54.00 17.76 500.0 200.0 ٧ 180.0 -4.4 37.58 -2.5 2051.200000 ---54.00 16.42 500.0 100.0 ٧ 64.0 2060.400000 47.45 74.00 26.55 500.0 100.0 ٧ 308.0 -2.4 2258.000000 35.99 54.00 18.01 500.0 100.0 Η 154.0 -1.6 2267.933333 45.77 ---74.00 28.23 500.0 200.0 299.0 -1.6 Η Report No.: R2106A0508-R1 Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) 37.99 74.00 54.00 26.38 16.01 500.0 500.0 200.0 200.0 Н Н 205.0 325.0 0.2 0.3 F Test Report Report No.: R2106A0508-R1 ### 802.11g CH6 Radiates Emission from 3GHz to 18GHz 2729.866667 2734.866667 Meas. Frequency Peak **Average** Limit Margin Height Azimuth Corr. **Time** Pol (dBuV/m) (dBuV/m) (dBuV/m) (cm) (MHz) (dB) (deg) (dB) (ms) 1000.733333 33.50 54.00 20.50 500.0 100.0 123.0 -8.5 ---1059.333333 43.43 74.00 30.57 500.0 100.0 228.0 -8.1 ---Н 1398.733333 43.85 74.00 30.15 500.0 200.0 ٧ 114.0 -6.2 1417.400000 ---34.64 54.00 19.36 500.0 100.0 Н 282.0 -6.1 1657.800000 74.00 500.0 100.0 ٧ -4.7 45.78 28.22 135.0 1726.933333 36.32 54.00 17.68 500.0 100.0 ٧ 69.0 -4.3 37.49 162.0 -2.6 2019.800000 ---54.00 16.51 500.0 100.0 ٧ 2053.066667 47.85 74.00 26.15 500.0 100.0 Н 176.0 -2.4 ---27.33 2252.733333 46.67 74.00 500.0 100.0 Н 253.0 -1.6 2262.600000 36.41 54.00 17.59 500.0 200.0 Н 193.0 -1.6 Report No.: R2106A0508-R1 Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) 54.00 74.00 14.51 24.38 500.0 500.0 100.0 100.0 ٧ V 316.0 297.0 0.7 0.7 39.49 49.62 ### 802.11g CH11 Radiates Emission from 3GHz to 18GHz 2625.866667 49.17 Meas. Frequency Peak **Average** Limit Margin Height Azimuth Corr. **Time** Pol (dBuV/m) (dBuV/m) (dBuV/m) (cm) (MHz) (dB) (deg) (dB) (ms) 500.0 1045.133333 33.42 54.00 20.58 100.0 197.0 -8.2 ---1148.800000 43.85 74.00 30.15 500.0 200.0 264.0 -7.6 Н 1419.800000 34.47 54.00 19.53 500.0 200.0 ٧ 104.0 -6.0 1438.200000 44.12 74.00 29.88 500.0 100.0 ٧ 218.0 -5.9 17.96 500.0 200.0 ٧ 117.0 -4.5 1698.266667 36.04 54.00 1707.600000 45.63 ---74.00 28.37 500.0 200.0 ٧ 72.0 -4.4 ---37.53 -2.7 1998.200000 54.00 16.47 500.0 100.0 ٧ 356.0 2043.666667 47.04 74.00 26.96 500.0 200.0 Н 290.0 -2.5 ---٧ 2245.000000 47.18 74.00 26.82 500.0 100.0 317.0 -1.7 2256.066667 37.14 54.00 16.86 500.0 200.0 Н 264.0 -1.6 2625.533333 40.30 54.00 13.70 500.0 100.0 ٧ 98.0 0.2 Report No.: R2106A0508-R1 Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) 74.00 24.83 500.0 100.0 V 105.0 0.2 ### 802.11n (HT20) CH1 Radiates Emission from 3GHz to 18GHz Meas. Frequency Peak **Average** Limit Margin Height Azimuth Corr. **Time** Pol (dBuV/m) (dBuV/m) (dBuV/m) (cm) (MHz) (dB) (deg) (dB) (ms) 500.0 1019.466667 33.56 54.00 20.44 200.0 311.0 -8.4 ---1129.066667 43.18 74.00 30.82 500.0 200.0 292.0 -7.6 Н 1410.200000 35.09 54.00 18.91 500.0 200.0 Н 214.0 -6.1 44.26 74.00 29.74 500.0 100.0 ٧ 286.0 -6.0 1426.600000 1713.000000 46.00 74.00 500.0 100.0 ٧ -4.4 ---28.00 336.0 1730.066667 54.00 18.14 500.0 200.0 ٧ 20.0 -4.3 ---35.86 47.62 1930.866667 74.00 26.38 500.0 100.0 ٧ 39.0 -3.1 1998.066667 37.66 54.00 16.34 500.0 100.0 ٧ 247.0 -2.7 2177.266667 45.14 74.00 28.86 500.0 200.0 155.0 -1.8 2204.866667 36.30 54.00 