

EMC TEST REPORT

Report Number: 101275145BOX-001 **Project Number:** G101275145

Report Issue Date: 11/07/2013

Product Designation: PiiX

Standards: FCC Part 15:2013 Subpart C Section 15.247, FCC Part 15:2013 Subpart B Class B, RSS-210 Issue 8 December 2010, ICES-003 Issue 5 August 2012 RSS-Gen Issue 3 December 2010

Tested by: Intertek Testing Services NA, Inc. 70 Codman Hill Road Boxborough, MA 01719 USA Client: Corventis 1410 Energy Park Drive Suite #1 St. Paul, MN 55108 USA

Report prepared by Reviewer

Vothann F. Von

Vathana Ven / Senior Project Engineer

Report reviewed by

Michael F. Murphy / Sr. Staff Engineer, EMC

1 Introduction and Conclusion

The tests indicated in section 2.0 were performed on the product constructed as described in section 4.0. The remaining test sections are the verbatim text from the actual data sheets used during the investigation. These test sections include the test name, the specified test Method, a list of the actual Test Equipment Used, documentation Photos, Results and raw Data. No additions, deviations, or exclusions have been made from the standard(s) unless specifically noted.

Based on the results of our investigation, we have concluded the product tested **complies** with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested.

2 Test Summary

Section	Test full name	Result
3	Client Information	
4	Description of Equipment Under Test	
5	System Setup and Method	
6	Maximum Peak Output Power, Human RF Exposure and Duty Cycle FCC 15:2011 Subpart C, Section 15.247 (b) (1), (4) RSS-210 Issue 8 December 2010, A8.4 (2), IC RSS-102 Issue 4 March 2010, CFR47 Part 2.1093	Pass
7	Transmitter Radiated Spurious Emissions FCC 15:2013 Subpart C Section 15.247 (d) RSS-210 Issue 8 December 2010, A8.5	Pass
8	Hopping Channel Separation FCC 15:2013 Subpart C Section 15.247 (a)(1) RSS-210 Issue 8 December 2010, A8.1 (b)	Pass
9	Number of Hopping Frequency FCC 15:2013 Subpart C Section 15.247 (a)(1) (iii) RSS-210 Issue 8 December 2010, A8.1 (d)	Pass
10	Hopping Channel Bandwidth FCC 15:2013 Subpart C Section 15.247 (a)(1) RSS-210 Issue 8 December 2010, A8.1 (b)	Pass
11	Hopping Dwell time FCC 15:2011 Subpart C Section 15.247 (a)(1) (iii) RSS-210 Issue 8 December 2010, A8.1 (d)	Pass
12	Band-edge Compliance FCC 15:2013 Subpart C Section 15.247 (d) RSS-210 Issue 8 December 2010, A8.5	Pass
13	Receiver Radiated Spurious FCC Part 15:2013 Subpart B Section 15.109 (a) RSS-Gen Issue 3 December 2010, Section 6.1 (Table 2)	Pass
14	Revision History	

3 Client Information

This EUT was tested at the request of:

Client:	Corventis 1410 Energy Park Drive Suite #1 St. Paul, MN 55108 USA
Contact:	Mr. Brett Landrum
Telephone:	651-925-3778
Fax:	None
Email:	Brett.Landrum@corventis.com

4 Description of Equipment Under Test

Manufacturer:	Corventis 1410 Energy Park Drive Suite #1
	St. Paul, MN 55108 USA

Equipment Under Test						
Description Manufacturer Model Number Serial Number						
Wireless Transmitter	Corventis	PiiX	N111306130000E1			
Wireless Transmitter	Corventis	PiiX	N111306130000DE			
Wireless Transmitter	Corventis	PiiX	N1113080200002234017282			
Wireless Transmitter	Corventis	PiiX	N1113080200002234017279			

Receive Date:	07/24/2013
Received Condition:	Good
Туре:	Production

Description of Equipment Under Test (provided by client)

The PiiX is a wearable device that automatically collects and wirelessly transmits physiological data. Designed for patient comfort, PiiX is light-weight, leadless and water resistant to support continuous use. Bluetooth utilizes 79 channels starting at 2402 MHz and extending to 2480 MHz. Channels 0 (2402 MHz), 39 (2441 MHz) and 79 (2480 MHz) were selected for testing.

Equipment Under Test Power Configuration					
Rated Voltage Rated Current Rated Frequency Number of Phases					
3.7 N/A N/A N/A					

Operating modes of the EUT:

No.	Descriptions of EUT Exercising
1	Transmit mode – hopping enabled (DH1, DH3, and DH5) or hopping disabled, modulated on a single channel
2	Receive mode

Software used by the EUT:

No.	Descriptions of EUT Exercising
1	Pre-programmed using Tera Term 4.61

5 System Setup and Method

	Cables					
ID	Description	Length (m)	Shielding	Ferrites	Termination	
	None					

Support Equipment					
Description Manufacturer Model Number Serial Number					
Laptop	Dell	Latitude D630	JX7XX61 43367588497		

5.1 Method:

Configuration as required by ANSI C 63.10:2013, FCC Part 15:2013 Subpart C Section 15.247, RSS-210 Issue 8 December 2010, RSS-Gen Issue 3 December 2010, IC RSS-102 Issue 4 March 2010, CFR47 Part 2.1093.

5.2 EUT Block Diagram:

EUT

Laptop		

6 Maximum Peak Output Power, Human RF Exposure and Duty Cycle

6.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C Section 15.247, CFR47 Part 2.1093, ANSI C63.10, RSS-Gen, RSS-210 Annex 8, and IC RSS-102 Issue 4.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

For radiated emissions, U_{lab} (3.5 dB at 3m and 3.5 dB at 10m below 1 GHz, and 4.2 dB at 3m above 1 GHz) < U_{CISPR} (5.2 dB), which is the reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

Intertek

 $\begin{array}{ll} FS = RA + AF + CF - AG \\ Where & FS = Field Strength in dB\mu V/m \\ RA = Receiver Amplitude (including preamplifier) in dB\mu V \\ CF = Cable Attenuation Factor in dB \\ AF = Antenna Factor in dB \\ AG = Amplifier Gain in dB \end{array}$

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = 52.0 dB μ V AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB FS = 32 dB μ V/m

To convert from $dB\mu V$ to μV or mV the following was used:

UF = $10^{(NF/20)}$ where UF = Net Reading in μV NF = Net Reading in dB μV

Example:

FS = RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0 UF = $10^{(32 \text{ dB}\mu\text{V}/20)}$ = 39.8 $\mu\text{V/m}$

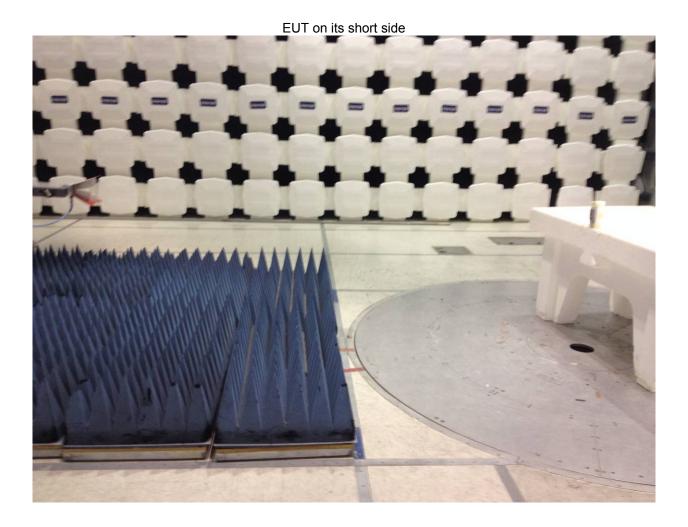
6.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
				PE80529A61		
DAV004	Weather Station	Davis Instruments	7400	A	09/25/2012	09/25/2014
145128	EMI Receiver 40 GHz (20 Hz - 40 Ghz)	Rohde & Schwarz	ESI	8392831001	10/01/2013	10/01/2014
ETS001	1-18GHz DRG Horn Antenna	ETS-Lindgren	3117	00143259	12/17/2012	12/17/2013
			3m Track B			
145-416	Cables 145-400 145-402 145-404 145-408	Huber + Suhner	cables	multiple	10/04/2013	10/04/2014

Software Utilized:

Name	Manufacturer	Version		
EMI Boxborough.xls	Intertek	08/27/2010		

Note: Your Laptop may use a different version of Excel. Record the version you actually used! **6.3 Results:**


The sample tested was found to Comply.

6.4 Setup Photographs:

Report Number: 101275145BOX-001

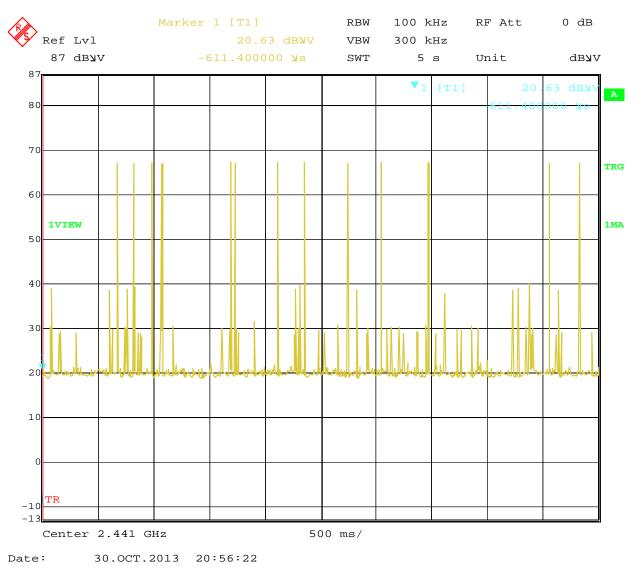
6.5 Plots/Data:

