

EMISSIONS TEST REPORT

Report Number: 101275145BOX-009 **Project Number:** G101275145

Report Issue Date: 03/30/2014

Product Designation:zLink (Bluetooth)Standards:FCC Part 15:2014 Subpart C Section 15.247,
FCC Part 15:2014 Subpart B Class B,
RSS-210 Issue 8 December 2010,
ICES-003 Issue 5 August 2012
RSS-Gen Issue 3 December 2010

Tested by: Intertek Testing Services NA, Inc. 70 Codman Hill Road Boxborough, MA 01719 USA Client: Corventis 1410 Energy Park Drive Suite #1 St. Paul, MN 55108 USA

Report prepared by Reviewer

trans 2.Vo

Vathana Ven / Sr. Project Engineer, EMC

Report reviewed by

Kouma Sinn / Sr. Project Engineer, EMC

1 Introduction and Conclusion

The tests indicated in section 2.0 were performed on the product constructed as described in section 4.0. The remaining test sections are the verbatim text from the actual data sheets used during the investigation. These test sections include the test name, the specified test Method, a list of the actual Test Equipment Used, documentation Photos, Results and raw Data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted.

Based on the results of our investigation, we have concluded the product tested **complies** with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested.

2 Test Summary

Section	Test full name	Result
3	Client Information	
4	Description of Equipment Under Test	
5	System Setup and Method	
6	Maximum Peak Output Power, Human RF Exposure and Duty Cycle FCC 15:2011 Subpart C, Section 15.247 (b) (1), (4) RSS-210 Issue 8 December 2010, A8.4 (2), IC RSS-102 Issue 4 March 2010, CFR47 Part 2.1093	Pass
7	Transmitter Radiated Spurious Emissions FCC 15:2013 Subpart C Section 15.247 (d) RSS-210 Issue 8 December 2010, A8.5	Pass
8	Hopping Channel Separation FCC 15:2013 Subpart C Section 15.247 (a)(1) RSS-210 Issue 8 December 2010, A8.1 (b)	Pass
9	Number of Hopping Frequency FCC 15:2013 Subpart C Section 15.247 (a)(1) (iii) RSS-210 Issue 8 December 2010, A8.1 (d)	Pass
10	Hopping Channel Bandwidth FCC 15:2013 Subpart C Section 15.247 (a)(1) RSS-210 Issue 8 December 2010, A8.1 (b)	Pass
11	Hopping Dwell time FCC 15:2011 Subpart C Section 15.247 (a)(1) (iii) RSS-210 Issue 8 December 2010, A8.1 (d)	Pass
12	Band-edge Compliance FCC 15:2013 Subpart C Section 15.247 (d) RSS-210 Issue 8 December 2010, A8.5	Pass
13	Receiver Radiated Spurious FCC Part 15:2013 Subpart B Section 15.109 (a) RSS-Gen Issue 3 December 2010, Section 6.1 (Table 2)	Pass
14	AC Line Conducted Emissions (CFR47 FCC Part 15 Subpart B 15.207, IC RSS-Gen Section 7.2.4)	Pass
15	Revision History	

3 Client Information

This EUT was tested at the request of:

Client:	Corventis 1410 Energy Park Drive Suite #1 St. Paul, MN 55108 USA
Contact:	Mr. Brett Landrum
Telephone:	651-925-3778
Fax:	None
Email:	Brett.Landrum@corventis.com

4 Description of Equipment Under Test

Manufacturer:	Corventis 1410 Energy Park Drive Suite #1 St. Paul, MN 55108 USA
	00/1

Equipment Under Test					
Description Manufacturer Model Number Serial Number					
Wireless Transmitter Corventis (Bluetooth)		zLink	015821		

Receive Date:	02/24/2014	Test Date:	03/12/2014 - 03/24/2014
Received Condition:	Good		
Туре:	Production	FCC IC ID:	Not available

Description of Equipment Under Test (provided by client) Bluetooth utilizes 79 channels starting at 2402 MHz and extending to 2480 MHz. Channels 0 (2402 MHz), 38 (2440 MHz) and 79 (2480 MHz) were selected for testing. The device has an integral antenna.

Equipment Under Test Power Configuration					
Rated Voltage Rated Current Rated Frequency Number of Phases					
100-240VAC	1.1	50/60Hz	N/A		
3.7VDC	1.8Ah	N/A	N/A		

Operating modes of the EUT:

No.	Descriptions of EUT Exercising
1	Transmit mode – hopping enabled (DH1, DH3, and DH5) or hopping disabled, modulated on a single channel
2	Receive mode

Software used by the EUT:

No.	Descriptions of EUT Exercising
1	Pre-programmed using Tera Term 4.61

5 System Setup and Method

	Cables						
ID	Description	Length (m)	Shielding	Ferrites	Termination		
	None						

Support Equipment					
Description Manufacturer Model Number Serial Number					
Laptop	Dell	Latitude D630	JX7XX61 43367588497		

5.1 Method:

Configuration as required by ANSI C 63.10:2013, FCC Part 15:2013 Subpart C Section 15.247, RSS-210 Issue 8 December 2010, RSS-Gen Issue 3 December 2010, IC RSS-102 Issue 4 March 2010, CFR47 Part 2.1093.

5.2 EUT Block Diagram:

6 Maximum Peak Output Power, Human RF Exposure and Duty Cycle

6.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C Section 15.247, CFR47 Part 2.1093, ANSI C63.10, RSS-Gen, RSS-210 Annex 8, and IC RSS-102 Issue 4.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

For radiated emissions, U_{lab} (3.5 dB at 3m and 3.5 dB at 10m below 1 GHz, and 4.2 dB at 3m above 1 GHz) < U_{CISPR} (5.2 dB), which is the reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

Intertek

FS = RA + AF +	CF - AG
Where	FS = Field Strength in $dB\mu V/m$
	RA = Receiver Amplitude (including preamplifier) in $dB\mu V$
	CF = Cable Attenuation Factor in dB
	AF = Antenna Factor in dB
	AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = 52.0 dB μ V AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB FS = 32 dB μ V/m

To convert from $dB\mu V$ to μV or mV the following was used:

UF = $10^{(NF/20)}$ where UF = Net Reading in μ V NF = Net Reading in dB μ V

Example:

FS = RA + AF + CF – AG = 52.0 + 7.4 + 1.6 – 29.0 = 32.0 UF = $10^{(32 \text{ dB}\mu\text{V}/20)}$ = 39.8 $\mu\text{V/m}$

6.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV004'	Weather Station	Davis Instruments	7400	PE80529A61A	09/25/2012	09/25/2014
145008'	LISN: 50 Ohm/50 microHenry	Solar	9252-50-R-24-BNC	971601	06/04/2013	06/04/2014
ETS001'	1-18GHz DRG Horn Antenna	ETS-Lindgren	3117	00143259	01/06/2014	01/06/2015
145-416'	Cables 145-400 145-402 145-404 145-408	Huber + Suhner	3m Track B cables	multiple	10/04/2013	10/04/2014

Software Utilized:

Name	Manufacturer	Version
EMI Boxborough.xls	Intertek	08/27/2010

6.3 Results:

The sample tested was found to Comply.

