

FCC Measurement/Technical Report on

SPB620 module

FCC ID: XO2-SPB620 IC: 8713A-SPB620

Test Report Reference: MDE_HDW_2304_FCC_02_rev02

Test Laboratory: 7layers GmbH Borsigstrasse 11 40880 Ratingen Germany

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbH Borsigstraße 11 40880 Ratingen, Germany T +49 (0) 2102 749 0 F +49 (0) 2102 749 350 Geschäftsführer/ Managing Directors: Sebastian Doose Bernhard Retka

Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company

www.7layers.com

Commerzbank AG Account No. 303 016 000 Bank Code 300 400 00 IBAN DE81 3004 0000 0303 0160 00 Swift Code COBADEFF

Table of Contents

1	Applied Standards and Test Summary	3
- 1.1	Applied Standards	3
1.2	FCC-IC Correlation Table	4
1.3	Measurement Summary	5
2	Revision History / Signatures	11
3	Administrative Data	12
3.1	Testing Laboratory	12
3.2	Project Data	12
3.3	Applicant Data	12
3.4	Manufacturer Data	13
4	Test object Data	14
4.1	General EUT Description	14
4.2	EUT Main components	15
4.3	Ancillary Equipment	15
4.4	Auxiliary Equipment	15
4.5	EUT Setups	16
4.6	Operating Modes / Test Channels	16
4.7	DUTy CYCLE	17
4.8	Product labelling	18
5	Test Results	19
5.1	Conducted Emissions at AC Mains	19
5.2	Occupied Bandwidth (6 dB)	22
5.3	Occupied Bandwidth (99%)	27
5.4	Peak Power Output	32
5.5	Spurious RF Conducted Emissions	37
5.6	Transmitter Spurious Radiated Emissions	41
5.7 5.8	Band Edge Compliance Conducted	55 68
5.9	Band Edge Compliance Radiated Power Density	81
6	Test Equipment	90
6.1	Test Equipment Hardware	90
6.2	Test Equipment Software	93
7	Antenna Factors, Cable Loss and Sample Calculations	94
7.1	LISN R&S ESH3-Z5 (150 kHz – 30 MHz)	94
7.2	Antenna R&S HFH2-Z2 (9 kHz – 30 MHz)	95
7.3	Antenna R&S HL562 (30 MHz – 1 GHz)	96
7.4	Antenna R&S HF907 (1 GHz – 18 GHz)	97
7.5	Antenna EMCO 3160-09 (18 GHz – 26.5 GHz)	98
7.6	Antenna EMCO 3160-10 (26.5 GHz – 40 GHz)	99
8	Measurement Uncertainties	100
9	Photo Report	101
-	- I	_ • •

1 APPLIED STANDARDS AND TEST SUMMARY

1.1 APPLIED STANDARDS

Type of Authorization

Certification for an Intentional Radiator.

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15 (10-1-21 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

- Part 15, Subpart C Intentional Radiators
- § 15.201 Equipment authorization requirement
- § 15.207 Conducted limits
- § 15.209 Radiated emission limits; general requirements
- § 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz

Note:

The tests were selected and performed with reference to the FCC Public Notice "Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating under Section 15.247 of the FCC Rules, 558074 D01 15.247 Meas Guidance v05r02, 2019-04-02". ANSI C63.10-2013 is applied.

1.2 FCC-IC CORRELATION TABLE

Correlation of measurement requirements for DTS (e.g. WLAN 2.4 GHz, BT LE) equipment from FCC and IC

DTS equipment

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 5: 8.8
Occupied bandwidth	§ 15.247 (a) (2)	RSS-247 Issue 3: 5.2 (a)
Peak conducted output power	§ 15.247 (b) (3), (4)	RSS-247 Issue 3: 5.4 (d)
Transmitter spurious RF conducted emissions	§ 15.247 (d)	RSS-Gen Issue 5: 6.13 / 8.9/8.10; RSS-247 Issue 3: 5.5
Transmitter spurious radiated emissions	§ 15.247 (d); § 15.209 (a)	RSS-Gen Issue 5: 6.13 / 8.9/8.10; RSS-247 Issue 3: 5.5
Band edge compliance	§ 15.247 (d)	RSS-247 Issue 3: 5.5
Power density	§ 15.247 (e)	RSS-247 Issue 3: 5.2 (b)
Antenna requirement	§ 15.203 / 15.204	RSS-Gen Issue 5: 8.3
Receiver spurious emissions	-	-

1.3 MEASUREMENT SUMMARY

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.207			
Conducted Emissions at AC Mains The measurement was performed accordi	ng to ANSI C63	8.10 6.2	Final Re	esult
OP-Mode Operating mode, Connection to AC mains	Setup	Date	FCC	IC
worst case, via ancillary/auxiliary equipment	S04_AB01	2023-11-24	Passed	Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (a) (2)		
Occupied Bandwidth (6 dB) The measurement was performed accordi 11.8.1	ng to ANSI C63	3.10, chapter	Final Re	esult
OP-Mode	Setup	Date	FCC	IC
Radio Technology, Operating Frequency				
Bluetooth LE 1 Mbps, high	S01_AB01	2023-08-18	Passed	Passed
Bluetooth LE 1 Mbps, low	S01_AB01	2023-08-18	Passed	Passed
Bluetooth LE 1 Mbps, mid	S01_AB01	2023-08-18	Passed	Passed
Bluetooth LE 2 Mbps, high	S01_AB01	2023-08-18	Passed	Passed
Bluetooth LE 2 Mbps, low	S01_AB01	2023-08-18	Passed	Passed
Bluetooth LE 2 Mbps, mid	S01_AB01	2023-08-18	Passed	Passed
WLAN ax 20 MHz, high	S01_AB01	2023-08-18	Passed	Passed
WLAN ax 20 MHz, low	S01_AB01	2023-08-18	Passed	Passed
WLAN ax 20 MHz, mid	S01_AB01	2023-08-18	Passed	Passed
WLAN ax 40 MHz, high	S01_AB01	2023-08-18	Passed	Passed
WLAN ax 40 MHz, low	S01_AB01	2023-08-18	Passed	Passed
WLAN ax 40 MHz, mid	S01_AB01	2023-08-18	Passed	Passed
WLAN b, high	S01_AB01	2023-08-18	Passed	Passed
WLAN b, low	S01_AB01	2023-08-18	Passed	Passed
WLAN b, mid	S01_AB01	2023-08-18	Passed	Passed
WLAN g, high	S01_AB01	2023-08-18	Passed	Passed
WLAN g, low	S01_AB01	2023-08-18	Passed	Passed
WLAN g, mid	S01_AB01	2023-08-18	Passed	Passed
WLAN n 20 MHz, high	S01_AB01	2023-08-18	Passed	Passed
WLAN n 20 MHz, low	S01_AB01	2023-08-18	Passed	Passed
WLAN n 20 MHz, mid	S01_AB01	2023-08-18	Passed	Passed
WLAN n 40 MHz, high	S01_AB01	2023-08-18	Passed	Passed
WLAN n 40 MHz, low	S01_AB01	2023-08-18	Passed	Passed
WLAN n 40 MHz, mid	S01_AB01	2023-08-18	Passed	Passed

IC RSS-Gen & IC TRC-43; Ch. 6.7 & Ch. 8

Occupied Bandwidth (99%)

The measurement was performed according to ANSI C63.10, chapter **Final Result** 6.9.3

OP-Mode Radio Technology, Operating Frequency	Setup	Date	FCC	IC
Bluetooth LE 1 Mbps, high	S01_AB01	2023-08-18	N/A	Performed
Bluetooth LE 1 Mbps, low	S01_AB01	2023-08-18	N/A	Performed
Bluetooth LE 1 Mbps, mid	S01_AB01	2023-08-18	N/A	Performed
Bluetooth LE 2 Mbps, high	S01_AB01	2023-08-18	N/A	Performed
Bluetooth LE 2 Mbps, low	S01_AB01	2023-08-18	N/A	Performed
Bluetooth LE 2 Mbps, mid	S01_AB01	2023-08-18	N/A	Performed
WLAN ax 20 MHz, high	S01_AB01	2023-08-18	N/A	Performed
WLAN ax 20 MHz, low	S01_AB01	2023-08-18	N/A	Performed
WLAN ax 20 MHz, mid	S01_AB01	2023-08-18	N/A	Performed
WLAN ax 40 MHz, high	S01_AB01	2023-08-18	N/A	Performed
WLAN ax 40 MHz, low	S01_AB01	2023-08-18	N/A	Performed
WLAN ax 40 MHz, mid	S01_AB01	2023-08-18	N/A	Performed
WLAN b, high	S01_AB01	2023-08-18	N/A	Performed
WLAN b, low	S01_AB01	2023-08-18	N/A	Performed
WLAN b, mid	S01_AB01	2023-08-18	N/A	Performed
WLAN g, high	S01_AB01	2023-08-18	N/A	Performed
WLAN g, low	S01_AB01	2023-08-18	N/A	Performed
WLAN g, mid	S01_AB01	2023-08-18	N/A	Performed
WLAN n 20 MHz, high	S01_AB01	2023-08-18	N/A	Performed
WLAN n 20 MHz, low	S01_AB01	2023-08-18	N/A	Performed
WLAN n 20 MHz, mid	S01_AB01	2023-08-18	N/A	Performed
WLAN n 40 MHz, high	S01_AB01	2023-08-18	N/A	Performed
WLAN n 40 MHz, low	S01_AB01	2023-08-18	N/A	Performed
WLAN n 40 MHz, mid	S01_AB01	2023-08-18	N/A	Performed

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247

§ 15.247 (b) (3)

Peak Power Output The measurement was performed according to ANSI C63.10, chapter **Final Result** 11.9.1.3

OP-Mode Radio Technology, Operating Frequency, Measurement method	Setup	Date	FCC	IC
Bluetooth LE 1 Mbps, high, conducted	S01_AB01	2023-08-18	Passed	Passed
Bluetooth LE 1 Mbps, low, conducted	S01_AB01	2023-08-18	Passed	Passed
Bluetooth LE 1 Mbps, mid, conducted	S01_AB01	2023-08-18	Passed	Passed
Bluetooth LE 2 Mbps, high, conducted	S01_AB01	2023-08-18	Passed	Passed
Bluetooth LE 2 Mbps, low, conducted	S01_AB01	2023-08-18	Passed	Passed
Bluetooth LE 2 Mbps, mid, conducted	S01_AB01	2023-08-18	Passed	Passed
WLAN ax 20 MHz MIMO, high, conducted	S01_AB01	2023-08-21	Passed	Passed
WLAN ax 20 MHz MIMO, low, conducted	S01_AB01	2023-08-21	Passed	Passed
WLAN ax 20 MHz MIMO, mid, conducted	S01_AB01	2023-08-21	Passed	Passed

Peak Power Output

The measurement was performed according to ANSI C63.10, chapter **Final Result** 11.9.1.3

OP-Mode Radio Technology, Operating Frequency, Measurement method	Setup	Date	FCC	IC
WLAN ax 20 MHz, high, conducted	S01_AB01	2023-08-18	Passed	Passed
WLAN ax 20 MHz, low, conducted	S01_AB01	2023-08-18	Passed	Passed
WLAN ax 20 MHz, mid, conducted	S01_AB01	2023-08-18	Passed	Passed
WLAN ax 40 MHz MIMO, high, conducted	S01_AB01	2023-08-22	Passed	Passed
WLAN ax 40 MHz MIMO, low, conducted	S01_AB01	2023-08-22	Passed	Passed
WLAN ax 40 MHz MIMO, mid, conducted	S01_AB01	2023-08-22	Passed	Passed
WLAN ax 40 MHz, high, conducted	S01_AB01	2023-08-18	Passed	Passed
WLAN ax 40 MHz, low, conducted	S01_AB01	2023-08-18	Passed	Passed
WLAN ax 40 MHz, mid, conducted	S01_AB01	2023-08-18	Passed	Passed
WLAN b, high, conducted	S01_AB01	2023-08-18	Passed	Passed
WLAN b, low, conducted	S01_AB01	2023-08-18	Passed	Passed
WLAN b, mid, conducted	S01_AB01	2023-08-18	Passed	Passed
WLAN g, high, conducted	S01_AB01	2023-08-18	Passed	Passed
WLAN g, low, conducted	S01_AB01	2023-08-18	Passed	Passed
WLAN g, mid, conducted	S01_AB01	2023-08-18	Passed	Passed
WLAN n 20 MHz MIMO, high, conducted	S01_AB01	2023-08-21	Passed	Passed
WLAN n 20 MHz MIMO, low, conducted	S01_AB01	2023-08-21	Passed	Passed
WLAN n 20 MHz MIMO, mid, conducted	S01_AB01	2023-08-21	Passed	Passed
WLAN n 20 MHz, high, conducted	S01_AB01	2023-08-18	Passed	Passed
WLAN n 20 MHz, low, conducted	S01_AB01	2023-08-18	Passed	Passed
WLAN n 20 MHz, mid, conducted	S01_AB01	2023-08-18	Passed	Passed
WLAN n 40 MHz MIMO, high, conducted	S01_AB01	2023-08-22	Passed	Passed
WLAN n 40 MHz MIMO, low, conducted	S01_AB01	2023-08-22	Passed	Passed
WLAN n 40 MHz MIMO, mid, conducted	S01_AB01	2023-08-22	Passed	Passed
WLAN n 40 MHz, high, conducted	S01_AB01	2023-08-18	Passed	Passed
WLAN n 40 MHz, low, conducted	S01_AB01	2023-08-18	Passed	Passed
WLAN n 40 MHz, mid, conducted	S01_AB01	2023-08-18	Passed	Passed

47 CFR CHAPTER I FCC PART 15 _

Bluetooth LE 1 Mbps, mid

WLAN b, high

WLAN b, low

WLAN b, mid

§ 15.247 (d)

Subpart C §15.247	,			
Spurious RF Conducted Emissions The measurement was performed accordi 11.11	ng to ANSI C63.10), chapter	Final Re	sult
OP-Mode Radio Technology, Operating Frequency	Setup	Date	FCC	IC
Bluetooth LE 1 Mbps, high	S01_AB01	2023-08-18	Passed	Passed
Bluetooth LE 1 Mbps, low	S01_AB01	2023-08-18	Passed	Passed

S01_AB01

S01_AB01

S01_AB01

S01_AB01

2023-08-18

2023-08-22

2023-08-22

2023-08-22

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

§ 15.247 (d)

Transmitter Spurious Radiated Emissions

The measurement was performed according to ANSI C63.10, chapter **Final Result** 6.4, 6.5, 6.6.5

OP-Mode Radio Technology, Operating Frequency, Measurement range	Setup	Date	FCC	IC
Bluetooth LE 1 Mbps, high, 1 GHz - 26 GHz	S02_AB01	2023-09-09	Passed	Passed
Bluetooth LE 1 Mbps, mid, 9 kHz - 30 MHz	S02_AB01	2023-08-24	Passed	Passed
WLAN b, high, 1 GHz - 26 GHz	S02_AB01	2023-08-18	Passed	Passed
WLAN b, high, 30 MHz - 1 GHz	S02_AB01	2023-08-31	Passed	Passed
WLAN b, low, 1 GHz - 26 GHz	S02_AB01	2023-08-17	Passed	Passed
WLAN b, low, 30 MHz - 1 GHz	S02_AB01	2023-08-31	Passed	Passed
WLAN b, mid, 1 GHz - 26 GHz	S02_AB01	2023-08-20	Passed	Passed
WLAN b, mid, 30 MHz - 1 GHz	S02_AB01	2023-08-31	Passed	Passed
WLAN b, mid, 9 kHz - 30 MHz	S02_AB01	2023-08-24	Passed	Passed
WLAN g, high, 1 GHz - 8 GHz	S02_AB01	2023-08-24	Passed	Passed
WLAN g, low, 1 GHz - 8 GHz	S02_AB01	2023-08-23	Passed	Passed
WLAN g, mid, 1 GHz - 8 GHz	S02_AB01	2023-08-23	Passed	Passed
WLAN n 20 MHz MIMO, mid, 1 GHz - 8 GHz	S02_AB01	2023-08-23	Passed	Passed

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247

§ 15.247 (d)

Band Edge Compliance Conducted

The measurement was performed according to ANSI C63.10, chapter **Final Result** 11.11

OP-Mode Radio Technology, Operating Frequency, Band	Setup	Date	FCC	IC
Edge				
Bluetooth LE 1 Mbps, high, high	S01_AB01	2023-08-18	Passed	Passed
Bluetooth LE 1 Mbps, low, low	S01_AB01	2023-08-18	Passed	Passed
Bluetooth LE 2 Mbps, high, high	S01_AB01	2023-08-18	Passed	Passed
Bluetooth LE 2 Mbps, low, low	S01_AB01	2023-08-18	Passed	Passed
WLAN ax 20 MHz MIMO, high, high	S01_AB01	2023-08-21	Passed	Passed
WLAN ax 20 MHz MIMO, low, low	S01_AB01	2023-08-21	Passed	Passed
WLAN ax 20 MHz, high, high	S01_AB01	2023-08-18	Passed	Passed
WLAN ax 20 MHz, low, low	S01_AB01	2023-08-18	Passed	Passed
WLAN ax 40 MHz MIMO, high, high	S01_AB01	2023-08-22	Passed	Passed
WLAN ax 40 MHz MIMO, low, low	S01_AB01	2023-08-22	Passed	Passed
WLAN ax 40 MHz, high, high	S01_AB01	2023-08-18	Passed	Passed
WLAN ax 40 MHz, low, low	S01_AB01	2023-08-18	Passed	Passed
WLAN b, high, high	S01_AB01	2023-08-18	Passed	Passed
WLAN b, low, low	S01_AB01	2023-08-18	Passed	Passed
WLAN g, high, high	S01_AB01	2023-08-18	Passed	Passed
WLAN g, low, low	S01_AB01	2023-08-18	Passed	Passed
WLAN n 20 MHz MIMO, high, high	S01_AB01	2023-08-21	Passed	Passed
WLAN n 20 MHz MIMO, low, low	S01_AB01	2023-08-21	Passed	Passed

47 CFR CHAPTER I FCC PART 15 § 15.247 (d) Subpart C §15.247

Band Edge Compliance Conducted

The measurement was performed according to ANSI C63.10, chapter **Final Result** 11.11

OP-Mode Radio Technology, Operating Frequency, Band Edge	Setup	Date	FCC	IC
WLAN n 20 MHz, high, high	S01_AB01	2023-08-18	Passed	Passed
WLAN n 20 MHz, low, low	S01_AB01	2023-08-18	Passed	Passed
WLAN n 40 MHz MIMO, high, high	S01_AB01	2023-08-22	Passed	Passed
WLAN n 40 MHz MIMO, low, low	S01_AB01	2023-08-22	Passed	Passed
WLAN n 40 MHz, high, high	S01_AB01	2023-08-18	Passed	Passed
WLAN n 40 MHz, low, low	S01_AB01	2023-08-18	Passed	Passed

§ 15.247 (d)

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247

Band Edge Compliance Radiated

The measurement was performed according to ANSI C63.10, chapter **Final Result** 6.6.5

OP-Mode Radio Technology, Operating Frequency, Band Edge	Setup	Date	FCC	IC
Bluetooth LE 1 Mbps, high, high	S02_AB01	2023-09-09	Passed	Passed
WLAN b, high, high	S02_AB01	2023-08-18	Passed	Passed
WLAN g, high, high	S02_AB01	2023-08-24	Passed	Passed
WLAN n 20 MHz, high, high	S02_AB01	2023-09-13	Passed	Passed
WLAN n 40 MHz, high, high	S02_AB01	2023-09-13	Passed	Passed
WLAN n 20 MHz MIMO, high, high	S02_AB01	2023-11-10	Passed	Passed
WLAN n 40 MHz MIMO, high, high	S02_AB01	2023-11-10	Passed	Passed
WLAN b, high, high	S03_AB01	2023-11-15	Passed	Passed
WLAN g, high, high	S03_AB01	2023-11-15	Passed	Passed
WLAN n 20 MHz MIMO, high, high	S03_AB01	2023-11-15	Passed	Passed
WLAN n 40 MHz MIMO, high, high	S03_AB01	2023-11-15	Passed	Passed