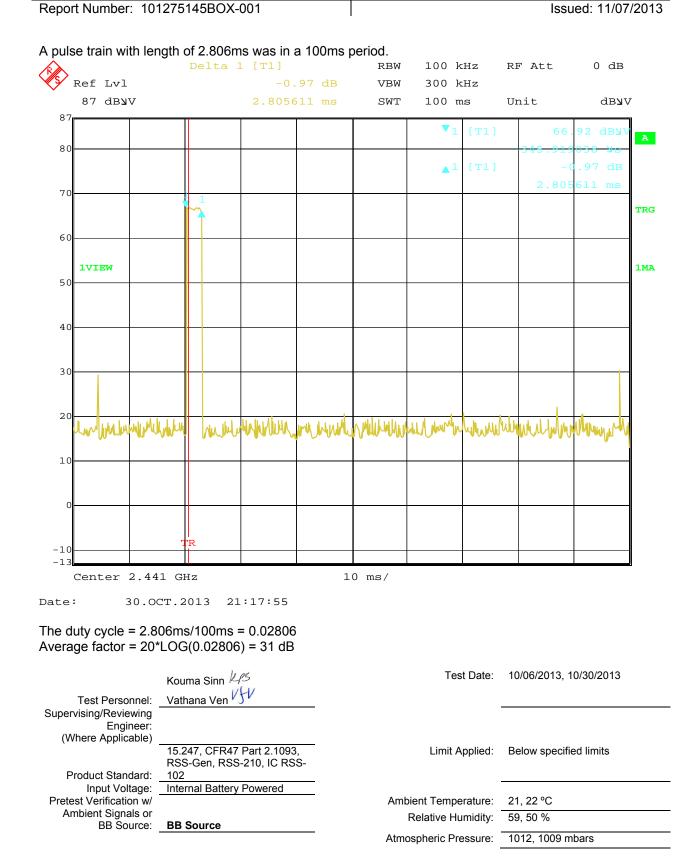
					Inte	rtek					
			Fu	ndamenta	I Frequen	cy Radiate	ed Emissio	ons			
Company:	Corventis						Antenna	a & Cables:	SHF	Bands: N, I	LF, HF, SHF
Model #:	PiiX						Antenna:	ETS001 12-	-17-2013.txt	ETS001 12	-17-2013.txt
Serial #:	N1113061	30000D6					Cable(s):	145-416 3mTrkE	3 10-04-2013.txt	NONE.	
Engineers:	Kouma Sin	in			Location:	10m Chamber	Barometer:	DAV004		Filter:	NONE
Project #:	G1012751	45	Date(s):	10/06/13							
Standard:	FCC Part 1	15 Subpart C	15.247				Temp/Humic	lity/Pressure:	21C	59%	1012mbar
Receiver:	R&S ESI (145-128) 09-	28-2013	Limit Di	stance (m):	3					
PreAmp:	PRE145014	12-16-2012.txt		Test Di	stance (m):	3					
P	PreAmp Use	d? (Y or N):	Ν	Voltage/	Frequency:	Battery	/ power	Freque	ncy Range:	Funda	amental
	Net = Rea	iding (dBuV/	m) + Antenr	na Factor (d	B1/m) + Ca	ble Loss (dE	3) - Preamp	Factor (dB)	- Distance I	Factor (dB)	
Peak: F	PK Quasi-P	eak: QP Av	erage: AVG	RMS: RM	S; NF = Noi	se Floor, RE	3 = Restricte	d Band; Ba	ndwidth den	oted as RB	W/VBW
	Ant.			Antenna	Cable	Pre-amp	Distance	EIRP	EIRP		
Detector	Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin	Bandwidth
Туре	(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB	dBm	dBm	dB	
						out Power P					
	Note: EIRP	Obtained by	applying th					(dBuV/m)@	3m - 95.22	= dBm EIRI	P
	•					T sits on its	-			1	
PK	Н	2402.000	58.53	32.34	5.85	0.00	0.00	1.51	36.00	-34.49	1/3 MHz
PK	Н	2440.000	57.47	32.40	5.91	0.00	0.00	0.56	36.00	-35.44	1/3 MHz
PK	Н	2480.000	56.38	32.47	5.97	0.00	0.00	-0.40	36.00	-36.40	1/3 MHz
				xis. The EU							
PK	Н	2402.000	58.14	32.34	5.85	0.00	0.00	1.12	36.00	-34.88	1/3 MHz
PK	Н	2440.000	58.68	32.40	5.91	0.00	0.00	1.77	36.00	-34.23	1/3 MHz
PK	Н	2480.000	57.78	32.47	5.97	0.00	0.00	1.00	36.00	-35.00	1/3 MHz
				-		sits on its sh					
PK	V	2402.000	56.59	32.35	5.86	0.00	0.00	-0.42	36.00	-36.42	1/3 MHz
PK	V	2440.000	56.09	32.40	5.91	0.00	0.00	-0.82	36.00	-36.82	1/3 MHz
PK	Н	2480.000	54.46	32.47	5.97	0.00	0.00	-2.32	36.00	-38.32	1/3 MHz

Intertek

The EUT was measured in a radiated fashion. The RF output power was measured using a resolution bandwidth which encompassed the entire emission bandwidth. The data obtained was adjusted for equipment losses and converted from a field strength reading to a power reading using the provisions of FCC KDB 558074 and RSS-Gen 4.6. The human RF exposure limit is 1 mW/cm². The power density S generated by some value of EIRP at a given distance d is related by the equation:

S=EIRP / $(4\pi d^2)$


The distance, given a maximum EIRP of 1.77 dBm (1.503 mW), at which the radiated power density of the EUT is equal to the human RF exposure limit is 0.346 cm from the antenna. This result does not take averaging into account. The EUT is exempt from FCC SAR RF Exposure evaluation because the output power is below the 60/f(GHz) average power exemption threshold of 24.2 mW.


The EUT is exempt from Industry Canada SAR RF Exposure evaluation as referenced in RSS-102 because the operating frequency is between 2.2 and 3.0 GHz and the EIRP does not exceed 20 milliwatts.

Duty Cycle

The worst-case duty cycle for typical EUT operation is shown below. The pulse train repeats over a larger than 100ms period.

Intertek

Intertek

Deviations, Additions, or Exclusions: None

7 Transmitter Radiated Spurious Emissions

7.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C Section 15.247, ANSI C63.10, RSS-Gen, RSS-210 Annex 8.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

For radiated emissions, U_{lab} (3.5 dB at 3m and 3.5 dB at 10m below 1 GHz, and 4.2 dB at 3m above 1

GHz) < U_{CISPR} (5.2 dB), which is the reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF +	· CF - AG
Where	FS = Field Strength in $dB\mu V/m$
	RA = Receiver Amplitude (including preamplifier) in $dB\mu V$
	CF = Cable Attenuation Factor in dB
	AF = Antenna Factor in dB
	AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = 52.0 dB μ V AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB FS = 32 dB μ V/m

To convert from $dB\mu V$ to μV or mV the following was used:

UF = $10^{(NF/20)}$ where UF = Net Reading in μ V NF = Net Reading in dB μ V

Example:

FS = RA + AF + CF – AG = 52.0 + 7.4 + 1.6 – 29.0 = 32.0 UF = $10^{(32 \text{ dB}\mu\text{V}/20)}$ = 39.8 $\mu\text{V/m}$

7.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV004	Weather Station	Davis Instruments	7400	PE80529A61A	09/25/2012	09/25/2014
145128	EMI Receiver 40 GHz (20 Hz - 40 Ghz)	Rohde & Schwarz	ESI	8392831001	10/01/2013	10/01/2014
145106	Bilog Antenna (30MHz - 5GHz)	Sunol Sciences	JB5	A111003	10/01/2013	10/01/2014
145003	Preamplifier (150 KHz to 1.3 GHz)	Hewlett Packard	8447D	2443A04077	10/07/2013	10/07/2014
145-410	Cables 145-400 145-403 145-405 145-406 145-407	Huber + Suhner	10m Track A Cables	multiple	10/04/2013	10/04/2014
145-416	Cables 145-400 145-402 145-404 145-408	Huber + Suhner	3m Track B cables	multiple	10/04/2013	10/04/2014
145014	Preamplifier (1 GHz to 26.5 GHz)	Hewlett Packard	8449B	3008A00232	12/13/2012	12/13/2013
ETS001	1-18GHz DRG Horn Antenna	ETS-Lindgren	3117	00143259	12/17/2012	12/17/2013

Software Utilized:

Name	Manufacturer	Version		
C5	Teseq	Build 5.26.00.3		
Excel 2003	Microsoft	(11.8231.8221) SP3		
EMI Boxborough.xls	Intertek	08/27/10		

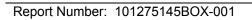
Note: Your Laptop may use a different version of Excel. Record the version you actually used! **7.3 Results:**

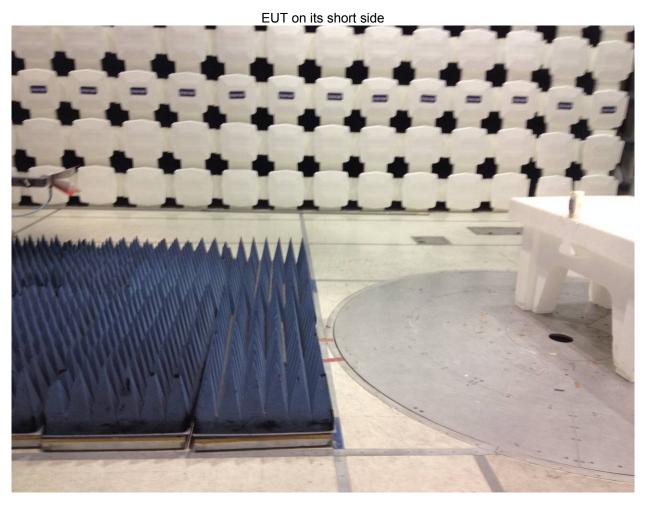
The sample tested was found to Comply.

In any 100 kHz bandwidth outside the frequency band, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see 15.205(c)).

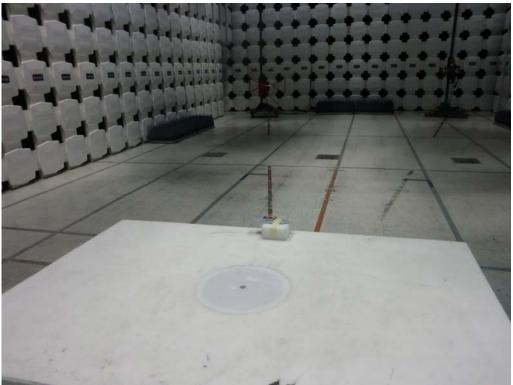
FCC Part 15.209(a) & RSS-210 A8.5 – Restricted Band Radiated Spurious/Harmonics Limits

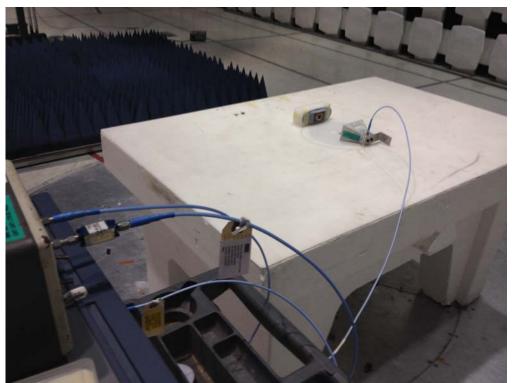
Frequency	Fiel	d Strength	Test Distance
(MHz)	μV/m	dBµV/m	(meters)
30–88	100	40.00	3
88–216	150	43.52	3
216–960	200	46.02	3
Above 960	500	53.98	3


FCC Part 15.247(d) & RSS-210 A8.5 – Non Restricted Band Radiated Spurious/Harmonics Limits


Channels	Fundamental Field Strength (dBuV/m)	Spurious/Harmonics Limits (dBuV/m)	Test Distance (meters)
0	83.49	63.49	3
39	85.91	65.91	3
79	88.22	68.22	3

7.4 Setup Photographs:



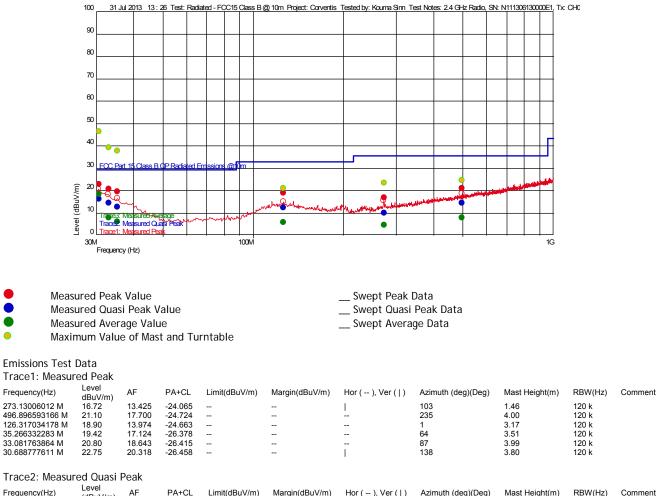


1-18 GHz scan

30 - 1000 MHz scan

18 – 25 GHz Hand scan

Additional Information

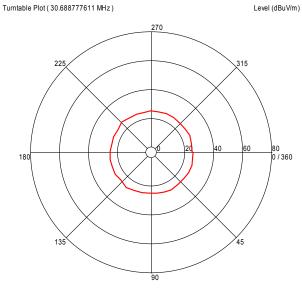

7.5 Plots/Data:

Model: PiiX, Tx:CH0, FCC Part 15:209, 30-1000 MHz

Test Information	
Test Details	User Entry
Test:	Radiated - FCC15 Class B @ 10m
Project:	Corventis
Test Notes:	2.4 GHz Radio, SN: N111306130000E1, Tx: CH0
Temperature:	24C
Humidity:	42%, 1009
Tested by:	Kouma Sinn
Test Started:	31 Jul 2013 13 : 26

Prescan Emission Graph

•

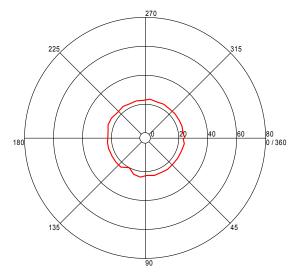


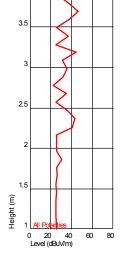
madde. moasar		oun								
Frequency(Hz)	Level (dBuV/m)	AF	PA+CL	Limit(dBuV/m)	Margin(dBuV/m)	Hor (), Ver ()	Azimuth (deg)(Deg)	Mast Height(m)	RBW(Hz)	Comment
273.13006012 M	10.05	13.425	-24.065	35.540	-25.49	1	103	1.46	120 k	
496.896593166 M	14.56	17.700	-24.724	35.540	-20.98		235	4.00	120 k	
126.317034178 M	12.33	13.974	-24.663	33.040	-20.71		1	3.17	120 k	
35.266332283 M	12.80	17.124	-26.378	29.540	-16.74		64	3.51	120 k	
33.081763864 M	14.39	18.643	-26.415	29.540	-15.15		87	3.99	120 k	
30.688777611 M	16.25	20.318	-26.458	29.540	-13.29		138	3.80	120 k	

Notes: Noise floor readings. No emissions were detected.