6.4 Setup Photographs:

Intertek

Intertek

EUT on its short side

Padiatod Emissions

6.5 Test Data:

						Liiii33i0ii3								
Company:	Corventis						Antenna	a & Cables:	SHF	Bands: N,	LF, HF, SHF			
Model #:	zLink						Antenna:	ETS001 01	-06-15.txt	ETS001 0	1-06-15.txt			
Serial #:	015821						Cable(s):	145-416 3mTrk	3 10-03-2014.txt	NONE.				
Engineers:	Vathana Ve	en			Location:	10m Chamber	Barometer:	DAV004		Filter:	NONE			
Project #:	G1012751	45	Date(s):	03/12/14										
Standard:	FCC Part 1	15 Subpart C	15.247				Temp/Humic	lity/Pressure:	24c	42%	1007mB			
Receiver:	R&S ESI (145-108) 05-	10-2014	Limit Di	stance (m):	3								
PreAmp:	PRE145014	12-13-2014.txt		Test Di	stance (m):	3								
F	PreAmp Use	ed? (Y or N):	Ν	Voltage/	Frequency:	3.7VDC/	120VAC	Freque	ncy Range:	Frequence	cies Shown			
	Net = Rea	ading (dBuV/r	n) + Antenr	na Factor (dl	31/m) + Cat	ble Loss (dB) - Preamp	Factor (dB)	- Distance	Factor (dB)				
Peak: F	PK Quasi-F	Peak: QP Av	erage: AVG	RMS: RMS	S; NF = Nois	se Floor, RB	= Restricte	d Band; Bar	ndwidth der	oted as RB	W/VBW	•		
	Ant.			Antenna	Cable	Pre-amp	Distance	EIRP	EIRP					
Detector	Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin	Bandwidth			
Туре	(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB	dBm	dBm	dB		FCC	IC	Harmonic?
				No	te: RF Outp	ut Power zL	ink							
	Note: EIRP	Obtained by	applying th	e path loss	correction for	or a 3m test	distance, E	(dBuV/m)@	3m - 95.22	= dBm EIR	5			
					X - /	Axis					I			
PK	V	2402.000	54.61	32.11	5.91	0.00	0.00	-2.59	36.00	-38.59	5/10 MHz			
PK	н	2402.000	52.56	32.11	5.91	0.00	0.00	-4.64	36.00	-40.64	5/10 MHz			
PK	V	2440.000	50.94	32.20	5.98	0.00	0.00	-6.10	36.00	-42.10	5/10 MHz	1		
PK	Н	2440.000	56.73	32.20	5.98	0.00	0.00	-0.31	36.00	-36.31	5/10 MHz			
PK	V	2480.000	53.31	32.30	6.06	0.00	0.00	-3.55	36.00	-39.55	5/10 MHz			
РК	Н	2480.000	59.43	32.30	6.06	0.00	0.00	2.57	36.00	-33.43	5/10 MHz			
	<u> </u>				Y - /	Axis						ł		
PK	V	2402.000	56.34	32.11	5.91	0.00	0.00	-0.86	36.00	-36.86	5/10 MHz	ł		
PK	Н	2402.000	53.64	32.11	5.91	0.00	0.00	-3.56	36.00	-39.56	5/10 MHz	ł		
PK	V	2440.000	56.07	32.20	5.98	0.00	0.00	-0.97	36.00	-36.97	5/10 MHz			
PK	Н	2440.000	55.42	32.20	5.98	0.00	0.00	-1.62	36.00	-37.62	5/10 MHz			
PK	V	2480.000	56.60	32.30	6.06	0.00	0.00	-0.26	36.00	-36.26	5/10 MHz	ł		
PK	Н	2480.000	56.79	32.30	6.06	0.00	0.00	-0.07	36.00	-36.07	5/10 MHz	-		
DI/		0.400.000	50.00	00.44	Z-/	Axis	0.00	4.00	00.00	40.00		ł		
PK	V	2402.000	53.20	32.11	5.91	0.00	0.00	-4.00	36.00	-40.00	5/10 MHz	ł		
PK	H	2402.000	55.42	32.11	5.91	0.00	0.00	-1.78	36.00	-37.78	5/10 MHz	ł		
PK	V	2440.000	53.77	32.20	5.98	0.00	0.00	-3.27	36.00	-39.27	5/10 MHZ	4		
	П	2440.000	57.40	32.20	5.90	0.00	0.00	0.30	30.00	-35.04	5/10 WHZ	4		
PK	V	2480.000	50.73	32.30	0.00	0.00	0.00	-0.13	36.00	-30.13	5/10 MHZ	4		
PK	н	∠480.000	56.47	32.30	6.06	0.00	0.00	-0.39	36.00	-36.39	5/10 MHz			

The EUT was measured in a radiated fashion. The RF output power was measured using a resolution bandwidth which encompassed the entire emission bandwidth. The data obtained was adjusted for equipment losses and converted from a field strength reading to a power reading using the provisions of FCC KDB 558074 and RSS-Gen 4.6. The human RF exposure limit is 1 mW/cm². The power density S generated by some value of EIRP at a given distance d is related by the equation:

S=EIRP / $(4\pi d^2)$

The distance, given a maximum EIRP of 2.57 dBm (1.81 mW), at which the radiated power density of the EUT is equal to the human RF exposure limit is 0.379 cm from the antenna. This result does not take averaging into account. The EUT is exempt from FCC SAR RF Exposure evaluation because the output power is below the 60/f(GHz) average power exemption threshold of 24.2 mW.

The EUT is exempt from Industry Canada SAR RF Exposure evaluation as referenced in RSS-102 because the operating frequency is between 2.2 and 3.0 GHz and the EIRP does not exceed 20 milliwatts.

Duty Cycle

The worst-case duty cycle for typical EUT operation is shown below. The pulse train repeats over a larger than 100ms period.

Intertek

Date: 24.MAR.2014 23:13:11

A pulse train with length of 3.466 ms was in a 100ms period.

	Dof Irrl		Delt	a 1	[T1]	0.0	dD	RBW	100	kHz	RF	'Att	0 dB	
\checkmark	89.7 di	BNA			3.4662	253	ms	VBW SWT	100	ms	Un	it	dban	7
89.6										1 [T1] 1 [T1]		15 699.398 3.466	.49 db) 798 ls 1.09 db 253 ms	A
70														TRG
60 50	1VIEW	w44												1MA
40														
30														
20 10	willing		Murhum	Munnf	Normal	m	Winky	wanter	humh	when h	M	whythere	le million	
-10 3	r.	IR												
Date	Center 2	2.441 24.MA	75 GHz R.2014	23:	15:53		1	0 ms/	<u>.</u>		÷			9
The d Avera	luty cycle = age factor =	= 3.46 = 20*L	6ms/100 .OG(0.03	ms = (466) =).03466 = 29.2) dB								
Super	Test Persor	nnel: _	Vathana V	en VH	/				Т	est Date:	03/	/24/2014		
(V	Engir Vhere Applica	neer: able)	<u>N/A</u> 15.247, CF RSS-Gen	R47 Pa	art 2.1093	3,								
F	Product Stand	dard:	IC RSS-10	2 tter/120	IVAC/60F	17			Limit	Applied:	Be	low specifi	ed limits	
Prete	est Verificatio	on w/						Am	bient Tem	perature:	21	°C		
Ai	mbient Signa BB Soi	urce:	BB Source	!					Relative	Humidity:	59	%		
								Atm	ospheric I	Pressure:	10	12 mbars		

Intertek

Deviations, Additions, or Exclusions: None

7 Transmitter Radiated Spurious Emissions

7.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C Section 15.247, ANSI C63.10, RSS-Gen, RSS-210 Annex 8.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

For radiated emissions, U_{lab} (3.5 dB at 3m and 3.5 dB at 10m below 1 GHz, and 4.2 dB at 3m above 1

GHz) < U_{CISPR} (5.2 dB), which is the reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF +	CF - AG
Where	FS = Field Strength in $dB\mu V/m$
	RA = Receiver Amplitude (including preamplifier) in $dB\mu V$
	CF = Cable Attenuation Factor in dB
	AF = Antenna Factor in dB
	AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = 52.0 dB μ V AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB FS = 32 dB μ V/m

To convert from $dB\mu V$ to μV or mV the following was used:

UF = $10^{(NF/20)}$ where UF = Net Reading in μ V NF = Net Reading in dB μ V

Example:

FS = RA + AF + CF – AG = 52.0 + 7.4 + 1.6 – 29.0 = 32.0 UF = $10^{(32 \text{ dB}\mu\text{V}/20)}$ = 39.8 $\mu\text{V/m}$

7.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV004'	Weather Station	Davis Instruments	7400	PE80529A61A	09/25/2012	09/25/2014
145008'	LISN: 50 Ohm/50 microHenry	Solar	9252-50-R-24-BNC	971601	06/04/2013	06/04/2014
145106'	Bilog Antenna (30MHz - 5GHz)	Sunol Sciences	JB5	A111003	10/01/2013	10/01/2014
145003'	Preamplifier (150 KHz to 1.3 GHz)	Hewlett Packard	8447D	2443A04077	10/07/2013	10/07/2014
145-410'	Cables 145-400 145-403 145-405 145-406 145-407	Huber + Suhner	10m Track A Cables	multiple	10/04/2013	10/04/2014
145-416'	Cables 145-400 145-402 145-404 145-408	Huber + Suhner	3m Track B cables	multiple	10/04/2013	10/04/2014
145014'	Preamplifier (1 GHz to 26.5 GHz)	Hewlett Packard	8449B	3008A00232	12/19/2013	12/19/2014
ETS001'	1-18GHz DRG Horn Antenna	ETS-Lindgren	3117	00143259	01/06/2014	01/06/2015
EMC04'	ANTENNA, RIDGED GUIDE, 18-40 GHZ	EMCO	3116	2090	03/12/2013	03/12/2014
REA002'	2.5GHz High Pass Filter	Reactel, Inc	7HS-2.5G/18G-S11	06-1	12/30/2013	12/30/2015

Software Utilized:

Name	Manufacturer	Version
C5	Teseq	Build 5.26.00.3
Excel 2003	Microsoft	(11.8231.8221) SP3
EMI Boxborough.xls	Intertek	08/27/10

7.3 Results:

The sample tested was found to Comply.

