1. RF Exposure Requirements

1.1 General Information

Client Information

Applicant:
Address of applicant:

Manufacturer:
Address of manufacturer:

Shenzhen Qiyue Optronics Company Limited
Flat3,Tower 3, Excellence Meilin Center Plaza, Zhongkang Road 128, Shangmeilin, Futian District, Shenzhen, China

SHENZHEN QIYUE OPTRONICS COMPANY LIMITED BRANCH

A/B/C/D Building, Xitian Industrial Park, Dashuikeng Community,Guanlan Street, Longhua New District, Shenzhen City, China

General Description of EUT:

Product Name:
Trade Name:
Model No.:
Adding Model(s):

Rated Voltage:
Battery Capacity:
Power Adapter:
FCC ID:
Equipment Type:

65" LED UHD TV
Continental
CE-TV65UQW1F2US
D65N218-U-A-I, XXXXXXXX65XXXXXXXX(Where "X"can be any alphanumeric of A-Z or 0-9 or blank or -, indicates different client) AC120V/60Hz

I
1
XOMCETV65UQW1F2US
Fixed device

Technical Characteristics of EUT:

Bluetooth(BLE mode)

Bluetooth Version:
Frequency Range:
RF Output Power:
Data Rate:
Modulation:
Quantity of Channels:
Channel Separation:
Type of Antenna:
Antenna Gain:
Bluetooth (BR/EDR mode)
Bluetooth Version:
Frequency Range:
RF Output Power:
Data Rate:
Modulation:
Quantity of Channels:
Channel Separation:

V5.0 (BLE mode)
2402-2480MHz
2.30 dBm (Conducted)

1Mbps
GFSK
40
2 MHz
Integral Antenna
2 dBi

V5.0 (BR/EDR mode)
2402-2480MHz
6.36 dBm (Conducted)

1 Mbps , 2Mbps, 3Mbps
GFSK, m/4 DQPSK, 8DPSK
79
1 MHz

Type of Antenna:	Integral Antenna
Antenna Gain:	2 dBi
Wi-Fi (2.4G)	
Support Standards:	802.11b, 802.11g, 802.11n
Frequency Range:	2412-2462MHz for 802.11b/g/n(HT20)
	2422-2452MHz for 802.11n(HT40)
RF Output Power:	Antenna 0: 17.03 dBm (Conducted)
	Antenna 1: 16.19dBm (Conducted)
Type of Modulation:	CCK, OFDM, QPSK, BPSK, 16QAM, 64QAM
Quantity of Channels:	11 for 802.11b/g/n(HT20); 7 for 802.11n(HT40)
Channel Separation:	5 MHz
Type of Antenna:	Integral Antenna
Antenna Gain:	2 dBi
Wi-Fi (5G)	
Support Standards:	802.11a, 802.11n(HT20) , 802.11n-HT40, 802.11ac-VHT80
Frequency Range:	$5150-5250 \mathrm{MHz}, 5725-5850 \mathrm{MHz}$
RF Output Power:	5150-5250MHz:
	Antenna 0: 14.41 dBm (Conducted), Antenna 1: 14.45 dBm (Conducted)
	5725-5850MHz:
	Antenna 0: 13.33 dBm (Conducted), Antenna 1: 12.57 dBm (Conducted)
Type of Modulation:	QPSK, 16QAM, 64QAM,256QAM
Type of Antenna:	Integral Antenna
Antenna Gain:	$5150-5250 \mathrm{MHz}$ Antenna 0 \& 1: 1.93 dBi
	$5725-5850 \mathrm{MHz}$ Antenna 0 \& 1: 1.73 dBi

1.2 RF Exposure Exemption

According to $\S 1.1307(b)(3)$ and KDB 447498 D04 Interim General RF Exposure Guidance v01, system operating under the provisions of this section shall be operating in a manner that the public is not exposed to radio frequency energy level in excess limit for maximum permissible exposure.

Option A: FCC Rule Part 1.1307 (b)(3)(i)(A):The available maximum time-averaged power is no more than 1 mW , regardless of separation distance.