47 CFR CHAPTER I FCC PART 15 § 15.247 (e) Subpart C §15.247

Subpart C 915.247				
Power Density The measurement was performed according 11.10.2	ing to ANSI C63.10), chapter	Final Re	esult
OP-Mode Radio Technology, Operating Frequency	Setup	Date	FCC	IC
Bluetooth LE 1 Mbps, high	S01_AB01	2023-08-18	Passed	Passed
Bluetooth LE 1 Mbps, low	S01_AB01	2023-08-18	Passed	Passed
Bluetooth LE 1 Mbps, mid	S01_AB01	2023-08-18	Passed	Passed

S01_AB01

2023-08-18

Passed

Bluetooth LE 2 Mbps, high

Passed

§ 15.247 (e)

Power Density

The measurement was performed according to ANSI C63.10, chapter **Final Result** 11.10.2

OP-Mode	Setup	Date	FCC	IC
Radio Technology, Operating Frequency	•			
Bluetooth LE 2 Mbps, low	S01_AB01	2023-08-18	Passed	Passed
Bluetooth LE 2 Mbps, mid	S01_AB01	2023-08-18	Passed	Passed
WLAN ax 20 MHz MIMO, high	S01_AB01	2023-08-21	Passed	Passed
WLAN ax 20 MHz MIMO, low	S01_AB01	2023-08-21	Passed	Passed
WLAN ax 20 MHz MIMO, mid	S01_AB01	2023-08-21	Passed	Passed
WLAN ax 20 MHz, high	S01_AB01	2023-08-18	Passed	Passed
WLAN ax 20 MHz, low	S01_AB01	2023-08-18	Passed	Passed
WLAN ax 20 MHz, mid	S01_AB01	2023-08-18	Passed	Passed
WLAN ax 40 MHz MIMO, high	S01_AB01	2023-08-22	Passed	Passed
WLAN ax 40 MHz MIMO, low	S01_AB01	2023-08-22	Passed	Passed
WLAN ax 40 MHz MIMO, mid	S01_AB01	2023-08-22	Passed	Passed
WLAN ax 40 MHz, high	S01_AB01	2023-08-18	Passed	Passed
WLAN ax 40 MHz, low	S01_AB01	2023-08-18	Passed	Passed
WLAN ax 40 MHz, mid	S01_AB01	2023-08-18	Passed	Passed
WLAN b, high	S01_AB01	2023-08-18	Passed	Passed
WLAN b, low	S01_AB01	2023-08-18	Passed	Passed
WLAN b, mid	S01_AB01	2023-08-18	Passed	Passed
WLAN g, high	S01_AB01	2023-08-18	Passed	Passed
WLAN g, low	S01_AB01	2023-08-18	Passed	Passed
WLAN g, mid	S01_AB01	2023-08-18	Passed	Passed
WLAN n 20 MHz MIMO, high	S01_AB01	2023-08-21	Passed	Passed
WLAN n 20 MHz MIMO, low	S01_AB01	2023-08-21	Passed	Passed
WLAN n 20 MHz MIMO, mid	S01_AB01	2023-08-21	Passed	Passed
WLAN n 20 MHz, high	S01_AB01	2023-08-18	Passed	Passed
WLAN n 20 MHz, low	S01_AB01	2023-08-18	Passed	Passed
WLAN n 20 MHz, mid	S01_AB01	2023-08-18	Passed	Passed
WLAN n 40 MHz MIMO, high	S01_AB01	2023-08-22	Passed	Passed
WLAN n 40 MHz MIMO, low	S01_AB01	2023-08-22	Passed	Passed
WLAN n 40 MHz MIMO, mid	S01_AB01	2023-08-22	Passed	Passed
WLAN n 40 MHz, high	S01_AB01	2023-08-18	Passed	Passed
WLAN n 40 MHz, low	S01_AB01	2023-08-18	Passed	Passed
WLAN n 40 MHz, mid	S01_AB01	2023-08-18	Passed	Passed

N/A: Not applicable N/P: Not performed

2 REVISION HISTORY / SIGNATURES

Report version control			
Version	Release date	Change Description	Version validity
initial	2023-12-18		Invalid
Rev01	2024-03-04	 The Maximum Average Power values for MIMO on page 35 have been corrected 	Invalid
Rev02	2024-04-23	 Comment regarding directional gain for MIMO on page 14 added. 	valid

COMMENT:

According to the applicant: The device contains a combined WiFi/BT/BTLE integrated circuit with two identical WiFi radios, and each of the radios can produce an output to either W1, W2 or both. The two radios share the same external components inside the module. Since they are equal, only one radio (radio 0) is tested. For SISO Measurements only Wifi path 1 (W1) was tested.

(responsible for accreditation scope) Marco Kullik

(responsible for testing and report) Mohamed Fraitat

3 ADMINISTRATIVE DATA

3.1 TESTING LABORATORY

Company	Name:
---------	-------

7layers GmbH

Address:

Borsigstr. 11 40880 Ratingen Germany

The test facility is accredited by the following accreditation organisation:

Laboratory accreditation no:	DAkkS D-PL-12140-01-01 -02 -03
FCC Designation Number:	DE0015
FCC Test Firm Registration:	929146
ISED CAB Identifier	DE0007; ISED#: 3699A
Responsible for accreditation scope:	Marco Kullik
Report Template Version:	2023-09-29
3.2 PROJECT DATA	
Responsible for testing and report:	Mohamed Fraitat
Employees who performed the tests:	documented internally at 7Layers
Date of Report:	2024-04-23
Testing Period:	2023-08-17 to 2023-11-15

3.3 APPLICANT DATA

Company Name:	H&D Wireless AB
Address:	Färögatan 33, Kista Science Tower 164 51 Kista
	Sweden
Contact Person:	Mikael Olsson

3.4 MANUFACTURER DATA

Company Name:

please see Applicant Data

Address:

Contact Person:

4 TEST OBJECT DATA

4.1 GENERAL EUT DESCRIPTION

Kind of Device product description	The EUT is a Bluetooth and WLAN module.		
Product name	SPB620 module		
Туре	SPB620		
Declared EUT data by	the supplier		
Voltage Type	DC		
Voltage Level	3.3 V		
Antenna / Gain	External / 3.8 dBi According to the customer, all transmitter outputs are uncorrelated, and the antenna gain is the same for each chain. Therefore, using the formula specified in KDB 662911 D01: Directional gain = G _{ANT} The directional gain is equal to the antenna gain.		
Tested Modulation Type	BT LE: GFSK WLAN b: DSSS WLAN g/n/ax: OFDM		
Specific product description for the EUT	The EUT is a Bluetooth and WLAN module. In the 2.4 GHz band the EUT supports MIMO Mode for WLAN. Supported technologies are Bluetooth Classic, Bluetooth Low Energy and WLAN b, g, n, ax 20 and 40 MHz bandwidth.		
EUT ports (connected cables during testing):	- DC - Antenna		
Tested datarates	BT LE: 1 and 2 Mbps WLAN b: 1 Mbit WLAN g: 54 Mbit WLAN n: MCS7 WLAN ax: MCS9		
Special software used for testing	Labtool on computer board provided by applicant.		
Used power setting in	Mode	Power setting	
EUT's test software	WLAN b:	16	
	WLAN g:	15	
	WLAN n20:	14	
	WLAN n20 MIMO:	14	
	WLAN n40:	14	
	WLAN n40 MIMO:	13 (conducted measurements tested with 14)	
	WLAN ax20:	12	

WLAN ax20 MIMO:	12
WLAN ax40:	12
WLAN ax40 MIMO:	12

4.2 EUT MAIN COMPONENTS

Sample Code	Description
DE1495002ab01	Radiated and conducted
	sample
	Value
13	
R2B	
MFG-W9098-MF-BRG-U16-WIN-X86-2.0.0.89-17.80.200.p225	
-	
	DE1495002ab01 13 R2B

NOTE: The short description is used to simplify the identification of the EUT in this test report.

4.3 ANCILLARY EQUIPMENT

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Device	Details (Manufacturer, Type Model, OUT Code)	Description
-	-	-

4.4 AUXILIARY EQUIPMENT

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Device	Details (Manufacturer, Type Model, HW, SW, S/N)	Description
AUX1	H&D Wireless, SPB437, -, -, -,	Evaluation Board for module providing ports
AUX2	Rasberry, Model 4, -, -, -,	Rasberry Pi 4 Test Jig
AUX3	Taoglas, GW.71.5153, -, -,	Dipole Antenna primary
AUX4	Taoglas, GW.71.5153, -, -,	Dipole Antenna primary
AUX5	TE Connectivity/Laird, 001-0012, -, -,	Dipole Antenna second
AUX6	TE Connectivity/Laird, 001-0012, -, -,	Dipole Antenna second

Device	Details (Manufacturer, Type Model, HW, SW, S/N)	Description
AUX7	PeakTech, 6005D (30 V / 5 A), -, -, 81062045	Lab Power Supply (provided by 7Layers).

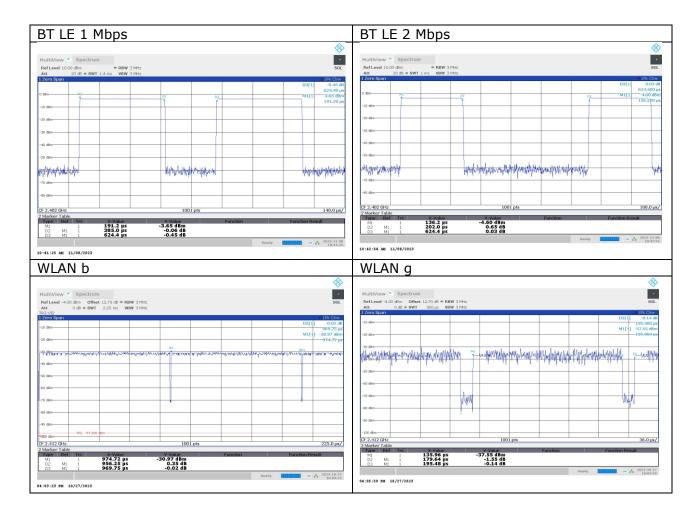
4.5 EUT SETUPS

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

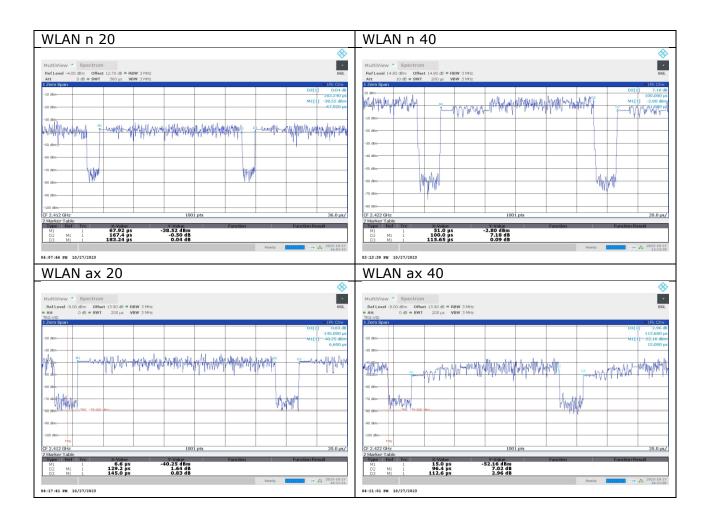
Setup	Combination of EUTs	Description and Rationale
S01_AB01	EUT AB01, AUX1, AUX2,	Setup for conducted measurements
S02_AB01	EUT AB01, AUX1, AUX2, AUX3, AUX4	Setup for radiated measurements
S03_AB01	EUT AB01, AUX1, AUX2, AUX5, AUX6	Setup for radiated measurements
S04_AB01	EUT AB01, AUX1, AUX2, AUX3, AUX4, AUX7	Setup for AC conducted

4.6 OPERATING MODES / TEST CHANNELS

This chapter describes the operating modes of the EUTs used for testing.


WLAN	2.4 GHz ISM 2400 - 2483.5 MHz			
20 MHz Test Channels:	low	mid	high	
Channel:	1	6	11	
Frequency [MHz]	2412	2437	2462	
40 MHz Test Channels:	low	mid	high	
Channel:	3	6	9	
Frequency [MU-]	2422	2437	2452	
Frequency [MHz]				

	2.4 011	2 1011			
	2400 - 2483.5 MH				
BT LE Test Channels:	low	mid	high		
Channel:	0	19	39		
Frequency [MHz]	2402	2440	2480		



4.7 DUTY CYCLE

Test Mode	Ton+off (ms)	Ton (ms)	Duty cycle (%)
BT LE 1 Mbps	624	385	62
BT LE 2 Mbps	624	202	32
WLAN b	969	956	99
WLAN g	195	179	92
WLAN n 20	183	167	91
WLAN n 40	115	100	87
WLAN ax 20	145	129	89
WLAN ax 40	112	96	86

4.8 PRODUCT LABELLING

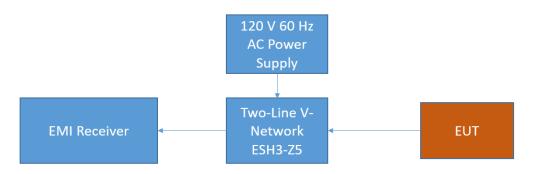
4.8.1 FCC ID LABEL

Please refer to the documentation of the applicant.

4.8.2 LOCATION OF THE LABEL ON THE EUT

Please refer to the documentation of the applicant.

5 TEST RESULTS


5.1 CONDUCTED EMISSIONS AT AC MAINS

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10 6.2

5.1.1 TEST DESCRIPTION

The test set-up was made in accordance to the general provisions of ANSI C 63.10 The Equipment Under Test (EUT) was setup in a shielded room to perform the conducted emissions measurements in a typical installation configuration. The EUT was powered from 50μ H || 50 Ohm Line Impedance Stabilization Network (LISN). The LISN's unused connections were terminated with 50 Ohm loads.

FCC Conducted Emissions on AC

The measurement procedure consists of two steps. It is implemented into the EMI test software EMC-32 from R&S.

Step 1: Preliminary scan

Intention of this step is, to determine the conducted EMI-profile of the EUT. EMI receiver settings:

- Detector: Peak Maxhold & Average
- Frequency range: 150 kHz 30 MHz
- Frequency steps: 2.5 kHz
- IF-Bandwidth: 9 kHz
- Measuring time / Frequency step: 100 ms (FFT-based)
- Measurement on phase + neutral lines of the power cords

On basis of this preliminary scan the highest amplitudes and the corresponding frequencies relative to the limit are identified. Emissions above the limit and emissions which are in the 10 dB range below the limit are considered.

Step 2: Final measurement

Intention of this step is, to determine the highest emissions with the settings defined in the test specification for the frequencies identified in step 1.

- EMI receiver settings:
- Detector: Quasi-Peak & (CISPR) Average

- IF Bandwidth: 9 kHz

- Measuring time: 1 s / frequency

At each frequency determined in step 1, four measurements are performed in the following combinations:

- 1) Neutral lead reference ground (PE grounded)
- 2) Phase lead reference ground (PE grounded)
- 3) Neutral lead reference ground (PE floating)
- 4) Phase lead reference ground (PE floating)

The highest value is reported.

5.1.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.207

Frequency (MHz)	QP Limits (dBµV)	AV Limits (dBµV)
0.15 - 0.5	66 - 56	56 - 46
0.5 - 5	56	46
5 - 30	60	50

Used conversion factor: Limit (dB μ V) = 20 log (Limit (μ V)/1 μ V).

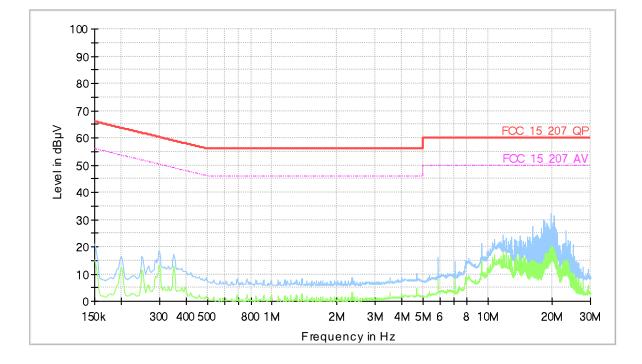
5.1.3 TEST PROTOCOL

Temperature: 28 °C Air Pressure: 1018 hPa

Humidity:	34 %
-----------	------

Power line	PE	Frequency [MHz]	Measured value QP [dBµV]	Measured value AV [dBµV]	Limit [dBµV]	Margin [dB]
Ν	GND	-	-	-	-	< 6 dB
Ν	FLO	-	-	-	-	< 6 dB

Remark: Please see next sub-clause for the measurement plot.



5.1.4 MEASUREMENT PLOTS

Operating mode = worst case, Connection to AC mains = via ancillary/auxiliary equipment (S04_AB01)

Common Information

Test Description:	Conducted Emissions
Test Standard:	FCC §15.207, ANSI C63.10
EUT / Setup Code:	DE1495002ab01
Operating Conditions:	120 V 60 Hz, WLAN 2.4 GHz TX on 2412 MHz
Comment:	AC mains connection via AUX5
Legend:	Trace: blue = QP, green = CISPR AV; Star: red or blue = critical
	frequency; Rhombus: blue = final QP, green = final CISPR AV
Tested Port / used LISN:	AC mains => 1st LISN ESH3-Z5
Termination of other ports:	N/A,

5.1.5 TEST EQUIPMENT USED

- Conducted Emissions FCC

5.2 OCCUPIED BANDWIDTH (6 DB)

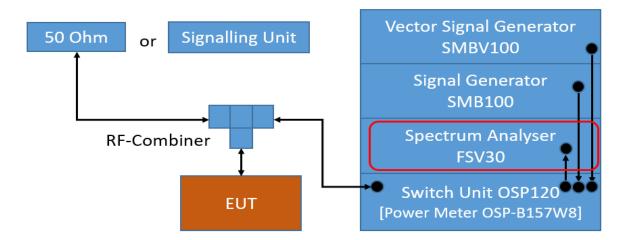
Standard FCC Part 15 Subpart C

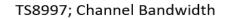
The test was performed according to:

ANSI C63.10, chapter 11.8.1

5.2.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.


The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.


The results recorded were measured with the modulation which produce the worst-case (smallest) emission bandwidth.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Analyser settings:

- Resolution Bandwidth (RBW): 100 kHz
- Video Bandwidth (VBW): 300 kHz
- Span: Two times nominal bandwidth
- Trace: Maxhold
- Sweeps: Till stable (min. 500, max. 15000)
- Sweeptime: Auto
- Detector: Peak

5.2.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (a) (2)

Systems using digital modulation techniques may operate in the 902-928 MHz and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

5.2.3 TEST PROTOCOL

Band / Mode	Channel
BT LE 1 Mbit/s	
Humidity:	38-42 %
Air Pressure:	905-990 hPa
Ambient temperature:	24-25 °C

Band / Mode	Channel No.	Frequency [MHz]	6 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	0	2402	0,776	0,5	0,276
	19	2440	0,776	0,5	0,276
	39	2480	0,792	0,5	0,292

BT LE 2 Mbit/s

Band / Mode	Channel No.	Frequency [MHz]	6 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	0	2402	1,493	0,5	0,993
	19	2440	1,467	0,5	0,967
	39	2480	1,442	0,5	0,942

WLAN b-Mode; 20 MHz; 1 Mbit/s

Band	Channel No.	Frequency [MHz]	6 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	1	2412	10,2	0,5	9,7
	6	2437	10,2	0,5	9,7
	11	2462	10,2	0,5	9,7

WLAN g-Mode; 20 MHz; 54 Mbit/s

Band	Channel No.	Frequency [MHz]	6 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	1	2412	16,6	0,5	16,1
	6	2437	16,6	0,5	16,1
	11	2462	16,6	0,5	16,1

WLAN n-Mode; 20 MHz; MCS7

Band	Channel No.	Frequency [MHz]	6 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	1	2412	17,8	0,5	17,3
	6	2437	17,8	0,5	17,3
	11	2462	17,8	0,5	17,3

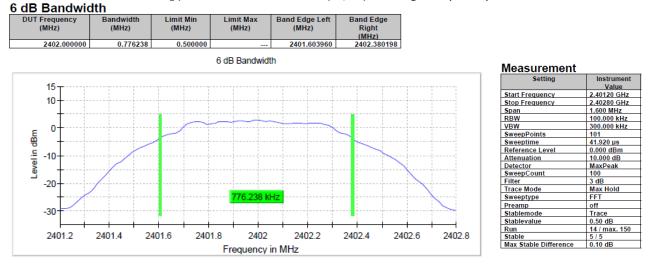
WLAN n-Mode; 40 MHz; MCS7

Band	Channel No.	Frequency [MHz]	6 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	3	2422	36,5	0,5	36,0
	6	2437	36,5	0,5	36,0
	9	2452	36,5	0,5	36,0

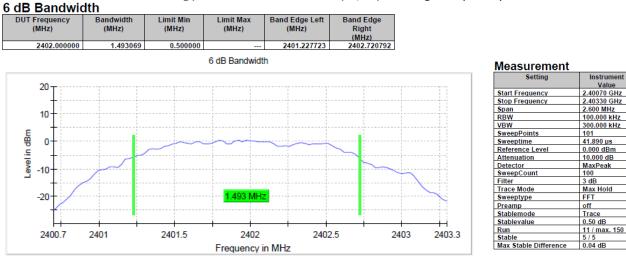
WLAN ax-Mode; 20 MHz; MCS9

Band	Channel No.	Frequency [MHz]	6 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	1	2412	18,7	0,5	18,2
	6	2437	18,6	0,5	18,1
	11	2462	18,7	0,5	18,2

WLAN ax-Mode; 40 MHz; MCS9


Band	Channel No.	Frequency [MHz]	6 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM	3	2422	37,9	0,5	37,4
	6	2437	37,6	0,5	37,1
	9	2452	37,9	0,5	37,4

Remark: Please see next sub-clause for the measurement plot.