In any 100 kHz bandwidth outside the frequency band, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see 15.205(c)).

FCC Part 15.209(a) & RSS-210 A8.5 – Restricted Band Radiated Spurious/Harmonics Limits

Frequency	Fiel	d Strength	Test Distance
(MHz)	μV/m	dBµV/m	(meters)
30–88	100	40.00	3
88–216	150	43.52	3
216–960	200	46.02	3
Above 960	500	53.98	3

FCC Part 15.247(d) & RSS-210 A8.5 – Non Restricted Band Radiated Spurious/Harmonics Limits

Channels	Fundamental Field Strength (dBuV/m)	Spurious/Harmonics Limits (dBuV/m)	Test Distance (meters)
0	93.82	73.82	3
38	95.33	75.33	3
79	97.32	77.32	3

7.4 Setup Photographs:

Intertek

30 – 1000 MHz scan

Intertek

1-18 GHz scan

Intertek

18 – 25 GHz Hand scan

7.5 Plots/Data:

Model: zLink, Tx: CH0, FCC Part 15:209, 30-1000 MHz

Test Information Test Details Test: Project: Test Notes: Temperature: Humidity: Tested by: Test Started:

User Entry Radiated - FCC15 Class B @ 10m Corventis_G101275145 120VAC/60Hz, Tx mode CH0 20 deg C 23%, 1006 mB Vathana Ven 14 Mar 2014 19 : 40

Additional Information

Prescan Emission Graph

Measured Peak Value

- Measured Quasi Peak Value
- Measured Average Value
- Maximum Value of Mast and Turntable
- __ Swept Peak Data __ Swept Quasi Peak Data
- ____ Swept Quasi Feak Data ____ Swept Average Data

Emissions Test Data Trace1: Measured Peak

Frequency (Hz)	Level (dBuV/m)	AF	PA+CL	Limit(dBuV/m)	Margin (dBuV/m)	Hor (), Ver ()	Azimuth (deg)(Deg)	Mast Height(m)	RBW(Hz)	Comment
265.953908086 M	18.58	12.776	-23.689			1	0	1.05	120 k	
125.091984022 M	17.31	14.318	-25.365				166	1.15	120 k	
47.727655387 M	15.40	9.009	-25.936				143	2.87	120 k	
964.119037924 M	30.00	22.700	-22.435				0	3.04	120 k	
531.980160285 M	29.06	18.100	-24.581				19	2.19	120 k	
175.36713399 M	30.28	11.563	-24.560			1	341	1.04	120 k	
Traco2. Moasur		aak								

		Car								
Frequency (Hz)	Level (dBuV/m)	AF	PA+CL	Limit (dBuV/m)	Margin (dBuV/m)	Hor (), Ver ()	Azimuth (deg)(Deg)	Mast Height(m)	RBW(Hz)	Comment
47.727655387 M	6.40	9.009	-25.936	29.540	-23.14		143	2.87	120 k	
265.953908086 M	12.70	12.776	-23.689	35.540	-22.84		0	1.05	120 k	
125.091984022 M	10.89	14.318	-25.365	33.040	-22.15		166	1.15	120 k	
964.119037924 M	23.08	22.700	-22.435	43.540	-20.46		0	3.04	120 k	
531.980160285 M	19.32	18.100	-24.581	35.540	-16.22		19	2.19	120 k	
175.36713399 M	24.73	11.563	-24.560	33.040	-8.31	1	341	1.04	120 k	

Issued: 03/30/2014

Azimuth Plots

Azimuth (Degrees)

Intertek

Turntable Plot (125.091984022 MHz)

Level (dBuV/m)

3.5 3 2.5 2 1.5 Height (m) 0 20 40 Level (dBuV/m) 60 80

Height Plot (47.727655387 MHz)

Turntable Plots

4

All Polarities

Report Number: 101275145BOX-009

Intertek

All Polarities

Azimuth (Degrees)

Level (dBuV/m)

All Polarities

Intertek

All Polarities

Azimuth (Degrees)

Level (dBuV/m)

80 0/360

60

45

90

All Polarities

135

180

Model: zLink, Tx: CH38, FCC Part 15:209, 30-1000 MHz

Intertek

Test Information Test Details Test: Project: Test Notes: Temperature: Humidity: Tested by: Test Started:

User Entry Radiated - FCC15 Class B @ 10m Corventis_G101275145 120VAC/60Hz, Tx mode CH38 20 deg C 23%, 1006 mB Vathana Ven 14 Mar 2014 20 : 22

Additional Information

Prescan Emission Graph

- Measured Peak Value
- Measured Quasi Peak Value
- Measured Average Value
- Maximum Value of Mast and Turntable

- __ Swept Peak Data
- ___ Swept Quasi Peak Data
- ____ Swept Average Data

Emissions Test Data Trace1: Measured Peak

Frequency (Hz)	Level (dBuV/m)	AF	PA+CL	Limit(dBuV/m)	Margin (dBuV/m)	Hor (), Ver ()	Azimuth (deg)(Deg)	Mast Height(m)	RBW(Hz)	Comment
171.387976224 M	16.77	11.800	-24.668			1	288	1.46	120 k	
47.686573166 M	19.93	9.025	-25.937			Í	141	1.05	120 k	
144.051903994 M	23.95	13.200	-25.277			i i	176	2.69	120 k	
664.951302944 M	27.03	19.700	-23.917				40	1.46	120 k	
831.233667808 M	27.34	21.625	-23.280				264	3.94	120 k	
32.393587399 M	27.53	19.664	-26.228			Ì	327	1.04	120 k	

Trace2: Measured Quasi Peak

Frequency (Hz)	Level (dBuV/m)	AF	PA+CL	Limit (dBuV/m)	Margin (dBuV/m)	Hor (), Ver ()	Azimuth (deg)(Deg)	Mast Height(m)	RBW(Hz)	Comment
171.387976224 M	9.52	11.800	-24.668	33.040	-23.52	1	288	1.46	120 k	
47.686573166 M	12.77	9.025	-25.937	29.540	-16.77	i	141	1.05	120 k	
831.233667808 M	20.28	21.625	-23.280	35.540	-15.26	i i	264	3.94	120 k	
664.951302944 M	21.05	19.700	-23.917	35.540	-14.49		40	1.46	120 k	
144.051903994 M	18.84	13.200	-25.277	33.040	-14.20		176	2.69	120 k	
32.393587399 M	21.45	19.664	-26.228	29.540	-8.09	i i	327	1.04	120 k	

Issued: 03/30/2014

Azimuth Plots

Azimuth (Degrees)

Turntable Plot (47.686573166 MHz)

Level (dBuV/m)

Intertek

3.5 3 2.5 2 1.5 Height (m) 0 20 40 Level (dBuV/m) 60 80

Height Plot (32.393587399 MHz)

All Polarities

Azimuth (Degrees)

4

Report Number: 101275145BOX-009

Intertek

All Polarities

Azimuth (Degrees)

All Polarities

Report Number: 101275145BOX-009

Intertek

All Polarities

Azimuth (Degrees)

Level (dBuV/m)

All Polarities

Model: zLink, Tx: CH78, FCC Part 15:209, 30-1000 MHz

Test Information Test Details Test: Project: Test Notes: Temperature: Humidity: Tested by: Test Started:

User Entry Radiated - FCC15 Class B @ 10m Corventis_G101275145 120VAC/60Hz, Tx mode CH78 20 deg C 23%, 1006 mB Vathana Ven 14 Mar 2014 21:05

Additional Information

Prescan Emission Graph

- Measured Peak Value
- Measured Quasi Peak Value
- Measured Average Value
- Maximum Value of Mast and Turntable