Option B: FCC Rule Part 1.1307 (b)(3)(i)(B): The available maximum time-averaged power or effective radiated power (ERP), whichever is greater, is less than or equal to the threshold $P_{\text {th }}(\mathrm{mW})$ described in the following formula. Pth is given by:

$$
P_{t h}(\mathrm{~mW})= \begin{cases}E R P_{20 \mathrm{~cm}}(d / 20 \mathrm{~cm})^{x} & d \leq 20 \mathrm{~cm} \\ E R P_{20 \mathrm{~cm}} & 20 \mathrm{~cm}<d \leq 40 \mathrm{~cm}\end{cases}
$$

Where

$$
x=-\log _{10}\left(\frac{60}{E R P_{20 \mathrm{~cm}} \sqrt{f}}\right) \text { and } f \text { is in } \mathrm{GHz} \text {; }
$$

and

$$
E R P_{20 \mathrm{~cm}}(\mathrm{~mW})= \begin{cases}2040 f & 0.3 \mathrm{GHz} \leq f<1.5 \mathrm{GHz} \\ 3060 & 1.5 \mathrm{GHz} \leq f \leq 6 \mathrm{GHz}\end{cases}
$$

$d=$ the separation distance (cm);

Option C: FCC Rule Part 1.1307 (b)(3)(i)(C): The minimum separation distance (R in meters) from the body of a nearby person for the frequency (f in MHz) at which the source operates, the ERP (watts) is no more than the calculated value prescribed for that frequency. R must be at least $\lambda / 2 \pi$, where λ is the free-space operating wavelength in meters.

Single RF Sources Subject to Routine Environmental Evaluation	
RF Source frequency (MHz)	Threshold ERP (watts)
$0.3-1.34$	$1,920 \mathrm{R}^{2}$
$1.34-30$	$3,450 \mathrm{R}^{2} / \mathrm{f}^{2}$
$30-300$	$3.83 \mathrm{R}^{2}$
$300-1,500$	$0.0128 \mathrm{R}^{2} \mathrm{f}$
$1,500-100,000$	$19.2 \mathrm{R}^{2}$

For Multiple RF sources: FCC Rule Part 1.1307(b)(3)(ii):
(A) The available maximum time-averaged power of each source is no more than 1 mW and there is a separation distance of two centimeters between any portion of a radiating structure operating and the nearest portion of any other radiating structure in the same device, except if the sum of multiple sources is less than 1 mW during the time-averaging period, in which case they may be treated as a single source (separation is not required).
(B) In the case of fixed RF sources operating in the same time-averaging period, or of multiple mobile or portable RF sources within a device operating in the same time averaging period, if the sum of the fractional contributions to the applicable thresholds is less than or equal to 1 as indicated in the following equation.

1.3 Calculated Result

Radio Access Technology	Prediction Frequency	Output Power	Antenna Gain	Duty Cycle	Tune-Up Time-Averaged Power	ERP
	$(\mathbf{M H z})$	$\mathbf{(d B m)}$	$\mathbf{(d B i)}$	$\mathbf{(\%)}$	$\mathbf{(d B m)}$	$(\mathbf{d B m})$
Bluetooth	2402	6.36	2.0	100	7.00	6.85
Wi-Fi $(2.4 \mathrm{GHz})$ Ant 0	2412	17.03	2.0	100	18.00	17.85
Wi-Fi $(2.4 \mathrm{GHz})$ Ant 1	2412	16.19	2.0	100	17.00	16.85
Wi-Fi $(5 \mathrm{GHz})$ Ant 0	5150	14.41	1.93	100	15.00	14.78
Wi-Fi $(5 \mathrm{GHz})$ Ant 1	5150	14.45	1.93	100	15.00	14.78

Frequency	Option	Min. Distance	Max. Power		Exposure Limit	Ratio	Result
(MHz)		(cm)	(dBm)	(mW)	(mW)		Pass/Fail
2402	C	20.00	6.85	4.84	768.00	0.01	Pass
2412	C	20.00	17.85	60.95	768.00	0.08	Pass
2412	C	20.00	16.85	48.42	768.00	0.06	Pass
5150	C	20.00	14.78	30.06	768.00	0.04	Pass
5150	C	20.00	14.78	30.06	768.00	0.04	Pass

Note: 1. Time-Averaged Power=Output Power * Duty Cycle; ERP= Time-Averaged Power+ Antenna gain-2.15dB
2. Option A, B and C refers as clause 1.2.
3. For option B, Max (time-averaged power, effective radiated power (ERP)) converts to Max. Power. For option C, ERP converts to Max. Power;
4. For option B, $P_{\text {th }}(m W)$ converts to Exposure Limit ($m W$); For option C, ERP (W) converts to Exposure Limit (m W).
5. Ratio $=$ Tune-Up ERP $(m W) /$ Exposure Limit $(m W)$

Mode for Simultaneous Multi-band Transmission:

Radio Access Technology	Ratio 1	Ratio 2	Ratio 3	Simultaneous Ratio	Limit	Result
	Pass/Fail					
Bluetooth + Wi-Fi Ant 0 + Wi-Fi Ant 1	0.01	0.08	0.06	0.15	1	Pass

Result: Pass