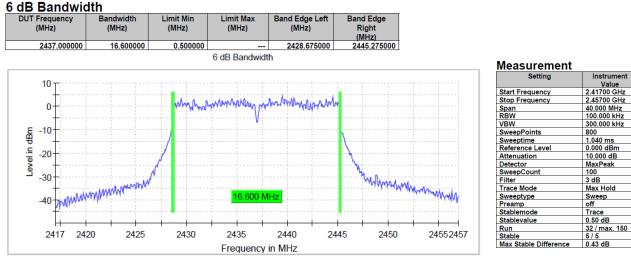
5.2.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Technology = Bluetooth LE 1 Mbps, Operating Frequency = low

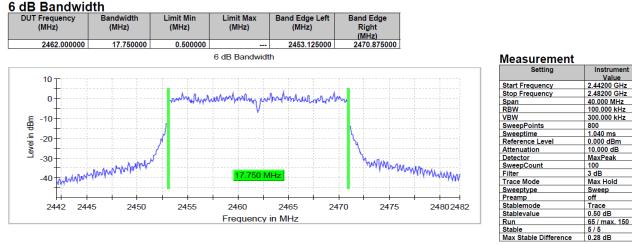
Radio Technology = Bluetooth LE 2 Mbps, Operating Frequency = low



Radio Technology = WLAN b, Operating Frequency = low

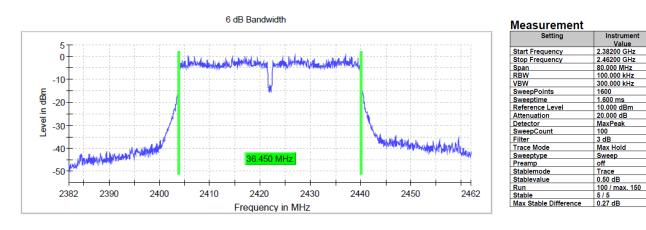

6 dB Bandwidth

o ab banaman							
DUT Frequency Bandwidth (MHz) (MHz)		Limit Min Limit Max (MHz) (MHz)		Band Edge Left (MHz)	Band Edge Right		
				. ,	(MHz)		
2412.000000	10.150000	0.500000		2406.925000	2417.075000		

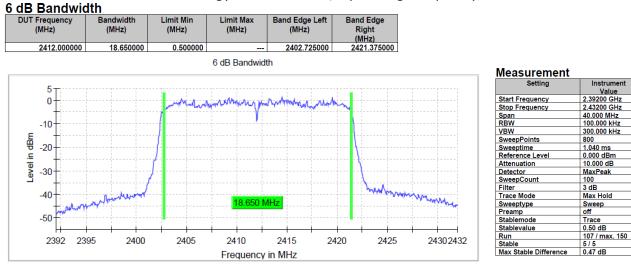


Radio Technology = WLAN g, Operating Frequency = mid

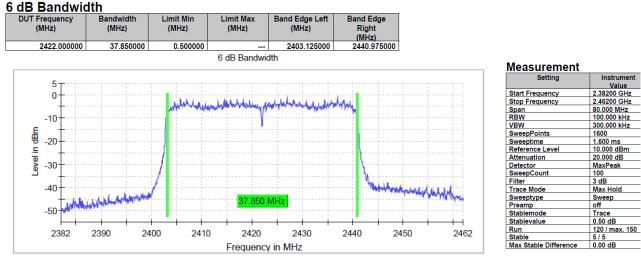
Radio Technology = WLAN n20, Operating Frequency = high



Radio Technology = WLAN n40, Operating Frequency = mid


6 dB Bandwidth							
DUT Frequency	Bandwidth	Limit Min	Limit Max	Band Edge Left	Band Edge		
(MHz)	(MHz)	(MHz)	(MHz)	(MHz)	Right		
	. ,	` ´	. ,	. ,	(MHz)		
2422.000000	36.450000	0.500000		2403.775000	2440.225000		

Value



Radio Technology = WLAN ax20, Operating Frequency = low

Radio Technology = WLAN ax40, Operating Frequency = low

5.2.5 TEST EQUIPMENT USED R&S TS8997

Instrument

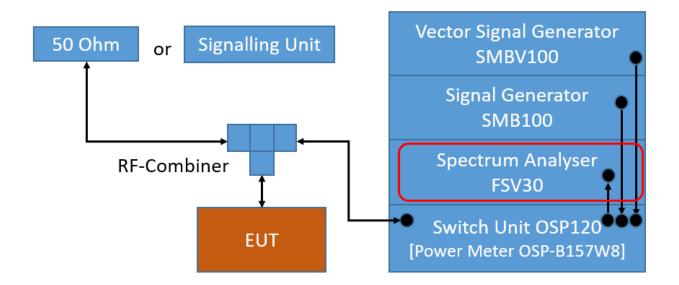
5.3 OCCUPIED BANDWIDTH (99%)

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10, chapter 6.9.3

5.3.1 TEST DESCRIPTION


The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Analyser settings:

- Resolution Bandwidth (RBW): 1 to 5 % of the OBW
- Video Bandwidth (VBW): ≥ 3 times the RBW
- Span: 1.5 to 5 times the OBW
- Trace: Maxhold
- Sweeps: Till stable (min. 500, max. 75000)
- Sweeptime: Auto
- Detector: Peak

TS8997; Channel Bandwidth

5.3.2 TEST REQUIREMENTS / LIMITS

No applicable limit

5.3.3 TEST PROTOCOL

Ambient temperature:24-25 °CAir Pressure:905-990 hPaHumidity:%BT LE 1 Mbit/sChannel No.

Band	Channel No.	Frequency [MHz]	99 % Bandwidth [MHz]
2.4 GHz ISM	0	2402	1,030
	19	2440	1,030
	39	2480	1,030

BT LE 2 Mbit/s

Band	Channel No.	Frequency [MHz]	99 % Bandwidth [MHz]
2.4 GHz ISM	0	2402	2,040
	19	2440	2,040
	39	2480	2,040

WLAN b-Mode; 20 MHz; 1 Mbit/s

Band	Channel No.	Frequency [MHz]	99 % Bandwidth [MHz]
2.4 GHz ISM	1	2412	13,5
	6	2437	13,5
	11	2462	13,6

WLAN g-Mode; 20 MHz; 54 Mbit/s

Band	Channel No.	Frequency [MHz]	99 % Bandwidth [MHz]
2.4 GHz ISM	1	2412	16,6
	6	2437	16,5
	11	2462	16,6

WLAN n-Mode; 20 MHz; MCS7

Band	Channel No.	Frequency [MHz]	99 % Bandwidth [MHz]
2.4 GHz ISM	1	2412	17,7
	6	2437	17,7
	11	2462	17,7

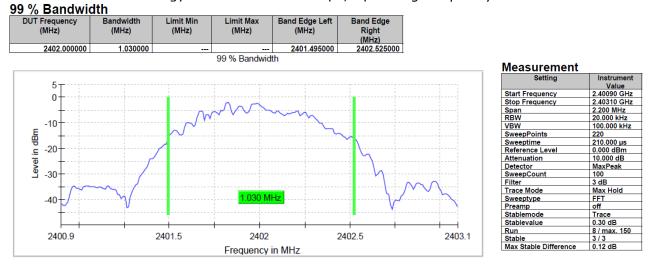
WLAN n-Mode; 40 MHz; MCS7

Band	Channel No.	Frequency [MHz]	99 % Bandwidth [MHz]
2.4 GHz ISM	3	2422	36,3
	6	2437	36,3
	9	2452	36,3

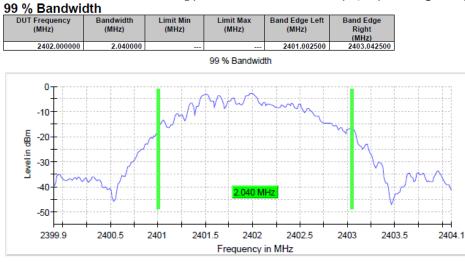
WLAN ax-Mode; 20 MHz; MCS9

Band	Channel No.	Frequency [MHz]	99 % Bandwidth [MHz]
2.4 GHz ISM	1	2412	18,9
	6	2437	18,9
	11	2462	18,9

WLAN ax-Mode; 40 MHz; MCS9

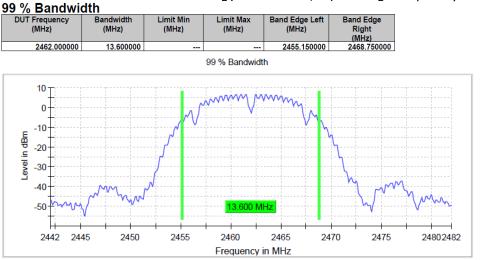

Band	Channel No.	Frequency [MHz]	99 % Bandwidth [MHz]
2.4 GHz ISM	3	2422	37,8
	6	2437	37,8
	9	2452	37,8

Remark: Please see next sub-clause for the measurement plot.

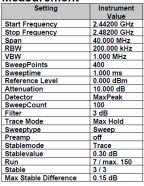


5.3.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

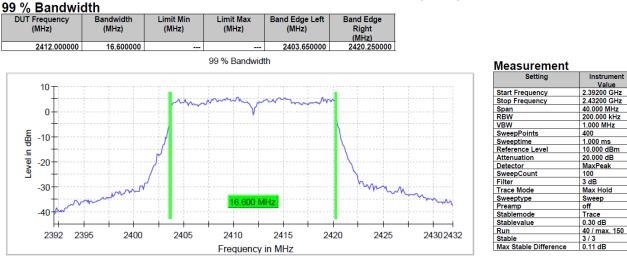
Technology = Bluetooth LE 1 Mbps, Operating Frequency = low



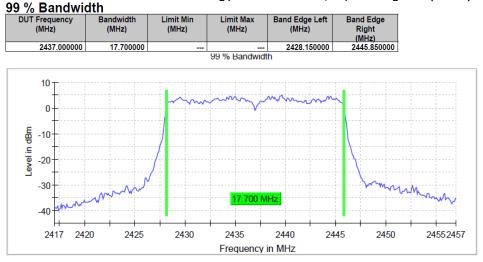
Radio Technology = Bluetooth LE 2 Mbps, Operating Frequency = low

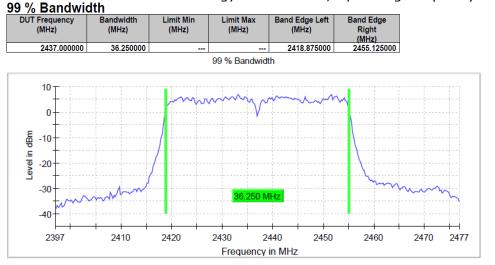


Measurement Setting Instrument Value Start Frequency 2.39990 GHz Stop Frequency 2.40410 GHz Span 4.200 MHz RBW 30.000 kHz VBW 100.000 kHz 100.000 kH; 280 140.000 µs 0.000 dBm 10.000 dB MaxPeak SweepPoints Sweeptime Reference Level Attenuation Detector SweepCount Filter 3 dB Filter Trace Mode Sweeptype Preamp Stablemode Stablevalue Max Hold FFT off Trace 0.30 dB 7 / max. 150 Run Stable Max Stable Differe 3/3 0.13 dB

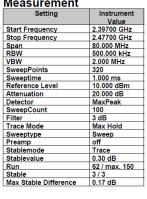

Radio Technology = WLAN b, Operating Frequency = high

Measurement

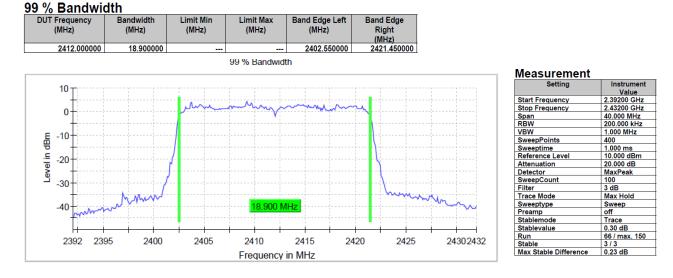



Radio Technology = WLAN g, Operating Frequency = low

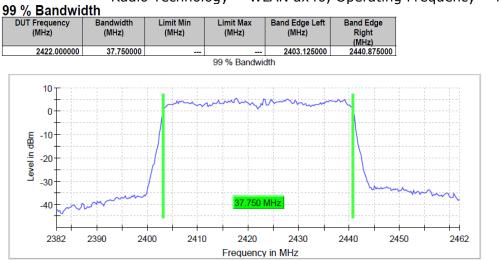
Radio Technology = WLAN n20, Operating Frequency = mid



Measurement Setting Instrument Value Value 2.41700 GHz 2.45700 GHz 40.000 MHz 200.000 kHz 1.000 MHz Start Frequency Stop Frequency Span RBW VBW SweepPoints 400 400 1.000 ms 10.000 dBm 20.000 dB MaxPeak 100 SweepFonts Sweeptime Reference Level Attenuation Detector SweepCount 100 3 dB Max Hold Sweep off Trace 0.30 dB 58 / max. 150 3 / 3 0.23 dP Filter Filter Trace Mode Sweeptype Preamp Stablemode Stablevalue Run Stable 0.23 dB Max Stable Diff


Radio Technology = WLAN n40, Operating Frequency = mid

Measurement Setting



Radio Technology = WLAN ax20, Operating Frequency = low

Radio Technology = WLAN ax40, Operating Frequency = low

Setting	Instrument Value
Start Frequency	2.38200 GHz
Stop Frequency	2.46200 GHz
Span	80.000 MHz
RBW	500.000 kHz
VBW	2.000 MHz
SweepPoints	320
Sweeptime	1.000 ms
Reference Level	0.000 dBm
Attenuation	10.000 dB
Detector	MaxPeak
SweepCount	100
Filter	3 dB
Trace Mode	Max Hold
Sweeptype	Sweep
Preamp	off
Stablemode	Trace
Stablevalue	0.30 dB
Run	46 / max. 150
Stable	3/3
Max Stable Difference	0.18 dB

5.3.5 TEST EQUIPMENT USED - R&S TS8997

5.4 PEAK POWER OUTPUT

Standard FCC Part 15 Subpart C

The test was performed according to:

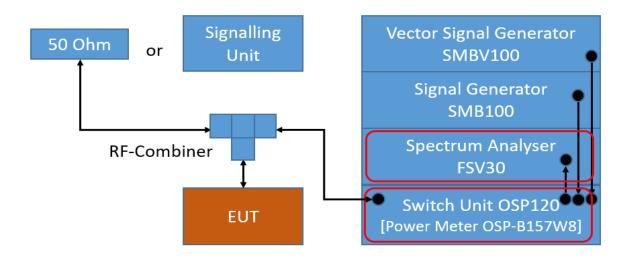
ANSI C63.10, chapter 11.9.1.3

5.4.1 TEST DESCRIPTION

DTS EQUIPMENT:

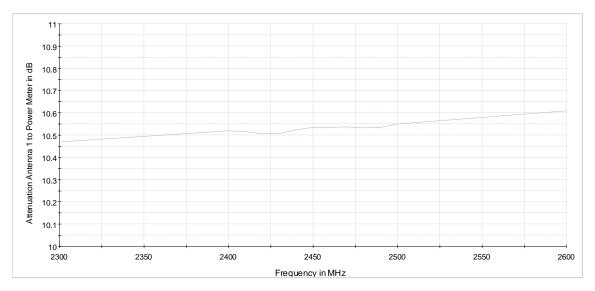
The Equipment Under Test (EUT) was set up to perform the output power measurements. The results recorded were measured with the modulation which produces the worst-case (highest) output power.

Maximum peak conducted output power (e.g. Bluetooth Low Energy):

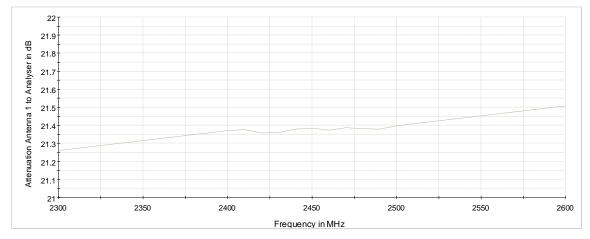

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered. The reference level of the spectrum analyser was set higher than the output power of the EUT.

Analyser settings:

- Resolution Bandwidth (RBW): ≥ DTS bandwidth
- Video Bandwidth (VBW): \geq 3 times RBW or maximum of analyzer
- Span: \geq 3 times RBW
- Trace: Maxhold
- Sweeps: Till stable (min. 300, max. 15000)
- Sweeptime: Auto
- Detector: Peak


Maximum conducted average output power (e.g. WLAN):

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered. Measurement is performed using the gated RF average power meter integrated in the OSP 120 module OSP-B157W8 with signal bandwidth >300 MHz.



TS8997; Output Power

Attenuation of the measurement path to Power Meter

Attenuation of the measurement path to Analyser

5.4.2 TEST REQUIREMENTS / LIMITS

DTS devices:

FCC Part 15, Subpart C, §15.247 (b) (3)

For systems using digital modulation techniques in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands: 1 watt.

==> Maximum conducted peak output power: 30 dBm (excluding antenna gain, if antennas with directional gains that do not exceed 6 dBi are used).