Issued: 11/07/2013

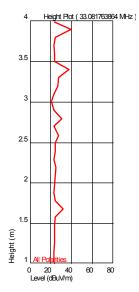
Azimuth Plots


All Polarities

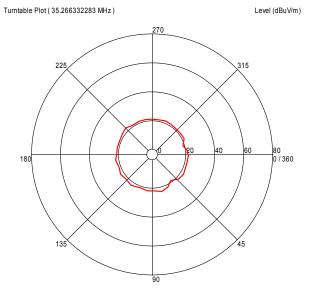

Azimuth (Degrees)

Intertek

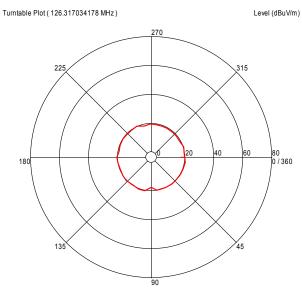
Level (dBuV/m)

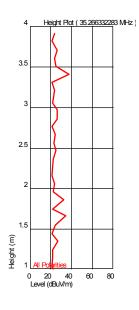


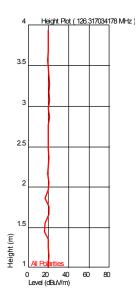
Height Plot (30.688777611 MHz)


Turntable Plots

4

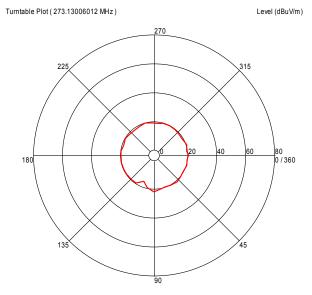

All Polarities


Intertek

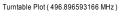


All Polarities

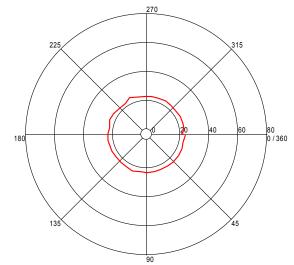
Azimuth (Degrees)

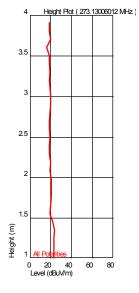


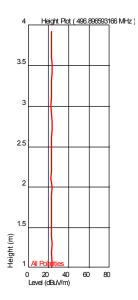
All Polarities


Report Number: 101275145BOX-001

Intertek

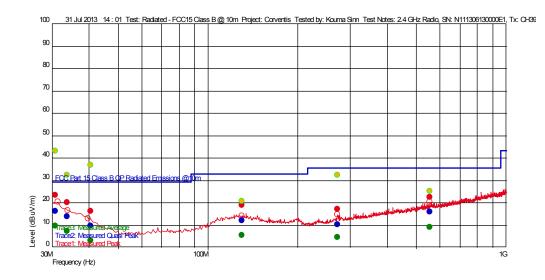



All Polarities


Azimuth (Degrees)

Level (dBuV/m)

All Polarities


Additional Information

Model: PiiX, Tx:CH39, FCC Part 15:209, 30-1000 MHz

Intertek

Test Information	
Test Details	User Entry
Test:	Radiated - FCC15 Class B @ 10m
Project:	Corventis
Test Notes:	2.4 GHz Radio, SN: N111306130000E1, Tx: CH39
Temperature:	24C
Humidity:	42%, 1009
Tested by:	Kouma Sinn
Test Started:	31 Jul 2013 14 : 01

Prescan Emission Graph

è

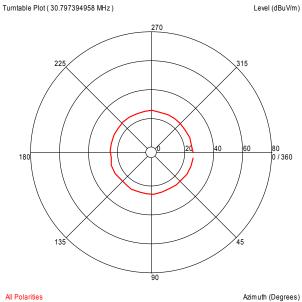
Measured Quasi Peak Value

- Measured Average Value
- Maximum Value of Mast and Turntable

Emissions Test Data Trace1: Measured Peak

Trace1: Measured Peak												
	Frequency(Hz)	Level (dBuV/m)	AF	PA+CL	Limit(dBuV/m)	Margin(dBuV/m)	Hor (), Ver ()	Azimuth (deg)(Deg)	Mast Height(m)	RBW(Hz)	Comment	
	272.398196393 M	17.05	13.396	-24.068				360	1.05	120 k		
	130.058115792 M	18.83	13.898	-24.656			Í	181	2.85	120 k		
	40.496192507 M	16.25	13.653	-26.340				205	3.59	120 k		
	553.989178846 M	22.53	18.760	-24.637				196	1.36	120 k		
	33.745892232 M	20.24	18.178	-26.403				158	2.67	120 k		
	30.797394958 M	23.33	20.242	-26.456				260	3.53	120 k		
	Trace2: Measured Quasi Peak											
	Frequency(Hz)	Level (dBuV/m)	AF	PA+CL	Limit(dBuV/m)	Margin(dBuV/m)	Hor (), Ver ()	Azimuth (deg)(Deg)	Mast Height(m)	RBW(Hz)	Comment	
	272.398196393 M	Ì0.15 ´	13.396	-24.068	35.540	-25.39	1	360	1.05	120 k		

___ Swept Peak Data ___ Swept Quasi Peak Data

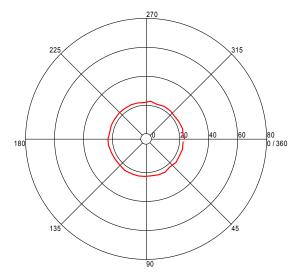

____ Swept Average Data

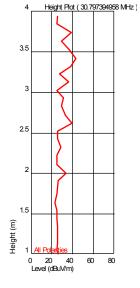
272.398196393 M	10.15	13.396	-24.068	35.540	-25.39		360	1.05	120 k	
130.058115792 M	12.16	13.898	-24.656	33.040	-20.88	Í	181	2.85	120 k	
40.496192507 M	9.81	13.653	-26.340	29.540	-19.73		205	3.59	120 k	
553.989178846 M	15.94	18.760	-24.637	35.540	-19.60	1	196	1.36	120 k	
33.745892232 M	13.94	18.178	-26.403	29.540	-15.60		158	2.67	120 k	
30.797394958 M	16.17	20.242	-26.456	29.540	-13.37		260	3.53	120 k	

Notes: Noise floor readings. No emissions were detected.

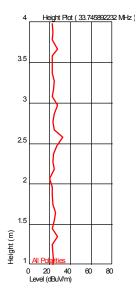
Issued: 11/07/2013

Azimuth Plots

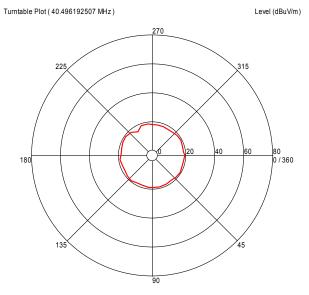



Azimuth (Degrees)

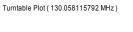
Turntable Plot (33.745892232 MHz)


Level (dBuV/m)

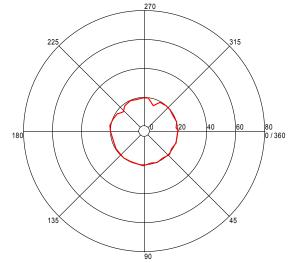
Intertek

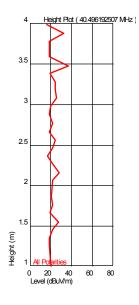

Turntable Plots

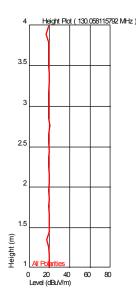
All Polarities

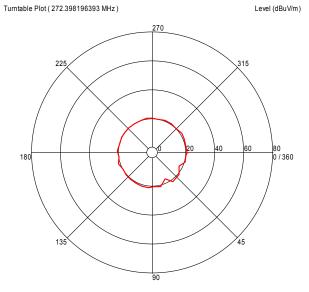

Report Number: 101275145BOX-001

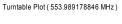
Intertek



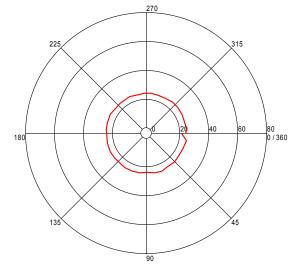

All Polarities

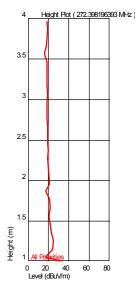

Azimuth (Degrees)

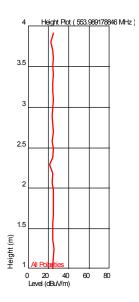



All Polarities

Intertek

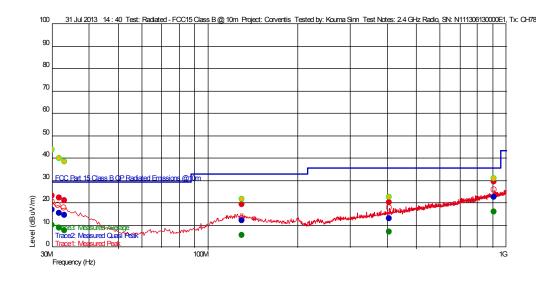



All Polarities


Azimuth (Degrees)

Level (dBuV/m)

All Polarities


Additional Information

Model: PiiX, Tx:CH78, FCC Part 15:209, 30-1000 MHz

Intertek

Test Information	
Test Details	User Entry
Test:	Radiated - FCC15 Class B @ 10m
Project:	Corventis
Test Notes:	2.4 GHz Radio, SN: N111306130000E1, Tx: CH78
Temperature:	24C
Humidity:	42%, 1009
Tested by:	Kouma Sinn
Test Started:	31 Jul 2013 14 : 40

