PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctestlab.com

MEASUREMENT REPORT FCC Part 15.407 UNII 802.11a/n/ac

Date of Testing:

Applicant Name:

H&D Wireless AB Färögatan 33, SE-164 51 Kista, Sweden	12/14/16 - 1/24/2017 Test Site/Location: PCTEST Lab, Columbia, MD, USA Test Report Serial No.: 0Y1612302094-04.XO2	
FCC ID:	XO2SPB209A	
APPLICANT:	H&D Wireless AB	
Application Type:	Class II Permissive Change	
Model:	SPB209A	
EUT Type:	Wifi/BT/NFC Module	
FCC Classification:	Unlicensed National Information Infrastructure (UNII)	
FCC Rule Part(s):	Part 15.407	
Test Procedure(s):	KDB 789033 D02 v01r03	
Class II Permissive Change:	Adding external antenna Walsin RFDPA870900SBLB8G1. Please see FCC change document for details.	
Original Grant Date:	10/12/2016	

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in KDB 789033 D02 v01r03. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Randy Ortanez President

FCC ID: XO2SPB209A		FCC Pt. 15.407 802.11 UNII MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 1 of 12
0Y1612302094-04.XO2	12/14/16 - 1/24/2017	Wifi/BT/NFC Module	Page 1 of 43
© 2017 PCTEST Engineering La	aboratory, Inc.		V 5.1

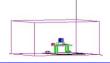


TABLE OF CONTENTS

FCC P	ART 15.4	407 ME	ASUREMENT REPORT	3
1.0	INTRO	DUCTIC	N	4
	1.1	Scope		4
	1.2	PCTE	ST Test Location	4
2.0	PRODU	JCT INF	ORMATION	5
	2.1	Equipr	nent Description	5
	2.2	Device	Capabilities	5
	2.3	Test C	onfiguration	5
	2.4	EMI S	uppression Device(s)/Modifications	5
3.0	DESCF	RIPTION	OF TESTS	6
	3.1	Evalua	tion Procedure	6
	3.2	Radiat	ed Emissions	6
	3.3	Enviro	nmental Conditions	6
4.0	ANTEN	INA REO	QUIREMENTS	7
5.0	MEASU	JREME	IT UNCERTAINTY	8
6.0	TEST E	QUIPM	ENT CALIBRATION DATA	9
7.0	TEST F	RESULT	S	. 10
	7.1	Summ	ary	. 10
	7.2	UNII C	output Power Measurement – 802.11a/n/ac	. 11
	7.3	Radiat	ed Spurious Emission Measurements – Above 1GHz	. 13
		7.7.1	Radiated Spurious Emission Measurements	. 16
		7.7.2	Radiated Band Edge Measurements (20MHz BW)	. 27
		7.7.3	Radiated Band Edge Measurements (40MHz BW)	. 31
		7.7.4	Radiated Band Edge Measurements (80MHz BW)	. 35
	7.4	Radiat	ed Spurious Emissions Measurements – Below 1GHz	. 39
8.0	CONCL	USION		.43

FCC ID: XO2SPB209A		FCC Pt. 15.407 802.11 UNII MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	H&D Wireless	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 2 of 42
0Y1612302094-04.XO2	12/14/16 - 1/24/2017	Wifi/BT/NFC Module		Page 2 of 43
© 2017 PCTEST Engineering La	aboratory, Inc.			V 5.1

MEASUREMENT REPORT FCC Part 15.407

§ 2.1033 General Information

APPLICANT:	H&D Wireless AB			
APPLICANT ADDRESS:	Färögatan 33,			
	SE-164 51 Kista,, Swe	eden		
TEST SITE:	PCTEST ENGINEERI	NG LABORATO	RY, INC.	
TEST SITE ADDRESS:	7185 Oakland Mills Re	oad, Columbia, M	1D 21046 USA	
FCC RULE PART(S):	Part 15.407			
BASE MODEL:	SPB209A			
FCC ID:	XO2SPB209A			
FCC CLASSIFICATION:	Unlicensed National In	nformation Infras	tructure (UNII)	
Test Device Serial No.:	164602	Production	Pre-Production	
DATE(S) OF TEST:	12/14/16 - 1/24/2017			
TEST REPORT S/N:	0Y1612302094-04.XC)2		

Test Facility / Accreditations

Measurements were performed at PCTEST Engineering Lab located in Columbia, MD 21046, U.S.A.

- PCTEST facility is an FCC registered (PCTEST Reg. No. 159966) test facility with the site • description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules and Industry Canada (2451B-1).
- PCTEST Lab is accredited to ISO 17025 by U.S. National Institute of Standards and • Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP Lab code: 100431-0) in EMC, FCC and Telecommunications.
- PCTEST Lab is accredited to ISO 17025-2005 by the American Association for Laboratory Accreditation (A2LA) in Specific Absorption Rate (SAR) testing, Hearing Aid Compatibility (HAC) testing, CTIA Test Plans, and wireless testing for FCC and Industry Canada Rules.

20

- PCTEST Lab is a recognized U.S. Conformity Assessment Body (CAB) in EMC and R&TTE (n.b. 0982) under the U.S.-EU Mutual Recognition Agreement (MRA).
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC Guide 65 by the American National Standards Institute (ANSI) in all scopes of FCC Rules and Industry Canada Standards (RSS).
- PCTEST facility is an IC registered (2451B-1) test laboratory with the site description on file at Industry Canada.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for AMPS, CDMA, and EvDO wireless devices and for Over-the-Air (OTA) Antenna Performance testing for AMPS, CDMA, GSM, GPRS, EGPRS, UMTS (W-CDMA), CDMA 1xEVDO, and CDMA 1xRTT.

FCC ID: XO2SPB209A		FCC Pt. 15.407 802.11 UNII MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	H&D Wireless	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 2 of 42
0Y1612302094-04.XO2	12/14/16 - 1/24/2017	Wifi/BT/NFC Module		Page 3 of 43
© 2017 PCTEST Engineering La	boratory, Inc.			V 5.1

1.0 **INTRODUCTION**

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

1.2 PCTEST Test Location

The map below shows the location of the PCTEST LABORATORY, its proximity to the FCC Laboratory, the Columbia vicinity, the Baltimore-Washington Internt'I (BWI) airport, the city of Baltimore and the Washington, DC area. (*See Figure 1-1*).

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The site coordinates are 39° 10'23" N latitude and 76° 49'50" W longitude. The facility is 0.4 miles North of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4-2014 on January 22, 2015.

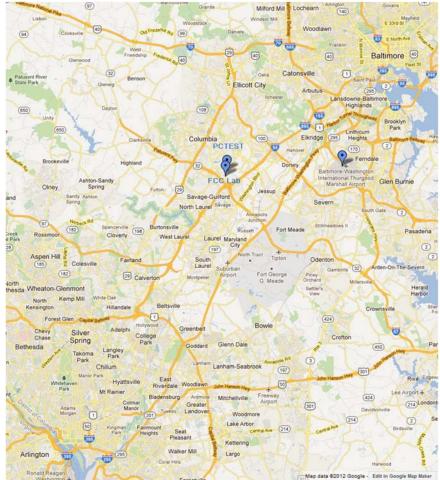


Figure 1-1. Map of the Greater Baltimore and Metropolitan Washington, D.C. area

FCC ID: XO2SPB209A		FCC Pt. 15.407 802.11 UNII MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dama 4 of 42
0Y1612302094-04.XO2	12/14/16 - 1/24/2017	Wifi/BT/NFC Module	Page 4 of 43
© 2017 PCTEST Engineering La	aboratory, Inc.		V 5.1

PRODUCT INFORMATION 2.0

2.1 **Equipment Description**

The Equipment Under Test (EUT) is the H&D Wireless AB Wifi/BT/NFC Module FCC ID: XO2SPB209A. The test data contained in this report pertains only to the emissions due to the EUT's UNII transmitter.

2.2 **Device Capabilities**

This device contains the following capabilities:

802.11b/g/n/a/ac WLAN/UNII, Bluetooth (1x, EDR, LE), NFC

Notes:

1. 5GHz NII operation is possible in 20MHz channel bandwidth. The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = peak per the guidance of Section B)2)b) of KDB 789033 D02 v01r03. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

Maximum Achievable Duty Cycles		
802.11 Mode/Band Duty Cycle [9		
	а	96.6
	n (HT20)	96.4
	ac (HT20)	73.6
5GHz	n (HT40)	92.3
	ac (HT40)	63.5
	ac (HT80)	55.8

Data Rate(s) Tested: 6, 9, 12, 18, 24, 36, 48, 54Mbps (802.11a)

6.5/7.2, 13/14.4, 19.5/21.7, 26/28.9, 39/43.3, 52/57.8, 58.5/65, 65/72.2 (n - 20MHz) 13.5/15, 27/30, 40.5/45, 54/60, 81/90, 108/120, 121.5/135, 135/150 (n - 40MHz BW) 29.3/32.5, 58.5/65, 87.8/97.5, 117/130, 175.5/195, 234/260, 263.3/292.5, 292.5/325, 351/390, 390/433.3 (ac - 80MHz BW)

2.3 **Test Configuration**

The EUT was tested per the guidance of KDB 789033 D02 v01r03. ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing. See Section 3.2 for radiated emissions test setups.

2.4 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

FCC ID: XO2SPB209A		FCC Pt. 15.407 802.11 UNII MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	H&D Wireless	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga E of 42
0Y1612302094-04.XO2	12/14/16 - 1/24/2017	Wifi/BT/NFC Module		Page 5 of 43
© 2017 PCTEST Engineering La	boratory, Inc.			V 5.1

3.0 **DESCRIPTION OF TESTS**

3.1 Evaluation Procedure

The measurement procedures described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) and the guidance provided in KDB 789033 D02 v01r03 were used in the measurement of the EUT.