Frequency Hopping Systems:

FCC Part 15, Subpart C, §15.247 (b) (1)

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

FCC Part 15, Subpart C, §15.247 (b) (2)

For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

Used conversion factor: Limit (dBm) = $10 \log (\text{Limit (W)}/1\text{mW})$

For MIMO

5.4.3 TEST PROTOCOL

Ambient	24-25 °C
temperature:	
Air Pressure:	905-990 hPa
Humidity:	38-42 %

BT LE; 1 Mbit/s

Band	Channel No.	Frequency [MHz]	Maximum Average Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]
2.4 GHz ISM	0	2402	4.4	30.0	25.6	8.2
	19	2440	4.3	30.0	25.7	8.1
	39	2480	4.3	30.0	25.7	8.1

BT LE; 2 Mbit/s

Band	Channel No.	Frequency [MHz]	Maximum Average Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]
2.4 GHz ISM	0	2402	4.4	30.0	25.6	8.2
	19	2440	4.4	30.0	25.6	8.2
	39	2480	4.3	30.0	25.7	8.1

WLAN b-Mode; 20 MHz; 1 Mbit/s

Band	Channel No.	Frequency [MHz]	Maximum Average Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]
2.4 GHz ISM	1	2412	15,7	30,0	14,3	19,5
	6	2437	16,0	30,0	14,0	19,8
	11	2462	15,6	30,0	14,4	19,4

WLAN g-Mode; 20 MHz; 54 Mbit/s

Band	Channel No.	Frequency [MHz]	Maximum Average Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]
2.4 GHz ISM	1	2412	15,1	30,0	14,9	18,9
	6	2437	15,2	30,0	14,8	19,0
	11	2462	14,9	30,0	15,1	18,7

WLAN n-Mode; 20 MHz; MCS7

Band	Channel No.	Frequency [MHz]	Maximum Average Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]
2.4 GHz ISM	1	2412	13,6	30,0	16,4	17,4
	6	2437	14,3	30,0	15,7	18,1
	11	2462	14,0	30,0	16,0	17,8

WLAN n-Mode; 40 MHz; MCS7

Band	Channel No.	Frequency [MHz]	Maximum Average Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]
2.4 GHz ISM	3	2422	14,2	30,0	15,8	18,0
	6	2437	14,2	30,0	15,8	18,0
	9	2452	14,2	30,0	15,8	18,0

WLAN ax-Mode; 20 MHz; MCS9

Band	Channel No.	Frequency [MHz]	Maximum Average Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]
2.4 GHz ISM	1	2412	12,6	30,0	17,4	16,4
	6	2437	12,8	30,0	17,2	16,6

11	2462	12,6	30,0	17,4	16,4

WLAN ax-Mode; 40 MHz; MCS9

Band	Channel No.	Frequency [MHz]	Maximum Average Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]
2.4 GHz ISM	3	2422	12,6	30,0	17,4	16,4
	6	2437	12,6	30,0	17,4	16,4
	9	2452	12,6	30,0	17,4	16,4

WLAN n-Mode; 20 MHz; MCS7; MIMO

Band	Channel No.	Frequency [MHz]	Maximum Average Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]
2.4 GHz ISM	1	2412	14.2	30.0	15.8	18.0
	6	2437	14.5	30.0	15.5	18.3
	11	2462	13.9	30.0	16.1	17.7

WLAN n-Mode; 40 MHz; MCS7; MIMO

Band	Channel No.	Frequency [MHz]	Maximum Average Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]
2.4 GHz ISM	3	2422	14.4	30.0	15.6	18.2
	6	2437	14.5	30.0	15.5	18.3
	9	2452	14.5	30.0	15.5	18.3

WLAN ax-Mode; 20 MHz; MCS9; MIMO

Band	Channel No.	Frequency [MHz]	Maximum Average Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]
2.4 GHz ISM	1	2412	12.4	30.0	17.6	16.2
	6	2437	12.6	30.0	17.4	16.4
	11	2462	12.2	30.0	17.8	16.0

WLAN ax-Mode; 40 MHz; MCS9; MIMO

Band	Channel No.	Frequency [MHz]	Maximum Average Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]
2.4 GHz ISM	3	2422	12.6	30.0	17.4	16.4
	6	2437	12.7	30.0	17.3	16.5
	9	2452	12.7	30.0	17.3	16.5

Remark: Please see next sub-clause for the measurement plot.

5.4.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

JT Frequency (MHz)	Peak Power (dBm)	Limit Max (dBm)	Result							
2402.000000	4.4	30.0	PASS							
				Peak Power						
				I Call I Ower				Measureme	ent	
								Setting		trument
30 T		· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·			Value
								Start Frequency Stop Frequency	2.39	900 GHz 500 GHz
20						· · · · · · · · · · · · · · · · · · ·		Span		0 MHz
								RBW	2.00) MHz
E T						· · · · · · · · · · · · · · · · · · ·	1	VBW		00 MHz
8 10								SweepPoints Sweeptime	101) ms
<u> </u>						· · · · · · · · · · · · · · · · · · ·		Reference Level		00 dBm
Level in dBm								Attenuation		00 dB
۳ آ				· · · · · · · · · · · · · · · · · · ·				Detector SweepCount	Max 100	геак
10								Filter	3 dB	
-10						· · · · · · · · · · · · · · · · · · ·		Trace Mode		Hold
								Sweeptype Preamp	Swe	ер
						+ +	+	Stablemode	Trac	e
2399	2400)	2401	2402	2403	2404	2405	Stablevalue	0.50	dB
								Run	4/m 3/3	ax. 150
				Eroquoney in MHz						
Conne			ak Connector	Frequency in MHz ctor 1 = Bluetooth L	E 2 Mbp	s, Operati	ng Freque	Max Stable Max Stable Differe		
Sult	Radio Peak Power	Techno		ctor 1	E 2 Mbp	s, Operati	ng Freque	Max Stable Differe		
sult	Radio Peak Power (dBm)	Techno	logy	ctor 1	E 2 Mbp	s, Operati	ng Freque	Max Stable Differe		
Sult JT Frequency (MHz)	Radio Peak Power (dBm)	Techno	Result	ctor 1	E 2 Mbp	s, Operati	ng Freque	Max Stable Differe		
Ult JT Frequency (MHz)	Radio Peak Power (dBm)	Techno	Result	= Bluetooth L	E 2 Mbp	s, Operati	ng Freque	Max Stable Differe PCY = IOW Measurement	ence 0.02	dB
JT Frequency (MHz) 2402.000000	Radio Peak Power (dBm)	Techno	Result	= Bluetooth L	E 2 Mbp	s, Operati	ng Freque	Max Stable Differe	Instrument	dB
Sult JT Frequency (MHz)	Radio Peak Power (dBm)	Techno	Result	= Bluetooth L	E 2 Mbp	s, Operati	ng Freque	Max Stable Differe ency = low Measurement Setting Start Frequency	Instrument Value 2.39750 GHz	dB Target \ 2.39750 0
Sult IT Frequency (MHz) 2402.000000	Radio Peak Power (dBm)	Techno	Result	= Bluetooth L	E 2 Mbp	s, Operati	ng Freque	Max Stable Differe ency = low Measurement Setting Start Frequency Stop Frequency	Instrument Value 2.39750 GHz 2.40650 GHz	dB Target \ 2.39750 (2.40650 0
JT Frequency (MHz) 2402.000000	Radio Peak Power (dBm)	Techno	Result	= Bluetooth L	E 2 Mbp	s, Operati	ng Freque	Max Stable Differe	Instrument Value 2.39750 GHz 2.40650 GHz 9.000 MHz	Target \ 2.39750 (9.000 MH
Sult JT Frequency (MHz) 2402.000000	Radio Peak Power (dBm)	Techno	Result	= Bluetooth L	E 2 Mbp	s, Operati	ng Freque	Max Stable Differe ency = low Measurement Setting Start Frequency Stop Frequency Span RBW	Instrument Value 2.39750 GHz 9.000 MHz 3.000 MHz	Target \ 2.39750 (2.40650 (9.000 ML >= 2.100
30 20	Radio Peak Power (dBm)	Techno	Result	= Bluetooth L	E 2 Mbp	s, Operati	ng Freque	Max Stable Differe	Instrument Value 2.39750 GHz 2.40650 GHz 9.000 MHz	Target \ 2.39750 C 2.40650 C 9.000 MH >= 2.100
30 20	Radio Peak Power (dBm)	Techno	Result	= Bluetooth L	E 2 Mbp	s, Operati	ng Freque	Max Stable Differe ency = low Measurement Setting Start Frequency Stop Frequency Stop Frequency Span RBW VBW SweepPoints Sweepfime	Instrument Value 2.39750 GHz 2.40650 GHz 9.000 MHz 10.000 MHz 101 1.000 ms	Target \ 2.39750 (2.40650 (9.000 MI >= 2.100 > = 9.000 ~ 101 AUTO
30 20	Radio Peak Power (dBm)	Techno	Result	= Bluetooth L	E 2 Mbp	s, Operati	ng Freque	Max Stable Differe ency = low Measurement Setting Start Frequency Stop Frequency Stop Frequency Span RBW WBW SweepPoints Sweeptime Reference Level	Instrument Value 2.39750 GHz 2.40650 GHz 2.40650 GHz 10.000 MHz 10.000 MHz 10.000 MHz 10.000 MHz	Target \ 2.39750 (0) 2.40650 (0) >= 9.000 MH >= 9.000 A ~ 101 AUTO 10.000 df
30 20	Radio Peak Power (dBm)	Techno	Result	= Bluetooth L	E 2 Mbp	s, Operati	ng Freque	Max Stable Differe ency = low Measurement Setting Start Frequency Stop Frequency	Instrument Value 2.39750 GHz 2.40650 GHz 3.000 MHz 10.000 MHz 10.000 MHz 10.000 dBm 20.000 dBm	Target \ 2.39750 C 2.40650 C 9.000 MH >= 9.000 ~ 101 AUTO 10.000 dE AUTO
Sult JT Frequency (MHz) 2402.000000 30 20 20 5 10 5 10 5 5 10 5 5 10 5 5 5 5 5 5 5 5 5 5 5 5 5	Radio Peak Power (dBm)	Techno	Result	= Bluetooth L	E 2 Mbp	s, Operati	ng Freque	Max Stable Differe ency = low Measurement Setting Start Frequency Span RBW VBW SweepPoints SweepPints SweepPinte Reference Level Attenuation Detector	Instrument Value 2.39750 GHz 2.40650 GHz 9.000 MHz 10.000 MHz 1000 ms 10.000 dBm 20.000 dBm 20.000 dBm	dB Target \ 2.39750 C 2.40650 C 9.000 Mt >= 9.000 → 9.000 AUTO 10.000 dt AUTO MaxPeak
Sult JT Frequency (MHz) 2402.000000 2402.000000 20 20 20 20 20 20 20 20	Radio Peak Power (dBm)	Techno	Result	= Bluetooth L	E 2 Mbp	s, Operati	ng Freque	Max Stable Differe ency = low Measurement Setting Start Frequency Stop Frequency	Instrument Value 2.39750 GHz 2.40650 GHz 10.000 MHz 101 1.000 mHz 10.000 dHz 10.000 dBm 20.000 dBm 10.000 dBm 10.000 dBm 10.000 dBm 10.000 dBm	Target \ 2.39750 C 2.40650 C 9.000 MH >= 2.100 >= 9.000 ~ 101 AUTO MaxPeak 100
30 20	Radio Peak Power (dBm)	Techno	Result	= Bluetooth L	E 2 Mbp	s, Operati	ng Freque	Max Stable Differe ency = low Measurement Setting Start Frequency Stop Frequency Span RBW VBW VBW VBW VBW VBW SweepPoints SweepPoints SweepPoints SweepPoints SweepCount	Instrument Value 2.39750 GHz 2.40650 GHz 9.000 MHz 10.000 MHz 1000 ms 10.000 dBm 20.000 dBm 20.000 dBm	dB Target \ 2.39750 C 2.40650 C 9.000 MH >= 2.100 >= 9.000 dH ∧101 AUTO MaxPeak 100 MaxPeak 100 3 dB
Sult JT Frequency (MHz) 2402.000000 2402.000000 20 20 20 20 20 20 20 20	Radio Peak Power (dBm)	Techno	Result	= Bluetooth L	E 2 Mbp	s, Operati	ng Freque	Max Stable Differe ency = low Measurement Setting Start Frequency Stop Frequency	Instrument Value 2.39750 GHz 2.40650 GHz 3.000 MHz 10.000 MHz 101 10.000 dBm 20.000 dBm MaxPeak Max Hold Sweep	Target V 2.39750 (2) 2.39750 (2) 2.40650 (2) 9.000 M/m >= 2.100 >= 5.000 ~ 101 AUTO Max Hold 3 dB Max Hold
Sult IT Frequency (MHz) 2402.000000 20 20 20 20 20 20 -10 -10	Radio Peak Power (dBm)	Techno	Result PASS	ctor 1 = Bluetooth L Peak Power		s, Operati		Max Stable Differe ency = low Measurement Setting Start Frequency Stop Fr	Instrument Value Value 2.39750 GHz 2.40650 GHz 9.000 MHz 10.000 MHz 10.000 MHz 101 1.000 MHz 101 20.000 dB MaxPeak 100 308 MaxHold Sweep off	Target V 2.39750 C 2.40550 C 9.000 MH >= 9.001 AUTO MaxPeak Max Hold AUTO MaxPeak Off
Sult JT Frequency (MHz) 2402.000000 2402.000000 20 20 20 20 20 20 20 20	Radio Peak Power (dBm)	Techno	Result PASS	= Bluetooth L	E 2 Mbp	s, Operati	ng Freque	Max Stable Differe ency = low Measurement Setting Start Frequency Stop Frequency Stop Frequency SuperPoints SweepCoint Filter Trace Mode SweepCype Preamp Stablemode	Instrument Value 2.39750 GHz 2.40650 GHz 2.40650 GHz 9.000 MHz 10.00 MHz 10.000 dBm MaxPeak 100 3 dB MaxPeak 100 Sweep off Trace	Target V 2.33750 C 2.40650 X >= 5.000 HH >= 2.100 X >= 5.000 X >= 5.000 X >= 5.000 X = 5.0000 X = 5.000 X = 5.0000 X = 5.000 X = 5.000 X = 5.000 X = 5.0000 X = 5.0000 X = 5.0000 X = 5.00000 X = 5.00000 X = 5.0000 X = 5.00000 X = 5.00000
Sult IT Frequency (MHz) 2402.000000 20 20 20 20 20 20 -10 -10	Radio Peak Power (dBm)	Techno	Result PASS	ctor 1 = Bluetooth L Peak Power		s, Operati		Max Stable Differe ency = low Measurement Setting Start Frequency Stop Fr	Instrument Value Value 2.39750 GHz 2.40650 GHz 9.000 MHz 10.000 MHz 10.000 MHz 101 1.000 MHz 101 20.000 dB MaxPeak 100 308 MaxHold Sweep off	Target V 2.39750 C 2.40550 C 9.000 MH >= 9.001 AUTO MaxPeak Max Hold AUTO MaxPeak Off

5.4.5 TEST EQUIPMENT USED - R&S TS8997

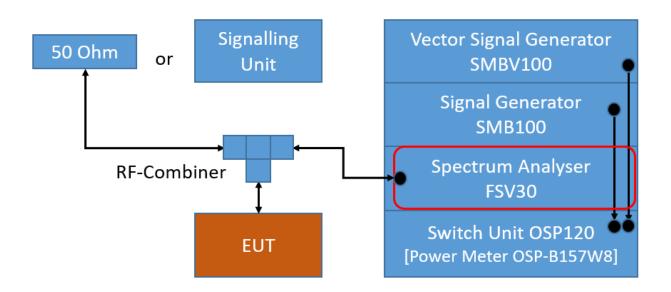
5.5 SPURIOUS RF CONDUCTED EMISSIONS

Standard FCC Part 15 Subpart C

The test was performed according to:

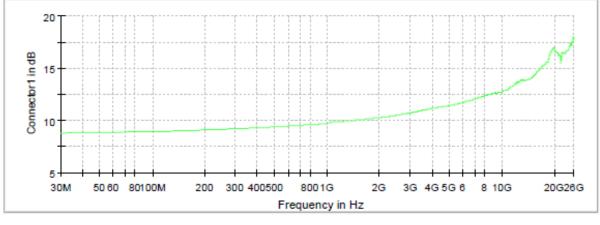
ANSI C63.10, chapter 11.11

5.5.1 TEST DESCRIPTION

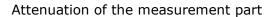

The Equipment Under Test (EUT) was set up to perform the spurious emissions measurements.

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Analyser settings:


- Frequency range: 30 26000 MHz
- Resolution Bandwidth (RBW): 100 kHz
- Video Bandwidth (VBW): 300 kHz
- Trace: Maxhold
- Sweeps: Till Stable (max. 120)
- Sweep Time: Auto
- Detector: Peak

The reference value for the measurement of the spurious RF conducted emissions is determined during the test "band edge compliance conducted". This value is used to calculate the 20 dBc or 30 dBc limit.



TS8997; Spurious RF Conducted Emissions

Connector1

5.5.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (c)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

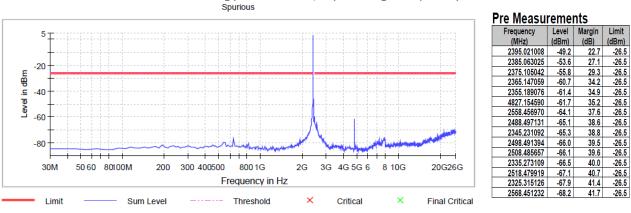
5.5.3 TEST PROTOCOL

Ambient temperature:	25 °C
Air Pressure:	1026 hPa
Humidity:	33 %

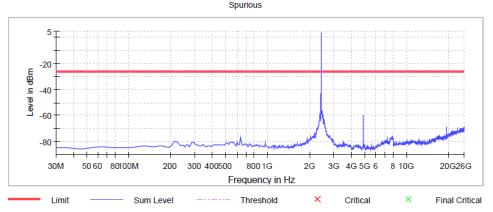
BT LE 1 Mbit/s

Variant	Channel Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBm]	Detect or	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
0	2402	4807.2	-54.1	PEAK	100	4.4	-15.6	38.5
19	2440	4877.1	-56.0	PEAK	100	4.3	-15.7	40.3
39	2480	4957.08	-58.9	PEAK	100	4.3	-15.7	43.2

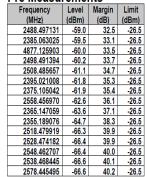
WLAN b-Mode; 20 MHz; 1 Mbit/s


Channe I No	Channel Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBm]	Detect or	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
1	2412	2395.0	-49.2	PEAK	100	15.7	-14.3	34.9
6	2437	2488.5	-59.0	PEAK	100	16.0	-14.0	45.0
11	2462	2488.5	-47.6	PEAK	100	15.6	-14.4	33.2

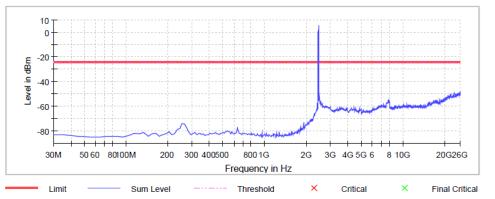
Remark: Please see next sub-clause for the measurement plot.

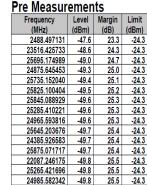

5.5.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

Technology = Bluetooth LE 1 Mbps, Operating Frequency = low



Radio Technology = WLAN b, Operating Frequency = low


Radio Technology = WLAN b, Operating Frequency = mid



Pre Measurements

Radio Technology = WLAN b, Operating Frequency = high

5.5.5 TEST EQUIPMENT USED

- R&S TS8997

5.6 TRANSMITTER SPURIOUS RADIATED EMISSIONS

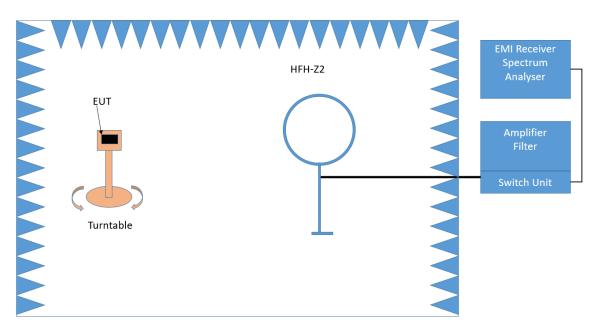
Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10, chapter 6.4, 6.5, 6.6.5

5.6.1 TEST DESCRIPTION

The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The measurements were performed according the following sub-chapters of ANSI C63.10:


- < 30 MHz: Chapter 6.4
- 30 MHz 1 GHz: Chapter 6.5
- > 1 GHZ: Chapter 6.6 (procedure according 6.6.5 used)

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered.

Below 1 GHz:

The Equipment Under Test (EUT) was set up on a non-conductive table in the semi-anechoic chamber. The influence of the EUT support table that is used between 30–1000 MHz was evaluated.

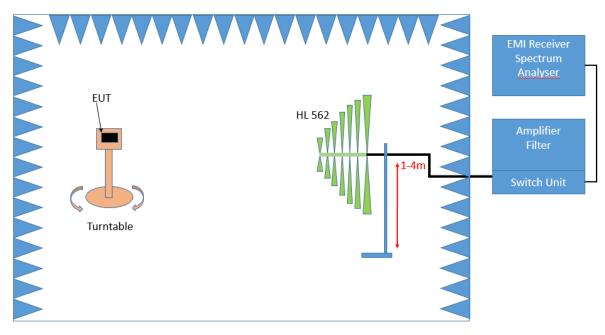
1. Measurement up to 30 MHz

Test Setup; Spurious Emission Radiated (SAC), 9 kHz - 30 MHz

The Loop antenna HFH2-Z2 is used.