17.70 500.0 200.0 Н 122.0 -1.8 2679.733333 46.46 74.00 27.54 500.0 100.0 Н 226.0 0.5 2692.333333 38.17 54.00 15.83 500.0 100.0 Н 55.0 0.5 Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) ### 802.11n (HT20) CH6 Note: The signal beyond the limit is carrier. Radiates Emission from 1GHz to 3GHz Radiates Emission from 3GHz to 18GHz Meas. Frequency Peak **Average** Limit Margin Height Azimuth Corr. **Time** Pol (dBuV/m) (dBuV/m) (dBuV/m) (cm) (MHz) (dB) (deg) (dB) (ms) -7.5 1169.000000 33.43 54.00 20.57 500.0 200.0 Η 31.0 ---1184.533333 43.09 ---74.00 30.91 500.0 100.0 41.0 -7.4 Η 1418.800000 44.68 74.00 29.32 500.0 100.0 ٧ 323.0 -6.0 1428.933333 34.54 54.00 19.46 500.0 200.0 ٧ 64.0 -6.0 500.0 200.0 ٧ 97.0 -5.0 1605.333333 ---35.66 54.00 18.34 1692.200000 ---74.00 27.63 500.0 200.0 Н 346.0 -4.5 46.37 ---37.31 71.0 1943.000000 54.00 16.69 500.0 200.0 V -3.0 2051.466667 47.35 74.00 26.65 500.0 100.0 Н 336.0 -2.4 37.26 ٧ 2267.333333 54.00 16.74 500.0 200.0 229.0 -1.6 2270.266667 47.26 74.00 26.74 500.0 100.0 ٧ 218.0 -1.6 2713.200000 38.41 54.00 15.59 500.0 200.0 211.0 Η 0.6 2713.266667 48.55 74.00 25.45 500.0 200.0 V 43.0 0.6 Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) ### 802.11n (HT20) CH11 Note: The signal beyond the limit is carrier. Radiates Emission from 1GHz to 3GHz Radiates Emission from 3GHz to 18GHz Meas. Frequency Peak **Average** Limit Margin Height Azimuth Corr. **Time** Pol (dBuV/m) (dBuV/m) (dBuV/m) (cm) (MHz) (dB) (deg) (dB) (ms) 500.0 -7.9 1088.666667 43.34 74.00 30.66 100.0 299.0 ---1138.400000 33.86 54.00 20.14 500.0 100.0 -7.6 ---Η 61.0 1280.200000 34.19 54.00 19.81 500.0 200.0 Н 246.0 -6.8 74.00 30.04 500.0 100.0 ٧ 247.0 -6.3 1379.066667 43.96 ---74.00 500.0 200.0 ٧ 159.0 -5.1 1594.933333 45.65 ---28.35 -4.3 1729.333333 35.61 54.00 18.39 500.0 100.0 Н 55.0 -------2.5 2050.600000 48.05 74.00 25.95 500.0 100.0 ٧ 275.0 2059.333333 37.26 54.00 16.74 500.0 200.0 ٧ 100.0 -2.4 ---2279.600000 47.43 74.00 26.57 500.0 200.0 ٧ 178.0 -1.6 2283.666667 37.19 54.00 16.81 500.0 100.0 ٧ 336.0 -1.6 2687.266667 38.73 54.00 15.27 500.0 200.0 96.0 Η 0.5 2709.400000 48.89 ---74.00 25.11 500.0 100.0 Н 81.0 0.6 Remark: 1. Correction Factor = Antenna factor+ Insertion loss (cable loss + amplifier gain) ### **Bluetooth LE-Channel 0** Radiates Emission from 3GHz to 18GHz | Frequency<br>(MHz) | Peak<br>(dBuV/m) | Average<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Meas.<br>Time<br>(ms) | Height (cm) | Pol | Azimuth (deg) | Corr.<br>(dB) | |--------------------|------------------|---------------------|-------------------|----------------|-----------------------|-------------|-----|---------------|---------------| | 1184.266667 | | 34.05 | 54.00 | 19.95 | 500.0 | 200.0 | V | 302.0 | -7.4 | | 1187.600000 | 43.81 | | 74.00 | 30.19 | 500.0 | 200.0 | V | 0.0 | -7.4 | | 1382.733333 | 45.01 | | 74.00 | 28.99 | 500.0 | 100.0 | Н | 135.0 | -6.3 | | 1436.533333 | | 35.25 | 54.00 | 18.75 | 500.0 | 200.0 | V | 83.0 | -5.9 | | 1613.666667 | 46.07 | | 74.00 | 27.93 | 500.0 | 100.0 | V | 34.0 | -5.0 | | 1727.133333 | | 35.89 | 54.00 | 18.11 | 500.0 | 200.0 | Н | 260.0 | -4.3 | | 1983.933333 | | 37.24 | 54.00 | 16.76 | 500.0 | 100.0 | Н | 326.0 | -2.7 | | 1993.866667 | 47.49 | | 74.00 | 26.51 | 500.0 | 100.0 | Н | 313.0 | -2.7 | | 2239.000000 | | 37.50 | 54.00 | 16.50 | 500.0 | 100.0 | Н | 253.0 | -1.7 | | 2241.533333 | 46.75 | | 74.00 | 27.25 | 500.0 | 100.0 | V | 21.0 | -1.7 | | 2883.133333 | | 39.79 | 54.00 | 14.21 | 500.0 | 100.0 | Н | 135.0 | 1.2 | | 2994.800000 | 49.96 | | 74.00 | 24.04 | 500.0 | 100.0 | Н | 247.0 | 1.9 | ### **Bluetooth LE-Channel 19** Note: The signal beyond the limit is carrier. Radiates Emission from 1GHz to 3GHz Radiates Emission from 3GHz to 18GHz | Frequency<br>(MHz) | Peak<br>(dBuV/m) | Average<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Meas.<br>Time<br>(ms) | Height<br>(cm) | Pol | Azimuth (deg) | Corr.<br>(dB) | |--------------------|------------------|---------------------|-------------------|----------------|-----------------------|----------------|-----|---------------|---------------| | 1083.800000 | 43.88 | | 74.00 | 30.12 | 500.0 | 100.0 | Н | 272.0 | -7.9 | | 1151.866667 | | 34.01 | 54.00 | 19.99 | 500.0 | 100.0 | Н | 336.0 | -7.5 | | 1428.666667 | 44.86 | | 74.00 | 29.14 | 500.0 | 100.0 | V | 121.0 | -6.0 | | 1433.600000 | | 35.50 | 54.00 | 18.50 | 500.0 | 200.0 | V | 258.0 | -6.0 | | 1561.200000 | 45.67 | | 74.00 | 28.33 | 500.0 | 200.0 | V | 7.0 | -5.2 | | 1677.666667 | | 35.93 | 54.00 | 18.07 | 500.0 | 200.0 | V | 245.0 | -4.6 | | 2054.666667 | | 37.30 | 54.00 | 16.70 | 500.0 | 100.0 | V | 95.0 | -2.4 | | 2056.733333 | 47.40 | | 74.00 | 26.60 | 500.0 | 200.0 | V | 119.0 | -2.4 | | 2301.133333 | | 37.33 | 54.00 | 16.67 | 500.0 | 200.0 | Н | 154.0 | -1.5 | | 2310.600000 | 46.44 | | 74.00 | 27.56 | 500.0 | 200.0 | Н | 115.0 | -1.5 | | 2983.333333 | | 39.86 | 54.00 | 14.14 | 500.0 | 100.0 | Н | 259.0 | 1.8 | | 2986.333333 | 50.19 | | 74.00 | 23.81 | 500.0 | 100.0 | V | 76.0 | 1.8 | ### **Bluetooth LE-Channel 39** Radiates Emission from 3GHz to 18GHz | Frequency<br>(MHz) | Peak<br>(dBuV/m) | Average<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Meas.<br>Time<br>(ms) | Height (cm) | Pol | Azimuth (deg) | Corr.<br>(dB) | |--------------------|------------------|---------------------|-------------------|----------------|-----------------------|-------------|-----|---------------|---------------| | 1043.133333 | | 34.00 | 54.00 | 20.00 | 500.0 | 100.0 | Н | 172.0 | -8.2 | | 1141.533333 | 43.98 | | 74.00 | 30.02 | 500.0 | 200.0 | V | 147.0 | -7.6 | | 1386.333333 | 45.17 | | 74.00 | 28.83 | 500.0 | 200.0 | Н | 0.0 | -6.3 | | 1433.000000 | | 35.05 | 54.00 | 18.95 | 500.0 | 200.0 | V | 115.0 | -6.0 | | 1667.066667 | 45.54 | | 74.00 | 28.46 | 500.0 | 100.0 | V | 0.0 | -4.7 | | 1701.800000 | | 35.96 | 54.00 | 18.04 | 500.0 | 200.0 | V | 81.0 | -4.5 | | 2017.200000 | 46.99 | | 74.00 | 27.01 | 500.0 | 200.0 | V | 245.0 | -2.6 | | 2061.066667 | | 37.47 | 54.00 | 16.53 | 500.0 | 100.0 | V | 26.0 | -2.4 | | 2313.000000 | | 36.85 | 54.00 | 17.15 | 500.0 | 100.0 | Н | 0.0 | -1.5 | | 2318.733333 | 47.74 | | 74.00 | 26.26 | 500.0 | 100.0 | V | 74.0 | -1.5 | | 2783.200000 | 49.72 | | 74.00 | 24.28 | 500.0 | 200.0 | Н | 177.0 | 0.9 | | 2979.800000 | | 40.13 | 54.00 | 13.87 | 500.0 | 100.0 | Н | 238.0 | 1.8 | During the test, the Radiates Emission from 18GHz to 26.5GHz was performed in all modes with all channels, 802.11b CH6 are selected as the worst condition. The test data of the worst-case condition was recorded in this report. Radiates Emission from 18GHz to 26.5GHz Report No.: R2106A0508-R1 ### 5.7. Conducted Emission #### **Ambient condition** | Temperature | Relative humidity | Pressure | |-------------|-------------------|----------| | 23°C ~25°C | 45%~50% | 101.5kPa | ### **Methods of Measurement** The EUT is placed on a non-metallic table of 80cm height above the horizontal metal reference ground plane. During the test, the EUT was operating in its typical mode. The test method is according to ANSI C63.10. Connect the AC power line of the EUT to the L.I.S.N. Use EMI receiver to detect the average and Quasi-peak value. RBW is set to 9 kHz, VBW is set to 30kHz. The measurement result should include both L line and N line. The test is in transmitting mode. ### **Test Setup** Note: AC Power source is used to change the voltage 110V/60Hz. ### Limits | Frequency | Conducted L | Limits(dBµV) | | | |------------------|-----------------------------------|--------------|--|--| | (MHz) | Quasi-peak | Average | | | | 0.15 - 0.5 | 66 to 56 <sup>*</sup> | 56 to 46* | | | | 0.5 - 5 | 56 | 46 | | | | 5 - 30 | 60 | 50 | | | | *: Decreases wit | h the logarithm of the frequency. | | | | ### **Measurement Uncertainty** The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96, U = 2.69 dB. ### **Test Results:** Following plots, Blue trace uses the peak detection and Green trace uses the average detection. During the test, the Conducted Emission was performed in all modes (WIFI 2.4G /Bluetooth LE) with all channels, 802.11b CH6 are selected as the worst condition. The test data of the worst-case condition was recorded in this report. | Frequency<br>(MHz) | QuasiPeak<br>(dBµV) | Average<br>(dBµV) | Limit<br>(dBµV) | Margin<br>(dB) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Line | Filter | Corr.<br>(dB) | |--------------------|---------------------|-------------------|-----------------|----------------|-----------------------|--------------------|------|--------|---------------| | 0.32 | 29.54 | | 59.68 | 30.14 | 70.0 | 9.000 | L1 | ON | 21 | | 0.33 | | 20.31 | 49.45 | 29.14 | 70.0 | 9.000 | L1 | ON | 21 | | 0.64 | | 33.47 | 46.00 | 12.53 | 70.0 | 9.000 | L1 | ON | 20 | | 0.64 | 41.86 | | 56.00 | 14.14 | 70.0 | 9.000 | L1 | ON | 20 | | 1.28 | 33.94 | | 56.00 | 22.06 | 70.0 | 9.000 | L1 | ON | 20 | | 1.29 | | 26.46 | 46.00 | 19.54 | 70.0 | 9.000 | L1 | ON | 20 | | 2.38 | 30.36 | | 56.00 | 25.64 | 70.0 | 9.000 | L1 | ON | 19 | | 2.84 | | 21.58 | 46.00 | 24.42 | 70.0 | 9.000 | L1 | ON | 19 | | 6.52 | | 20.39 | 50.00 | 29.61 | 70.0 | 9.000 | L1 | ON | 19 | | 12.31 | 26.57 | | 60.00 | 33.43 | 70.0 | 9.000 | L1 | ON | 20 | | 14.17 | 33.26 | | 60.00 | 26.74 | 70.0 | 9.000 | L1 | ON | 20 | | 14.65 | | 21.21 | 50.00 | 28.79 | 70.0 | 9.000 | L1 | ON | 20 | Remark: Correct factor=cable loss + LISN factor L line Conducted Emission from 150 KHz to 30 MHz TA Technology (Shanghai) Co., Ltd. TA-MB-04-005R Page 72 of 76 | Frequency<br>(MHz) | QuasiPeak<br>(dBµV) | Average<br>(dBµV) | Limit<br>(dBµV) | Margin<br>(dB) | Meas.