Deviation from measurement procedure.....None

3.2 Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. A raised turntable is used for radiated measurement. It is a continuously rotatable, remote-controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. A 72.4cm high PVC support structure is placed on top of the turntable. A 3" (~7.6cm) sheet of high density polystyrene is used as the table top and is placed on top of the PVC supports to bring the total height of the table to 80cm. For measurements above 1GHz, a high density expanded polystyrene block is placed on top of the test table to bring the total table height to 1.5m.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, mode of operation, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions.

3.3 Environmental Conditions

The temperature is controlled within range of 15°C to 35°C. The relative humidity is controlled within range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar).

FCC ID: XO2SPB209A		FCC Pt. 15.407 802.11 UNII MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Wireless	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 6 of 42
0Y1612302094-04.XO2	12/14/16 - 1/24/2017	Wifi/BT/NFC Module		Page 6 of 43
© 2017 PCTEST Engineering L	boraton, Inc			V 5 1

ANTENNA REQUIREMENTS 4.0

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

Antenna connections uses unique coupling to the intentional radiator. •

Conclusion:

The EUT complies with the requirement of §15.203.

Band 1	
--------	--

Ch.	Frequency (MHz)
36	5180
:	•
40	5200
:	:
48	5240

	Band 2A
Ch.	Frequency (MHz)
52	5260
:	:
56	5280
:	:
64	5320

	Band 2C
Ch.	Frequency (MHz
100	5500
	:
116	5580
:	•
144	5720

	Band 3
Ch.	Frequency (MHz)
149	5745
•••	:
157	5785
:	:
165	5825

Table 4-1. 802.11a / 802.11n / 802.11ac (20MHz) Frequency / Channel Operations

Band 1

Rand 2A

Ch.	Frequency (MHz)	
38	5190	
:	:	
46	5230	1

	Danu ZA
Ch.	Frequency (MHz)
54	5270
:	:
62	5310

	Band 2C
Ch.	Frequency (MHz
102	5510
:	:
110	5550
:	
142	5710

Band

Ch.	Frequency (MHz)
151	5755
:	:
159	5795

Table 4-2. 802.11n / 802.11ac (40MHz BW) Frequency / Channel Operations

	Band 1		Band 2A		Band 2C		Band 3	
Ch.	Frequency (MHz)	Ch.	Frequency (MHz)	Ch.	Frequency (MHz)	Ch.	Frequency (MHz)	
42	5210	58	5290	106	5530	155	5775	
				:	:			
				138	5690			
Table 4.2 902 44aa (90MHz BW) Ereguanov / Channel Operationa								

Table 4-3. 802.11ac (80MHz BW) Frequency / Channel Operations

FCC ID: XO2SPB209A		FCC Pt. 15.407 802.11 UNII MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE) Wireless		Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 7 of 42
0Y1612302094-04.XO2	12/14/16 - 1/24/2017	Wifi/BT/NFC Module		Page 7 of 43
© 2017 PCTEST Engineering Laboratory, Inc.				V 5.1

5.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95% level of confidence. The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.13
Line Conducted Disturbance	3.09
Radiated Disturbance (<1GHz)	4.98
Radiated Disturbance (>1GHz)	5.07
Radiated Disturbance (>18GHz)	5.09

FCC ID: XO2SPB209A		FCC Pt. 15.407 802.11 UNII MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)		Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dage 9 of 42	
0Y1612302094-04.XO2 12/14/16 - 1/24/2017		Wifi/BT/NFC Module		Page 8 of 43	
				V 5 1	

TEST EQUIPMENT CALIBRATION DATA 6.0

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2006.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	RE1	Radiated Emissions Cable Set (UHF/EHF)	7/11/2016	Annual	7/11/2017	RE1
Com-Power	AL-130	9kHz - 30MHz Loop Antenna	7/30/2015	Biennial	7/30/2017	121034
Com-Power	PAM-103	Pre-Amplifier (1-1000MHz)	7/6/2016	Annual	7/6/2017	441119
Emco	3115	Horn Antenna (1-18GHz)	3/10/2016	Biennial	3/10/2018	9704-5182
Emco	3116	Horn Antenna (18 - 40GHz)	3/27/2015	Triennial	3/27/2018	9203-2178
Huber+Suhner	Sucoflex 102A	40GHz Radiated Cable	4/26/2016	Annual	4/26/2017	251425001
K & L	11SH10-6000/T18000	High Pass Filter	7/11/2016	Annual	7/11/2017	11SH10-6000/T18000-1
K & L	11SH10-3075/U18000	High Pass Filter	7/11/2016	Annual	7/11/2017	11SH10-3075/U18000-2
PCTEST	-	EMC Switch System	7/11/2016	Annual	7/11/2017	NM1
PCTEST	-	EMC Switch System	7/6/2016	Annual	7/6/2017	NM2
Rhode & Schwarz	TS-PR18	Pre-Amplifier	7/6/2016	Annual	7/6/2017	101622
Rohde & Schwarz	TS-PR18	1-18 GHz Pre-Amplifier	7/11/2016	Annual	7/11/2017	100071
Rohde & Schwarz	TS-PR26	18-26.5 GHz Pre-Amplifier	3/7/2016	Annual	3/7/2017	100040
Rohde & Schwarz	ESU26	EMI Test Receiver (26.5GHz)	5/16/2016	Annual	5/16/2017	100342
Rohde & Schwarz	TS-PR40	26.5-40 GHz Pre-Amplifier	3/7/2016	Annual	3/7/2017	100037
Rohde & Schwarz	ESU40	EMI Test Receiver (40GHz)	7/15/2016	Annual	7/15/2017	100348
Sunol	DRH-118	Horn Antenna (1-18GHz)	7/30/2015	Biennial	7/30/2017	A050307
Sunol	JB5	Bi-Log Antenna (30M - 5GHz)	3/14/2016	Biennial	3/14/2018	A051107

Table 6-1. Annual Test Equipment Calibration Schedule

FCC ID: XO2SPB209A		FCC Pt. 15.407 802.11 UNII MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Daga 0 of 12	
0Y1612302094-04.XO2	12/14/16 - 1/24/2017	Wifi/BT/NFC Module	Page 9 of 43	
© 2017 PCTEST Engineering Laboratory, Inc.				

TEST RESULTS 7.0

7.1 Summary

Company Name: H&D Wireless AB FCC ID: XO2SPB209A Method/System: Unlicensed National Information Infrastructure (UNII)

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
15.407 (a.1.iv), (a.2), (a.3)	Maximum Conducted Output Power	Maximum conducted powers must meet the limits detailed in 15.407 (a)	CONDUCTED	PASS	Section 7.2
15.407(b.1), (2), (3), (4)	Undesirable Emissions	Undesirable emissions must meet the limits detailed in 15.407(b)		PASS	Section 7.3
15.205, 15.407(b.1), (4), (5), (6)	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209	RADIATED	PASS	Section 7.4, 7.5

Table 7-1. Summary of Test Results

Note:

All channels, modes, and modulations/data rates were investigated among all UNII bands. The test results shown in the following sections represent the worst case emissions.

FCC ID: XO2SPB209A		FCC Pt. 15.407 802.11 UNII MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dega 10 of 12	
0Y1612302094-04.XO2	12/14/16 - 1/24/2017	Wifi/BT/NFC Module	Page 10 of 43	
© 2017 PCTEST Engineering Laboratory, Inc.				

7.2 UNII Output Power Measurement – 802.11a/n/ac §15.407(a.1.iv) §15.407(a.2) §15.407(a.3)

Test Overview and Limits

A transmitter antenna terminal of the EUT is connected to the input of an RF pulse power sensor. Measurement is made using a broadband average power meter while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in KDB 789033 D02 v01r03, and at the appropriate frequencies.

Test Procedure Used

KDB 789033 D02 v01r03 – Section E)3)b) Method PM-G KDB 662911 v02r01 – Section E)1) Measure-and-Sum Technique

Test Settings

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

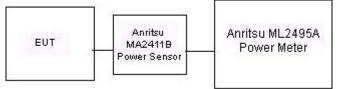


Figure 7-1. Test Instrument & Measurement Setup

Test Notes

None

FCC ID: XO2SPB209A		FCC Pt. 15.407 802.11 UNII MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dogo 11 of 12		
0Y1612302094-04.XO2	12/14/16 - 1/24/2017	Wifi/BT/NFC Module	Page 11 of 43		
© 2017 PCTEST Engineering Laboratory. Inc.					