Step 1: pre measurement

- Anechoic chamber
- Antenna distance: 3 m
- Antenna height: 1 m
- Detector: Peak-Maxhold
- Frequency range: 0.009 0.15 MHz and 0.15 30 MHz
- Frequency steps: 0.05 kHz and 2.25 kHz
- IF-Bandwidth: 0.2 kHz and 9 kHz
- Measuring time / Frequency step: 100 ms (FFT-based)


Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

- Detector: Quasi-Peak (9 kHz 150 kHz, Peak / Average 150 kHz- 30 MHz)
- Frequency range: 0.009 30 MHz
- Frequency steps: measurement at frequencies detected in step 1
- IF-Bandwidth: 0.2 10 kHz
- Measuring time / Frequency step: 1 s

2. Measurement above 30 MHz and up to 1 GHz

Test Setup; Spurious Emission Radiated (SAC), 30 MHz- 1GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit. Settings for step 1:

- Antenna distance: 3 m
- Detector: Peak-Maxhold / Quasipeak (FFT-based)
- Frequency range: 30 1000 MHz
- Frequency steps: 30 kHz
- IF-Bandwidth: 120 kHz
- Measuring time / Frequency step: 100 ms
- Turntable angle range: -180° to 90°
- Turntable step size: 90°

- Height variation range: 1 4 m
- Height variation step size: 1.5 m
- Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by 360°. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary between 1 - 4 meter. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

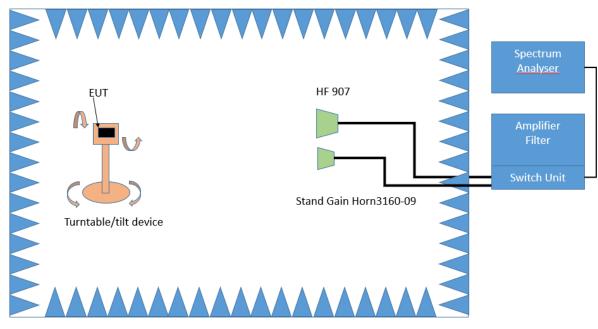
- Detector: Peak Maxhold
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 100 ms
- Turntable angle range: 360 °
- Height variation range:1 4 m
- Antenna Polarisation: max. value determined in step 1

Step 3: Final measurement with QP detector

With the settings determined in step 2, the final measurement will be performed:

- EMI receiver settings for step 3:
- Detector: Quasi-Peak (< 1 GHz)
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.



Above 1 GHz:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only.

3. Measurement above 1 GHz

Test Setup; Spurious Emission Radiated (FAC), 1 GHz-26.5 GHz

Step 1:

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 °.

The turn table step size (azimuth angle) for the preliminary measurement is 45 °. Spectrum analyser settings:

- Detector: Peak, Average
- RBW = 1 MHz
- VBW = 3 MHz

Step 2:

The turn table azimuth will slowly vary by \pm 22.5°. The elevation angle will slowly vary by \pm 45° Spectrum analyser settings: - Detector: Peak

Step 3:

Spectrum analyser settings for step 3:

- Detector: Peak / CISPR Average
- Measured frequencies: in step 1 determined frequencies
- RBW = 1 MHz
- VBW = 3 MHz
- Measuring time: 1 s

5.6.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 – 13.8)@300m
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 – 23.0)@30m
1.705 - 30	30@30m	3	29.5@30m

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
30 - 88	100@3m	3	40.0@3m
88 - 216	150@3m	3	43.5@3m
216 - 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

5.6.3 TEST PROTOCOL

Ambient temperature:
Air Pressure:
Humidity:
BT LE 1 Mbit/s
Applied duty cycle correction (AV

25-27 °C 990 - 1010 hPa 45-50 %

Ch.	Ch. Center	orrection (AV): 0 Spurious	Spurious	Detec-	RBW	Limit	Margin to	Limit
No.	Freq. [MHz]	Freq. [MHz]	Level [dBµV/m]	tor	[kHz]	[dBµV/m]	Limit [dB]	Туре
0	2402							RB
19	2440	4880.1	54.1	PEAK	1000	74.0	19.9	RB
19	2440	4880.1	43.7	AV	1000	54.0	10.3	RB
19	2440	4880.5	53.6	PEAK	1000	74.0	20.4	RB
19	2440	4880.5	41.1	AV	1000	54.0	12.9	RB
19	2440	15606.1	55.9	PEAK	1000	74.0	18.1	RB
19	2440	15606.1	43.0	AV	1000	54.0	11.0	RB
19	2440	15633.3	54.8	PEAK	1000	74.0	19.2	RB
19	2440	15633.3	42.5	AV	1000	54.0	11.5	RB
19	2440	17959.9	60.9	PEAK	1000	74.0	13.1	RB
19	2440	17959.9	46.8	AV	1000	54.0	7.2	RB
19	2440	17960.4	60.5	PEAK	1000	74.0	13.5	RB
19	2440	17960.4	46.9	AV	1000	54.0	7.1	RB
39	2480	-	-		1000		-	RB

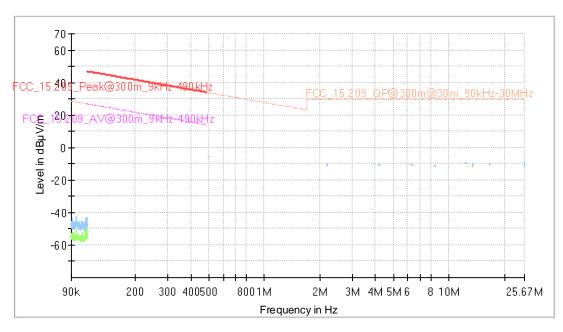
WLAN b-Mode; 20 MHz; 1 Mbit/s

Applied duty cycle correction (AV): 0 dB

Ch. No.	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
1	2412	-	-		1000		-	RB
6	2437	-	-		1000		-	RB
11	2462	-	-		1000		-	RB

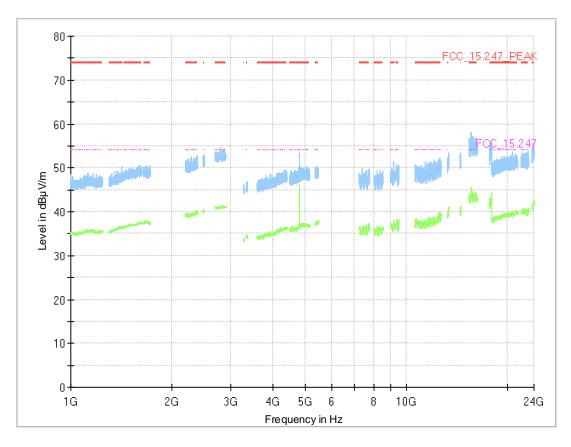
WLAN g-Mode; 20 MHz; 6 Mbit/s Applied duty cycle correction (AV): 0 dB

Ch. No.	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
1	2412	-	-		1000		-	RB
6	2437	-	-		1000		-	RB
11	2462	-	-		1000		-	RB

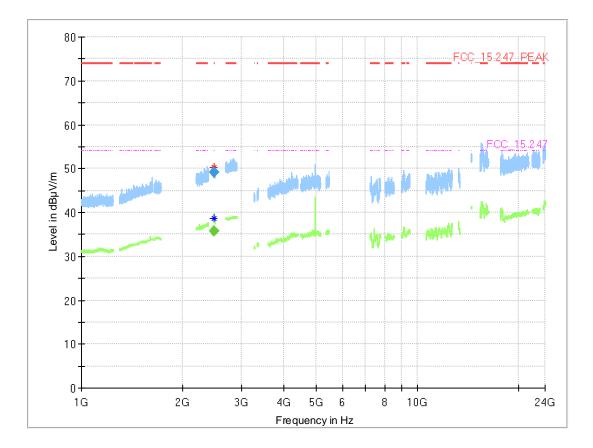

WLAN n-Mode MIMO; 20 MHz; MCS7 Applied duty cycle correction (AV): 0 dB

Ch. No.	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
1	2412	-	-		1000		-	RB
6	2437	-	-		1000		-	RB
11	2462	-	-		1000		-	RB

Remark: Please see next sub-clause for the measurement plot.

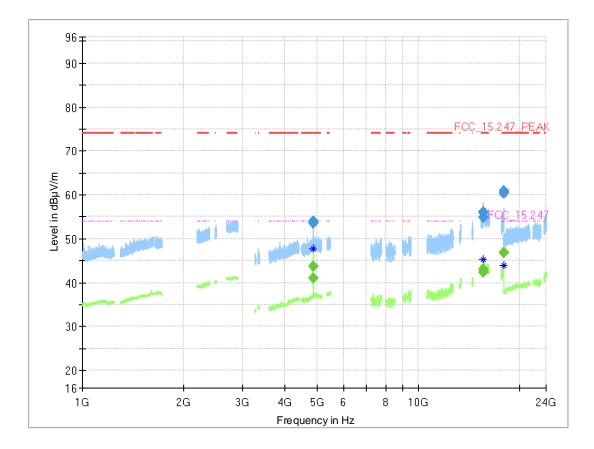


5.6.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)



Radio Technology = Bluetooth LE 1 Mbps, Operating Frequency = low Measurement range = 9 kHz - 30 MHz

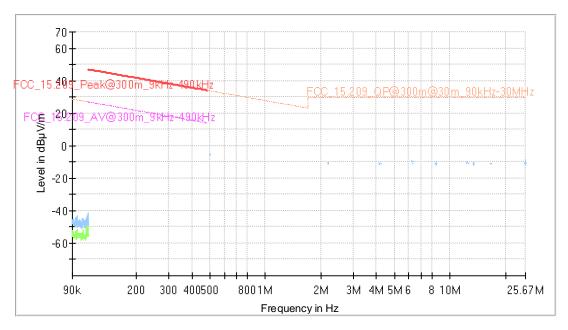
Radio Technology = Bluetooth LE 1 Mbps, Operating Frequency = low Measurement range = 1 GHz - 26 GHz



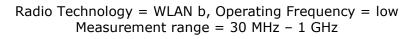
Radio Technology = Bluetooth LE 1 Mbps, Operating Frequency = mid Measurement range = 1 GHz - 26 GHz

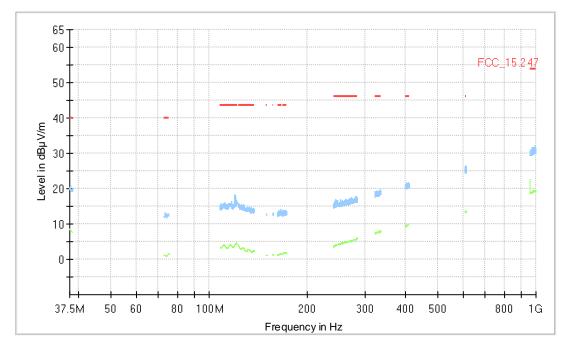
Final_Result

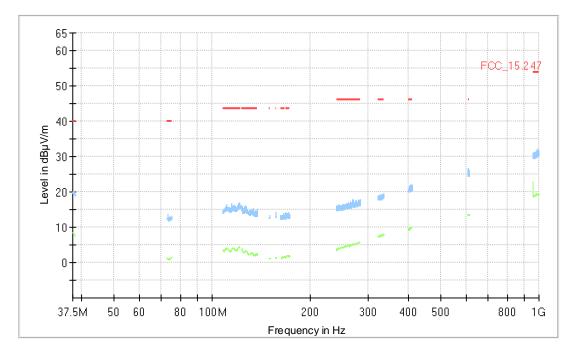
Frequency (MHz)	MaxPeak (dBµV/m)	CAverag e (dBµV/m)	Limit (dBµ V/m)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heigh t (cm)	Pol	Azimut h (deg)	Elevatio n (deg)	Corr. (dB/ m)
2483.665		35.8	54.00	18.21	1000.0	1000.000	150.0	V	-189.0	6.0	5.3
2483.665	49.1		74.00	24.89	1000.0	1000.000	150.0	V	-189.0	6.0	5.3



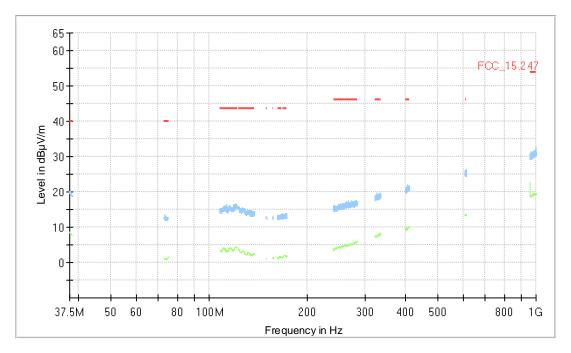
Radio Technology = Bluetooth LE 1 Mbps, Operating Frequency = high Measurement range = 1 GHz - 26 GHz

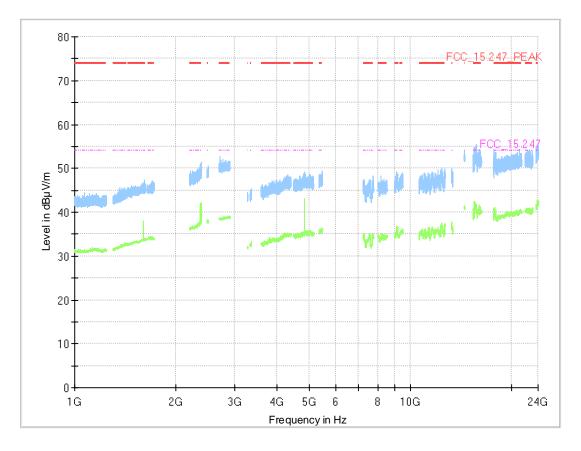

Final_Result


Frequency (MHz)	MaxPeak (dBµV/m)	CAverag	Limit	Margi	Meas. Time	Bandwidt	Heigh	Pol	Azimut	Elevatio	Corr. (dB/
(10172)	(upha/iii)	e (dBµV/m)	(dBµ V/m)	n (dB)	(ms)	n (kHz)	(cm)		h (deg)	n (deg)	(ub/ m)
4880.088		43.7	54.00	10.27	1000.0	1000.000	150.0	V	-91.0	11.0	6.1
4880.088	54.1		74.00	19.95	1000.0	1000.000	150.0	V	-91.0	11.0	6.1
4880.575		41.1	54.00	12.91	1000.0	1000.000	150.0	V	-90.0	15.0	6.1
4880.575	53.6		74.00	20.44	1000.0	1000.000	150.0	V	-90.0	15.0	6.1
15606.133		43.0	54.00	10.99	1000.0	1000.000	150.0	Н	52.0	-15.0	0.4
15606.133	55.9		74.00	18.09	1000.0	1000.000	150.0	Н	52.0	-15.0	0.4
15633.333	54.8		74.00	19.17	1000.0	1000.000	150.0	Н	157.0	15.0	-0.2
15633.333		42.5	54.00	11.55	1000.0	1000.000	150.0	Н	157.0	15.0	-0.2
17959.950	60.9		74.00	13.12	1000.0	1000.000	150.0	V	-131.0	6.0	3.0
17959.950		46.8	54.00	7.24	1000.0	1000.000	150.0	V	-131.0	6.0	3.0
17960.400		46.9	54.00	7.10	1000.0	1000.000	150.0	Н	54.0	89.0	3.0
17960.400	60.5		74.00	13.55	1000.0	1000.000	150.0	Н	54.0	89.0	3.0



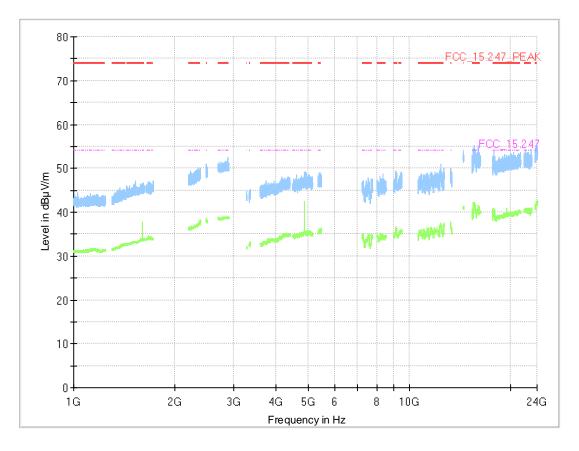
Radio Technology = WLAN b, Operating Frequency = mid Measurement range = 9 kHz -30 MHz

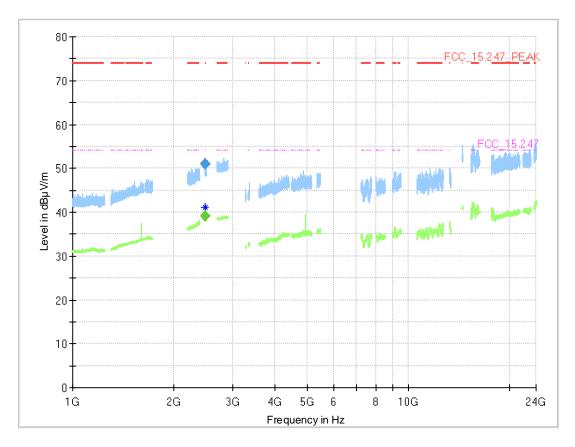




Radio Technology = WLAN b, Operating Frequency = mid Measurement range = 30 MHz - 1 GHz

Radio Technology = WLAN b, Operating Frequency = high Measurement range = 30 MHz - 1 GHz




Radio Technology = WLAN b, Operating Frequency = low Measurement range = 1 GHz - 26 GHz

Radio Technology = WLAN b, Operating Frequency = mid Measurement range = 1 GHz - 26 GHz

Radio Technology = WLAN b, Operating Frequency = high Measurement range = 1 GHz - 26 GHz

Final_Result

F	requency (MHz)	MaxPeak (dBµV/m)	CAverag e (dBµV/m)	Limit (dBµ V/m)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heigh t (cm)	Pol	Azimut h (deg)	Elevatio n (deg)	Corr. (dB/ m)
	2484.078	51.0		74.00	23.03	1000.0	1000.000	150.0	V	-151.0	-11.0	5.3
	2484.078		39.1	54.00	14.94	1000.0	1000.000	150.0	V	-151.0	-11.0	5.3

5.6.5 TEST EQUIPMENT USED

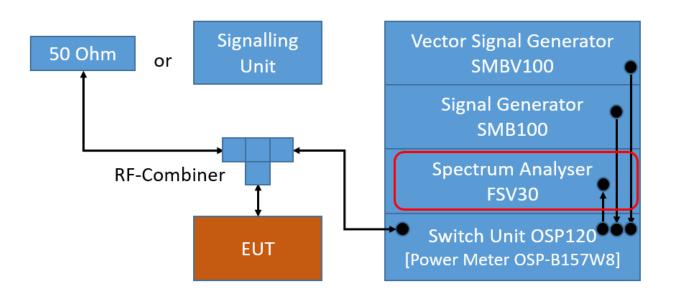
- Radiated Emissions FAR 2.4 GHz FCC
- Radiated Emissions SAC H-Field
- Radiated Emissions SAC up to 1 GHz

5.7 BAND EDGE COMPLIANCE CONDUCTED

Standard FCC Part 15 Subpart C

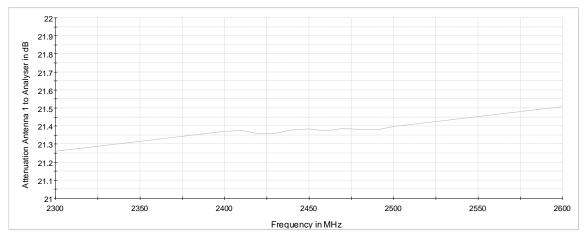
The test was performed according to:

ANSI C63.10, chapter 11.11


5.7.1 TEST DESCRIPTION

For the conducted measurement, the Equipment Under Test (EUT) is placed in a shielded room. The reference power was measured in the test case "Spurious RF Conducted Emissions".

The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.


Analyser settings:

- Lower Band Edge: Measured range: 2310.0 MHz to 2483.5 MHz Upper Band Edge Measured range: 2400.0 MHz to 2500 MHz
 Detectory Deals
- Detector: Peak
- Resolution Bandwidth (RBW): 100 kHz
- Video Bandwidth (VBW): 300 kHz
- Sweeptime: Auto
- Sweeps: Till stable (min. 300, max. 15000)
- Trace: Maxhold

TS8997; Band Edge Conducted

Attenuation of the measurement path

5.7.2 TEST REQUIREMENTS / LIMITS

FCC Part 15.247 (d)

"In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. ...

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c))."