Swept Peak Data

_ Swept Quasi Peak Data

___ Swept Average Data

Emissions Test Data Trace1: Measured Peak

indoor: moduluio	aroun									
Frequency (Hz)	Level (dBuV/m)	AF	PA+CL	Limit (dBuV/m)	Margin (dBuV/m)	Hor (), Ver ()	Azimuth (deg)(Deg)	Mast Height(m)	RBW(Hz)	Comment
265.812825922 M	16.80	12.765	-23.689			1	287	1.05	120 k	
398.921642876 M	20.65	15.635	-24.030				334	1.17	120 k	
531.959118144 M	24.52	18.100	-24.581				359	1.67	120 k	
664.980962263 M	27.11	19.700	-23.917				360	1.46	120 k	
168.317635263 M	29.64	11.968	-24.752				341	1.14	120 k	
32.158116513 M	28.03	19.805	-26.231			Ì	174	3.56	120 k	

Trace2: Measured Quasi Peak

Frequency (Hz)	Level (dBuV/m)	AF	PA+CL	Limit (dBuV/m)	Margin (dBuV/m)	Hor (), Ver ()	Azimuth (deg)(Deg)	Mast Height(m)	RBW(Hz)	Comment
265.812825922 M	9.90 ⁽	12.765	-23.689	35.540	-25.64	1	287	1.05	120 k	
398.921642876 M	13.88	15.635	-24.030	35.540	-21.66	i	334	1.17	120 k	
531.959118144 M	19.75	18.100	-24.581	35.540	-15.79		359	1.67	120 k	
664.980962263 M	21.87	19.700	-23.917	35.540	-13.67		360	1.46	120 k	
32.158116513 M	21.05	19.805	-26.231	29.540	-8.49		174	3.56	120 k	
168.317635263 M	24.56	11.968	-24.752	33.040	-8.48	Í	341	1.14	120 k	

Issued: 03/30/2014

Azimuth Plots

All Polarities

Azimuth (Degrees)

Intertek

Level (dBuV/m)

Azimuth (Degrees)

All Polarities

Non-Specific EMC Report Shell Rev. July 2013 Client: Corventis, Model: zLink

Intertek

All Polarities

Azimuth (Degrees)

All Polarities

Intertek

All Polarities

Azimuth (Degrees)

Level (dBuV/m)

All Polarities

Report Number: 101275145BOX-009

Radiated Emissions

Intertek

Harmonic?

No Pre-Amp

No Pre-Amp

No Pre-Amp

No Pre-Amp

No Pre-Amp

Company: Corventis Antenna & Cables: SHF Bands: N, LF, HF, SHF Model #: zLink Antenna: ETS001 01-06-15.txt ETS001 01-06-15.txt EMC04 Serial #: 015821 Cable(s): 145-416 3mTrkB 10-03-2014.txt Engineers: Vathana Ven **REA002** Location: 10m Chamber Barometer: DAV004 Filter: Project #: G101275145 Date(s): 03/12/14 Standard: FCC Part 15 Subpart C 15.247 Temp/Humidity/Pressure: 24c 42% 1007mB Receiver: R&S ESI (145-108) 05-10-2014 Limit Distance (m): 3 PreAmp: PRE145014 12-13-2014.txt Test Distance (m): 3 PreAmp Used? (Y or N): Y Voltage/Frequency: 3.7VDC/120VAC Frequency Range: 1-25GHz Net = Reading (dBuV/m) + Antenna Factor (dB1/m) + Cable Loss (dB) - Preamp Factor (dB) - Distance Factor (dB) Peak: PK Quasi-Peak: QP Average: AVG RMS: RMS; NF = Noise Floor, RB = Restricted Band; Bandwidth denoted as RBW/VBW Antenna Cable Pre-amp Distance Ant. Detector Pol. Reading Factor Loss Factor Factor Net Limit Margin Bandwidth Frequency FCC Туре (V/H)MHz dB(uV) dB(1/m) dB dB dB dB(uV/m) dB(uV/m) dB IC Note: Spurious Emissions Reference. Fundamental frequencies (modulated) at 3 meters with no pre-amp X - Axis PK V 2402 000 53 40 32 11 5 91 0.00 0.00 91 42 100/300 kH ΡK н 2402.000 52.10 32.11 5.91 0.00 0.00 90.12 100/300 kH: ΡK V 50.09 32.20 0.00 88.27 2440.000 5.98 0.00 100/300 kH PK н 2440.000 56.11 32.20 5.98 0.00 0.00 94.29 100/300 kH ΡK ٧ 32.30 90.99 2480.000 52.63 6.06 0.00 0.00 100/300 kH ΡK Н 58.96 32.30 0.00 0.00 97.32 2480.000 6.06 100/300 kH; Y - Axis ΡK V 2402.000 55.80 32.11 5.91 0.00 0.00 93.82 100/300 kH PK н 2402.000 52.91 32.11 5.91 0.00 0.00 90.93 100/300 kH; V PK 2440.000 55 49 32.20 5.98 0.00 0.00 93.67 100/300 kH; PK н 2440.000 54.77 32.20 5.98 0.00 0.00 92.95 100/300 kH PK 55.78 32.30 6.06 0.00 0.00 94.14 V 2480.000 100/300 kH; 6.06 ΡK н 2480.000 56.37 32.30 0.00 0.00 94.73 100/300 kH: Ζ-Axis PK V 2402.000 52.94 32.11 5.91 0.00 0.00 90.96 100/300 kH; ΡK н 2402.000 54.86 32.11 5.91 0.00 0.00 92.88 100/300 kH PK V 2440.000 53.31 32.20 5.98 0.00 0.00 91.49 100/300 kH ΡK н 2440.000 57.15 32.20 5.98 0.00 0.00 95.33 100/300 kH; -V 100/300 kHz ΡK 2480.000 56.17 32.30 6.06 0.00 0.00 94.53 ΡK Н 2480.000 55.99 32.30 6.06 0.00 0.00 94.35 100/300 kH: Tx CH 0, F = 2402 MHz, Spurious emissions ΡK н 4804.000 43.62 34.19 8.64 34.68 0.00 51.78 74.00 -22.22 1/3 MHz RB н 54.00 AVG 4804.000 14.42 34.19 8.64 34.68 0.00 22.58 -31.42 1/3 MHz RB PK н 5545 090 34 88 34 59 9 56 34.31 0.00 44 72 71.42 -26 70 100/300 kH ΡK V 7206.000 34.04 35.76 11.02 34.60 0.00 46.22 71.42 -25.20 100/300 kH ΡK V 71.42 9608.000 32.95 36.83 12.75 35.22 0.00 47.31 -24.11 100/300 kH ΡK v 12010.000 44.80 38.81 14.94 36.23 0.00 62.32 74.00 -11.68 1/3 MHz RR AVG V 12010.000 15.60 38.81 14.94 36.23 0.00 33.12 54.00 -20.88 1/3 MHz RB V ΡK 14412.000 34.72 39.47 15.16 34.45 0.00 54.90 71.42 -16.52 100/300 kH ΡK V 16814.000 31.94 42.00 17 66 34.64 0.00 56.97 71.42 -14.45 100/300 kH Tx CH 39, F = 2440 MHz , Spurious emissions PK Н 4880.000 41.56 34.25 8.75 34.67 0.00 49.89 74.00 -24.11 1/3 MHz RB 54.00 AVG 4880.000 34.25 1/3 MHz RB н 12.36 8.75 34.67 0.00 20.69 -33.31 PK н 5545.090 34.88 34.59 9.56 34.31 0.00 44.72 74.29 100/300 kHz -29.57 PK V 45 29 35 75 11 10 34 54 0.00 57 60 74 00 -16 40 1/3 MHz RB 7320 000 AVG V 7320.000 16.09 35.75 11.10 34.54 28.40 54.00 1/3 MHz RB 0.00 -25.60 PK V 9760.000 33.66 36.96 13.11 35.64 0.00 48.10 74.29 -26.19 100/300 kH PK v 12200.000 41.30 39.03 14.80 36.43 0.00 58.70 74.00 -15.30 1/3 MHz RB AVG V 12200.000 12.10 39.03 14.80 36.43 54.00 1/3 MHz RB 0.00 29.50 -24.50 33.75 39.62 15.25 54.01 74.29 -20.28 PK V 14640.000 34.60 0.00 100/300 kH V 58.07 74.29 PK 17080.000 31.39 42.09 19.00 34.40 0.00 -16.22 100/300 kH Tx CH 78, F = 2480 MHz, Spurious emissions ΡK V 4960.000 42.18 34.28 8.86 34.66 0.00 50.66 74.00 -23.34 1/3 MHz RB AVG V 4960.000 12 98 34 28 8 86 34 66 0.00 21.46 54 00 -32 54 1/3 MHz RB V 45.14 77.32 ΡK 5545.090 35.30 34.59 9.56 34.31 0.00 -32.18 100/300 kHz ΡK V 7440.000 44.12 35.78 11.19 34.47 0.00 56.61 74.00 1/3 MHz -17.39 RB AVG v 7440.000 14.92 35.78 11.19 34.47 0.00 27.41 54.00 -26.59 1/3 MHz RB PK v 9920.000 31.84 37.11 13.49 36.07 0.00 46.37 77.32 -30.95 100/300 kH PK V 61.19 74.00 1/3 MHz RB 12400.000 43.95 39.22 14.65 36.64 0.00 -12.81 AVG V 12400.000 14.75 39.22 14.65 36.64 0.00 31.99 54.00 -22.01 1/3 MHz RB ٧ ΡK 14880.000 33.60 39.81 15.67 34.76 0.00 54.32 77.32 -23.00 100/300 kHz PK 61.58 -15.74 V 17360.000 32.70 42.07 20.94 34.13 0.00 77.32 100/300 kH