Conducted Output Power Measurements

			5GHz (20MHz) Conducted Power [dBm] IEEE Transmission Mode			
Freq [MHz]	Channel	Detector				
			802.11a	802.11n	802.11ac	
5180	36	AVG	14.53	13.32	9.41	
5200	40	AVG	14.51	13.36	9.39	
5220	44	AVG	14.47	13.40	9.32	
5240	48	AVG	14.55	13.29	9.32	
5260	52	AVG	14.33	13.19	9.20	
5280	56	AVG	14.35	13.13	9.14	
5300	60	AVG	14.28	13.24	9.04	
5320	64	AVG	14.29	13.22	9.07	
5500	100	AVG	14.23	13.12	9.06	
5580	116	AVG	14.05	13.16	8.95	
5600	120	AVG	13.98	13.09	8.91	
5620	124	AVG	13.94	13.23	9.03	
5640	128	AVG	13.86	13.01	8.96	
5700	140	AVG	13.96	12.97	8.99	
5720	144	AVG	14.01	12.69	8.79	
5745	149	AVG	13.84	12.84	8.97	
5765	153	AVG	13.97	12.96	9.07	
5785	157	AVG	13.95	12.81	9.05	
5805	161	AVG	14.02	12.89	9.06	
5825	165	AVG	14.00	12.80	9.05	

Table 7-2. 20MHz BW (UNII) Maximum Conducted Output Power

Ohannal	5GHz (40MHz) Power		,	
Channel	Detector	IEEE Transm	ransmission Mode	
		802.11n	802.11ac	
38	AVG	13.33	8.02	
46	AVG	13.24	8.08	
54	AVG	13.42	8.11	
62	AVG	13.48	8.05	
102	AVG	13.43	8.04	
110	AVG	13.52	7.93	
118	AVG	13.33	7.94	
126	AVG	13.17	7.86	
134	AVG	13.08	7.79	
142	AVG	13.02	7.73	
151	AVG	13.09	7.69	
159	AVG	13.05	7.77	
	46 54 62 102 110 118 126 134 142 151 159	38 AVG 38 AVG 46 AVG 54 AVG 62 AVG 102 AVG 110 AVG 118 AVG 126 AVG 134 AVG 142 AVG 151 AVG	Power Power IEEE Transm 802.11n 38 AVG 13.33 46 AVG 13.24 54 AVG 13.42 62 AVG 13.43 102 AVG 13.43 110 AVG 13.52 118 AVG 13.33 126 AVG 13.17 134 AVG 13.08 142 AVG 13.02	

Table 7-3. 40MHz BW (UNII) Maximum Conducted Output Power

5GHz (80MHz) Conducted Power [dBm]						
Freq [MHz]	Channel	Detector	IEEE Transmission Mode			
			802.11ac			
5210	42	AVG	8.32			
5290	58	AVG	8.25			
5530	106	AVG	8.15			
5610	122	AVG	8.25			
5690	138	AVG	7.74			
5775	155	AVG	7.79			

Table 7-4. 80MHz BW (UNII) Maximum Conducted Output Power

FCC ID: XO2SPB209A		FCC Pt. 15.407 802.11 UNII MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Wireless	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dogo 12 of 12
0Y1612302094-04.XO2	12/14/16 - 1/24/2017	Wifi/BT/NFC Module		Page 12 of 43
© 2017 PCTEST Engineering Laboratory, Inc.				

Radiated Spurious Emission Measurements – Above 1GHz 7.3 §15.407(b) §15.205 §15.209

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in KDB 789033 D02 v01r03, and at the appropriate frequencies. All channels, modes (e.g. 802.11a, 802.11n (20MHz BW), 802.11n (40MHz BW), and 802.11ac (80MHz)), and modulations/data rates were investigated among all UNII bands. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

For transmitters operating in the 5.15-5.25 GHz and 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz.

For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an EIRP of -27 dBm/MHz.

For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table 7-5 per Section 15.209.

Frequency	Field Strength [μV/m]	Measured Distance [Meters]
Above 960.0 MHz	500	3

Table 7-5. Radiated Limits

Test Procedures Used

KDB 789033 D02 v01r03 - Section G

Test Settings

Average Measurements above 1GHz (Method AD)

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = power average (RMS)
- Number of measurement points = 1001 (Number of points must be > 2 x span/RBW)
- 6. Averaging type = power (RMS)
- 7. Sweep time = auto couple
- 8. Trace was averaged over 100 sweeps

FCC ID: XO2SPB209A		FCC Pt. 15.407 802.11 UNII MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 12 of 12	
0Y1612302094-04.XO2	12/14/16 - 1/24/2017	Wifi/BT/NFC Module	Page 13 of 43	
0 2017 PCTEST Engineering Laboratory, Inc.				

Peak Measurements above 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

Peak Measurements below 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Span was set greater than 1MHz
- 3. RBW = 120kHz
- 4. Detector = CISPR quasi-peak
- 5. Sweep time = auto couple
- 6. Trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

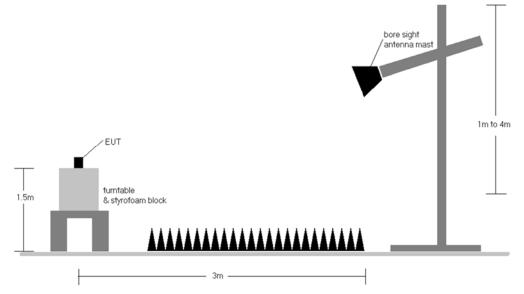


Figure 7-2. Test Instrument & Measurement Setup

FCC ID: XO2SPB209A		FCC Pt. 15.407 802.11 UNII MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	H&D Wireless	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 14 of 42
0Y1612302094-04.XO2	12/14/16 - 1/24/2017	Wifi/BT/NFC Module		Page 14 of 43
© 2017 PCTEST Engineering Laboratory, Inc.				

Test Notes

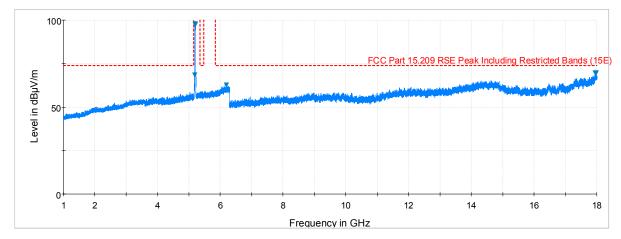
- 1. All radiated spurious emissions levels were measured in a radiated test setup per the guidance of KDB 789033 D02 v01r03 Section G.
- All emissions that lie in the restricted bands (denoted by a * next to the frequency) specified in §15.205 are below the limit shown in Table 7-5.
- 3. All spurious emissions lying in restricted bands specified in §15.205 are below the limit shown in Table 7-5. All spurious emissions that do not lie in a restricted band are subject to a peak limit of -27dBm/MHz. At a distance of 3 meters, the field strength limit in dBµV/m can be determined by adding a "conversion" factor of 95.2dB to the EIRP limit of -27dBm/MHz to obtain the limit for out of band spurious emissions of 68.2dBµV/m.
- 4. The antenna is manipulated through typical positions, polarity and length during the tests. The EUT is manipulated through three orthogonal planes.
- 5. This unit was tested while powered by an DC power source.
- The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the 6. transmitter using CISPR quasi peak detector below 1GHz. Above 1 GHz, average and peak measurements were taken using linearly polarized horn antennas. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- Emissions below 18GHz were measured at a 3 meter test distance while emissions above 18GHz were measured at a 1 meter test distance with the application of a distance correction factor.
- The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. Any emissions found to be within 20dB of the limit are fully investigated and the results are shown in this section. Rohde & Schwarz EMC32, Version 9.15.00 automated test software was used to perform the Radiated Spurious Emissions Pre-Scan testing.
- 9. The "-" shown in the following RSE tables are used to denote a noise floor measurement.

Sample Calculations

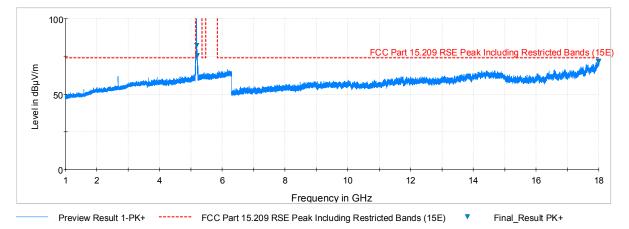
Determining Spurious Emissions Levels

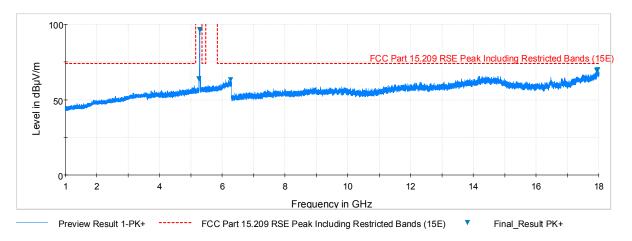
- Field Strength Level [dBµV/m] = Analyzer Level [dBm] + 107 + AFCL [dB/m] 0
- AFCL [dB/m] = Antenna Factor [dB/m] + Cable Loss [dB] 0
- Margin [dB] = Field Strength Level $[dB\mu V/m]$ Limit $[dB\mu V/m]$ 0

Radiated Band Edge Measurement Offset

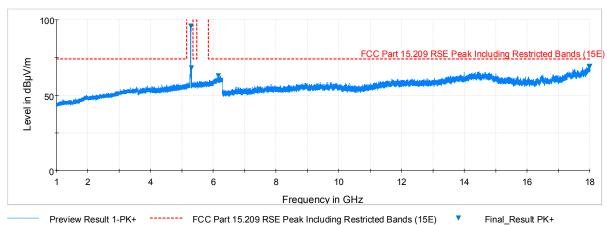

The amplitude offset shown in the radiated restricted band edge plots in Section 7.2 was calculated 0 using the formula:

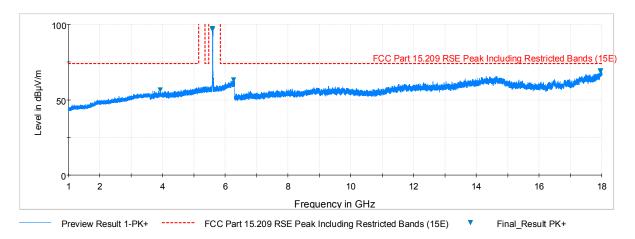
Offset (dB) = (Antenna Factor + Cable Loss + Attenuator) – Preamplifier Gain