Prescan Emission Graph

Measured Peak Value

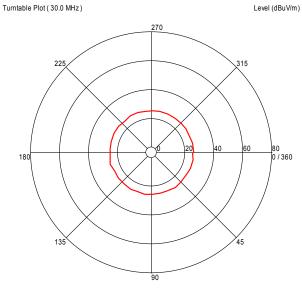
Measured Quasi Peak Value

- Measured Average Value
- Maximum Value of Mast and Turntable

Emissions Test Data Trace1: Measured Peak

Frequency(Hz)	Level	AF	PA+CL	Limit(dBuV/m)	Margin(dBuV/m)	Hor (), Ver ()	Azimuth (deg)(Deg)	Mast Height(m)	RBW(Hz)	Comment
r requericy(riz)	(dBuV/m)		FAIGE		Margin(ubu v/m)	1101 (), vei ()	Azimuti (deg)(Deg)	Mast height(m)	IND W (I IZ)	Comment
405.715030491 M	20.13	15.929	-24.206				82	3.83	120 k	
130.435670902 M	19.24	13.883	-24.655				0	1.04	120 k	
33.130661659 M	21.14	18.609	-26.414				18	3.83	120 k	
31.845090349 M	22.37	19.508	-26.437				1	3.08	120 k	
30.0 M	23.27	20.800	-26.470				153	2.61	120 k	
911.496192172 M	29.35	22.870	-22.869				1	2.40	120 k	
Trace2: Measur	red Quasi I	Peak								
	Level		DAIO	Line (t/ dD -) //ar)						0

___ Swept Peak Data ___ Swept Quasi Peak Data

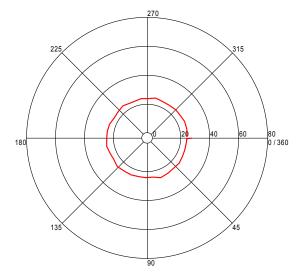

____ Swept Average Data

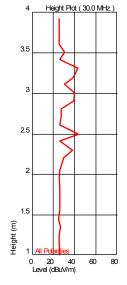
Frequency(Hz)	(dBuV/m)	AF	PA+CL	Limit(dBuV/m)	Margin(dBuV/m)	Hor (), Ver ()	Azimuth (deg)(Deg)	Mast Height(m)	RBW(Hz)	Comment
405.715030491 M	Ì2.93	15.929	-24.206	35.540	-22.61		82	3.83	120 k	
130.435670902 M	12.15	13.883	-24.655	33.040	-20.89		0	1.04	120 k	
33.130661659 M	14.36	18.609	-26.414	29.540	-15.18		18	3.83	120 k	
31.845090349 M	15.46	19.508	-26.437	29.540	-14.08		1	3.08	120 k	
911.496192172 M	22.61	22.870	-22.869	35.540	-12.93		1	2.40	120 k	
30.0 M	16.72	20.800	-26.470	29.540	-12.82		153	2.61	120 k	

Notes: Noise floor readings. No emissions were detected.

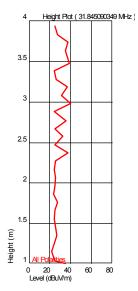
Issued: 11/07/2013

Azimuth Plots

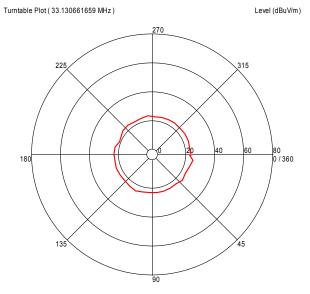

All Polarities


Azimuth (Degrees)

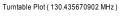
Intertek



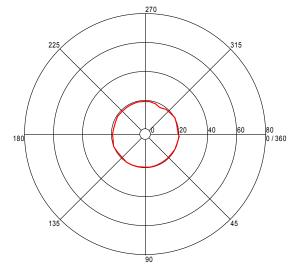
Level (dBuV/m)

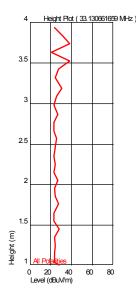


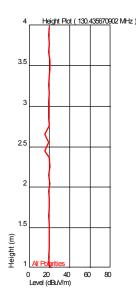
Turntable Plots


All Polarities

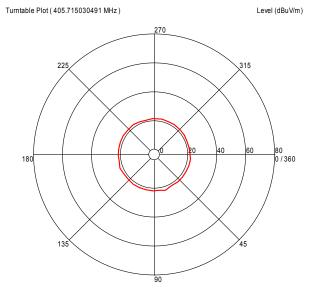
Intertek




All Polarities


Azimuth (Degrees)

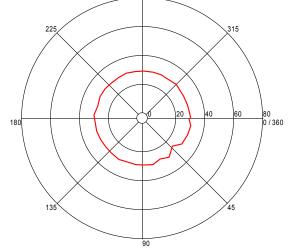
Level (dBuV/m)

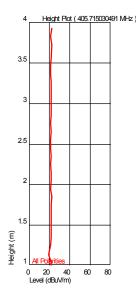


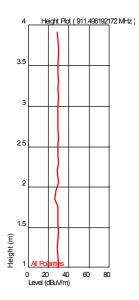
All Polarities

Report Number: 101275145BOX-001

Intertek


All Polarities


Azimuth (Degrees)


Level (dBuV/m)

Turntable Plot (911.496192172 MHz)

All Polarities

Intertek

1

Intertek

Harmonics/Spuiours Radiated Emissions	
---------------------------------------	--

0	0								0.15	Danalar M. J			
Company:								a & Cables:	SHF	,	LF, HF, SHF		
Model #:											-17-2013.txt		
	N11130613						()	145-416 3mTrkE	3 10-04-2013.txt		554444		
•	Kouma Sin				Location:	10m Chamber	Barometer:	DAV004		Filter:	REA004		
-	G10127514		()	10/06/13									
		5 Subpart C 1					Temp/Humic	lity/Pressure:	21C	59%	1012mbar		
	•	45-128) 09-28			stance (m):								
PreAmp:		12-16-2012.txt			stance (m):								
	•	sed? (Y or N):		-	Frequency:	-	y power		ncy Range:		5 GHz		
		ading (dBuV/n											
Peak:	PK Quasi-I	Peak: QP Ave	erage: AVG	RMS: RMS	; NF = Noise	e Floor, RB	= Restricted	Band; Ban	dwidth denc	oted as RBV	V/VBW		
	Ant.			Antenna	Cable	Pre-amp	Distance						
Detector	Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin	Bandwidth		
Туре	(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB	dB(uV/m)	dB(uV/m)	dB		FCC	IC
T	x, F = 2402	MHz, Spuriou	is emissions	s (EUT on its	s back, wors	t-case). Av	erage Readi	ngs = Peak	- Average f	actor of 31	dB		
PK	Н	4804.000	42.91	34.58	8.58	34.55	0.00	51.51	74.00	-22.49	1/3 MHz	RB	RB
AVG	Н	4804.000	11.91	34.58	8.58	34.55	0.00	20.51	54.00	-33.49	1/3 MHz	RB	RB
PK	Н	7206.000	49.68	35.98	10.91	35.65	0.00	60.92	74.00	-13.08	100/300 kHz		
AVG	Н	7206.000	18.68	35.98	10.91	35.65	0.00	29.92	54.00	-24.08	100/300 kHz		
PK	Н	9608.000	30.25	37.49	12.67	35.89	0.00	44.52	74.00	-29.48	100/300 kHz		
AVG	Н	9608.000	-0.75	37.49	12.67	35.89	0.00	13.52	54.00	-40.48	100/300 kHz	1	
PK	Н	12010.000	33.20	39.40	15.02	35.37	0.00	52.25	74.00	-21.75	1/3 MHz	RB, NF	RB
AVG	Н	12010.000	2.20	39.40	15.02	35.37	0.00	21.25	54.00	-32.75	1/3 MHz	RB, NF	RB
PK	Н	14412.000	31.41	39.86	15.16	34.65	0.00	51.78	74.00	-22.22	1/3 MHz		
AVG	Н	14412.000	0.41	39.86	15.16	34.65	0.00	20.78	54.00	-33.22	1/3 MHz		
PK	H	16814.000	32.48	42.32	17.58	37.73	0.00	54.65	74.00	-19.35	1/3 MHz		
AVG	Н	16814.000	1.48	42.32	17.58	37.73	0.00	23.65	54.00	-30.35	1/3 MHz		
////0				/Hz, Spuriou						00.00	1/5 10112		
PK	Н	4880.000	45.56	34.55	8.67	34.41	0.00	54.37	74.00	-19.63	1/3 MHz	RB	RB
AVG	Н	4880.000	14.56	34.55	8.67	34.41	0.00	23.37	54.00	-30.63	1/3 MHz		RB
PK	н	7320.000	43.94	36.03	11.06	35.73	0.00	55.30	74.00	-18.70	1/3 MHz		RB
AVG	Н	7320.000	12.94	36.03	11.06	35.73	0.00	24.30	54.00	-29.70	1/3 MHz	-	RB
PK	Н	9760.000	24.70	37.61	13.03	35.35	0.00	40.00	74.00	-34.00	100/300 kHz	ND	ND
AVG	Н	9760.000	-6.30	37.61	13.03	35.35	0.00	9.00	54.00	-45.00	100/300 kHz		
PK	Н	12200.000	32.25	39.40	14.83	35.45	0.00	51.04	74.00	-22.96	1/3 MHz		RB
AVG	Н	12200.000	1.25	39.40 39.40		35.45	0.00	20.04	54.00				RB
	Н				14.83					-33.96	1/3 MHz		ND
PK	н Н	14640.000	31.73	40.11	15.24	34.87	0.00	52.21	74.00	-21.79	100/300 kHz		
AVG		14640.000	0.73	40.11	15.24	34.87	0.00	21.21	54.00	-32.79	100/300 kHz		
PK	Н	17080.000	30.10	42.04	18.81	37.60	0.00	53.35	74.00	-0.65	100/300 kHz	1	
AVG	Н	17080.000 T	-0.90	42.04	18.81	37.60	0.00	22.35	54.00	-31.65	100/300 kHz	NF	
	·			MHz, Spurio					·	1 - 00	4/2 444		
PK	H	4960.000	47.66	34.52	8.76	34.25	0.00	56.68	74.00	-17.32	1/3 MHz		RB
AVG	Н	4960.000	16.66	34.52	8.76	34.25	0.00	25.68	54.00	-28.32	1/3 MHz		RB
PK	Н	7440.000	39.05	36.08	11.22	35.81	0.00	50.54	74.00	-23.46	1/3 MHz		RB
AVG	Н	7440.000	8.05	36.08	11.22	35.81	0.00	19.54	54.00	-34.46	1/3 MHz		RB
PK	Н	9920.000	31.84	37.80	13.42	34.78	0.00	48.28	74.00	-25.72	100/300 kHz	1	
AVG	Н	9920.000	0.84	37.80	13.42	34.78	0.00	17.28	54.00	-36.72	100/300 kHz		
PK	Н	12400.000	32.50	39.52	14.64	35.52	0.00	51.14	74.00	-22.86	1/3 MHz	í í	RB
AVG	Н	12400.000	1.50	39.52	14.64	35.52	0.00	20.14	54.00	-33.86	1/3 MHz	í í	RB
PK	Н	14880.000	22.27	40.20	15.67	35.32	0.00	42.82	74.00	-31.18	100/300 kHz	NF	
AVG	Н	14880.000	-8.73	40.20	15.67	35.32	0.00	11.82	54.00	-42.18	100/300 kHz	NF	
PK	Н	17360.000	22.63	41.99	20.07	36.91	0.00	47.78	74.00	-26.22	100/300 kHz	NF	
AVG	Н	17360.000	-8.37	41.99	20.07	36.91	0.00	16.78	54.00	-37.22	100/300 kHz	NF	

Average factor = 20*LOG(2.806ms/100ms) = 31 dB

Hand scan was performed from 18 to 25 GHz at a distance less 0.5 m. No emissions were detected above the equipment noise floor.