Average factor = 20*LOG((0.03466)/100) = 29.2 dB, 29.2 dB was applied to the peak readings to obtain average readings.

Hand scans were performed from 18-25GHz at a distance of <1m, no emissions were detected above the measuring equipment noise floor.

Report Number: 101275145BOX-009

Intertek

Test Personnel:	Vathana Ven	Test Date:	03/12/2014, 03/14/2014
Supervising/Reviewing			
Engineer: (Where Applicable)	N/A		
Product Standard:	15.247, RSS-Gen, RSS-210	Limit Applied:	Below specified limits
Input Voltage:	Internal Battery Powered/120VAC/60Hz		
Pretest Verification w/		Ambient Temperature:	24, 20 °C
Ambient Signals or BB Source:	BB Source	Relative Humidity:	42, 23 %
		Atmospheric Pressure:	1007, 1006 mbars

Deviations, Additions, or Exclusions: None

8 Hopping Channel Separation

8.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C Section 15.247, ANSI C63.10, RSS-Gen, RSS-210 Annex 8.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

For radiated emissions, U_{lab} (3.5 dB at 3m and 3.5 dB at 10m below 1 GHz, and 4.2 dB at 3m above 1

GHz) < U_{CISPR} (5.2 dB), which is the reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF +	CF - AG
Where	FS = Field Strength in $dB\mu V/m$
	RA = Receiver Amplitude (including preamplifier) in $dB\mu V$
	CF = Cable Attenuation Factor in dB
	AF = Antenna Factor in dB
	AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = 52.0 dB μ V AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB FS = 32 dB μ V/m

To convert from $dB\mu V$ to μV or mV the following was used:

UF = $10^{(NF/20)}$ where UF = Net Reading in μ V NF = Net Reading in dB μ V

Example:

FS = RA + AF + CF – AG = 52.0 + 7.4 + 1.6 – 29.0 = 32.0 UF = $10^{(32 \text{ dB}\mu\text{V}/20)}$ = 39.8 $\mu\text{V/m}$

8.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
MAN1'	Digital 4 Line Barometer	Mannix	0ABA116	MAN1	08/13/2012	08/13/2014
ROS001'	Spectrum Analyzer 20Hz - 40 GHz	Rohde & Schwartz	FSEK-30	100225	04/25/2013	04/25/2014
CBLHF2012-2M-2'	2m 40GHz Coaxial Cable	Huber & Suhner	SF102	252675002	01/14/2014	01/14/2015
HORN3	HORN ANTENNA	EMCO	3115	9610-4980	04/25/2013	04/25/2014

Intertek

Software Utilized:

Name	Manufacturer	Version
None		

8.3 Results:

The sample tested was found to comply, since the output power is below 125 mW and therefore, the channel separation must be at least 2/3 of the 20 dB bandwidth.

FCC Part 15.247 (1) & RSS-210 A8.1 (b)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.
8.4 Setup Photograph:

8.5 Plots/Data:

DH1 mode, Channel 38, channel separation is 1.010MHz

DH1 mode, Channel 79, channel separation is 1.018MHz

DH3 mode, Channel 0, channel separation 1.006 MHz

DH3 mode, Channel 40, channel separation 1.006 MHz

DH3 mode, Channel 79, channel separation 1.002 MHz

DH5 mode, Channel 0, channel separation 1.012 MHz

DH5 mode, Channel 38, channel separation 1.016 MHz

DH5 mode, Channel 78, channel separation 1.004 MHz

Intertek

Deviations, Additions, or Exclusions: None

9 Number of hopping frequency

9.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C Section 15.247, ANSI C63.10, RSS-Gen, RSS-210 Annex 8.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

For radiated emissions, U_{lab} (3.5 dB at 3m and 3.5 dB at 10m below 1 GHz, and 4.2 dB at 3m above 1

GHz) < U_{CISPR} (5.2 dB), which is the reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF +	CF - AG
Where	FS = Field Strength in $dB\mu V/m$
	RA = Receiver Amplitude (including preamplifier) in $dB\mu V$
	CF = Cable Attenuation Factor in dB
	AF = Antenna Factor in dB
	AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = 52.0 dB μ V AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB FS = 32 dB μ V/m

To convert from $dB\mu V$ to μV or mV the following was used:

UF = $10^{(NF/20)}$ where UF = Net Reading in μ V NF = Net Reading in dB μ V

Example:

FS = RA + AF + CF – AG = 52.0 + 7.4 + 1.6 – 29.0 = 32.0 UF = $10^{(32 \text{ dB}\mu\text{V}/20)}$ = 39.8 $\mu\text{V/m}$

9.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
MAN1'	Digital 4 Line Barometer	Mannix	0ABA116	MAN1	08/13/2012	08/13/2014
ROS001'	Spectrum Analyzer 20Hz - 40 GHz	Rohde & Schwartz	FSEK-30	100225	04/25/2013	04/25/2014
CBLHF2012-2M-2'	2m 40GHz Coaxial Cable	Huber & Suhner	SF102	252675002	01/14/2014	01/14/2015
HORN3'	HORN ANTENNA	EMCO	3115	9610-4980	04/25/2013	04/25/2014

Software Utilized:

Name	Manufacturer	Version
None		

9.3 **Results:**

The sample tested was found to Comply.

FCC Part 15.247 (1) (iii) & RSS-210 A8.1 (d) Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

9.4 Setup Photograph:

Intertek

9.5 Plots/Data:

Deviations, Additions, or Exclusions: None

Intertek

10 Test Hopping Channel Bandwidth

10.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C Section 15.247, ANSI C63.10, RSS-Gen, RSS-210 Annex 8.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

For radiated emissions, U_{lab} (3.5 dB at 3m and 3.5 dB at 10m below 1 GHz, and 4.2 dB at 3m above 1

GHz) < U_{CISPR} (5.2 dB), which is the reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF +	CF - AG
Where	FS = Field Strength in $dB\mu V/m$
	RA = Receiver Amplitude (including preamplifier) in $dB\mu V$
	CF = Cable Attenuation Factor in dB
	AF = Antenna Factor in dB
	AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = 52.0 dB μ V AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB FS = 32 dB μ V/m

To convert from $dB\mu V$ to μV or mV the following was used:

UF = $10^{(NF/20)}$ where UF = Net Reading in μ V NF = Net Reading in dB μ V

Example:

FS = RA + AF + CF – AG = 52.0 + 7.4 + 1.6 – 29.0 = 32.0 UF = $10^{(32 \text{ dB}\mu\text{V}/20)}$ = 39.8 $\mu\text{V/m}$

10.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
MAN1'	Digital 4 Line Barometer	Mannix	0ABA116	MAN1	08/13/2012	08/13/2014
145-128'	Spectrum Analyzer 20Hz - 40 GHz	Rohde & Schwartz	FSEK-30	100225	04/25/2013	04/25/2014
145-416'	Cables 145-400 145-402 145-404 145-408	Huber + Suhner	3m Track B cables	multiple	10/04/2013	10/04/2014
ETS001'	1-18GHz DRG Horn Antenna	ETS-Lindgren	3117	00143259	01/06/2014	01/06/2015

Software Utilized:

Name	Manufacturer	Version
None		

10.3 Results:

Test result of the 20-dB bandwidth – not the FCC requirements.