FCC ID: XO2SPB209A		FCC Pt. 15.407 802.11 UNII MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	/ireless	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Daga 15 of 12		
0Y1612302094-04.XO2	12/14/16 - 1/24/2017	Wifi/BT/NFC Module		Page 15 of 43		
© 2017 PCTEST Engineering Laboratory Inc						

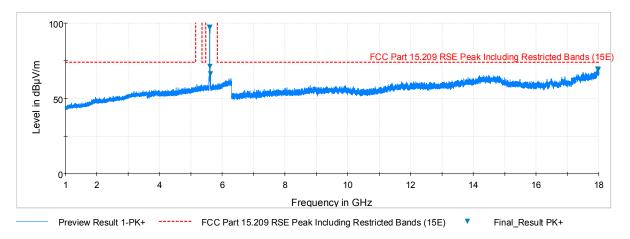

7.7.1 Radiated Spurious Emission Measurements

Plot 7-1. Radiated Spurious Plot above 1GHz (802.11a – U1 Ch. 40, Ant. Pol. H)
Preview Result 1-PK+ FCC Part 15.209 RSE Peak Including Restricted Bands (15E) Final_Result PK+

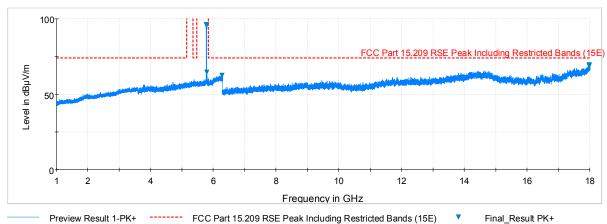

Plot 7-2. Radiated Spurious Plot above 1GHz (802.11a - U1 Ch. 40, Ant. Pol. V)

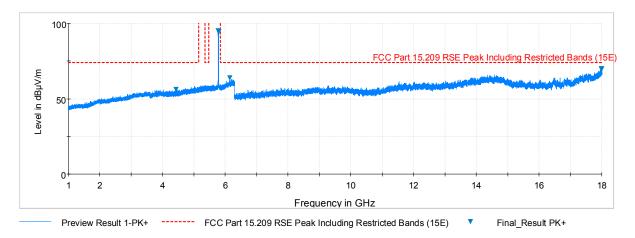

Plot 7-3. Radiated Spurious Plot above 1GHz (802.11a – U2A Ch. 56, Ant. Pol. H)

FCC ID: XO2SPB209A		FCC Pt. 15.407 802.11 UNII MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Wireless	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Daga 16 of 42		
0Y1612302094-04.XO2	12/14/16 - 1/24/2017	Wifi/BT/NFC Module		Page 16 of 43		
© 2017 PCTEST Engineering Laboratory, Inc.						



Plot 7-4. Radiated Spurious Plot above 1GHz (802.11a - U2A Ch. 56, Ant. Pol. V)


Plot 7-5. Radiated Spurious Plot above 1GHz (802.11a – U2C Ch. 116, Ant. Pol. H)


Plot 7-6. Radiated Spurious Plot above 1GHz (802.11a - U2C Ch. 116, Ant. Pol. V)

FCC ID: XO2SPB209A		FCC Pt. 15.407 802.11 UNII MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	S Approved by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:	Dogo 17 of 12			
0Y1612302094-04.XO2	12/14/16 - 1/24/2017	Wifi/BT/NFC Module	Page 17 of 43			
© 2017 PCTEST Engineering Laboratory, Inc.						

Plot 7-7. Radiated Spurious Plot above 1GHz (802.11a – U3 Ch. 157, Ant. Pol. H)

Plot 7-8. Radiated Spurious Plot above 1GHz (802.11a – U3 Ch. 157, Ant. Pol. V)

FCC ID: XO2SPB209A		FCC Pt. 15.407 802.11 UNII MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	H&D Wireless	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dega 10 of 12		
0Y1612302094-04.XO2	12/14/16 - 1/24/2017	Wifi/BT/NFC Module		Page 18 of 43		
© 2017 PCTEST Engineering Laboratory, Inc.						

Radiated Spurious Emissions Measurements (Above 18GHz) <u>§15.209</u>

MultiView 🕀 Spectrum				
	BBW 1 MHz VBW 3 MHz Mode Auto Sweep			
1 Frequency Sweep				
Limit Check	PASS			
Line HIGH FREQ AUTO	PASS			
90 dBµV				
50 dbpv				
80 dBµV				-
HIGH FREQ AUTO				
70 dBμV				
60 dBuV				
50 dBuV-	and all a second and a second s	the first the shadow of the state of the state of the	a failed as a new point or a lither walk that provide the second	and the second
			and the second statement of the second second second	the problem of the second states of the second stat
All and the second state should be an all a second s				
40 dBµV				
20 ID II				
30 dBµV				
20 dBµV				
10 dBµV				+
18.0 GHz	20001 pts	850.0 MHz/	· ·	26.5 GHz

Plot 7-9. Radiated Spurious Plot above 18GHz (802.11a – Ant. Pol. H)


MultiView	Spectrum							
RefLevel 100 Att TDF	0.00 dBµV 0 dB SW 1	● RBW 「 54 ms ● VBW		Auto Sweep				
1 Frequency S			PAS	0				●1Pk Max
	H FREQ AUTO		PAS					
90 dBµV								
80 dBµV								
HIGH FREQ AUTO 70 dBµV								
60 dBµV								
						an than altabase	and a sterrighter all the state	L. Lunda
nasilaliseg yak bisarikan tantu. Manazari	ala a diteri da fera da a di anti di dina. Na anti da anti di anti di anti di di anti di a	a de la calendaria de la desarrola de la desarrola de la calendaria de la calendaria de la calendaria de la ca Calendaria de la calendaria de la calendaria Calendaria de la calendaria	na di Buday Ali Dini Alikana. Ngana ingana kangalan di Salarang			an paper and a second second		
40 dBµV								
30 dBµV								
20 dBµV								
10 dBµV								
10 0000								
26.5 GHz			28001 pt	s Diata	35 GHz/		1	40.0 GHz

Plot 7-10. Radiated Spurious Plot above 26GHz (802.11a – Ant. Pol. H)

FCC ID: XO2SPB209A	PCTEST	FCC Pt. 15.407 802.11 UNII MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dega 10 of 12		
0Y1612302094-04.XO2	12/14/16 - 1/24/2017	Wifi/BT/NFC Module	Page 19 of 43		
© 2017 PCTEST Engineering Laboratory, Inc.					

MultiView 😁 Spectrum	J		
Ref Level 100.00 dBμV Att 0 dB SWT 34 r	● RBW 1 MHz ms ● VBW 3 MHz Mode Auto Sweep		
TDF L Frequency Sweep			●1Pk Max
Limit Check	PASS		
Line HIGH FREQ AUTO	PASS		
90 dBµV			
80 dBµV			
HIGH FREQ AUTO 70 dBµV-			
60 dBµV			
	يرين من الألام المحمد الألام من الألمانية ، إن المحمد التي يقد من من التي أمريك المحمد التي التي التي والمحافظ ومعاني محمد المحمد المحمد المحمد المحمد المحمد التي محمد التي يقد من من التي أمريك المحمد المحمد المحمد المحمد ا	ار و او او الاراس و المحمد الله و الله و و المحمد الله الله و ا	
40 dBµV			
30 dBµV			
20 dBµV			
10 dBµV			
18.0 GHz	20001 pts	850.0 MHz/	26.5 GH

MultiView 🕀 Spectrum	J		▽
RefLevel 100.00 dBµV ● Att 0 dB SWT 54 n	RBW 1 MHz ns VBW 3 MHz Mode Auto Sweep		
TDF 1 Frequency Sweep			●1Pk Max
Limit Check	PASS		U IPK Max
Line HIGH FREQ AUTO	PASS		
90 dBµV			
80 dBµV			
HIGH FREQ AUTO 70 dBµV			
60 dBµV			
and the product of the second	ومتعقبهم والمراجع والمراجع والمتعادين والمتعادي والمتعادية والمتعادية والمتعادية والمتعاد والمتعاد والمتعاد	والمتعار والاقتصار والمعصر والمعطوين والمساولين والمعام والمعام والمعامين والمعامل المروي	فالمعمول برجوا المحاويين والمأد والمأدول المحافية وغاه
al foundation of the state of the	and a set of the the set of the s	never by for the strength of all for the second strength of the	The provide state of the second s
40 dBµV			
30 dBµV			
20 dBµV			
10 dBµV			
26.5 GHz	28001 pts	1.35 GHz/	40.0 GHz

Plot 7-12. Radiated Spurious Plot above 18GHz (802.11a – Ant. Pol. V)

FCC ID: XO2SPB209A		FCC Pt. 15.407 802.11 UNII MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	H&D Wireless	Approved by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:		Dega 20 of 42		
0Y1612302094-04.XO2	12/14/16 - 1/24/2017	Wifi/BT/NFC Module		Page 20 of 43		
© 2017 PCTEST Engineering Laboratory, Inc.						