Report Number: 101	1275145BOX-001		Issued: 11/07/2013
•			
	10 01		
Test Personnel:	Kouma Sinn LPS	Test Date:	07/31/2013, 10/06/2013
Supervising/Reviewing			
Engineer:			
(Where Applicable)	N/A		
Product Standard:	15.247, RSS-Gen, RSS-210	Limit Applied:	Below specified limits
Input Voltage:	Internal Battery Powered		
Pretest Verification w/		Ambient Temperature:	24, 21 °C
Ambient Signals or		Relative Humidity:	42. 59 %
BB Source:	BB Source	Rolatio Hamary.	12,00 %
		Atmospheric Pressure:	1009, 1012 mbars

Intertek

Deviations, Additions, or Exclusions: None

8 Hopping Channel Separation

8.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C Section 15.247, ANSI C63.10, RSS-Gen, RSS-210 Annex 8.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

For radiated emissions, U_{lab} (3.5 dB at 3m and 3.5 dB at 10m below 1 GHz, and 4.2 dB at 3m above 1 GHz) < U_{CISPR} (5.2 dB), which is the reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

Intertek

FS = RA + AF +	CF - AG
Where	FS = Field Strength in $dB\mu V/m$
	RA = Receiver Amplitude (including preamplifier) in $dB\mu V$
	CF = Cable Attenuation Factor in dB
	AF = Antenna Factor in dB
	AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = 52.0 dB μ V AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB FS = 32 dB μ V/m

To convert from $dB\mu V$ to μV or mV the following was used:

UF = $10^{(NF/20)}$ where UF = Net Reading in μ V NF = Net Reading in dB μ V

Example:

FS = RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0 UF = $10^{(32 \text{ dB}\mu\text{V}/20)}$ = 39.8 $\mu\text{V/m}$

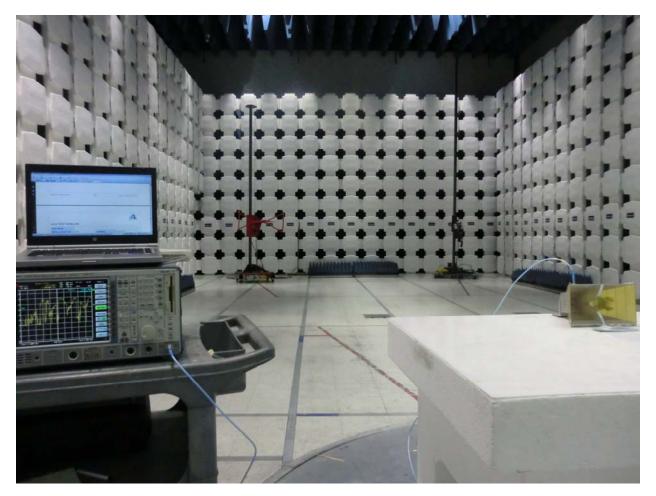
8.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
				PE80529A61		
DAV004	Weather Station	Davis Instruments	7400	A	09/25/2012	09/25/2014
ROS001	Spectrum Analyzer 20Hz - 40 GHz	Rohde & Schwartz	FSEK-30	100225	04/25/2013	04/25/2014
CBLHF20						
12-2M-2	2m 40GHz Coaxial Cable	Huber & Suhner	SF102	252675002	12/18/2012	12/18/2013
HORN2	HORN ANTENNA	EMCO	3115	9602-4675	12/19/2012	12/19/2013

Software Utilized:

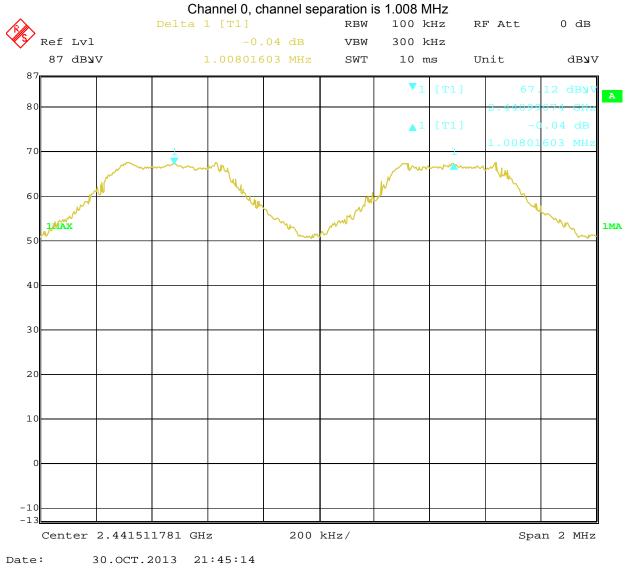
Name	Manufacturer	Version
None		

8.3 Results:

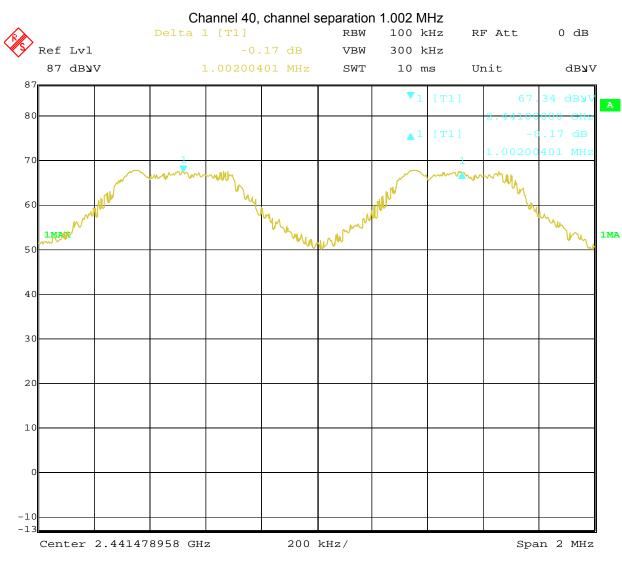

The sample tested was found to comply, since output power is below 125 mW and therefore the channel separation must be at least 2/3 of the 20 dB bandwidth.

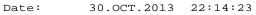
FCC Part 15.247 (1) & RSS-210 A8.1 (b)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is

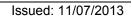

greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

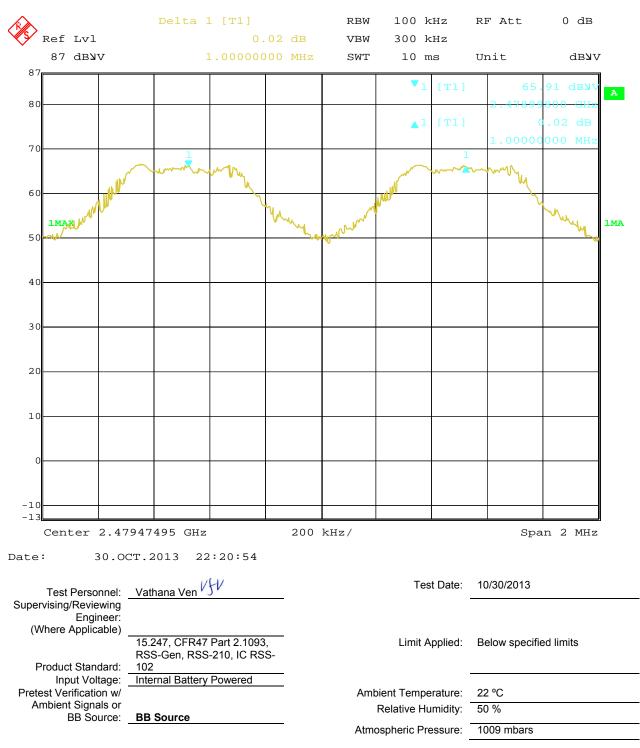
8.4 Setup Photographs:




Issued: 11/07/2013

8.5 Plots/Data:




Report Number: 101275145BOX-001

Issued: 11/07/2013

Channel 79, channel separation 1.000 MHz

Intertek

Deviations, Additions, or Exclusions: None

9 Number of hopping frequency

9.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C Section 15.247, ANSI C63.10, RSS-Gen, RSS-210 Annex 8.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

For radiated emissions, U_{lab} (3.5 dB at 3m and 3.5 dB at 10m below 1 GHz, and 4.2 dB at 3m above 1 GHz) < U_{CISPR} (5.2 dB), which is the reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

Intertek

CF - AG
FS = Field Strength in $dB\mu V/m$
RA = Receiver Amplitude (including preamplifier) in $dB\mu V$
CF = Cable Attenuation Factor in dB
AF = Antenna Factor in dB
AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = 52.0 dB μ V AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB FS = 32 dB μ V/m

To convert from $dB\mu V$ to μV or mV the following was used:

UF = $10^{(NF/20)}$ where UF = Net Reading in μV NF = Net Reading in dB μV

Example:

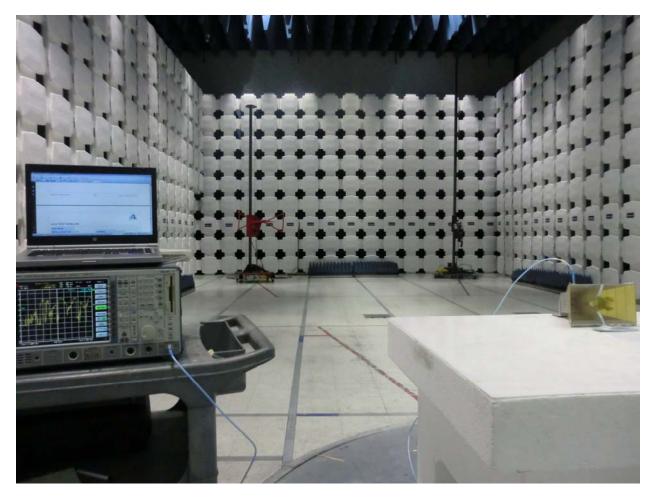
FS = RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0 UF = $10^{(32 \text{ dB}\mu\text{V}/20)}$ = 39.8 µV/m

9.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
				PE80529A61		
DAV004	Weather Station	Davis Instruments	7400	A	09/25/2012	09/25/2014
ROS001	Spectrum Analyzer 20Hz - 40 GHz	Rohde & Schwartz	FSEK-30	100225	04/25/2013	04/25/2014
CBLHF20						
12-2M-2	2m 40GHz Coaxial Cable	Huber & Suhner	SF102	252675002	12/18/2012	12/18/2013
HORN2	HORN ANTENNA	EMCO	3115	9602-4675	12/19/2012	12/19/2013

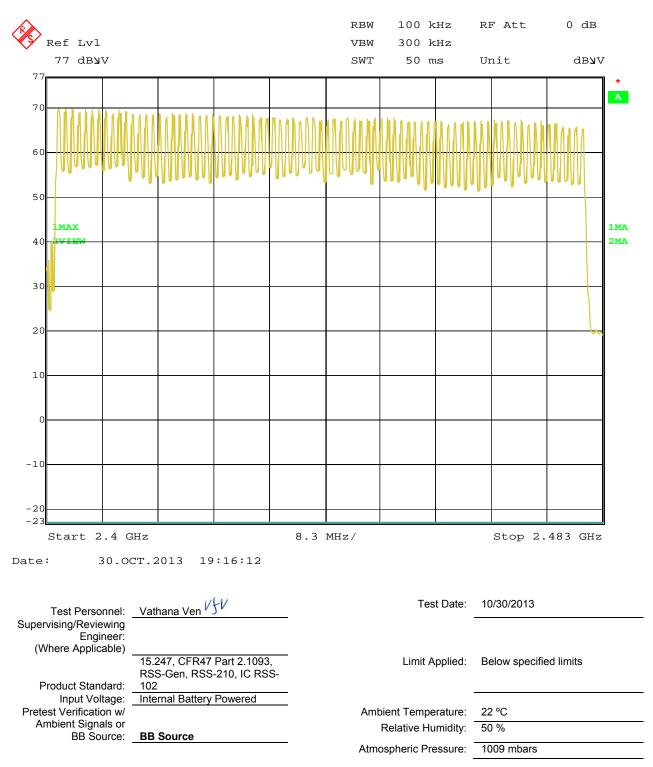
Software Utilized:

Name	Manufacturer	Version
None		


9.3 Results:

The sample tested was found to Comply.