For the conducted measurement the RF power at the band edge shall be "at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power..."

5.7.3 TEST PROTOCOL

Ambient temperature:	24-25 °C
Air Pressure:	905-990 hPa
Humidity:	38 - 42%

BT LE 1 Mbit/s

Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
0	2402	2400,0	-54,1	PEAK	100	3,8	-16,2	37,9
39	2480	2483,5	-53,2	PEAK	100	3,6	-16,4	36,8

BT LE 2 Mbit/s

Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
0	2402	2400,0	-26,3	PEAK	100	3,9	-16,1	10,2
39	2480	2483,5	-51,6	PEAK	100	3,7	-16,3	35,3

WLAN b-Mode; 20 MHz; 1 Mbit/s

Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
1	2412	2400,0	-39,8	PEAK	100	6,1	-23,9	15,9
11	2462	2483,5	-48,3	PEAK	100	5,9	-24,1	24,2

WLAN g-Mode; 20 MHz; 54 Mbit/s

Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
1	2412	2400,0	-32,5	PEAK	100	4,1	-25,9	6,6
11	2462	2483,5	-39,4	PEAK	100	3,9	-26,1	13,3

WLAN n-Mode; 20 MHz; MCS7

Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
1	2412	2400,0	-33,7	PEAK	100	3,4	-26,6	7,1
11	2462	2483,5	-37,7	PEAK	100	3,3	-26,7	11,0

WLAN n-Mode; 40 MHz; MCS7

Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
3	2422	2400,0	-36,9	PEAK	100	0,5	-29,5	7,4
9	2452	2483,5	-30,6	PEAK	100	0,6	-29,4	1,2

WLAN ax-Mode; 20 MHz; MCS9

Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
1	2412	2400,0	-37,9	PEAK	100	1,5	-28,5	9,4
11	2462	2483,5	-44,1	PEAK	100	1,5	-28,5	15,6

WLAN ax-Mode; 40 MHz; MCS9

Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
3	2422	2400,0	-41,4	PEAK	100	-1,6	-31,6	9,8
9	2452	2483,5	-36,1	PEAK	100	-1,4	-31,4	4,7

WLAN n-Mode; 20 MHz; MCS7; MIMO

Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
1	2412	2400,0	-42,0	PEAK	100	5,8	-24,2	17,8
11	2462	2483,5	-49,5	PEAK	100	6,0	-24,0	25,5

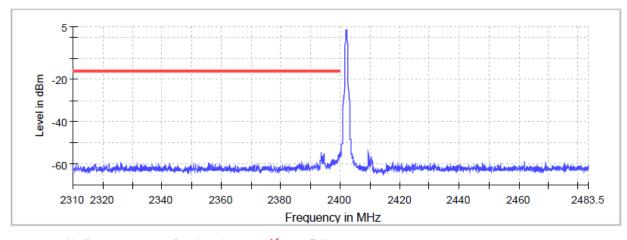
WLAN n-Mode; 40 MHz; MCS7; MIMO

Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
3	2422	2400,0	-42,4	PEAK	100	1,0	-29,0	13,4
9	2452	2483,5	-39,3	PEAK	100	1,0	-29,0	10,3

WLAN ax-Mode; 20 MHz; MCS9; MIMO

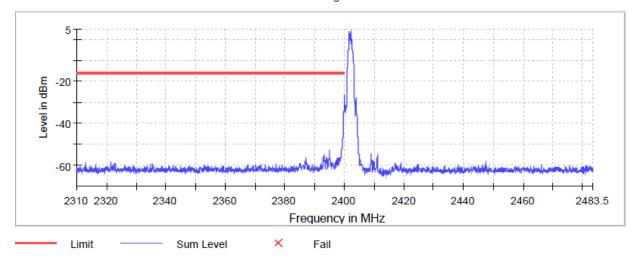
Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
1	2412	2400,0	-39,3	PEAK	100	1,3	-28,7	10,6
11	2462	2483,5	-47,5	PEAK	100	1,1	-28,9	18,6

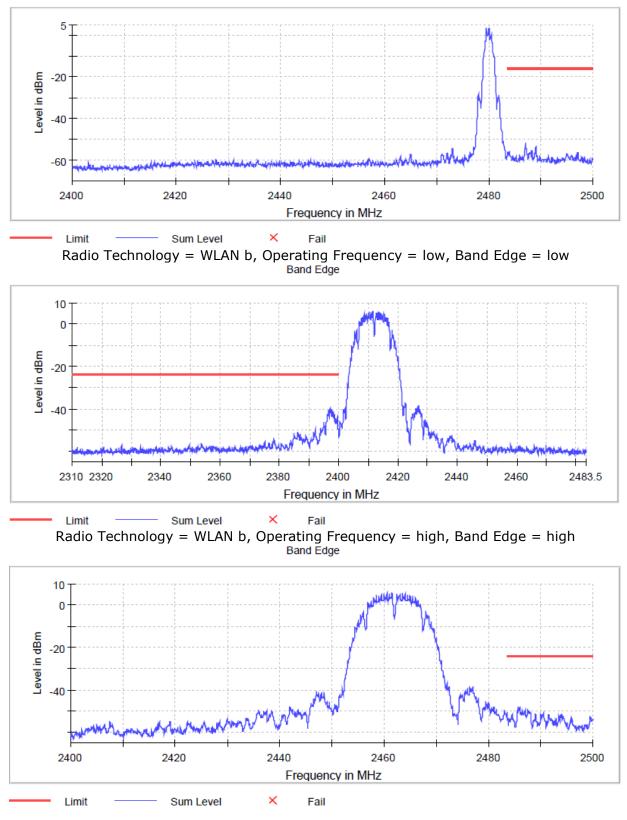
WLAN ax-Mode; 40 MHz; MCS9; MIMO


Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
3	2422	2400,0	-43,9	PEAK	100	-1,1	-31,1	12,8
9	2452	2483,5	-40,5	PEAK	100	-1,0	-31,0	9,5

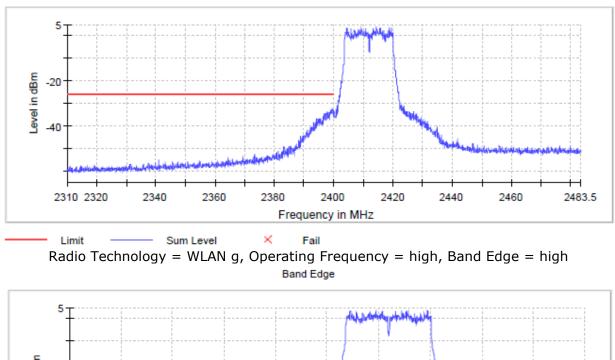
Remark: Please see next sub-clause for the measurement plot.

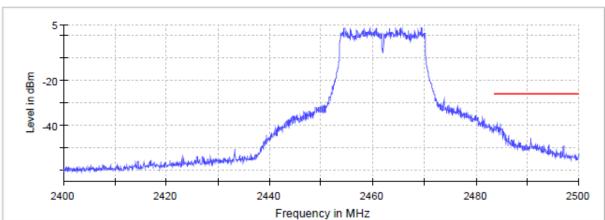
5.7.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)


Radio Technology = Bluetooth LE 1 Mbps, Operating Frequency = low, Band Edge = low Band Edge

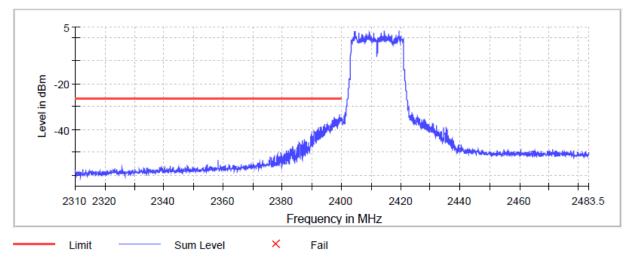

Limit Sum Level × Fail Radio Technology = Bluetooth LE 1 Mbps, Operating Frequency = high, Band Edge = high Band Edge

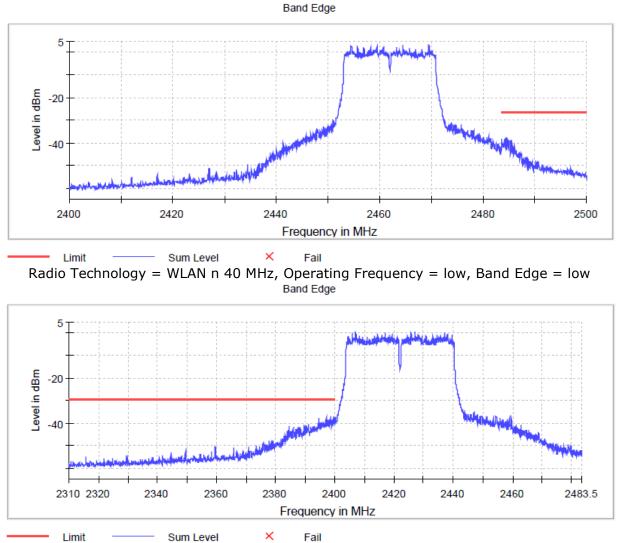
Limit — Sum Level × Fail Radio Technology = Bluetooth LE 2 Mbps, Operating Frequency = low, Band Edge = low Band Edge



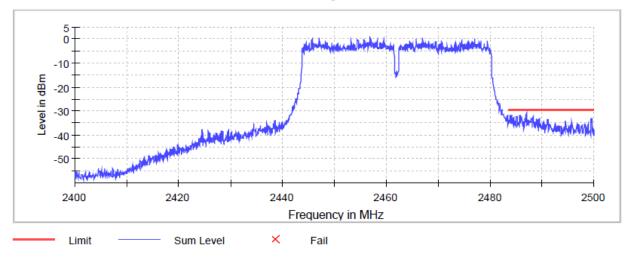


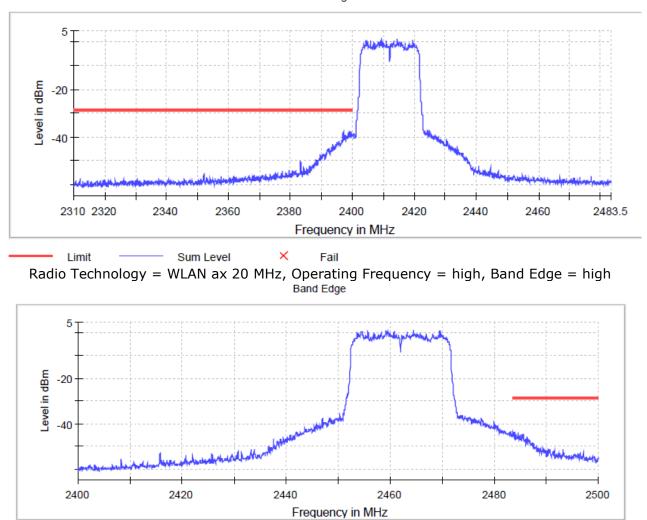
Radio Technology = Bluetooth LE 2 Mbps, Operating Frequency = high, Band Edge = high Band Edge




Radio Technology = WLAN g, Operating Frequency = low, Band Edge = low Band Edge

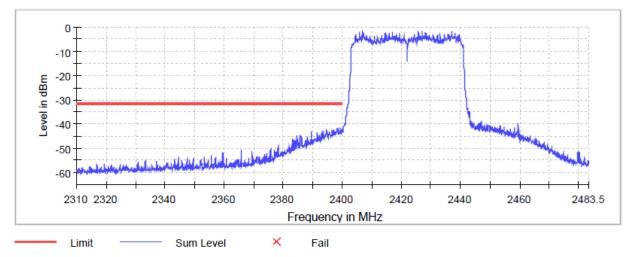
Limit — Sum Level × Fail Radio Technology = WLAN n 20 MHz, Operating Frequency = low, Band Edge = low Band Edge

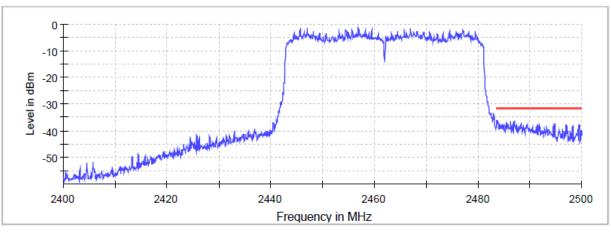




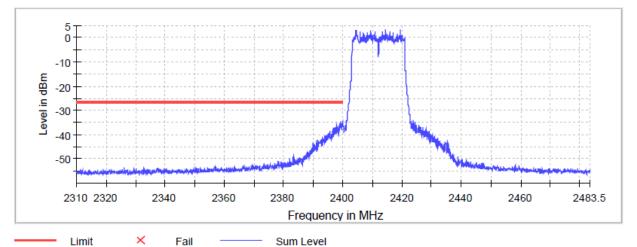
Radio Technology = WLAN n 20 MHz, Operating Frequency = high, Band Edge = high

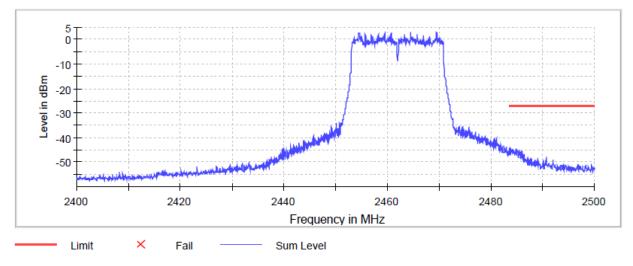
Radio Technology = WLAN n 40 MHz, Operating Frequency = high, Band Edge = high Band Edge



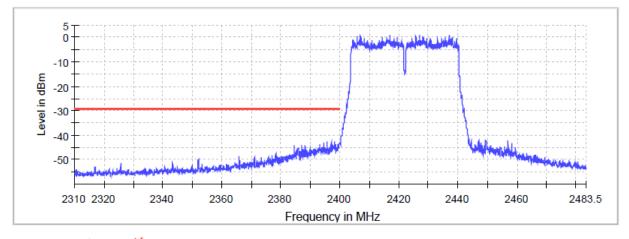


Radio Technology = WLAN ax 20 MHz, Operating Frequency = low, Band Edge = low Band Edge

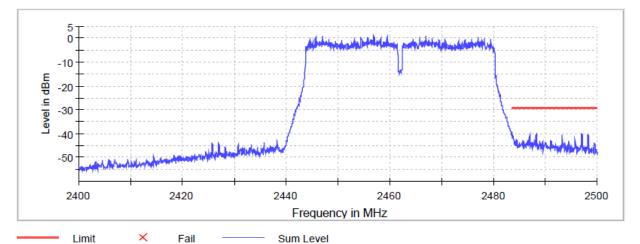


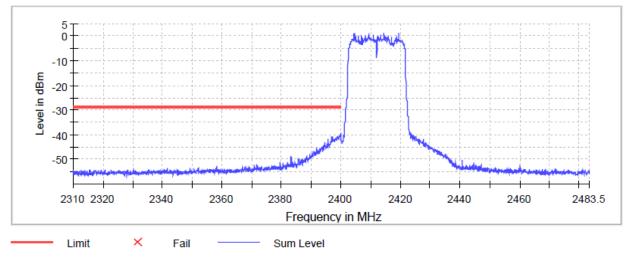


Radio Technology = WLAN ax 40 MHz, Operating Frequency = high, Band Edge = high Band Edge

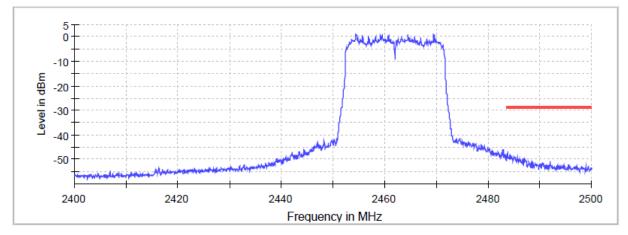

Limit Sum Level X Fail Radio Technology = WLAN n 20 MHz MIMO, Operating Frequency = low, Band Edge = low Band Edge

Radio Technology = WLAN n 20 MHz MIMO, Operating Frequency = high, Band Edge = high Band Edge

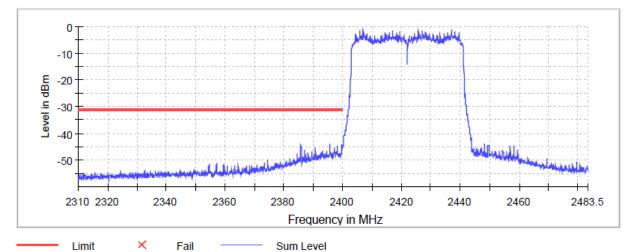


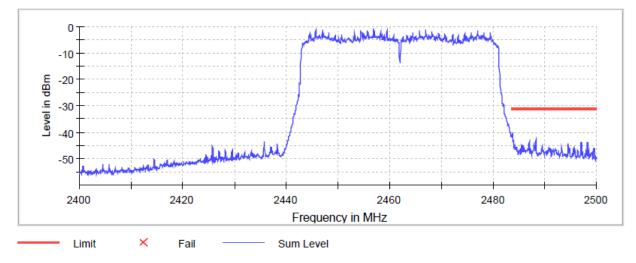


Radio Technology = WLAN n 40 MHz MIMO, Operating Frequency = low, Band Edge = low Band Edge


Limit × Fail — Sum Level Radio Technology = WLAN n 40 MHz MIMO, Operating Frequency = high, Band Edge = high Band Edge

Radio Technology = WLAN ax 20 MHz MIMO, Operating Frequency = low, Band Edge = low Band Edge





Radio Technology = WLAN ax 20 MHz MIMO, Operating Frequency = high, Band Edge = high Band Edge

Limit×FailSum LevelRadio Technology = WLAN ax 40 MHz MIMO, Operating Frequency = low, Band EdgeBand Edge

Radio Technology = WLAN ax 40 MHz MIMO, Operating Frequency = high, Band Edge = high Band Edge

5.7.5 TEST EQUIPMENT USED

- R&S TS8997

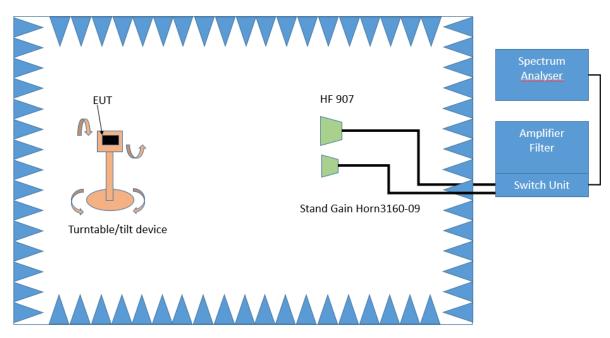
5.8 BAND EDGE COMPLIANCE RADIATED

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10, chapter 6.6.5

5.8.1 TEST DESCRIPTION


The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The measurements were performed according to the following sub-chapter of ANSI C63.10:

• Chapter 6.10.5

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only (procedure according to ANSI C63.10, chapter 6.6.5.

3. Measurement above 1 GHz

Test Setup; Spurious Emission Radiated (FAC), 1 GHz-26.5 GHz

Step 1:

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 °.

The turn table step size (azimuth angle) for the preliminary measurement is 45 °.

Spectrum analyser settings:

- Detector: Peak, Average
- RBW = 1 MHz
- VBW = 3 MHz

Step 2:

The turn table azimuth will slowly vary by \pm 22.5°. The elevation angle will slowly vary by \pm 45° Spectrum analyser settings:

- Detector: Peak

Step 3:

- Spectrum analyser settings for step 3:
- Detector: Peak / CISPR Average
- Measured frequencies: in step 1 determined frequencies
- RBW = 1 MHz
- VBW = 3 MHz
- Measuring time: 1 s

5.8.2 TEST REQUIREMENTS / LIMITS

For band edges connected to a restricted band, the limits are specified in Section 15.209(a)

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 – 13.8)@300m
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 – 23.0)@30m
1.705 - 30	30@30m	3	29.5@30m

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
30 - 88	100@3m	3	40.0@3m
88 - 216	150@3m	3	43.5@3m
216 - 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

Since there is no restricted band directly next to the lower band edge, respective emissions are reported in the test case Transmitter Spurious Radiated emissions.