Radiated Spurious Emission Measurements §15.247(d) §15.205 & §15.209

Worst Case Mode:	802.11a		
Worst Case Transfer Rate:	6 Mbps		
Distance of Measurements:	1 & 3 Meters		
Operating Frequency:	5180MHz		
Channel:	36		

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10360.00	Peak	V	-	-	-62.56	11.76	0.00	56.20	68.20	-12.00
*	15540.00	Average	V	-	-	-79.86	17.60	0.00	44.74	53.98	-9.24
*	15540.00	Peak	V	-	-	-63.30	17.60	0.00	61.30	73.98	-12.68
*	20720.00	Average	V	-	-	-70.81	7.93	-9.54	34.58	53.98	-19.40
*	20720.00	Peak	V	-	-	-59.34	7.93	-9.54	46.05	73.98	-27.93
	25900.00	Peak	V	-	-	-57.48	8.42	-9.54	48.40	68.20	-19.80

Table 7-6. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a
6 Mbps
1 & 3 Meters
5200MHz
40

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10400.00	Peak	V	-	-	-62.86	11.47	0.00	55.61	68.20	-12.59
*	15600.00	Average	V	-	-	-78.81	17.43	0.00	45.62	53.98	-8.36
*	15600.00	Peak	V	-	-	-63.58	17.43	0.00	60.85	73.98	-13.13
*	20800.00	Average	V	-	-	-71.21	7.84	-9.54	34.09	53.98	-19.89
*	20800.00	Peak	V	-	-	-59.00	7.84	-9.54	46.30	73.98	-27.68
	26000.00	Peak	V	-	-	-57.35	8.60	-9.54	48.71	68.20	-19.49
				Та	blo 7-7 R	A hoteihe	00011F0m	onto			

Table 7-7. Radiated Measurements

FCC ID: XO2SPB209A	PCTEST	FCC Pt. 15.407 802.11 UNII MEASUREMENT REPORT	Approved by:	
FCC ID. X023F B209A	THE REPORT OF LANDERSTORY, INC.	(CLASS II PERMISSIVE CHANGE)	H&D Wireless	Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 21 of 12
0Y1612302094-04.XO2	12/14/16 - 1/24/2017	Wifi/BT/NFC Module		Page 21 of 43
© 2017 DCTEST Engineering La	boraton/ Inc			V51

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6 Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5240MHz
Channel:	48

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10480.00	Peak	V	-	-	-63.04	11.81	0.00	55.77	68.20	-12.43
*	15720.00	Average	V	-	-	-79.38	18.05	0.00	45.67	53.98	-8.31
*	15720.00	Peak	V	-	-	-63.75	18.05	0.00	61.30	73.98	-12.68
*	20960.00	Average	V	-	-	-72.01	7.88	-9.54	33.33	53.98	-20.65
*	20960.00	Peak	V	-	-	-59.89	7.88	-9.54	45.45	73.98	-28.53
	26200.00	Peak	V	-	-	-57.16	8.59	-9.54	48.88	68.20	-19.32

Table 7-8. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

_	802.11a
	6 Mbps
-	1 & 3 Meters
-	5260MHz
-	52

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10520.00	Peak	V	-	-	-62.38	11.90	0.00	56.52	68.20	-11.68
*	15780.00	Average	V	-	-	-80.78	16.92	0.00	43.14	53.98	-10.84
*	15780.00	Peak	V	-	-	-62.81	16.92	0.00	61.11	73.98	-12.87
*	21040.00	Average	V	-	-	-71.98	8.12	-9.54	33.60	53.98	-20.38
*	21040.00	Peak	V	-	-	-59.78	8.12	-9.54	45.80	73.98	-28.18
	26300.00	Peak	V	-	-	-57.35	8.91	-9.54	49.02	68.20	-19.18

Table 7-9. Radiated Measurements

FCC ID: XO2SPB209A		FCC Pt. 15.407 802.11 UNII MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	H&D Wireless	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 22 of 42
0Y1612302094-04.XO2	12/14/16 - 1/24/2017	Wifi/BT/NFC Module		Page 22 of 43
C ON LE DOTEOT E				

Worst Case Mode:	802.11a		
Worst Case Transfer Rate:	6 Mbps		
Distance of Measurements:	1 & 3 Meters		
Operating Frequency:	5280MHz		
Channel:	56		

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
	10560.00	Peak	V	-	-	-63.14	11.69	0.00	55.55	68.20	-12.65
*	15840.00	Average	V	-	-	-79.65	17.04	0.00	44.39	53.98	-9.59
*	15840.00	Peak	V	-	-	-63.17	17.04	0.00	60.87	73.98	-13.11
*	21120.00	Average	V	-	-	-71.35	7.97	-9.54	34.08	53.98	-19.90
*	21120.00	Peak	V	-	-	-61.75	7.97	-9.54	43.68	73.98	-30.30
	26400.00	Peak	V	-	-	-58.65	8.99	-9.54	47.80	68.20	-20.40

Table 7-10. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a
6 Mbps
1 & 3 Meters
5320MHz
64

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	10640.00	Average	V	-	-	-79.56	12.24	0.00	39.68	53.98	-14.30
*	10640.00	Peak	V	-	-	-63.53	12.24	0.00	55.71	73.98	-18.27
*	15960.00	Average	V	-	-	-80.71	17.22	0.00	43.51	53.98	-10.46
*	15960.00	Peak	V	-	-	-62.82	17.22	0.00	61.40	73.98	-12.57
*	21280.00	Average	V	-	-	-71.33	7.93	-9.54	34.05	53.98	-19.92
*	21280.00	Peak	V	-	-	-60.99	7.93	-9.54	44.39	73.98	-29.58
	26600.00	Peak	V	-	-	-58.65	-8.13	-9.54	30.68	68.20	-37.52

Table 7-11. Radiated Measurements

FCC ID: XO2SPB209A	PCTEST	FCC Pt. 15.407 802.11 UNII MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	H&D Wireless	Approved by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Dage 22 of 42			
0Y1612302094-04.XO2	12/14/16 - 1/24/2017	Wifi/BT/NFC Module		Page 23 of 43			
© 2017 PCTEST Engineering Laboratory, Inc.							

Worst Case Mode:	802.11a
Worst Case Transfer Rate:	6 Mbps
Distance of Measurements:	1 & 3 Meters
Operating Frequency:	5500MHz
Channel:	100

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11000.00	Average	V	-	-	-72.81	13.01	0.00	47.20	53.98	-6.78
*	11000.00	Peak	V	-	-	-63.76	13.01	0.00	56.25	73.98	-17.73
	16500.00	Peak	V	-	-	-72.15	20.25	0.00	55.10	68.20	-13.10
	22000.00	Peak	V	-	-	-59.68	8.43	-9.54	46.20	68.20	-22.00
	27500.00	Peak	V	-	-	-47.56	-8.80	-9.54	41.10	68.20	-27.10

Table 7-12. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: **Operating Frequency:** Channel:

802.11a 6 Mbps 1 & 3 Meters 5580MHz 116

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11160.00	Average	V	-	-	-73.68	13.64	0.00	46.96	53.98	-7.02
*	11160.00	Peak	V	-	-	-63.71	13.64	0.00	56.93	73.98	-17.05
	16740.00	Peak	V	-	-	-71.35	18.21	0.00	53.86	68.20	-14.34
*	22320.00	Average	V	-	-	-72.65	8.36	-9.54	33.17	53.98	-20.81
*	22320.00	Peak	V	-	-	-59.75	8.36	-9.54	46.07	73.98	-27.91
	27900.00	Peak	V	-	-	-46.80	-9.12	-9.54	41.54	68.20	-26.66

Table 7-13. Radiated Measurements

FCC ID: XO2SPB209A		FCC Pt. 15.407 802.11 UNII MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	H&D Wireless	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 24 of 43
0Y1612302094-04.XO2	12/14/16 - 1/24/2017	Wifi/BT/NFC Module		Page 24 01 45
© 2017 PCTEST Engineering La	boratory, Inc.			V 5.1

802.11a		
6 Mbps		
1 & 3 Meters		
5720MHz		
144		

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11440.00	Average	V	-	-	-73.60	14.01	0.00	47.41	53.98	-6.57
*	11440.00	Peak	V	-	-	-62.87	14.01	0.00	58.14	73.98	-15.84
	17160.00	Peak	V	-	-	-72.05	20.65	0.00	55.60	68.20	-12.60
*	22880.00	Average	V	-	-	-71.63	8.28	-9.54	34.11	53.98	-19.87
*	22880.00	Peak	V	-	-	-59.71	8.28	-9.54	46.03	73.98	-27.95
	28600.00	Peak	V	-	-	-46.38	-8.95	-9.54	42.13	68.20	-26.07

Table 7-14. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: Operating Frequency: Channel:

802.11a
6 Mbps
1 & 3 Meters
5745MHz
149

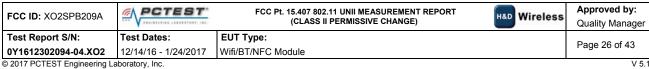
	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]		Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11490.00	Average	V	-	-	-73.81	14.32	0.00	47.51	53.98	-6.47
*	11490.00	Peak	V	-	-	-63.81	14.32	0.00	57.51	73.98	-16.47
	17235.00	Peak	V	-	-	-72.00	21.26	0.00	56.26	68.20	-11.94
*	22980.00	Average	V	-	-	-71.34	8.11	-9.54	34.23	53.98	-19.75
*	22980.00	Peak	V	-	-	-61.71	8.11	-9.54	43.86	73.98	-30.12
	28725.00	Peak	V	-	-	-46.50	-9.43	-9.54	41.52	68.20	-26.68

Table 7-15. Radiated Measurements

FCC ID: XO2SPB209A	PCTEST	FCC Pt. 15.407 802.11 UNII MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	H&D Wireless	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 25 of 43
0Y1612302094-04.XO2	12/14/16 - 1/24/2017	Wifi/BT/NFC Module		Faye 25 01 45

802.11a		
6 Mbps		
1 & 3 Meters		
5785MHz		
157		

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11570.00	Average	V	-	-	-74.38	14.61	0.00	47.23	53.98	-6.75
*	11570.00	Peak	V	-	-	-62.81	14.61	0.00	58.80	73.98	-15.18
	17355.00	Peak	V	-	-	-72.15	22.75	0.00	57.60	68.20	-10.60
	23140.00	Peak	V	-	-	-61.84	8.21	-9.54	43.83	68.20	-24.37
	28925.00	Peak	V	-	-	-46.48	-9.65	-9.54	41.33	68.20	-26.87