FCC Part 15.247 (1) (iii) & RSS-210 A8.1 (d)


Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

9.4 Setup Photographs:

Issued: 11/07/2013

9.5 Plots/Data:

Intertek

Deviations, Additions, or Exclusions: None

10 Test Hopping Channel Bandwidth

10.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C Section 15.247, ANSI C63.10, RSS-Gen, RSS-210 Annex 8.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

For radiated emissions, U_{lab} (3.5 dB at 3m and 3.5 dB at 10m below 1 GHz, and 4.2 dB at 3m above 1 GHz) < U_{CISPR} (5.2 dB), which is the reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF +	· CF - AG
Where	FS = Field Strength in $dB\mu V/m$
	RA = Receiver Amplitude (including preamplifier) in $dB\mu V$
	CF = Cable Attenuation Factor in dB
	AF = Antenna Factor in dB
	AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = 52.0 dB μ V AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB FS = 32 dB μ V/m

To convert from $dB\mu V$ to μV or mV the following was used:

UF = $10^{(NF/20)}$ where UF = Net Reading in μ V NF = Net Reading in dB μ V

Example:

FS = RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0 UF = $10^{(32 \text{ dB}\mu\text{V}/20)}$ = 39.8 µV/m

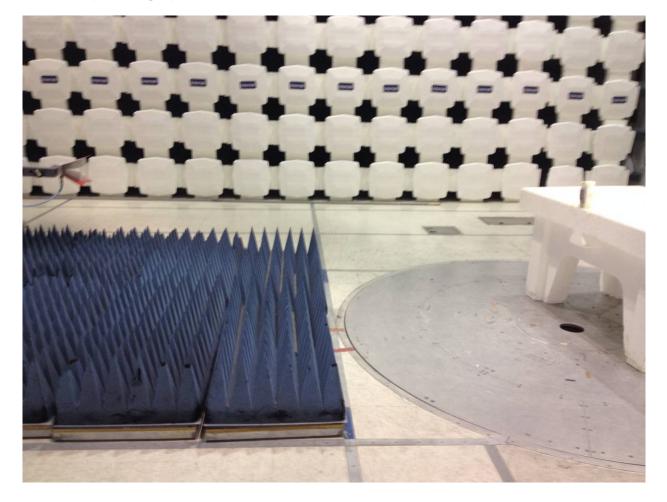
10.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
				PE80529A61		
DAV004	Weather Station	Davis Instruments	7400	A	09/25/2012	09/25/2014
145-128	Spectrum Analyzer 20Hz - 40 GHz	Rohde & Schwartz	FSEK-30	100225	04/25/2013	04/25/2014
			3m Track B			
145-416	Cables 145-400 145-402 145-404 145-408	Huber + Suhner	cables	multiple	10/04/2013	10/04/2014
ETS001	1-18GHz DRG Horn Antenna	ETS-Lindgren	3117	00143259	12/17/2012	12/17/2013

Software Utilized:

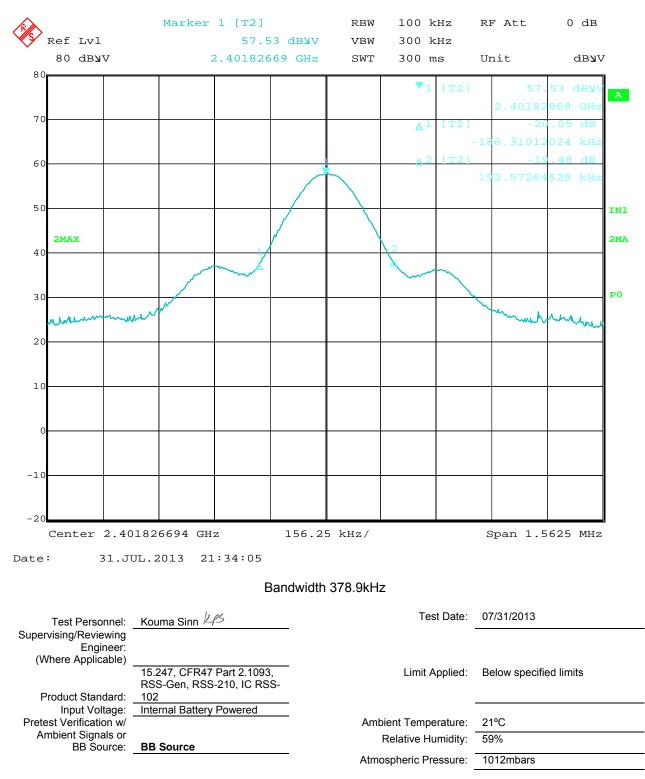
Name	Manufacturer	Version
None		

10.3 Results:


Test result of the 20-dB bandwidth – not the FCC requirements.

FCC Part 15.247 (1) & RSS-210 A8.1 (b)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping


rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

10.4 Setup Photographs:

Issued: 11/07/2013

10.5 Data:

Intertek

Deviations, Additions, or Exclusions: None

11 Hopping Dwell time

11.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C Section 15.247, ANSI C63.10, RSS-Gen, RSS-210 Annex 8.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

For radiated emissions, U_{lab} (3.5 dB at 3m and 3.5 dB at 10m below 1 GHz, and 4.2 dB at 3m above 1 GHz) < U_{CISPR} (5.2 dB), which is the reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

CF - AG
FS = Field Strength in $dB\mu V/m$
RA = Receiver Amplitude (including preamplifier) in $dB\mu V$
CF = Cable Attenuation Factor in dB
AF = Antenna Factor in dB
AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = 52.0 dB μ V AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB FS = 32 dB μ V/m

To convert from $dB\mu V$ to μV or mV the following was used:

UF = $10^{(NF/20)}$ where UF = Net Reading in μ V NF = Net Reading in dB μ V

Example:

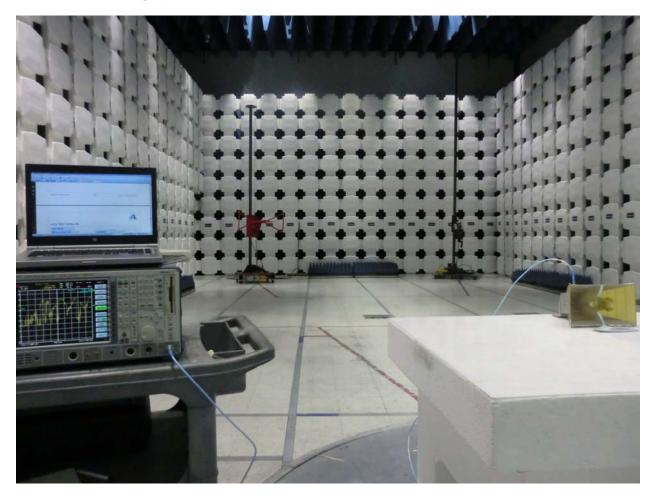
FS = RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0 UF = $10^{(32 \text{ dB}\mu\text{V}/20)}$ = 39.8 $\mu\text{V/m}$

11.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
				PE80529A61		
DAV004	Weather Station	Davis Instruments	7400	A	09/25/2012	09/25/2014
ROS001	Spectrum Analyzer 20Hz - 40 GHz	Rohde & Schwartz	FSEK-30	100225	04/25/2013	04/25/2014
CBLHF20						
12-2M-2	2m 40GHz Coaxial Cable	Huber & Suhner	SF102	252675002	12/18/2012	12/18/2013
HORN2	HORN ANTENNA	EMCO	3115	9602-4675	12/19/2012	12/19/2013

Software Utilized:

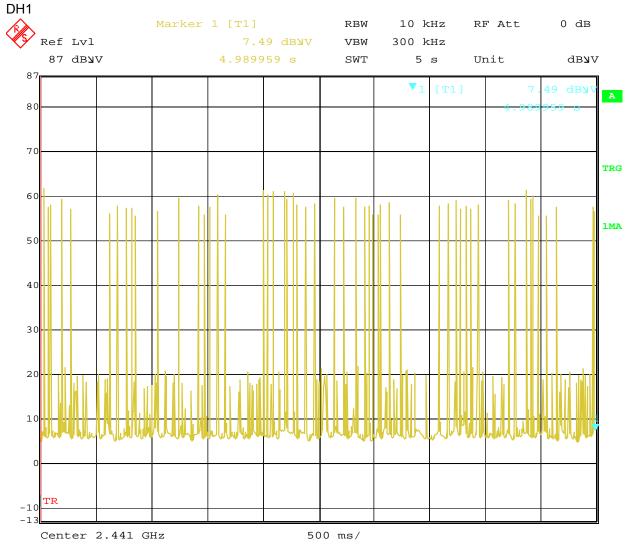
Name	Manufacturer	Version
None		

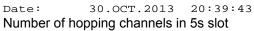

11.3 Results:

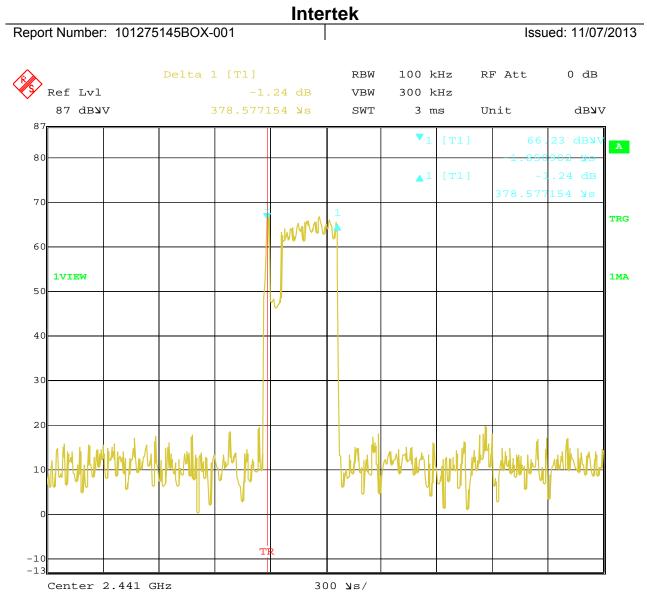
The sample tested was found to Comply. FCC Part 15.247 (1) (iii) & RSS-210 A8.1 (c)

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

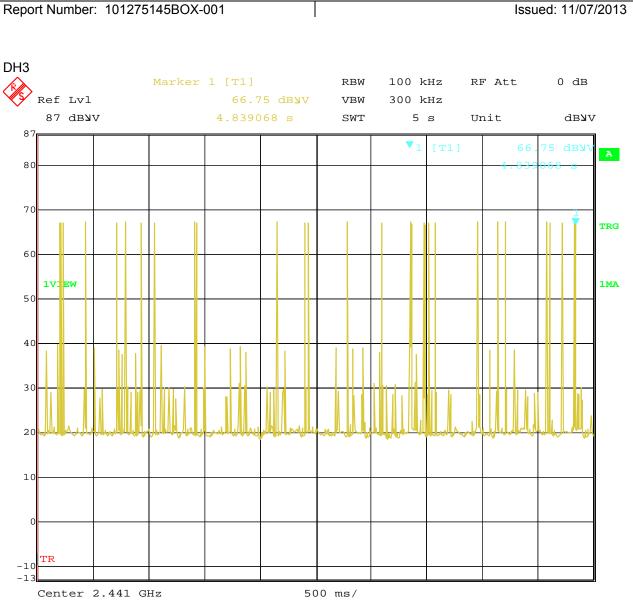
Bluetooth utilizes 79 channels, therefore dwell time must not exceed 0.4 seconds in any 31.6 second period.