FCC Part 15.247 (1) & RSS-210 A8.1 (b)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

10.4 Setup Photograph:

10.5 Test Data:

DH5 mode, Channel 0, channel bandwidth 93.69 kHz Delta 2 [T1] RBW 30 kHz RF Att 10 dB Ref Lvl 100 kHz -21.16 dB VBW 89.7 db**y**v 93.68737475 kHz 5 ms db₽v SWT Unit 89.6 **V**1 Α 80 [T1] .16 dB ▲2 70 7.07414<mark>830 kH</mark>2 60 1MAX 1MA 50 amile 40 In II Лu 30 20 10 -10.3 Center 2.401897608 GHz 55 kHz/ Span 550 kHz Date: 20.MAR.2014 22:24:01

DH5 mode, Channel 38, channel bandwidth 90.93 kHz

DH5 mode, Channel 0, channel bandwidth 84.32 kHz

Test Personnel:	Vathana Ven	Test Date:	03/20/2014
Supervising/Reviewing			
(Where Applicable)	N/A		
	15.247, CFR47 Part 2.1093,		
	RSS-Gen, RSS-210,		
Product Standard:	IC RSS-102	Limit Applied:	Below specified limits
	Internal Battery Powered,		
Input Voltage:	120VAC/60Hz		
Pretest Verification w/		Ambient Temperature:	22 °C
Ambient Signals or			
BB Source:	BB Source	Relative Humidity:	50 %
		Atmospheric Pressure:	1009 mbars

Deviations, Additions, or Exclusions: None

11 Hopping Dwell time

11.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C Section 15.247, ANSI C63.10, RSS-Gen, RSS-210 Annex 8.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

For radiated emissions, U_{lab} (3.5 dB at 3m and 3.5 dB at 10m below 1 GHz, and 4.2 dB at 3m above 1

GHz) < U_{CISPR} (5.2 dB), which is the reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

CF - AG
FS = Field Strength in $dB\mu V/m$
RA = Receiver Amplitude (including preamplifier) in $dB\mu V$
CF = Cable Attenuation Factor in dB
AF = Antenna Factor in dB
AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = 52.0 dB μ V AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB FS = 32 dB μ V/m

To convert from $dB\mu V$ to μV or mV the following was used:

UF = $10^{(NF/20)}$ where UF = Net Reading in μ V NF = Net Reading in dB μ V

Example:

FS = RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0 UF = $10^{(32 \text{ dB}\mu\text{V}/20)}$ = 39.8 $\mu\text{V/m}$

11.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
MAN1'	Digital 4 Line Barometer	Mannix	0ABA116	MAN1	08/13/2012	08/13/2014
ROS001'	Spectrum Analyzer 20Hz - 40 GHz	Rohde & Schwartz	FSEK-30	100225	04/25/2013	04/25/2014
CBLHF2012-2M-2'	2m 40GHz Coaxial Cable	Huber & Suhner	SF102	252675002	01/14/2014	01/14/2015
HORN3'	HORN ANTENNA	EMCO	3115	9610-4980	04/25/2013	04/25/2014

Software Utilized:

Name	Manufacturer	Version
None		

11.3 Results:

The sample tested was found to Comply. FCC Part 15.247 (1) (iii) & RSS-210 A8.1 (c)

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Bluetooth utilizes 79 channels, therefore dwell time must not exceed 0.4 seconds in any 31.6 second period.

11.4 Setup Photograph:

11.5 Test Data:

Mode	Number of transmissions in a 31.6 (79	Length of transmission	Results	Limit
	hopping*0.4 seconds)	time (msec)	(msec)	(msec)
DH1	88 (times/5s)*6.32 = 556.16 times	0.433	240.82	400
DH3	24 (times/5s)*6.32 = 151.68 times	1.683	255.27	400
DH5	34 (times/5s)*6.32 = 214.88 times	0.580	124.63	400

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channel employed.

Length of transmission time

Number of hopping channels in 5s slot

Length of transmission time

Number of hopping channels in 5s slot

Deviations, Additions, or Exclusions: None

12 Test Band-edge Compliance

12.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C Section 15.247, ANSI C63.10, RSS-Gen, RSS-210 Annex 8.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

For radiated emissions, U_{lab} (3.5 dB at 3m and 3.5 dB at 10m below 1 GHz, and 4.2 dB at 3m above 1

GHz) < U_{CISPR} (5.2 dB), which is the reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF +	CF - AG
Where	FS = Field Strength in $dB\mu V/m$
	RA = Receiver Amplitude (including preamplifier) in $dB\mu V$
	CF = Cable Attenuation Factor in dB
	AF = Antenna Factor in dB
	AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = 52.0 dB μ V AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB FS = 32 dB μ V/m

To convert from $dB\mu V$ to μV or mV the following was used:

UF = $10^{(NF/20)}$ where UF = Net Reading in μ V NF = Net Reading in dB μ V

Example:

FS = RA + AF + CF – AG = 52.0 + 7.4 + 1.6 – 29.0 = 32.0 UF = $10^{(32 \text{ dB}\mu\text{V}/20)}$ = 39.8 $\mu\text{V/m}$

12.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
MAN1'	Digital 4 Line Barometer	Mannix	0ABA116	MAN1	08/13/2012	08/13/2014
145-128'	Spectrum Analyzer 20Hz - 40 GHz	Rohde & Schwartz	FSEK-30	100225	04/25/2013	04/25/2014
145-416'	Cables 145-400 145-402 145-404 145-408	Huber + Suhner	3m Track B cables	multiple	10/04/2013	10/04/2014
ETS001'	1-18GHz DRG Horn Antenna	ETS-Lindgren	3117	00143259	01/06/2014	01/06/2015

Software Utilized:

Name	Manufacturer	Version
None		

12.3 Results:

The sample tested was found to comply. Note that the requirement is 20 dBc at the lower band edge, and the device must meet the general limits of 15.209 using the marker-delta method at the upper band edge due to the restricted band located there.

In any 100 kHz bandwidth outside the frequency band , the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see 15.205(c)).

Frequency	Fiel	Test Distance	
(MHz)	μV/m	dBµV/m	(meters)
30–88	100	40.00	3
88–216	150	43.52	3
216–960	200	46.02	3
Above 960	500	53.98	3

12.4 Setup Photographs:

12.5 Test Data:

Lower Band Edge Compliance

Upper Band-Edge Compliance Radiated Emissions

Company:	Company: Corventis							a & Cables:	SHF	Bands: N,	LF, HF, SHF	
Model #:	zLink						Antenna: ETS001 01-06-15.txt ETS001 01-06-15.txt					
Serial #:	015821						Cable(s): 145-416 3mTrkB 10-03-2014.txt					
Engineers:	Vathana V	en			Location:	10m Chamber	Barometer:	MAN1		Filter:		
Project #:	G1012751	45	Date(s):	03/12/14								
Standard: FCC Part 15 Subpart C 15.247			15.247				Temp/Humic	lity/Pressure:	24c	42%	1007mB	
Receiver: R&S ESI (145-108) 05-10-2014 Limit Distance (m): 3												
PreAmp: PRE145014 12-13-2014.txt Test Distance (m): 3												
PreAmp Used? (Y or N): Y Voltage/Frequency: 3.7VDC/120VAC Frequency Range: 2483.5 MHz												
Net = Reading (dBuV/m) + Antenna Factor (dB1/m) + Cable Loss (dB) - Preamp Factor (dB) - Distance Factor (dB)												
Peak: PK Quasi-Peak: QP Average: AVG RMS: RMS; NF = Noise Floor, RB = Restricted Band; Bandwidth denoted as RBW/VBW												
	Ant.			Antenna	Cable	Pre-amp	Distance]
Detector	Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin	Bandwidth	
Туре	(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB		FCC
			Note:	Upper Band	Edge Com	pliance, Ma	rker-delta m	ethod				
PK	Н	2484.000	8.74	32.31	6.07	0.00	0.00	47.12	74.00	-26.88	1/3 MHz	
AVG	Н	2484.000	-5.65	32.31	6.07	0.00	0.00	32.73	54.00	-21.27	1/3 MHz	
PK	Н	2483.500	58.66	32.31	6.07	0.00	0.00	97.04			1/3 MHz	
PK	Н	2484.000	33.70	32.31	6.07	0.00	0.00	67.49			1/3 MHz	
	Relative r	neasuremen	t of the peal	c of the fund	lamental en	nission and t	he band-ed	ge emission	is 58.66-33	8.7 = 24.96		