Table 7-16. Radiated Measurements

Worst Case Mode: Worst Case Transfer Rate: Distance of Measurements: **Operating Frequency:** Channel:

802.11a 6 Mbps 1 & 3 Meters 5825MHz 165

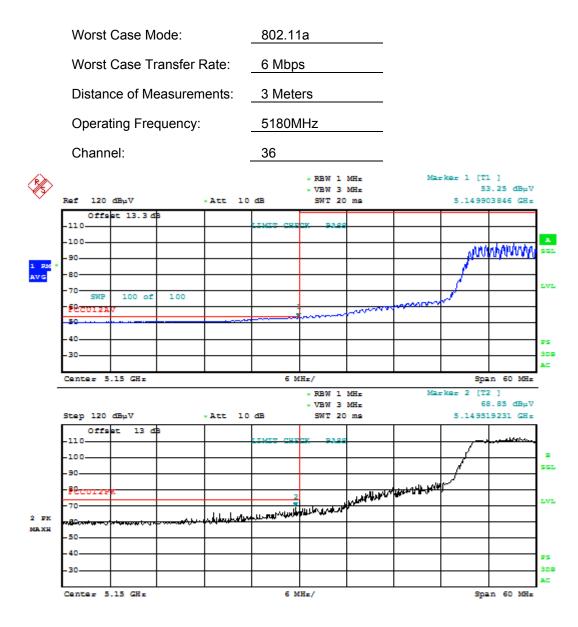
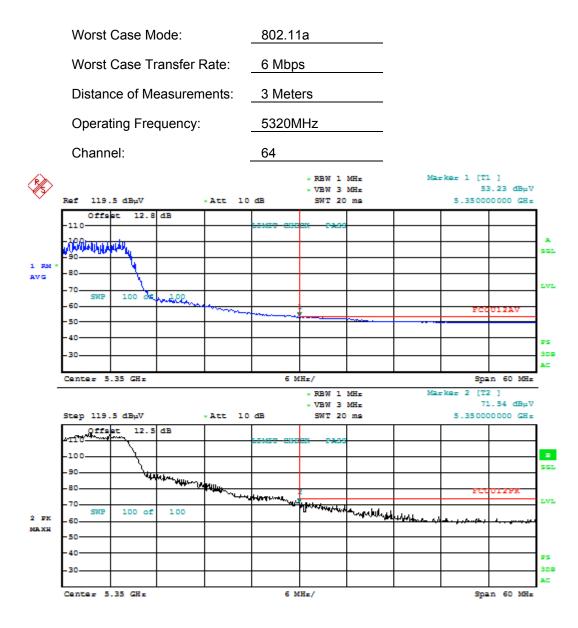

	Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]		Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
*	11650.00	Average	V	-	-	-73.05	14.87	0.00	48.82	53.98	-5.16
*	11650.00	Peak	V	-	-	-62.73	14.87	0.00	59.14	73.98	-14.84
	17475.00	Peak	V	-	-	-72.84	23.13	0.00	57.29	68.20	-10.91
	23300.00	Peak	V	-	-	-59.75	8.28	-9.54	45.98	68.20	-22.22
	29125.00	Peak	V	-	-	-46.79	-9.90	-9.54	40.77	68.20	-27.43

Table 7-17. Radiated Measurements

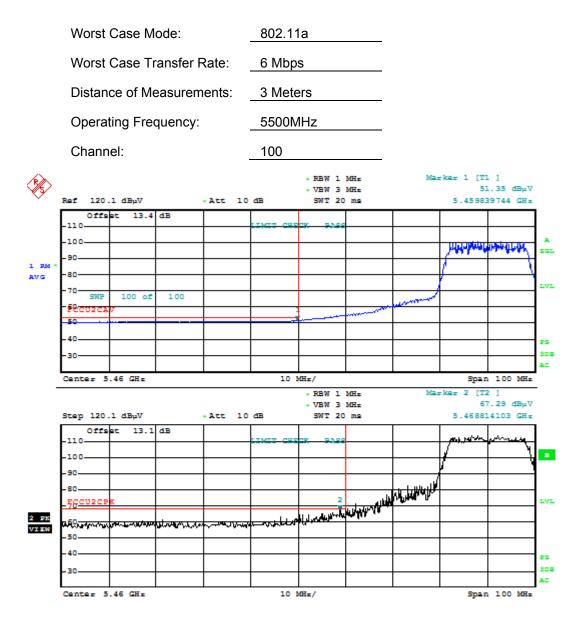
7.7.2 Radiated Band Edge Measurements (20MHz BW) §15.407(b.1)(b.2) §15.205 §15.209


Date: 19.DEC.2016 19:19:03

Plot 7-13. Radiated Restricted Lower Band Edge Plot (Average & Peak – UNII Band 1)

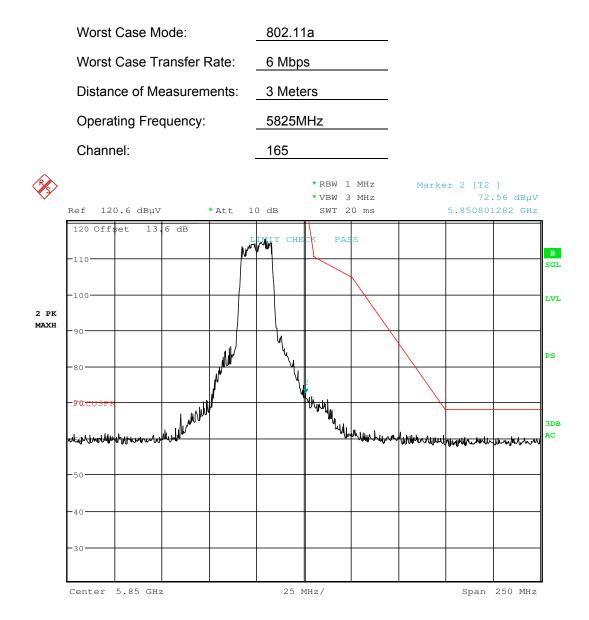
FCC ID: XO2SPB209A		FCC Pt. 15.407 802.11 UNII MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	ss Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dego 27 of 42	
0Y1612302094-04.XO2	12/14/16 - 1/24/2017	Wifi/BT/NFC Module	Page 27 of 43	
© 2017 PCTEST Engineering Laboratory, Inc.				

Radiated Band Edge Measurements (20MHz BW) §15.407(b.1)(b.2) §15.205 §15.209


Date: 20.DEC.2016 14:34:32

FCC ID: XO2SPB209A		FCC Pt. 15.407 802.11 UNII MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	H&D Wireless	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 20 of 42	
0Y1612302094-04.XO2	12/14/16 - 1/24/2017	Wifi/BT/NFC Module		Page 28 of 43	
© 2017 PCTEST Engineering Laboratory, Inc.					

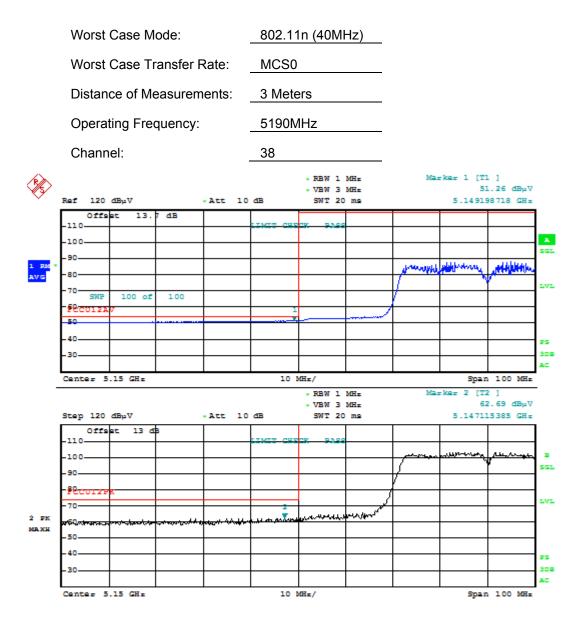
Radiated Band Edge Measurements (20MHz BW) §15.407(b.1)(b.2) §15.205 §15.209


Date: 20.DEC.2016 15:09:28

Plot 7-15. Radiated Restricted Lower Band Edge Plot (Average and Peak – UNII Band 2C)

FCC ID: XO2SPB209A		FCC Pt. 15.407 802.11 UNII MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	H&D Wireless	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 20 of 42
0Y1612302094-04.XO2	12/14/16 - 1/24/2017	Wifi/BT/NFC Module		Page 29 of 43
© 2017 PCTEST Engineering Laboratory, Inc.				