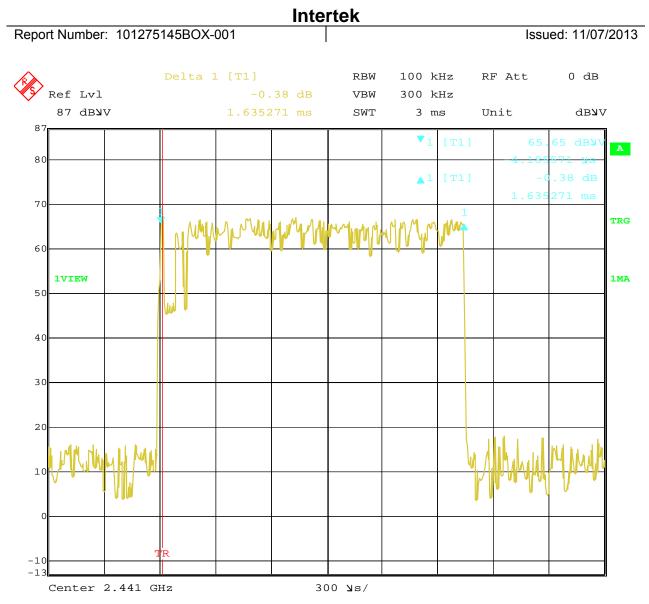

11.4 Setup Photographs:

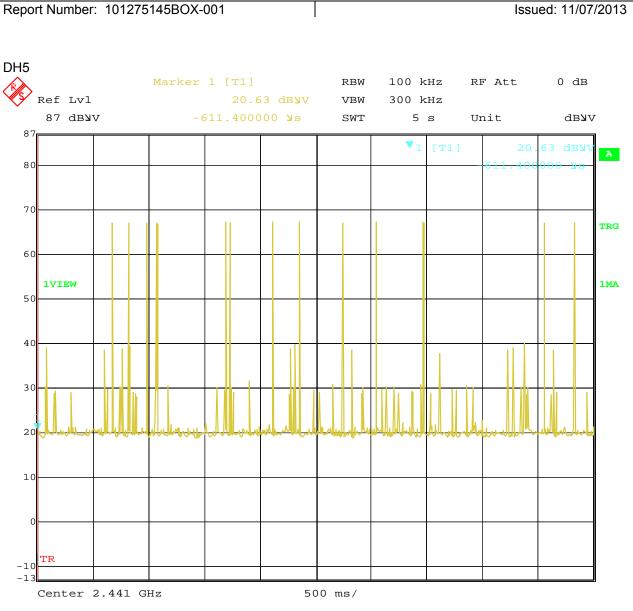


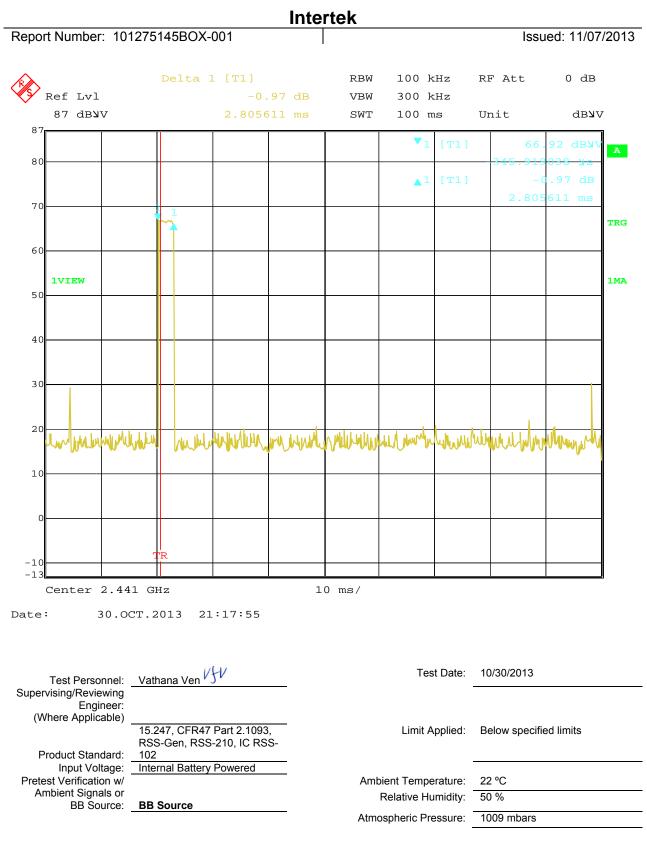

11.5 Data:

Mode	Number of transmissions in a 31.6 (79	Length of transmission	Results	Limit
	hopping*0.4 seconds)	time (msec)	(msec)	(msec)
DH1	53 (times/5s)*6.32 = 334.96 times	0.379	126.95	400
DH3	29 (times/5s)*6.32 = 183.29 times	1.635	299.66	400
DH5	15 (times/5s)*6.32 = 94.8 times	2.806	266.01	400


The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channel employed.




Date: 30.OCT.2013 20:45:43 Length of transmission time


Date: 30.OCT.2013 20:52:33 Number of hopping channels in 5s slot

Date: 30.0CT.2013 20:48:34 Length of transmission time

Date: 30.0CT.2013 20:56:22 Number of hopping channels in 5s slot

Deviations, Additions, or Exclusions: None

12 Test Band-edge Compliance

12.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C Section 15.247, ANSI C63.10, RSS-Gen, RSS-210 Annex 8.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

For radiated emissions, U_{lab} (3.5 dB at 3m and 3.5 dB at 10m below 1 GHz, and 4.2 dB at 3m above 1 GHz) < U_{CISPR} (5.2 dB), which is the reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

CF - AG
FS = Field Strength in $dB\mu V/m$
RA = Receiver Amplitude (including preamplifier) in $dB\mu V$
CF = Cable Attenuation Factor in dB
AF = Antenna Factor in dB
AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = 52.0 dB μ V AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB FS = 32 dB μ V/m

To convert from $dB\mu V$ to μV or mV the following was used:

UF = $10^{(NF/20)}$ where UF = Net Reading in μ V NF = Net Reading in dB μ V

Example:

FS = RA + AF + CF - AG = 52.0 + 7.4 + 1.6 - 29.0 = 32.0 UF = $10^{(32 \text{ dB}\mu\text{V}/20)}$ = 39.8 µV/m

12.2 Test Equipment Used:

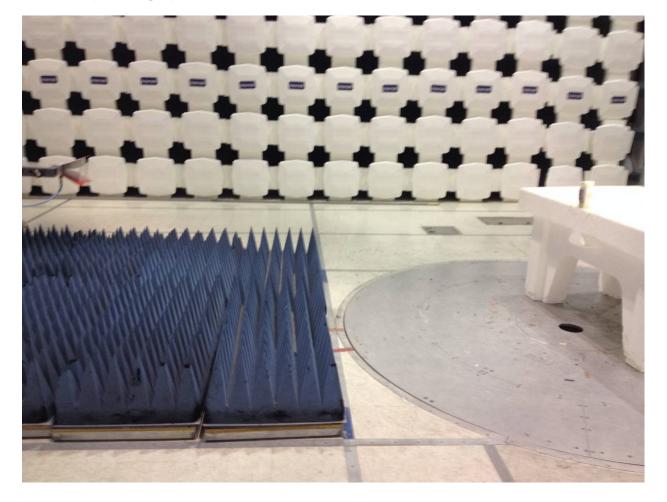
Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
				PE80529A61		
DAV004	Weather Station	Davis Instruments	7400	A	09/25/2012	09/25/2014
145-128	Spectrum Analyzer 20Hz - 40 GHz	Rohde & Schwartz	FSEK-30	100225	04/25/2013	04/25/2014
			3m Track B			
145-416	Cables 145-400 145-402 145-404 145-408	Huber + Suhner	cables	multiple	10/04/2013	10/04/2014
ETS001	1-18GHz DRG Horn Antenna	ETS-Lindgren	3117	00143259	12/17/2012	12/17/2013

Software Utilized:

Name	Manufacturer	Version
None		

12.3 Results:

The sample tested was found to comply. Note that the requirement is 20 dBc at the lower band edge, and the device must meet the general limits of 15.209 using the marker-delta method at the upper band edge due to the restricted band located there.


In any 100 kHz bandwidth outside the frequency band, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in §15.209(a) is not required. In addition,

Report Number: 101275145BOX-001

radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see 15.205(c)).

Frequency	Field	Test Distance	
(MHz)	μV/m	dBµV/m	(meters)
30–88	100	40.00	3
88–216	150	43.52	3
216–960	200	46.02	3
Above 960	500	53.98	3

12.4 Setup Photographs:

12.5 Test Data:

Lower Band Edge Compliance

	Intertek										
Upper Band Edge Radiated Emissions											
Company:	Corventis						Antenn	a & Cables:	SHF	Bands: N, I	_F, HF, SHF
Model #: PiiX Antenna: ETS001 12-17-2013.txt ETS001 12-17-					-17-2013.txt						
Serial #:	N11130613	30000D6					Cable(s):	145-416 3mTrkE	3 10-04-2013.txt	NONE.	
Engineers:	Kouma Sin	n			Location:	10m Chamber	Barometer:	DAV004		Filter:	NONE
Project #:	G10127514	15	Date(s):	10/06/13							
Standard:	FCC Part 1	5 Subpart C	15.247				Temp/Humio	lity/Pressure:	21C	59%	1012mbar
Receiver:	R&S ESI (1	45-128) 09-	28-2013	Limit Di	stance (m):	3					
PreAmp:	PRE145014 1	2-16-2012.txt		Test Di	stance (m):	3					
Р	reAmp Use	d? (Y or N):	Ν	Voltage/	Frequency:	Battery	/ power	Freque	ncy Range:	Band	Edge
	Net = Reading (dBuV/m) + Antenna Factor (dB1/m) + Cable Loss (dB) - Preamp Factor (dB) - Distance Factor (dB)										
Peak: F	YK Quasi-P	eak: QP Av	erage: AVG	RMS: RM	S; NF = Nois	se Floor, RE	3 = Restricte	d Band; Bar	ndwidth den	oted as RB	W/VBW
	Ant.			Antenna	Cable	Pre-amp	Distance				
Detector	Pol.	Frequency	Reading	Factor	Loss	Factor	Factor	Net	Limit	Margin	Bandwidth
Туре	(V/H)	MHz	dB(uV)	dB(1/m)	dB	dB	dB	dB(uV/m)	dB(uV)	dB	
	Note: Upp	er Band Edg	ge Compliar	nce. The El	JT sits on its	back. AVG	Readings	Peak Read	dings - Aver	age Factor	
PK	Н	2483.500	26.25	32.47	5.98	0.00	0.00	64.70	74.00	-9.30	1/3 MHz
AVG	Н	2483.500	-4.75	32.47	5.98	0.00	0.00	33.70	54.00	-20.30	1/3 MHz
Note	: Upper Bar	nd Edge Cor	npliance, In	tegrated to	1 MHz RBW	/ Equivalent	. AVG Read	lings = Peak	Readings -	Average F	actor
PK	Н	2483.500	11.19	32.47	5.98	0.00	0.00	49.64	74.00	-24.36	10 kHz/30 kHz
AVG	Н	2483.500	-19.81	32.47	5.98	0.00	0.00	18.64	54.00	-35.36	10 kHz/30 kHz
Note	: Upper Bar	nd Edge Cor	npliance, In	tegrated to	1 MHz RBW	/ Equivalent	. AVG Read	lings = Peak	Readings -	Average F	actor
PK	Н	2484.000	20.83	32.47	5.98	0.00	0.00	59.28	74.00	-14.72	100/300kHz
AVG	Н	2484.000	-10.17	32.47	5.98	0.00	0.00	28.28	54.00	-25.72	100/300kHz
Note	: Upper Bar	nd Edge Cor	mpliance, In	tegrated to	1 MHz RBW	/ Equivalent	. AVG Read	lings = Peak	Readings	Average F	actor
PK	Н	2484.000	23.31	32.47	5.98	0.00	0.00	61.76	74.00	-12.24	500kHz/3MHz

Average factor = 20*LOG(2.806ms/100ms) = 31 dB

5.98

0.00

0.00

30.76

Test Personnel:	Kouma Sinn 493	
Supervising/Reviewing		
Engineer:		
(Where Applicable)	N/A	
	15.247, CFR47 Part 2.1093,	
	RSS-Gen, RSS-210, IC RSS-	
Product Standard:	102	
Input Voltage:	Internal Battery Powered	
Pretest Verification w/		
Ambient Signals or		
BB Source:	BB Source	

-7.69

32.47

Deviations, Additions, or Exclusions: None

AVG

Н

2484.000

Test Date: 07/31/2013, 10/06/2013

54.00

-23.24 500kHz/3MHz

Limit Applied:	Below specified limits
Ambient Temperature: Relative Humidity:	21°C
Atmospheric Pressure:	1012mbars

13 Receiver Radiated Spurious

13.1 Method

Tests are performed in accordance with FCC Part 15 Subpart C Section 15.247, ANSI C63.10, RSS-Gen, RSS-210 Annex 8.