Test Personnel:	Vathana Ven
Supervising/Reviewing	
(Where Applicable)	N/A
	CER47 ECC Part 15 247
Product Standard:	RSS-Gen, RSS-210
	Internal Battery Powered,
Input Voltage:	120VAC/60Hz
Ambient Signals or	
BB Source:	BB Source

Test Date: 03/12/2014

Limit Applied: Below specified limits

Ambient Temperature: 24°C Relative Humidity: 42% Atmospheric Pressure: 1007mbars

Deviations, Additions, or Exclusions: None

13 Receiver Radiated Spurious

13.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C Section 15.247, ANSI C63.10, RSS-Gen, RSS-210 Annex 8.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

For radiated emissions, U_{lab} (3.5 dB at 3m and 3.5 dB at 10m below 1 GHz, and 4.2 dB at 3m above 1

GHz) < U_{CISPR} (5.2 dB), which is the reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF +	CF - AG
Where	FS = Field Strength in $dB\mu V/m$
	RA = Receiver Amplitude (including preamplifier) in $dB\mu V$
	CF = Cable Attenuation Factor in dB
	AF = Antenna Factor in dB
	AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = 52.0 dB μ V AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB FS = 32 dB μ V/m

To convert from $dB\mu V$ to μV or mV the following was used:

UF = $10^{(NF/20)}$ where UF = Net Reading in μ V NF = Net Reading in dB μ V

Example:

FS = RA + AF + CF – AG = 52.0 + 7.4 + 1.6 – 29.0 = 32.0 UF = $10^{(32 \text{ dB}\mu\text{V}/20)}$ = 39.8 $\mu\text{V/m}$

13.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV004'	Weather Station	Davis Instruments	7400	PE80529A61A	09/25/2012	09/25/2014
145128'	EMI Receiver (20 Hz - 40 Ghz)	Rohde & Schwarz	ESIB 40	839283/001	03/17/2014	03/17/2015
145106'	Bilog Antenna (30MHz - 5GHz)	Sunol Sciences	JB5	A111003	10/01/2013	10/01/2014
145003'	Preamplifier (150 KHz to 1.3 GHz)	Hewlett Packard	8447D	2443A04077	10/07/2013	10/07/2014
145-410'	Cables 145-400 145-403 145-405 145-406 145-407	Huber + Suhner	10m Track A Cables	multiple	10/04/2013	10/04/2014
145-416'	Cables 145-400 145-402 145-404 145-408	Huber + Suhner	3m Track B cables	multiple	10/04/2013	10/04/2014
145014'	Preamplifier (1 GHz to 26.5 GHz)	Hewlett Packard	8449B	3008A00232	12/19/2013	12/19/2014
ETS001'	1-18GHz DRG Horn Antenna	ETS-Lindgren	3117	00143259	01/06/2014	01/06/2015

Software Utilized:

Name	Manufacturer	Version
C5	Teseq	5.26.46.46

13.3 Results:

The sample tested was found to Comply.

13.4 Setup Photographs:

Intertek

30 – 1000 MHz scan

1-13 GHz scan

13.5 Test Data:

Model: zLink, Rx Mode, FCC Part 15:209

Test Information
Test Details
Test:
Project:
Test Notes:
Temperature:
Humidity:
Tested by:
Test Started:

User Entry Radiated - FCC15 Class B @ 10m Corventis_G101275145 120VAC/60Hz, Rx mode CH39 20 deg C 23%, 1006 mB Vathana Ven 14 Mar 2014 18 : 45

Additional Information

Prescan Emission Graph

- Measured Peak Value
- Measured Quasi Peak Value
- Measured Average Value
- Maximum Value of Mast and Turntable

Emissions Test Data Trace2: Measured Quasi Peak

Frequency (Hz) 265.903407084 M 48.014428878 M 398.987374339 M 532.087575114 M 665.027455248 M 189.435070601 M	Level (dBuV/m) 11.02 6.95 17.91 19.17 20.30 22.38	AF 12.772 8.891 15.639 18.100 19.700 11.444	PA+CL -23.689 -25.928 -24.031 -24.580 -23.917 -24.177	Limit (dBuV/m) 35.540 29.540 35.540 35.540 35.540 33.040	Margin (dBuV/m) -24.52 -22.59 -17.63 -16.37 -15.24 -10.66	Hor (), Ver () 	Azimuth (deg)(Deg) 265 195 177 76 264 0	Mast Height (m) 1.05 1.04 1.05 1.88 4.00 1.05	RBW (Hz) 120 k 120 k 120 k 120 k 120 k 120 k	Comment
--	--	---	---	---	--	---	---	--	---	---------

Swept Peak Data

_ Swept Average Data

Swept Quasi Peak Data

Issued: 03/30/2014

Azimuth Plots

Azimuth (Degrees)

Intertek

Turntable Plot (189.435070601 MHz)

Level (dBuV/m)

Height Plot (48.014428878 MHz) 3.5 3 2.5 2 1.5 Height (m) 0 20 40 Level (dBuV/m) 60 80

Turntable Plots

4

All Polarities

All Polarities

Azimuth (Degrees)

90

All Polarities

Report Number: 101275145BOX-009

Intertek

All Polarities

Azimuth (Degrees)

Level (dBuV/m)

All Polarities

Report Number: 101275145BOX-009

Intertek

Test Information Test Details Test: Project: Test Notes: Temperature: Humidity: Tested by: Test Started:

User Entry Radiated - FCC15 Class B @ 3m Corventis_G101275145 120VAC/60Hz, Rx mode CH39 20 deg C 24%, 998 mB Vathana Ven 20 Mar 2014 20 : 53

Additional Information

Prescan Emission Graph

- Measured Peak Value
- Measured Quasi Peak Value
- Measured Average Value
- Maximum Value of Mast and Turntable

Emissions Test Data

Trace I: Measur	еа реак									
Frequency (Hz)	Level (dBuV/m)	AF	PA+CL	Limit (dBuV/m)	Margin (dBuV/m)	Hor (), Ver ()	Azimuth (deg)(Deg)	Mast Height(m)	RBW(Hz)	Comment
1.463326654 G	45.15	28.468	-27.883	74.000	-28.85		228	2.19	1 M	
2.450354042 G	47.38	32.226	-27.581	74.000	-26.62		41	1.87	1 M	
7.069465598 G	58.33	35.766	-21.471	74.000	-15.67	1	174	2.65	1 M	
9.937094189 G	64.75	37.124	-16.000	74.000	-9.25	i	151	1.55	1 M	

Swept Peak Data Swept Quasi Peak Data

Swept Average Data

SW(HZ) CONTINENT
M
M
M
M
B' NN NN

Issued: 03/30/2014

Azimuth Plots

Azimuth (Degrees)

Intertek

Turntable Plot (2.450354042 GHz)

Level (dBuV/m)

3.5 3 2.5 2 1.5 Height (m) 1 0 20 40 Level (dBuV/m) 80 60

Height Plot (1.463326654 GHz)

Turntable Plots

4

All Polarities

Report Number: 101275145BOX-009

Issued: 03/30/2014

All Polarities

Azimuth (Degrees)

Intertek

Azimuth (Degrees)

Test Personnel:	Vathana Ven	Test Date:
Supervising/Reviewing Engineer		
(Where Applicable)	N/A	
Product Standard:	CFR47 FCC Part 15.247, RSS-Gen. RSS-210	Limit Applied:
Input Voltage:	Internal Battery Powered, 120VAC/60Hz	
Pretest Verification w/		Ambient Temperature:
BB Source:	BB Source	Relative Humidity:
		Atmospheric Pressure:

Deviations, Additions, or Exclusions: None

Test Date:	03/14/2014
Limit Applied:	Below specified limits
mbient Temperature:	20°C
Relative Humidity:	24%
tmospheric Pressure:	998mbars

14 AC Mains Conducted Emissions

14.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C Section 15.247, ANSI C63.10, RSS-Gen, RSS-210.