5.8.3 TEST PROTOCOL

S02_AB01

Ambient temperature:	25-27 °C
Air Pressure:	990 - 1010 hPa
Humidity:	45-50 %

BT LE 1 Mbit/s

Applied duty cycle correction (AV): 0 dB

Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]
39	2480	2483,5	49,1	PEAK	1000	74,0	24,9
39	2480	2483,5	35,8	AV	1000	54,0	18,2

WLAN b-Mode; 20 MHz; 1 Mbit/s

Applie	Applied duty cycle correction (AV): 0.1 dB									
Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]			
11	2462	2483,5	51,0	PEAK	1000	74,0	23,0			
11	2462	2483,5	39,1	AV	1000	54,0	14,8			

WLAN g-Mode; 20 MHz; 54 Mbit/s

Applied duty cycle correction (AV): 0.7 dB

Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]
11	2462	2483,5	48,0	PEAK	1000	74,0	26,0
11	2462	2483,5	35,3	AV	1000	54,0	18,0

WLAN n-Mode; 20 MHz; MCS7

Applied duty cycle correction (AV): 0.8 dB

Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]
11	2462	2483,5	67,5	PEAK	1000	74,0	6,5
11	2462	2483,5	44,5	AV	1000	54,0	8,7

WLAN n-Mode; 40 MHz; MCS7

Applied duty cycle correction (AV): 1.2 dB

Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]
9	2452	2483,5	68,1	PEAK	1000	74,0	5,9
9	2452	2483,5	47,9	AV	1000	54,0	4,9

WLAN n-Mode MIMO; 20 MHz; MCS7 Applied duty cycle correction (AV): 0.8 dB

Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]
11	2462	2483.5	65.0	PEAK	1000	74.0	9.0
11	2462	2483.5	44.7	AV	1000	54.0	9.3

WLAN n-Mode MIMO; 40 MHz; MCS7 Applied duty cycle correction (AV): 1.2 dB

Applied	Applied duty cycle correction (AV). 1.2 db									
Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]			
9	2452	2483.5	64.1	PEAK	1000	74.0	9.9			
9	2452	2483.5	46.8	AV	1000	54.0	7.2			

S03_AB01

WLAN b-Mode; 20 MHz; 1 Mbit/s

Applied duty cycle correction (AV): 0.1 dB

Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]
11	2462	2483.5	51.6	PEAK	1000	74.0	22.4
11	2462	2483.5	39.4	AV	1000	54.0	14.6

WLAN g-Mode; 20 MHz; 54 Mbit/s

Applied duty cycle correction (AV): 0.7 dB

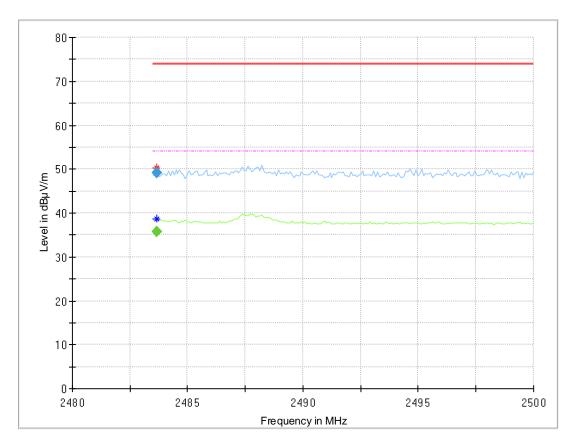
Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]
11	2462	2483.5	69.6	PEAK	1000	74.0	4.4
11	2462	2483.5	49.5	AV	1000	54.0	4.5

WLAN n-Mode MIMO; 20 MHz; MCS7

Applied duty cycle correction (AV): 0.8 dB

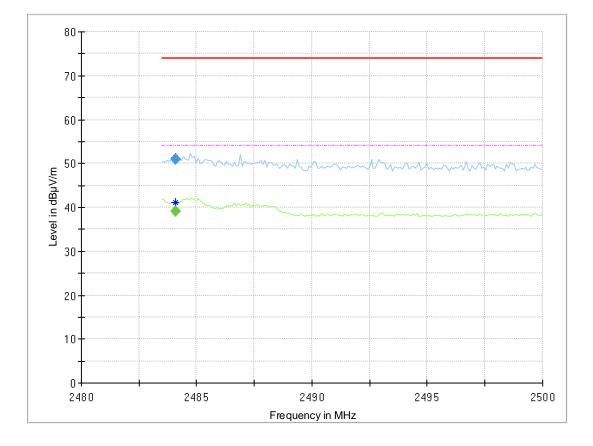
Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]
11	2462	2483.5	68.8	PEAK	1000	74.0	5.2
11	2462	2483.5	48.6	AV	1000	54.0	5.4

WLAN n-Mode MIMO; 40 MHz; MCS7 Applied duty cycle correction (AV): 1.3 dB


Applied											
Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]				
9	2452	2483.5	67.4	PEAK	1000	74.0	6.6				
9	2452	2483.5	53.7	AV	1000	54.0	0.3				

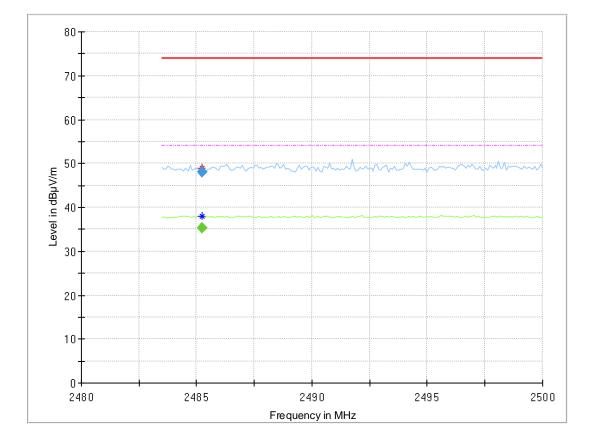
Remark: Please see next sub-clause for the measurement plot.

5.8.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)


Radio Technology = Bluetooth LE 1 Mbps, Operating Frequency = high, Band Edge = high (S02_AB01)

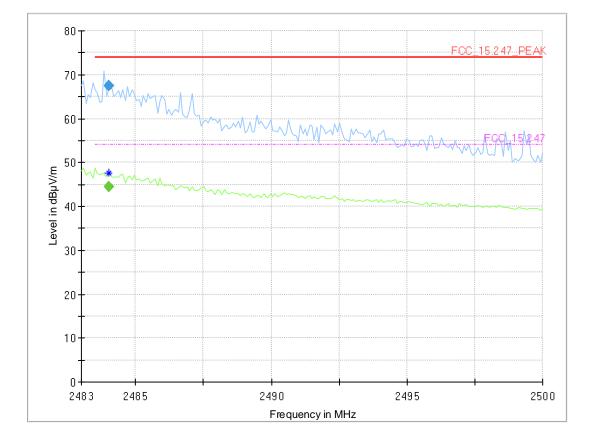
Final_Result

Frequency (MHz)	MaxPeak (dBµV/m)	CAverag e (dBµV/m)	Limit (dBµ V/m)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heigh t (cm)	Pol	Azimut h (deg)	Elevatio n (deg)	Corr. (dB/ m)
2483.665		35.8	54.00	18.21	1000.0	1000.000	150.0	V	-189.0	6.0	5.3
2483.665	49.1		74.00	24.89	1000.0	1000.000	150.0	V	-189.0	6.0	5.3



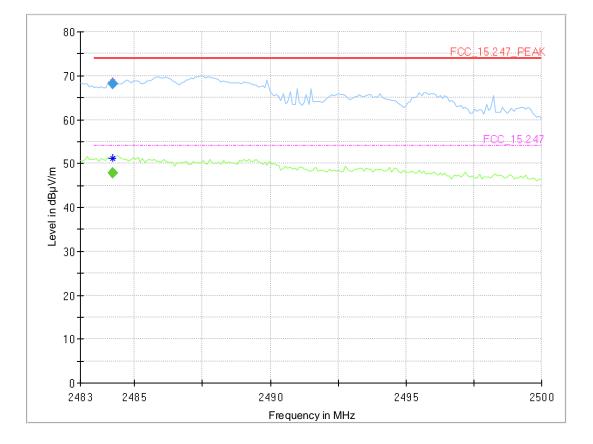
Radio Technology = WLAN b, Operating Frequency = high, Band Edge = high (S02_AB01)

Frequency (MHz)	MaxPeak (dBµV/m)	CAverag e (dBµV/m)	Limit (dBµ V/m)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heigh t (cm)	Pol	Azimut h (deg)	Elevatio n (deg)	Corr. (dB/ m)
2484.078	51.0		74.00	23.03	1000.0	1000.000	150.0	V	-151.0	-11.0	5.3
2484.078		39.1	54.00	14.94	1000.0	1000.000	150.0	V	-151.0	-11.0	5.3



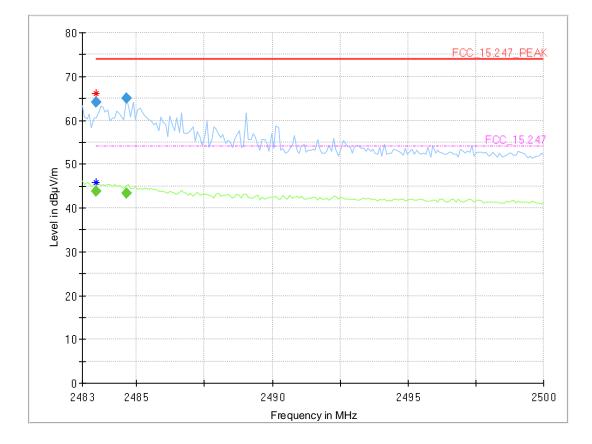
Radio Technology = WLAN g, Operating Frequency = high, Band Edge = high (S02_AB01)

Frequency (MHz)	MaxPeak (dBµV/m)	CAverag e (dBµV/m)	Limit (dBµ V/m)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heigh t (cm)	Pol	Azimut h (deg)	Elevatio n (deg)	Corr. (dB/ m)
2485.233		35.3	54.00	18.67	1000.0	1000.000	150.0	V	-66.0	-25.0	5.3
2485.233	48.0		74.00	26.02	1000.0	1000.000	150.0	V	-66.0	-25.0	5.3



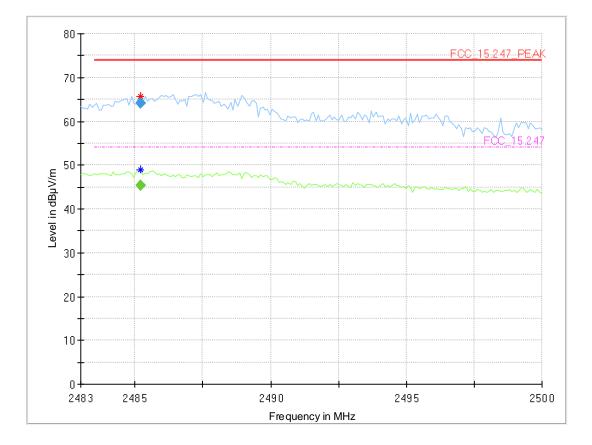
Radio Technology = WLAN n 20 MHz, Operating Frequency = high, Band Edge = high (S02_AB01)

Frequency (MHz)	MaxPeak (dBµV/m)	CAverag e (dBµV/m)	Limit (dBµ V/m)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heigh t (cm)	Pol	Azimut h (deg)	Elevatio n (deg)	Corr. (dB/ m)
2484.020		44.5	54.00	9.54	1000.0	1000.000	150.0	Н	-71.0	98.0	5.3
2484.020	67.5		74.00	6.45	1000.0	1000.000	150.0	Н	-71.0	98.0	5.3



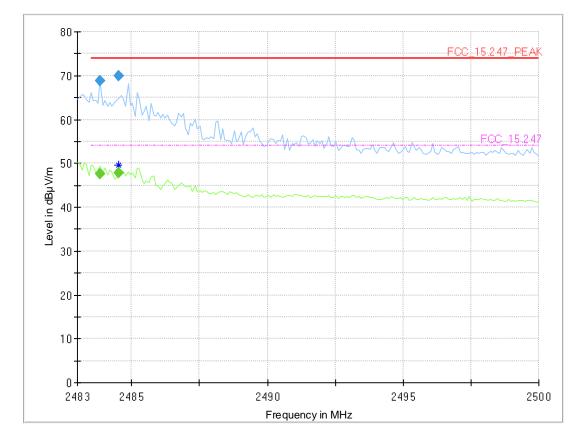
Radio Technology = WLAN n 40 MHz, Operating Frequency = high, Band Edge = high (S02_AB01)

Frequency (MHz)	MaxPeak (dBµV/m)	CAverag e (dBµV/m)	Limit (dBµ V/m)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heigh t (cm)	Pol	Azimut h (deg)	Elevatio n (deg)	Corr. (dB/ m)
2484.190		47.9	54.00	6.10	1000.0	1000.000	150.0	Н	-71.0	100.0	5.3
2484.190	68.1		74.00	5.95	1000.0	1000.000	150.0	Н	-71.0	100.0	5.3



Radio Technology = WLAN n 20 MHz MIMO, Operating Frequency = high, Band Edge = high (S02_AB01)

Frequency	MaxPeak	CAverag	Limit	Margi	Meas.	Bandwidt	Heigh	Pol	Azimut	Elevatio	Corr.
(MHz)	(dBµV/m)	е	(dBµ	n	Time	h	t		h	n	(dB/
		(dBµV/m)	V/m)	(dB)	(ms)	(kHz)	(cm)		(deg)	(deg)	m)
2483.510		43.9	54.00	10.12	1000.0	1000.000	150.0	Н	-41.0	-2.0	7.8
2483.510	64.2		74.00	9.81	1000.0	1000.000	150.0	Н	-41.0	-2.0	7.8
2484.615		43.3	54.00	10.71	1000.0	1000.000	150.0	Н	-41.0	5.0	7.8
2484.615	65.0		74.00	9.00	1000.0	1000.000	150.0	Н	-41.0	5.0	7.8



Radio Technology = WLAN n 40 MHz MIMO, Operating Frequency = high, Band Edge = high (S02_AB01)

Frequency (MHz)	MaxPeak (dBµV/m)	CAverag e (dBµV/m)	Limit (dBµ V/m)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heigh t (cm)	Pol	Azimut h (deg)	Elevatio n (deg)	Corr. (dB/ m)
2485.210		45.5	54.00	8.53	1000.0	1000.000	150.0	Н	-41.0	15.0	7.9
2485.210	64.1		74.00	9.92	1000.0	1000.000	150.0	Н	-41.0	15.0	7.9

Radio Technology = WLAN n 20 MHz MIMO, Operating Frequency = high, Band Edge = high (S03_AB01)

Frequency (MHz)	MaxPeak (dBµV/m)	CAverag e (dBuV/m)	Limit (dBµ V/m)	Margi n (dB)	Meas. Time (ms)	Bandwidt h (kHz)	Heigh t (cm)	Pol	Azimut h (deg)	Elevatio n (deg)	Corr. (dB/ m)
2483.850		47.7	54.00	6.31	1000.0	1000.000	150.0	Н	-71.0	78.0	7.8
2483.850	68.8		74.00	5.20	1000.0	1000.000	150.0	Н	-71.0	78.0	7.8
2484.530		47.8	54.00	6.18	1000.0	1000.000	150.0	Н	-71.0	80.0	7.8
2484.530	69.9		74.00	4.07	1000.0	1000.000	150.0	Н	-71.0	80.0	7.8

Radio Technology = WLAN n 40 MHz MIMO, Operating Frequency = high, Band Edge = high (S03_AB01)

Final_Result

Frequency (MHz)	MaxPeak (dBµV/m)	CAverag e	Limit (dBµ	Margi n	Meas. Time	Bandwidt h	Heigh t	Pol	Azimut h	Elevatio n	Corr. (dB/
		(dBµV/m)	V/m)	(dB)	(ms)	(kHz)	(cm)		(deg)	(deg)	m)
2484.190		52.4	54.00	1.58	1000.0	1000.000	150.0	Н	-71.0	80.0	7.8
2484.190	67.4		74.00	6.58	1000.0	1000.000	150.0	Н	-71.0	80.0	7.8
2485.465		52.3	54.00	1.65	1000.0	1000.000	150.0	Н	-71.0	94.0	7.9
2485.465	65.6		74.00	8.43	1000.0	1000.000	150.0	Н	-71.0	94.0	7.9
2486.485		51.5	54.00	2.49	1000.0	1000.000	150.0	Н	-62.0	75.0	7.9
2486.485	68.5		74.00	5.48	1000.0	1000.000	150.0	Н	-62.0	75.0	7.9
2486.995		51.4	54.00	2.63	1000.0	1000.000	150.0	Н	-62.0	78.0	7.9
2486.995	68.9		74.00	5.12	1000.0	1000.000	150.0	Н	-62.0	78.0	7.9
2489.460		51.9	54.00	2.08	1000.0	1000.000	150.0	Н	-71.0	79.0	7.9
2489.460	66.5		74.00	7.51	1000.0	1000.000	150.0	Н	-71.0	79.0	7.9

5.8.5 TEST EQUIPMENT USED

- Radiated Emissions FAR 2.4 GHz FCC

5.9 POWER DENSITY

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10, chapter 11.10.2

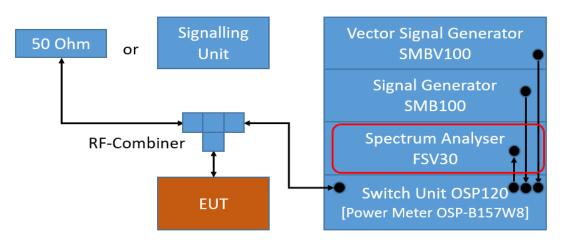
5.9.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up in a shielded room to perform the Power Density measurements.

The results recorded were measured with the modulation which produces the worst-case (highest) power density.

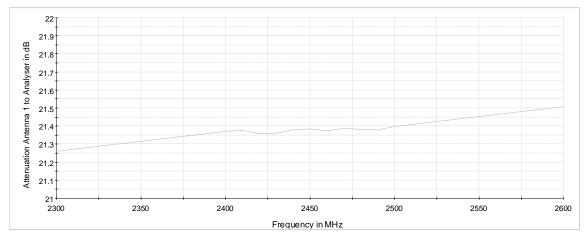
The EUT was connected to the test system as described in the block diagram below. The complete attenuation of the measurement path is known and considered.

Maximum Peak Power Spectral Density (e.g. Bluetooth low energy):


Analyser settings:

- Resolution Bandwidth (RBW): 100 kHz, 10 kHz or 3 kHz
- Video Bandwidth (VBW): ≥ 3 times RBW
- Trace: Maxhold
- Sweeps: Till stable (min. 200, max. 15000)
- Sweeptime: Auto
- Detector: Peak

Maximum Average Power Spectral Density (e.g. WLAN):


Analyser settings:

- Resolution Bandwidth (RBW): 100 kHz, 10 kHz or 3 kHz
- Video Bandwidth (VBW): ≥ 3 times RBW
- Sweep Points: ≥ 2 times span / RBW
- Trace: Maxhold
- Sweeps: Till stable (max. 150)
- Sweeptime: \leq Number of Sweep Points x minimum transmission duration
- Detector: RMS

TS8997; Power Spectral Density

Attenuation of the measurement path

5.9.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (e)

...

...

For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

The same method of determining the conducted output power shall be used to determine the power spectral density.

FCC Part 15, Subpart C, §15.247 (f)

(f) For the purposes of this section, hybrid systems are those that employ a combination of both frequency hopping and digital modulation techniques.