<br>Time<br>(ms) | Bandwidth<br>(kHz) | Line | Filter | Corr.<br>(dB) | |--------------------|---------------------|-------------------|-----------------|----------------|-----------------------|--------------------|------|--------|---------------| | 0.33 | | 26.74 | 49.34 | 22.60 | 70.0 | 9.000 | N | ON | 21 | | 0.35 | 35.48 | | 58.90 | 23.42 | 70.0 | 9.000 | N | ON | 21 | | 0.64 | 45.18 | | 56.00 | 10.82 | 70.0 | 9.000 | N | ON | 20 | | 0.64 | | 39.73 | 46.00 | 6.27 | 70.0 | 9.000 | N | ON | 20 | | 1.29 | 38.52 | | 56.00 | 17.48 | 70.0 | 9.000 | N | ON | 20 | | 1.29 | | 28.52 | 46.00 | 17.48 | 70.0 | 9.000 | N | ON | 20 | | 2.78 | | 25.02 | 46.00 | 20.98 | 70.0 | 9.000 | N | ON | 19 | | 2.84 | 32.77 | | 56.00 | 23.23 | 70.0 | 9.000 | N | ON | 19 | | 5.37 | | 22.54 | 50.00 | 27.46 | 70.0 | 9.000 | N | ON | 19 | | 5.39 | 29.47 | | 60.00 | 30.53 | 70.0 | 9.000 | N | ON | 19 | | 14.41 | 29.86 | | 60.00 | 30.14 | 70.0 | 9.000 | N | ON | 20 | | 14.59 | | 22.53 | 50.00 | 27.47 | 70.0 | 9.000 | N | ON | 20 | Remark: Correct factor=cable loss + LISN factor N line Conducted Emission from 150 KHz to 30 MHz Report No.: R2106A0508-R1 ## 6. Main Test Instruments | Name | Manufacturer | Туре | Serial<br>Number | Calibration<br>Date | Expiration Date | |-----------------------------|-------------------------|-----------------|------------------|---------------------|-----------------| | Spectrum Analyzer | R&S | FSV30 | 100815 | 2020-12-13 | 2021-12-12 | | EMI Test Receiver | R&S | ESCI | 100948 | 2021-05-15 | 2022-05-14 | | Loop Antenna | SCHWARZBECK | FMZB1519 | 1519-047 | 2020-04-02 | 2023-04-01 | | TRILOG Broadband<br>Antenna | SCHWARZBECK | VULB 9163 | 391 | 2019-12-16 | 2022-12-15 | | Horn Antenna | R&S | HF907 | 102723 | 2018-08-11 | 2021-08-10 | | Horn Antenna | ETS-Lindgren | 3160-09 | 00102643 | 2021-06-19 | 2022-06-18 | | EMI Test Receiver | R&S | ESR | 101667 | 2021-05-16 | 2022-05-15 | | LISN | R&S | ENV216 | 101171 | 2018-12-15 | 2021-12-14 | | Spectrum Analyzer | Agilent | N9010A | MY47191109 | 2021-05-15 | 2022-05-14 | | Power Meter | R&S | NRP2 | 104306 | 2021-05-17 | 2022-05-16 | | Power Sensor | R&S | NRP-Z21 | 104799 | 2021-05-15 | 2022-05-14 | | 20dB Attenuator | Star River<br>Highlight | UCL-TS2S-<br>20 | 18013001 | 2020-12-14 | 2021-12-13 | | RF Cable | Agilent | SMA 15cm | 0001 | 2021-06-11 | 2021-12-10 | | Software | R&S | EMC32 | 9.26.0 | / | / | \*\*\*\*\*END OF REPORT \*\*\*\*\* # **ANNEX A: The EUT Appearance** The EUT Appearance are submitted separately. F Test Report Report No.: R2106A0508-R1 # **ANNEX B: Test Setup Photos** The Test Setup Photos are submitted separately.