

ODE_MUS_INTERDIG_0801

InterDigital Communications Corporation
Mr. Lawrence Shay
781 Third Avenue
King of Prussia, PA 19406
United States

Holger Leutfeld
17.08.2009
Phone +49 (0) 2102 749 317
Fax +49 (0) 2102 749 350

FCC ID XOI6071MID – *predictions for Maximum Permissible Exposure*

Dear Mr. Shay,

please find our Maximum Permissible Exposure calculations for the GSM / UMTS module MID Card.

Best Regards

A handwritten signature in blue ink that reads "Holger Leutfeld".

Holger Leutfeld

7 layers AG
Borsigstrasse 11
40880 Ratingen, Germany
Phone: +49 (0) 2102 749 0
Fax: +49 (0) 2102 749 350
www.7Layers.com

Aufsichtsratsvorsitzender •
Chairman of the Supervisory Board:
Markus Becker
Vorstand • Board:
Dr. Hans-Jürgen Meckelburg
René Schildknecht

Registergericht • registered in:
Düsseldorf, HRB 44096
USt-IdNr • VAT Nr:
DE 203159652

Maximum Permissible Exposure

(as specified in Table 1B of 47 CFR 1.1310 – Limits for Maximum Permissible Exposure (MPE), Limits for General Population/Uncontrolled Exposure)

Frequency range (MHz)	Power density (mW/cm ²)
300 – 1,500	f/1500
1,500 – 100,000	1.0

Calculations 850 MHz band

Maximum output power at antenna input terminal: 29.39 dBm

Prediction distance **R**: 20 cm
Prediction frequency: 824,20 MHz

MPE limit **S**: 0.5495 mW/cm²

Equation OET bulletin 65, page 18, edition 97-01: $S = P \cdot G / (4\pi R^2)$

S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the centre of radiation of the antenna

Maximum permissible antenna gain:

5.02 dBi

Prediction

The maximum allowed MPE value of 0.5495 mW/cm² will be reached in a distance of 20 cm in case that an antenna with an antenna gain of 0.5495 dBi would be used. This means that the power density levels in a distance of 20 cm are in accordance with the FCC regulations as long as the used antenna has a gain below 5.02 dBi.

This calculation has been made under the consideration of the duty cycle effect.

Calculations 1900 MHz band

Maximum peak output power at antenna input terminal: 26.88 dBm

Prediction distance **R**: 20 cm
Prediction frequency: 1880 MHz

MPE limit **S**: 1 mW/cm²

Equation OET bulletin 65, page 18, edition 97-01: $S = P \cdot G / (4\pi R^2)$

S = power density

P = power input to the antenna

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the centre of radiation of the antenna

Maximum permissible antenna gain:	10.13 dBi
Maximum permissible antenna gain for mobile / portable stations	6.13 dBi

Prediction

The maximum allowed MPE value of 1 mW/cm² will be reached in a distance of 20 cm in case that an antenna with an antenna gain of 10.13 dBi would be used. This means that the power density levels in a distance of 20 cm are in accordance with the FCC regulations as long as the used antenna has a gain below 10.13 dBi. Considering the max output power of 2 Watts EIRP (FCC §24.235) for mobile / portable stations the maximum antenna gain is 6.13 dBi, which is below 10.13 dBi and in accordance to the FCC regulations.

This calculation has been made under the consideration of the duty cycle effect.