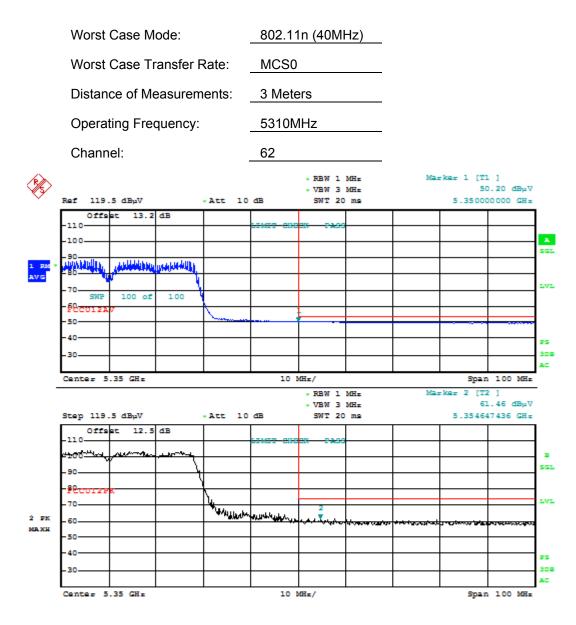
Radiated Band Edge Measurements (20MHz BW) §15.407(b.1)(b.2) §15.205 §15.209


Date: 20.DEC.2016 16:30:17

Plot 7-16. Radiated Upper Band Edge Plot (Peak – UNII Band 3)

FCC ID: XO2SPB209A		FCC Pt. 15.407 802.11 UNII MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	H&D Wireless	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:		Dega 20 of 42	
0Y1612302094-04.XO2	12/14/16 - 1/24/2017	Wifi/BT/NFC Module		Page 30 of 43	
© 2017 PCTEST Engineering Laboratory, Inc.					

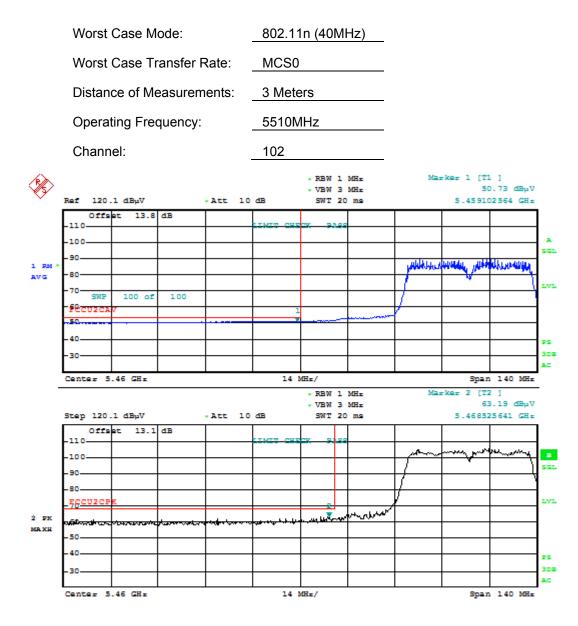
7.7.3 Radiated Band Edge Measurements (40MHz BW) §15.407(b.1)(b.2) §15.205 §15.209


Date: 19.DEC.2016 19:32:24

Plot 7-17. Radiated Restricted Lower Band Edge Plot (Average and Peak – UNII Band 1)

FCC ID: XO2SPB209A		FCC Pt. 15.407 802.11 UNII MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	H&D Wireless	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 21 of 42
0Y1612302094-04.XO2	12/14/16 - 1/24/2017	Wifi/BT/NFC Module		Page 31 of 43
© 2017 PCTEST Engineering Laboratory, Inc.				

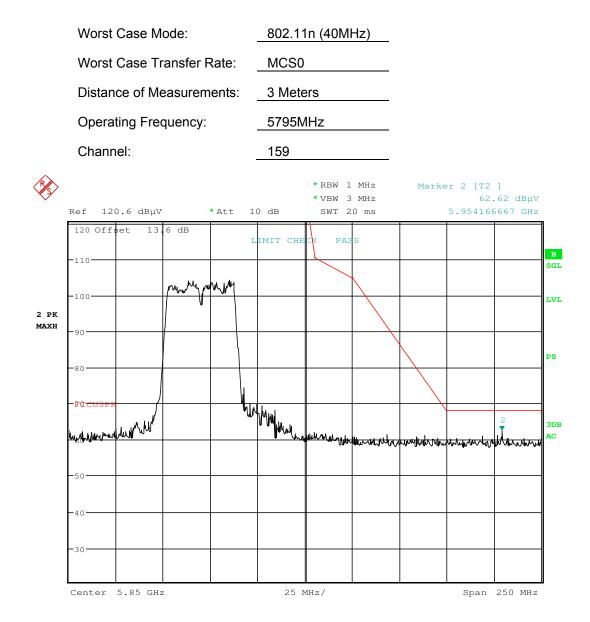
Radiated Band Edge Measurements (40MHz BW) §15.407(b.1)(b.2) §15.205 §15.209


Date: 20.DEC.2016 14:37:35

Plot 7-18. Radiated Restricted Upper Band Edge Plot (Average and Peak – UNII Band 2A)

FCC ID: XO2SPB209A		FCC Pt. 15.407 802.11 UNII MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	H&D Wireless	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 22 of 42
0Y1612302094-04.XO2	12/14/16 - 1/24/2017	Wifi/BT/NFC Module		Page 32 of 43
© 2017 PCTEST Engineering Laboratory, Inc.				

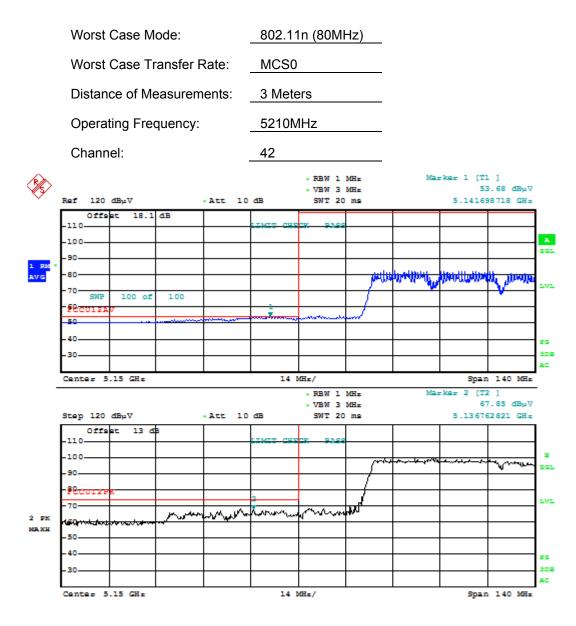
Radiated Band Edge Measurements (40MHz BW) §15.407(b.1)(b.2) §15.205 §15.209


Date: 20.DEC.2016 15:20:23

Plot 7-19. Radiated Restricted Lower Band Edge Plot (Average & Peak – UNII Band 2C)

FCC ID: XO2SPB209A		FCC Pt. 15.407 802.11 UNII MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	H&D Wireless	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 22 of 42
0Y1612302094-04.XO2	12/14/16 - 1/24/2017	Wifi/BT/NFC Module		Page 33 of 43
© 2017 PCTEST Engineering Laboratory, Inc.				

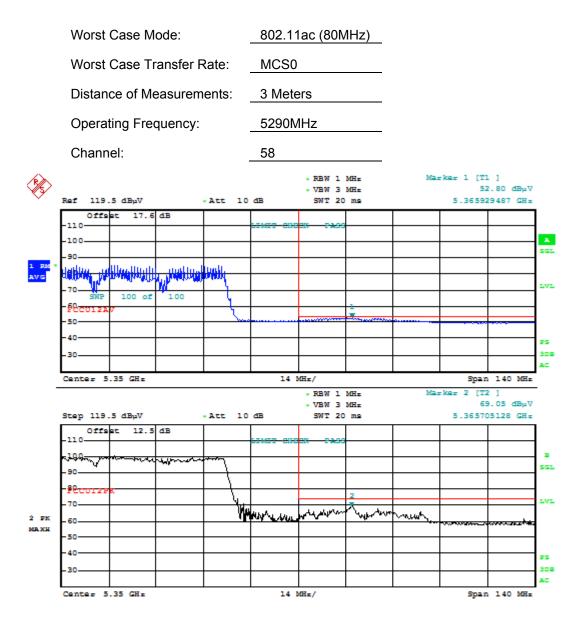
Radiated Band Edge Measurements (40MHz BW) §15.407(b.1)(b.2) §15.205 §15.209


Date: 20.DEC.2016 16:33:17

Plot 7-20. Radiated Upper Band Edge Plot (Peak – UNII Band 3)

FCC ID: XO2SPB209A		FCC Pt. 15.407 802.11 UNII MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	H&D Wireless	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 24 of 42
0Y1612302094-04.XO2	12/14/16 - 1/24/2017	Wifi/BT/NFC Module		Page 34 of 43
© 2017 PCTEST Engineering Laboratory, Inc.				

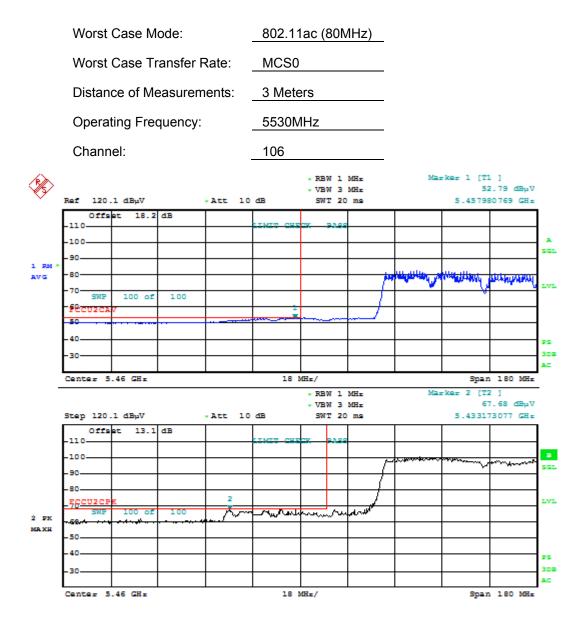
7.7.4 Radiated Band Edge Measurements (80MHz BW) §15.407(b.1)(b.2) §15.205 §15.209


Date: 19.DEC.2016 19:36:30

Plot 7-21. Radiated Restricted Lower Band Edge Plot (Average & Peak – UNII Band 1)

FCC ID: XO2SPB209A		FCC Pt. 15.407 802.11 UNII MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	H&D Wireless	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 25 of 42
0Y1612302094-04.XO2	12/14/16 - 1/24/2017	Wifi/BT/NFC Module		Page 35 of 43
© 2017 PCTEST Engineering Laboratory, Inc.				