TEST SITE: 10m ALSE

The 10m ALSE is 13m (Length) x 21m (Depth) x 10m (Height) with the effective size in terms of space from the tips of the absorber is 12m (Length) x 20m (Depth) x 8.5m (Height). This chamber achieves broadband performance using a unique arrangement of hybrid and ferrite tile absorber. This chamber has a built in 3m diameter turntable (Embedded type). The metal structure of the table makes electrical connection around the entire circumference of the turntable to the ground plane with a metal brush type connection. The turntable is located on one end of the chamber and the antennas are mounted 3 and 10 meters away at the other end of the chamber on the adjustable an Antenna Mast. The antenna mast is a non-conductive bore sighted type with remote control of antenna height and polarization. The Antenna Mast and the turntable can be remotely controlled through the controller located in the adjacent Control room. A Styrofoam table 80 cm high is used for table-top equipment.

Measurement Uncertainty

For radiated emissions, U_{lab} (3.5 dB at 3m and 3.5 dB at 10m below 1 GHz, and 4.2 dB at 3m above 1

GHz) < U_{CISPR} (5.2 dB), which is the reference value in CISPR 16-4-2 Table 1, hence the compliance of the product is only based on the measured value, and no measurement uncertainty correction is required, based on CISPR 22 and CISPR 11 (for 2006 and later revisions) Clause 11.

Sample Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF +	· CF - AG
Where	FS = Field Strength in $dB\mu V/m$
	RA = Receiver Amplitude (including preamplifier) in $dB\mu V$
	CF = Cable Attenuation Factor in dB
	AF = Antenna Factor in dB
	AG = Amplifier Gain in dB

In the following table(s), the reading shown on the data table reflects the preamplifier gain. An example for the calculations in the following table is as follows.

Assume a receiver reading of 52.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted, giving a field strength of 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = 52.0 dB μ V AF = 7.4 dB/m CF = 1.6 dB AG = 29.0 dB FS = 32 dB μ V/m

To convert from $dB\mu V$ to μV or mV the following was used:

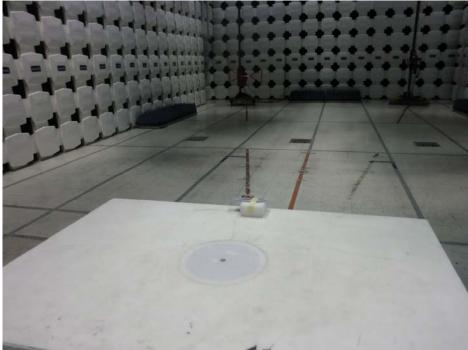
UF = $10^{(NF/20)}$ where UF = Net Reading in μ V NF = Net Reading in dB μ V

Example:

FS = RA + AF + CF – AG = 52.0 + 7.4 + 1.6 – 29.0 = 32.0 UF = $10^{(32 \text{ dB}\mu\text{V}/20)}$ = 39.8 $\mu\text{V/m}$

13.2 Test Equipment Used:

Asset	Description	Manufacturer	Model	Serial	Cal Date	Cal Due
DAV004	Weather Station	Davis Instruments	7400	PE80529A61A	09/25/2012	09/25/2014
145128	EMI Receiver 40 GHz (20 Hz - 40 Ghz)	Rohde & Schwarz	ESI	8392831001	10/01/2013	10/01/2014
145106	Bilog Antenna (30MHz - 5GHz)	Sunol Sciences	JB5	A111003	10/01/2013	10/01/2014
145003	Preamplifier (150 KHz to 1.3 GHz)	Hewlett Packard	8447D	2443A04077	10/07/2013	10/07/2014
145-410	Cables 145-400 145-403 145-405 145-406 145-407	Huber + Suhner	10m Track A Cables	multiple	10/04/2013	10/04/2014
145-416	Cables 145-400 145-402 145-404 145-408	Huber + Suhner	3m Track B cables	multiple	10/04/2013	10/04/2014
145014	Preamplifier (1 GHz to 26.5 GHz)	Hewlett Packard	8449B	3008A00232	12/13/2012	12/13/2013
ETS001	1-18GHz DRG Horn Antenna	ETS-Lindgren	3117	00143259	12/17/2012	12/17/2013


Software Utilized:

Name	Manufacturer	Version
C5	Teseq	5.26.46.46

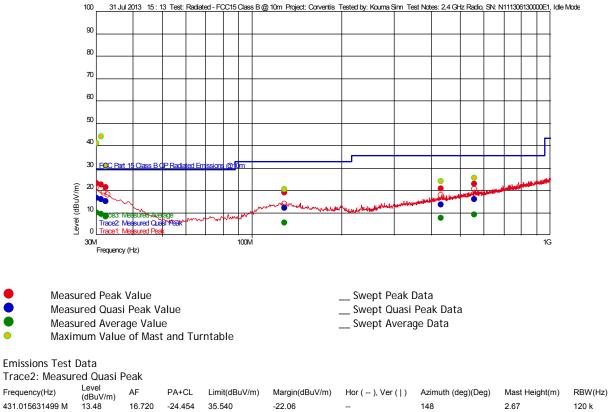
13.3 Results:

The sample tested was found to Comply.

13.4 Setup Photographs:

30 - 1000 MHz Scan

Above 1 GHz Scan

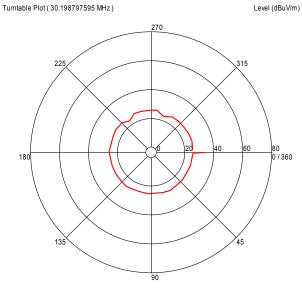

13.5 Test Data:

Model: PiiX, Idle Mode, FCC Part 15:209, 30-1000 MHz

Test Information User Entry Radiated - FCC15 Class B @ 10m Test Details Test: Project: Corventis 2.4 GHz Radio, SN: N111306130000E1, Idle Mode Test Notes: Temperature: 24C 42%, 1009 Humidity: Kouma Sinn 31 Jul 2013 15 : 13 Tested by: Test Started:

Additional Information

Prescan Emission Graph

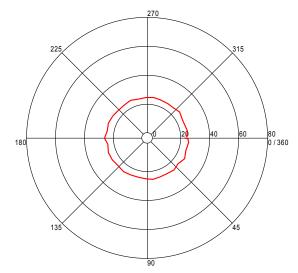


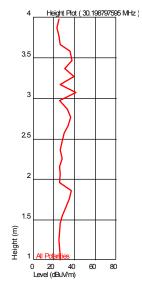
424 045621400 M 12 48 16 720 24 454 25 540 22 06 148 26 72 120 k	
431.015631499 M 13.48 16.720 -24.454 35.540 -22.06 148 2.67 120 k	
129.167936319 M 12.18 13.917 -24.657 33.040 -20.86 213 1.76 120 k	
558.101402743 M 15.99 18.800 -24.634 35.540 -19.55 114 3.06 120 k	
32.430060457 M 14.95 19.099 -26.426 29.540 -14.59 254 3.78 120 k	
31.257715655 M 15.86 19.920 -26.447 29.540 -13.68 40 2.28 120 k	
30.198797595 M 16.58 20.661 -26.466 29.540 -12.96 1 3.17 120 k	

Notes: Noise floor readings. No emissions were detected.

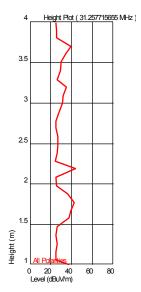
Issued: 11/07/2013

Azimuth Plots

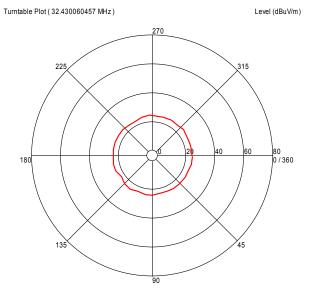

All Polarities


Azimuth (Degrees)

Intertek



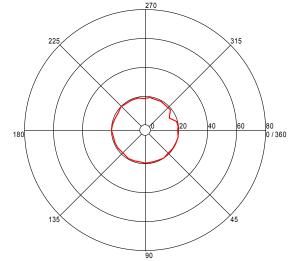
Level (dBuV/m)

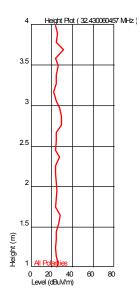


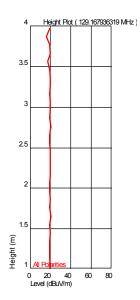
Turntable Plots

All Polarities

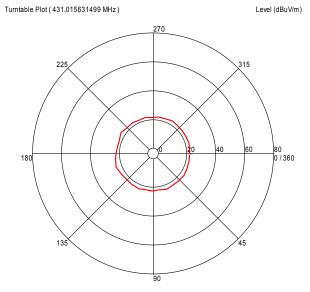
Azimuth (Degrees)

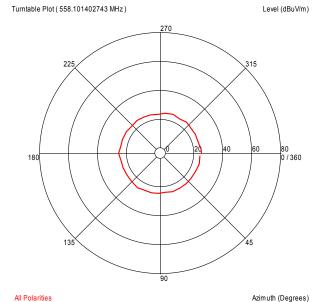

All Polarities


Azimuth (Degrees)

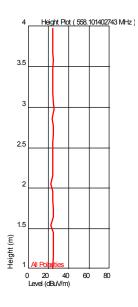


Turntable Plot (129.167936319 MHz)




All Polarities

Azimuth (Degrees)



All Polarities

Azimuth (Degrees)

Test Personnel:	Kouma Sinn 493	Test Date:	07/31/2013
Supervising/Reviewing Engineer:			
(Where Applicable)			
(pp,	15.247, CFR47 Part 2.1093,	Limit Applied:	Below specified limits
	RSS-Gen, RSS-210, IC RSS-		
Product Standard:	102		
Input Voltage:	Internal Battery Powered		
Pretest Verification w/		Ambient Temperature:	24°C
Ambient Signals or BB Source:	BB Source	Relative Humidity:	42%
		Atmospheric Pressure:	1009mbars

Deviations, Additions, or Exclusions: None

14 Revision History

Revision Level	Date	Report Number	Prepared By	Reviewed By	Notes
0	11/07/2013	101275145BOX-001	vfv	MFM 🧖	Original Issue