TEST SITE: EMC Lab

The EMC Lab has one Semi-anechoic Chamber and one Shielded Chamber. AC Mains Power is available at 120, 230, and 277 Single Phase; 208, 400, and 480 3-Phase. Large reference ground-planes are installed in the general lab area to facilitate EMC work not requiring a shielded environment.

Measurement Uncertainty

For conducted emissions, U_{lab} (3.1 dB in worst case) < U_{CISPR} (3.6 dB), which is the reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculations

The following is how net line-conducted readings were determined:

NF = RF + LF + CF + AF

Where NF = Net Reading in $dB\mu V$ RF = Reading from receiver in $dB\mu V$ LF = LISN or ISN Correction Factor in dB CF = Cable Correction Factor in dB AF = Attenuator Loss Factor in dB

To convert from $dB\mu V$ to μV or mV the following was used:

UF = $10^{(NF/20)}$ where UF = Net Reading in μ V NF = Net Reading in dB μ V

Example:

NF = RF + LF + CF + AF = 28.5 + 0.2 + 0.4 + 20.0 = 49.1 dB μ V UF = 10^(49.1 dB μ V / 20) = 285.1 μ V/m

14.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV004'	Weather Station	Davis Instruments	7400	PE80529A61A	09/25/2012	09/25/2014
NAR006'	EMI CISPR Receiver	NARDA	PMM 9010	696WW30303	04/16/2013	04/16/2014
CBLBNC2012-7'	50 Ohm Coaxial Cable	Pomona	RG58C/U	CBLBNC2012-7	11/13/2013	11/13/2014
LISN-30'	Line Impedance Stabilization Network 50uH 50 Ω	Com Power	LI215A	191961	02-26-2014	02-26-2015
DS26A'	Attenuator, 20dB	Mini Circuits	20dB, 50 ohm	DS26A	10/04/2013	10/04/2014

Software Utilized:

Name	Manufacturer	Version
PMM Emission Suite	Narda	2.05

14.3 Results:

The sample tested was found to Comply.

14.4 Setup Photograph:

Intertek

14.5 Test Data:

Conducted Emissions

Company:	Corventis						Receiver:	EMI CIPR Receiver (NAR006) 04-16-2014
Model #: zLink Cable: CBLBNC2012-7						-7 11-13-14.txt			
Serial #:	015821						LISN 1:	LISN30 (1) 0	2-26-2015.txt
Engineer(s):	Vathana Ve	en			Location:	10m Chamber	LISN 2:	LISN30 (2) 0	2-26-2015.txt
Project #:	G10127514	15	Date:	03/12/14			LISN 3:	NONE.	
Note:			Tx n	node					
Standard:	FCC Part 1	5 Subpart C	; 15.247				LISN 4:	NONE.	
Barometer:	SAF1083	Temp/Humid	lity/Pressure:	23 deg C	41%	1004 mB	Attenuator:	DS26A 10-	04-2014.txt
	Voltage/	Frequency:	120VA	C/60Hz	Freque	ncy Range:	0.150-	30MHz	
Net	is the sum of	of worst-cas	e lisn, cable	e, & attenua	tor losses, a	nd initial rea	ading, factor	s are not sh	iown
Peak: P	K Quasi-Pe	ak: QP Ave	erage: AVG	RMS: RMS	S; NF = Nois	se Floor; Ba	andwidth de	noted as RE	3W/VBW
		Reading	Reading	Reading	Reading		QP		
Detector	Frequency	Line 1	Line 2	Line 3	Line 4	Net	Limit	Margin	Bandwidth
Туре	MHz	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB	
QP	0.620	29.74	26.50			50.01	56.00	-5.99	9/30 kHz
QP	0.635	24.51	24.11			44.78	56.00	-11.22	9/30 kHz
QP	0.650	22.00	21.80			42.27	56.00	-13.73	9/30 kHz
QP	0.665	21.00	21.09			41.36	56.00	-14.64	9/30 kHz
QP	1.065	23.67	20.80			43.98	56.00	-12.02	9/30 kHz
QP	1.105	20.80	20.80			41.11	56.00	-14.89	9/30 kHz

		Reading	Reading	Reading	Reading		Average		
Detector	Frequency	Line 1	Line 2	Line 3	Line 4	Net	Limit	Margin	Bandwidth
Туре	MHz	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB	
AVG	0.620	23.00	21.00			43.27	46.00	-2.73	9/30 kHz
AVG	0.635	18.00	17.80			38.27	46.00	-7.73	9/30 kHz
AVG	0.650	16.00	14.50			36.27	46.00	-9.73	9/30 kHz
AVG	0.665	14.00	13.00			34.27	46.00	-11.73	9/30 kHz
AVG	1.065	19.50	15.00			39.81	46.00	-6.19	9/30 kHz
AVG	1.105	13.00	14.50			34.81	46.00	-11.19	9/30 kHz

Conducted Emissions

Intertek

Company:	Corventis						Receiver:	EMI CIPR Receiver (NAR006) 04-16-2014
Model #:	zLink						Cable:	CBLBNC2012	-7 11-13-14.txt
Serial #:	015821						LISN 1:	LISN30 (1) 0	2-26-2015.txt
Engineer(s):	Vathana Ve	en			Location:	10m Chamber	LISN 2:	LISN30 (2) 0	2-26-2015.txt
Project #:	G10127514	5	Date:	03/12/14			LISN 3:	NONE.	
Note:		Rx n	node						
Standard:	FCC Part 1	5 Subpart C	; 15.247				LISN 4:	NONE.	
Barometer:	SAF1083	Temp/Humid	lity/Pressure:	23 deg C	41%	1004 mB	Attenuator:	DS26A 10-	04-2014.txt
	Voltage/	Frequency:	120VA	C/60Hz	Freque	ncy Range:	0.150-	30MHz	
Net	is the sum of	of worst-cas	e lisn, cable	e, & attenuat	tor losses, a	nd initial rea	ading, factor	s are not sh	own
Peak: P	K Quasi-Pe	ak: QP Ave	erage: AVG	RMS: RMS	; NF = Nois	se Floor; Ba	andwidth dei	noted as RE	3W/VBW
		Reading	Reading	Reading	Reading		QP		
Detector	Frequency	Line 1	Line 2	Line 3	Line 4	Net	Limit	Margin	Bandwidth
Туре	MHz	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB	
QP	0.205	21.32	25.05			45.31	63.41	-18.10	9/30 kHz
QP	0.610	27.48	23.80			47.75	56.00	-8.25	9/30 kHz
QP	0.625	29.14	25.00			49.41	56.00	-6.59	9/30 kHz
QP	0.640	23.97	21.00			44.24	56.00	-11.76	9/30 kHz
QP	4.300	20.90	21.21			41.67	56.00	-14.33	9/30 kHz
QP	4.640	21.26	24.82			45.29	56.00	-10.71	9/30 kHz
		Reading	Reading	Reading	Reading		Average		
Detector	Frequency	Line 1	Line 2	Line 3	Line 4	Net	Limit	Margin	Bandwidth
Туре	MHz	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB(uV)	dB	
AVG	0.205	16.00	22.80			43.06	53.41	-10.35	9/30 kHz
AVG	0.610	20.50	18.00			40.77	46.00	-5.23	9/30 kHz
AVG	0.625	21.00	19.20			41.27	46.00	-4.73	9/30 kHz
AVG	0.640	16.80	15.80			37.07	46.00	-8.93	9/30 kHz

Test Personnel: Supervising/Reviewing Engineer: (Where Applicable)	Vathana Ven	Test Date:	_03/12/2014
Product Standard:	CFR47 FCC Part 15.247, RSS-Gen, RSS-210 Internal Battery Powered, 120VAC/60Hz	Limit Applied:	Below specified limits
Pretest Verification w/		Ambient Temperature:	24°C
Ambient Signals or BB Source:	BB Source	Relative Humidity: Atmospheric Pressure:	42% 1007mbars

46.00

46.00

-9.54

-5.03

9/30 kHz

9/30 kHz

36.46

40.97

Deviations, Additions, or Exclusions: None

AVG

AVG

4.300

4.640

8.60

14.00

16.00

20.50

15 Revision History

Revision Level	Date	Report Number	Prepared By	Reviewed By	Notes
0	03/30/2014	101275145BOX-009	VEVISI	KPS LPS	Original Issue