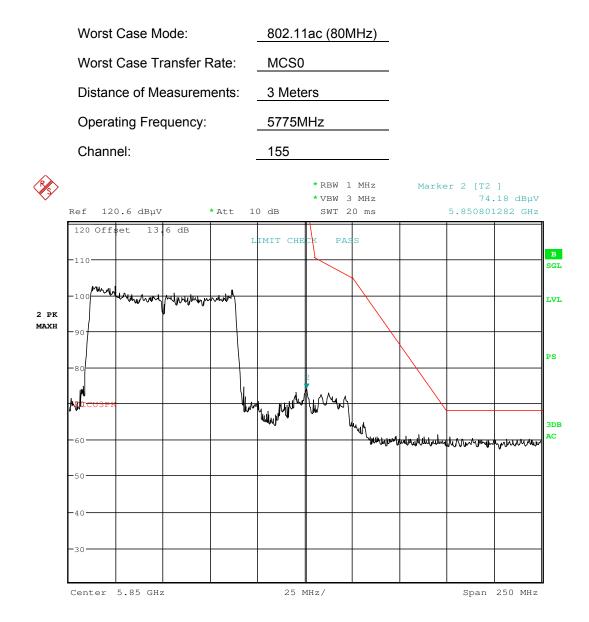
Radiated Band Edge Measurements (80MHz BW) §15.407(b.1)(b.2) §15.205 §15.209


Date: 20.DEC.2016 14:43:47

Plot 7-22. Radiated Restricted Upper Band Edge Plot (Average & Peak – UNII Band 2A)

FCC ID: XO2SPB209A	PCTEST	FCC Pt. 15.407 802.11 UNII MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	H&D Wireless	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 26 of 42
0Y1612302094-04.XO2	12/14/16 - 1/24/2017	Wifi/BT/NFC Module		Page 36 of 43
© 2017 PCTEST Engineering Laboratory, Inc.				

Radiated Band Edge Measurements (80MHz BW) §15.407(b.1)(b.2) §15.205 §15.209


Date: 20.DEC.2016 15:30:15

Plot 7-23. Radiated Restricted Lower Band Edge Plot (Average and Peak – UNII Band 2C)

FCC ID: XO2SPB209A		FCC Pt. 15.407 802.11 UNII MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	H&D Wireless	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 27 of 42
0Y1612302094-04.XO2	12/14/16 - 1/24/2017	Wifi/BT/NFC Module		Page 37 of 43
© 2017 PCTEST Engineering Laboratory, Inc.				

Radiated Band Edge Measurements (80MHz BW) §15.407(b.1)(b.2) §15.205 §15.209

Date: 20.DEC.2016 16:37:50

Plot 7-24. Radiated Upper Band Edge Plot (Peak – UNII Band 3)

FCC ID: XO2SPB209A		FCC Pt. 15.407 802.11 UNII MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	H&D Wireless	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 20 of 42
0Y1612302094-04.XO2	12/14/16 - 1/24/2017	Wifi/BT/NFC Module		Page 38 of 43
© 2017 PCTEST Engineering Laboratory, Inc.				V 5.1

7.4 Radiated Spurious Emissions Measurements – Below 1GHz §15.209

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table 7-18 per Section 15.209.

Frequency	Field Strength [μV/m]	Measured Distance [Meters]
0.009 – 0.490 MHz	2400/F (kHz)	300
0.490 – 1.705 MHz	24000/F (kHz)	30
1.705 – 30.00 MHz	30	30
30.00 – 88.00 MHz	100	3
88.00 – 216.0 MHz	150	3
216.0 – 960.0 MHz	200	3
Above 960.0 MHz	500	3

Table 7-18. Radiated Limits

Test Procedures Used

ANSI C63.10-2013

Test Settings

Quasi-Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 120kHz (for emissions from 30MHz 1GHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize

FCC ID: XO2SPB209A		FCC Pt. 15.407 802.11 UNII MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	H&D Wireless	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Page 39 of 43
0Y1612302094-04.XO2	12/14/16 - 1/24/2017	Wifi/BT/NFC Module		Page 39 01 43
© 2017 PCTEST Engineering Laboratory, Inc.				V 5.1

The EUT and measurement equipment were set up as shown in the diagrams below.

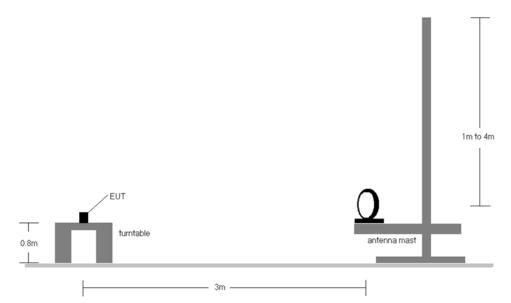


Figure 7-3. Radiated Test Setup < 30MHz

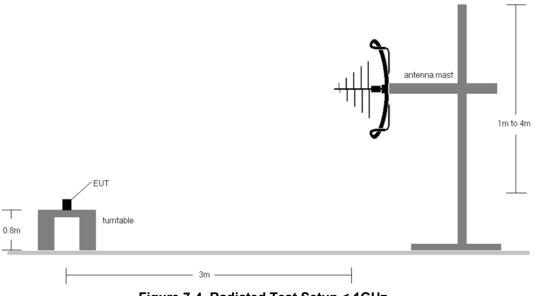
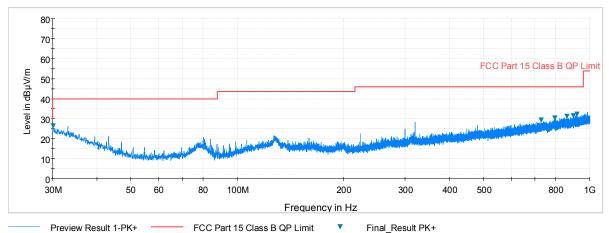
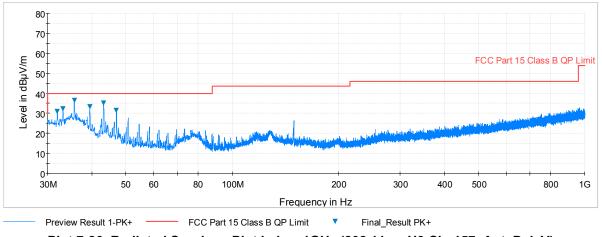


Figure 7-4. Radiated Test Setup < 1GHz

FCC ID: XO2SPB209A		FCC Pt. 15.407 802.11 UNII MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 40 of 42
0Y1612302094-04.XO2	12/14/16 - 1/24/2017	Wifi/BT/NFC Module	Page 40 of 43
© 2017 PCTEST Engineering Laboratory, Inc.			



- 1. All emissions lying in restricted bands specified in §15.205 are below the limit shown in Table 7-18.
- 2. The broadband receive antenna is manipulated through vertical and horizontal polarizations during the tests. The EUT is manipulated through three orthogonal planes.
- 3. This unit was tested while powered by an DC power source.
- 4. The spectrum is investigated using a peak detector and final measurements are recorded using CISPR quasi peak detector. The worst-case emissions are reported however emissions whose levels were not within 20dB of the respective limits were not reported.
- 5. Emissions were measured at a 3 meter test distance.
- 6. Emissions are investigated while operating on the center channel of the mode, band, and modulation that produced the worst case results during the transmitter spurious emissions testing.
- 7. No spurious emissions were detected within 20dB of the limit below 30MHz.
- The results recorded using the broadband antenna is known to correlate with the results obtained by using a tuned dipole with an acceptable degree of accuracy. The VSWR for the measurement antenna was found to be less than 2:1.
- The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. There were no emissions detected in the 30MHz – 1GHz frequency range, as shown in the subsequent plots.


FCC ID: XO2SPB209A		FCC Pt. 15.407 802.11 UNII MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 41 of 42
0Y1612302094-04.XO2	12/14/16 - 1/24/2017	Wifi/BT/NFC Module	Page 41 of 43

Radiated Spurious Emissions Measurements (Below 1GHz) §15.209

Plot 7-26. Radiated Spurious Plot below 1GHz (802.11a – U3 Ch. 157, Ant. Pol. V)

Note: Emissions shown in radiated spurious plots were investigated and was determined to come from support equipment for the EUT, i.e. laptop and power supply.

FCC ID: XO2SPB209A		FCC Pt. 15.407 802.11 UNII MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Approved by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Daga 42 of 42	
0Y1612302094-04.XO2	12/14/16 - 1/24/2017	Wifi/BT/NFC Module	Page 42 of 43	
© 2017 PCTEST Engineering Laboratory. Inc. V 5.1				

8.0 CONCLUSION

The data collected relate only the item(s) tested and show that the **H&D Wireless AB Wifi/BT/NFC Module FCC ID: XO2SPB209A** is in compliance with Part 15E of the FCC Rules.

FCC ID: XO2SPB209A		FCC Pt. 15.407 802.11 UNII MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	H&D Wireless	Approved by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dega 42 of 42
0Y1612302094-04.XO2	12/14/16 - 1/24/2017	Wifi/BT/NFC Module		Page 43 of 43
© 2017 PCTEST Engineering Laboratory Inc.				V 5 1