The power spectral density conducted from the intentional radiator to the antenna due to the digital modulation operation of the hybrid system, with the frequency hopping operation turned off, shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission

5.9.3 TEST PROTOCOL

Ambient temperature:	24-25 °C
Air Pressure:	905-990 hPa
Humidity:	38-42 %

BT LE; 1 Mbit/s

Band	Channel No.	Frequency [MHz]	Power Density [dBm / RBW]	RBW [kHz]	Limit [dBm/3kHz]	Margin to Limit [dB]
2.4 GHz ISM	0	2402	-5.6	10.0	8.0	13.6
	19	2440	-5.7	10.0	8.0	13.7
	39	2480	-5.8	10.0	8.0	13.8

BT LE; 2 Mbit/s

Band	Channel No.	Frequency [MHz]	Power Density [dBm / RBW]	RBW [kHz]	Limit [dBm/3kHz]	Margin to Limit [dB]
2.4 GHz ISM	0	2402	-9.0	10.0	8.0	17.0
	19	2440	-9.1	10.0	8.0	17.1
	39	2480	-9.2	10.0	8.0	17.2

WLAN b-Mode; 20 MHz; 1 Mbit/s

Band	Channel No.	Frequency [MHz]	Power Density [dBm / RBW]	RBW [kHz]	Limit [dBm/3kHz]	Margin to Limit [dB]
2.4 GHz ISM	1	2412	-2.0	100.0	8.0	10.0
	6	2437	-1.7	100.0	8.0	9.7
	11	2462	-2.0	100.0	8.0	10.0

WLAN g-Mode; 20 MHz; 54 Mbit/s

Band	Channel No.	Frequency [MHz]	Power Density [dBm / RBW]	RBW [kHz]	Limit [dBm/3kHz]	Margin to Limit [dB]
2.4 GHz ISM	1	2412	-4.1	100.0	8.0	12.1
	6	2437	-4.0	100.0	8.0	12.0
	11	2462	-4.4	100.0	8.0	12.4

WLAN n-Mode; 20 MHz; MCS7

Band	Channel No.	Frequency [MHz]	Power Density [dBm / RBW]	RBW [kHz]	Limit [dBm/3kHz]	Margin to Limit [dB]
2.4 GHz ISM	1	2412	-4.6	100.0	8.0	12.6
	6	2437	-4.4	100.0	8.0	12.4
	11	2462	-4.8	100.0	8.0	12.8

WLAN n-Mode; 40 MHz; MCS7

Band	Channel No.	Frequency [MHz]	Power Density [dBm / RBW]	RBW [kHz]	Limit [dBm/3kHz]	Margin to Limit [dB]
2.4 GHz ISM	3	2422	-7.0	100.0	8.0	15.0
	6	2437	-6.7	100.0	8.0	14.7
	9	2452	-6.8	100.0	8.0	14.8

WLAN ax-Mode; 20 MHz; MCS9

Band	Channel No.	Frequency [MHz]	Power Density [dBm / RBW]	RBW [kHz]	Limit [dBm/3kHz]	Margin to Limit [dB]
2.4 GHz ISM	1	2412	-6.6	100.0	8.0	14.6
	6	2437	-6.3	100.0	8.0	14.3
	11	2462	-6.8	100.0	8.0	14.8

WLAN ax-Mode; 40 MHz; MCS9

Band	Ch. No.	Freq. [MHz]	Power Density [dBm / RBW]	RBW [kHz]	Limit [dBm/3kHz]	Margin to Limit [dB]
2.4 GHz ISM	3	2422	-8.9	100.0	8.0	16.9
	6	2437	-9.0	100.0	8.0	17.0
	9	2452	-9.2	100.0	8.0	17.2

WLAN n-Mode; 20 MHz; MCS7; MIMO

Band	Ch. No.	Freq. [MHz]	Power Density [dBm / RBW]	RBW [kHz]	Limit [dBm/ 3kHz]	Margin to Limit [dB]
2.4 GHz ISM	1	2412	-4.4	100	8.0	12.4
	6	2437	-4.2	100	8.0	12.2
	11	2462	-4.8	100	8.0	12.8

WLAN n-Mode; 40 MHz; MCS7; MIMO

Band	Ch. No.	Freq. [MHz]	Power Density [dBm / RBW]	RBW [kHz]	Limit [dBm/3kHz]	Margin to Limit [dB]
2.4 GHz ISM	3	2422	-6.4	100	8.0	14.4
	6	2437	-6.2	100	8.0	14.2
	9	2452	-6.4	100	8.0	14.4

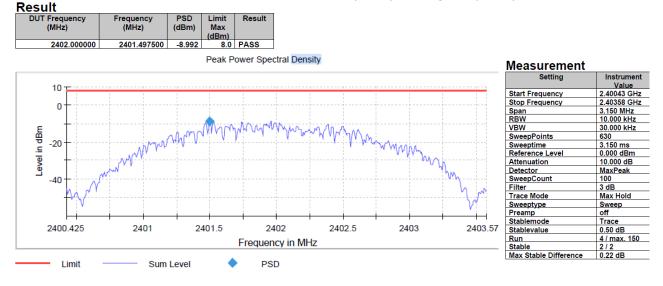
WLAN ax-Mode; 20 MHz; MCS9; MIMO

Band	Channel No.	Frequency [MHz]	Power Density [dBm / RBW]	RBW [kHz]	Limit [dBm/3kHz]	Margin to Limit [dB]
2.4 GHz ISM	1	2412	-6.4	100	8.0	14.4
	6	2437	-6.0	100	8.0	14.0
	11	2462	-6.6	100	8.0	14.6

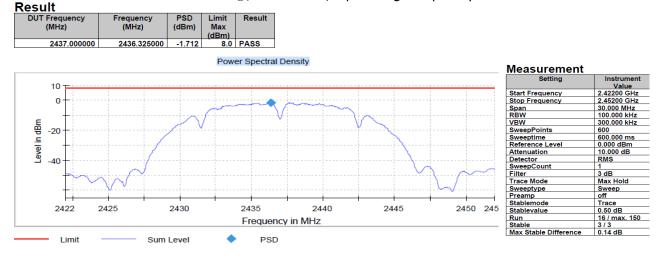
WLAN ax-Mode; 40 MHz; MCS9; MIMO

Band	Channel No.	Frequency [MHz]	Power Density [dBm / RBW]	RBW [kHz]	Limit [dBm/3kHz]	Margin to Limit [dB]
2.4 GHz ISM	3	2422	-8.8	100	8.0	16.8
	6	2437	-8.8	100	8.0	16.8
	9	2452	-8.9	100	8.0	16.9

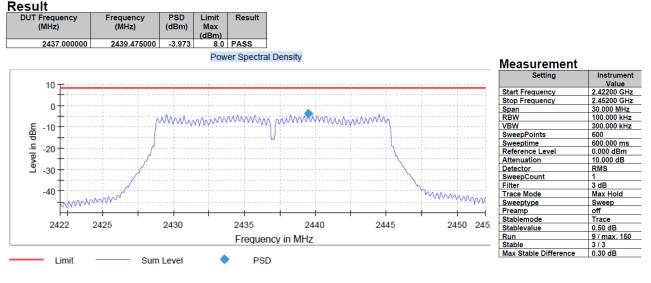
Remark: Please see next sub-clause for the measurement plot.



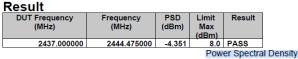
5.9.4 MEASUREMENT PLOT (EXAMPLE PLOT, SHOWING WORST CASE, IF APPLICABLE)

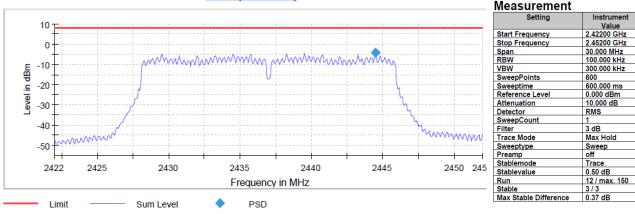

- ·

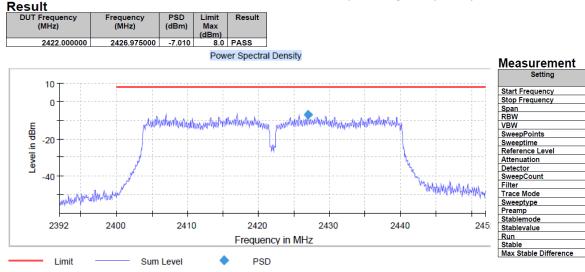
DUT Freq (MH:	z)		equenc <u>:</u> (MHz)		PSD (dBm)	Limi Max (dBn	(1)	esult										
240	2.000000	2	401.962	2500	-5.599	6	.0 PA	SS										
						Peal	Powe	er Spe	ctral De	ensity							Measurement	
10	·					,	,	-,	-,								Setting	Instrumer Value
				+		<u> </u>				+	++		+				Start Frequency	2.40118 GH
0	<u></u>												1				Stop Frequency	2.40283 GH
0	·										i						Span	1.650 MHz
							N	L.	ma	1	5.0						RBW	10.000 kHz
E -10					- A	ſY −V	¥			mr.		1.					VBW	30.000 kHz
豊				22	W.W						·····	~h					SweepPoints	330
Ē -20) 			~~~		+				÷	+		1 m	M			Sweeptime	1.650 ms
-10 -20 -30	+		N'											has			Reference Level	0.000 dBm
a -30			<u>~</u>								i				L		Attenuation	10.000 dB
-30 -30	'	~~~													Δ		Detector	MaxPeak
	A	2			1										. /		SweepCount	100
-40	The			*		*			-!		+		+			$\gamma \wedge \gamma$	Filter	3 dB
	+ + + + + + + + + + + + + + + + + + + +			÷							ii						Trace Mode	Max Hold
-50) 			+		+				+	++		+				Sweeptype	Sweep
	li i		i	i	i —	——	i	i —	i	i —	i		i	i i		i i i	Preamp	off
240	1.175	240)1.4	240	01.6	240)1.8		102	240		240	02.4	240	26	2402.82	Stablemode	Trace
240	1.175	240	11.4	240	0.10	240	0.10	24	+UZ	240	JZ.Z	240	JZ.4	240	2.0	2402.82	Stablevalue	0.50 dB
							Fr	equer	icy in I	MHz							Run	4 / max. 150
								oquor	, iii i								Stable	2/2



Radio Technology = WLAN b, Operating Frequency = mid


TEST REPORT REFERENCE: MDE_HDW_2304_FCC_02_rev02




Radio Technology = WLAN g, Operating Frequency = mid

Radio Technology = WLAN n20, Operating Frequency = mid

Radio Technology = WLAN n40, Operating Frequency = low

Instrument Value 2.39200 GHz 2.45200 GHz

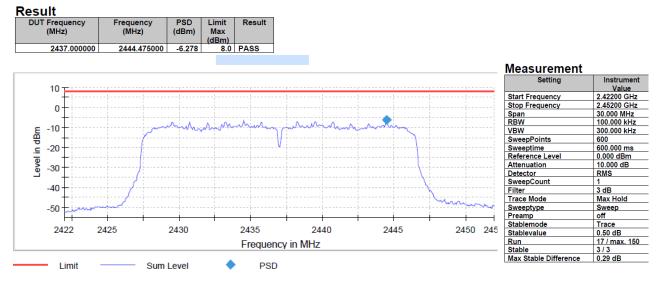
60.000 MHz 100.000 kHz 300.000 kHz

1.200 s 0.000 dBm 10.000 dB

1200

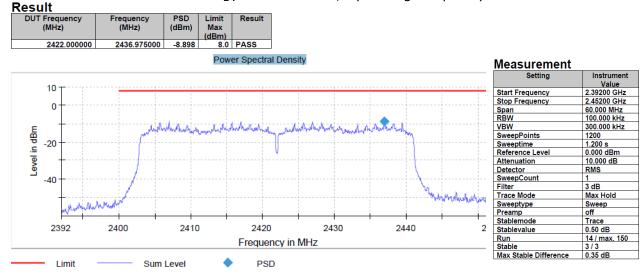
RMS

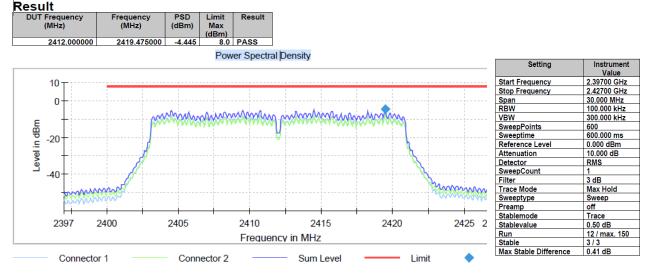
3 dB


Max Hold

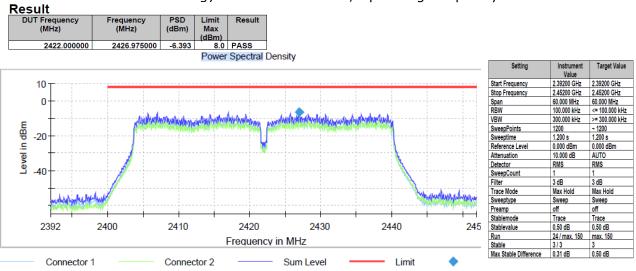
Sweep off Trace

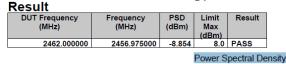
0.50 dB

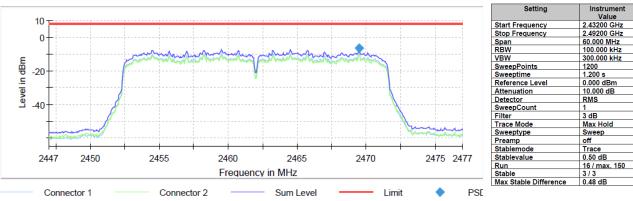

14 / max. 150 3 / 3 0.42 dB

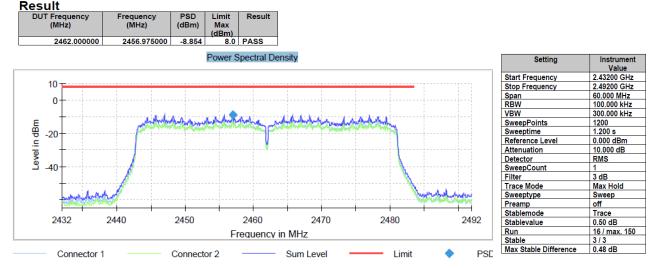


Radio Technology = WLAN ax20, Operating Frequency = mid


Radio Technology = WLAN ax40, Operating Frequency = low






Radio Technology = WLAN n40 MIMO, Operating Frequency = low

5.9.5 TEST EQUIPMENT USED - R&S TS8997

6 TEST EQUIPMENT

6.1 TEST EQUIPMENT HARDWARE

1 Conducted Emissions FCC Conducted Emissions AC Mains for FCC standards

Ref.No.	Device Name	Description	Manufacturer	Serial Number		Calibration
					Calibration	Due
1.1	Chroma 6404	AC Source	Chroma ATE INC.	64040001304	N/A	N/A
1.2			Frankonia Germany EMC Solution GmbH		N/A	N/A
1.3			Rohde & Schwarz GmbH & Co. KG	829996/002	2023-09	2025-09
1.4		EMI Receiver / Spectrum Analyzer	Rohde & Schwarz	101424	2023-01	2025-01

2 R&S TS8997

2.4 and 5 GHz Bands Conducted Test Lab

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
1.1	SMB100A	Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	107695	2021-06	2024-06
1.2	EX520	5	Extech Instruments Corp	05157876	2022-06	2024-06
1.3	FSV30	Signal Analyzer 10 Hz - 30 GHz	Rohde & Schwarz	103005	2023-08	2025-08
1.4	NGSM 32/10		Rohde & Schwarz GmbH & Co. KG	3456	2022-01	2024-01
1.5	Temperature Chamber KWP 120/70	Temperature Chamber Weiss 01	Weiss	59226012190010	2022-05	2024-05
	Temperature Chamber VT 4002	Temperature Chamber Vötsch 03	Vötsch	58566002150010	2022-05	2024-05
1.7	FSW43		Rohde & Schwarz GmbH & Co. KG	102013	2023-07	2025-07
1.8	Opus10 THI (8152.00)	T/H Logger 14	Lufft Mess- und Regeltechnik GmbH	13993		
1.9	SMBV100A	Vector Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	259291	2023-01	2026-01
1.10	OSP120	Contains Power Meter and Switching Unit OSP- B157W8 PLUS	Rohde & Schwarz	101158	2021-08	2024-08

2 Radiated Emissions FAR 2.4 GHz FCC

Radiated emission tests for 2.4 GHz ISM devices in a fully anechoic room

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.1	Innco Systems CO3000	Controller for bore sight mast FAC		CO3000/1460/54 740522/P	N/A	N/A
2.2	AMF- 7D00101800- 30-10P-R	Broadband Amplifier 100 MHz - 18 GHz	Miteq		N/A	N/A
2.3	Anechoic Chamber 03	FAR, 8.80m x 4.60m x 4.05m (l x w x h)	Albatross Projects	P26971-647-001- PRB	N/A	N/A
2.4	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2023-08	2025-08
2.5	JS4-18002600- 32-5P	Broadband Amplifier 18 GHz - 26 GHz	Miteq	849785	N/A	N/A
2.6	FSW43	Spectrum Analyzer	Rohde & Schwarz GmbH & Co. KG	103779	2023-04	2025-04
2.7	EP 1200/B, NA/B1	AC Source,	Spitzenberger & Spies GmbH & Co. KG	B6278	N/A	N/A
2.8	3160-09	Standard Gain / Pyramidal Horn Antenna 26.5 GHz	EMCO Elektronic GmbH	00083069	N/A	N/A
2.9	WHKX 7.0/18G- 8SS	High Pass Filter	Wainwright Instruments GmbH	09	N/A	N/A
2.10		Bore Sight Antenna Mast			N/A	N/A
2.11	TT 1.5 WI	Turn Table	Maturo GmbH	-	N/A	N/A
2.12	5HC3500/18000 -1.2-KK	High Pass Filter	Trilithic	200035008	N/A	N/A
2.13	Opus 20 THI (8120.00)		Lufft Mess- und Regeltechnik GmbH	115.0318.0802.0 33	2023-08	2025-08
2.14	TD1.5-10kg	EUT Tilt Device (Rohacell)		TD1.5- 10kg/024/37907 09	N/A	N/A
2.15	AFS42- 00101800-25-S- 42	Broadband Amplifier 25 MHz - 18 GHz	Miteq	2035324	N/A	N/A
2.16	HF 907	Double-ridged horn	Rohde & Schwarz	102444	2021-09	2024-09

3 Radiated Emissions SAC H-Field Radiated emission tests in the H-Field in a semi anechoic room

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last	Calibration
					Calibration	Due
3.1		Filter for EUT, 2 Lines, 250 V, 16 A		241515	N/A	N/A
3.2			Rohde & Schwarz GmbH & Co. KG	101603	2022-01	2024-01

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
3.3	Chamber 01	SAC/FAR, 10.58 m x 6.38 m x 6.00 m	Frankonia	none	N/A	N/A
3.4	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2023-08	2025-08
3.5	NA/B1		Spitzenberger & Spies GmbH & Co. KG	B6278	N/A	N/A
3.6	DS 420S	Turn Table 2 m diameter	HD GmbH	420/573/99	N/A	N/A
3.7	HFH2-Z2	Loop Antenna + 3 Axis Tripod	Rohde & Schwarz GmbH & Co. KG	829324/006	2021-01	2024-01

⁴ Radiated Emissions SAC up to 1 GHz Radiated emission tests up to 1 GHz in a semi anechoic room

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
4.1	N5000/NP	Filter for EUT, 2 Lines, 250 V, 16 A	ETS-LINDGREN	241515	N/A	N/A
4.2	ESW44	EMI Receiver / Spectrum Analyzer	Rohde & Schwarz GmbH & Co. KG	101603	2022-01	2024-01
4.3	Anechoic Chamber 01	SAC/FAR, 10.58 m x 6.38 m x 6.00 m	Frankonia	none	N/A	N/A
4.4	HL 562 ULTRALOG	Biconical-log- per antenna (30 MHz - 3 GHz) with HL 562E biconicals	Rohde & Schwarz GmbH & Co. KG	830547/003	2021-09	2024-09
4.5	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2023-08	2025-08
4.6	EP 1200/B, NA/B1		Spitzenberger & Spies GmbH & Co. KG	B6278	N/A	N/A
4.7	DS 420S	Turn Table 2 m diameter	HD GmbH	420/573/99	N/A	N/A
4.8	AM 4.0	Antenna Mast 4 m	Maturo GmbH	AM4.0/180/1192 0513	N/A	N/A

The calibration interval is the time interval between "Last Calibration" and "Calibration Due"

6.2 TEST EQUIPMENT SOFTWARE

Semi-Anechoic Chamber:	
Software	Version
EMC32 Measurement Software	10.60.10
INNCO Mast Controller	1.02.62
MATURO Mast Controller	12.19
MATURO Turn-Table Controller	30.10
Fully-Anechoic Chamber:	
Software	Version
EMC32 Measurement Software	10.60.10
MATURO Turn-Unit Controller	11.10
MATURO Mast Controller	12.10
MATURO Turntable Controller	12.11
INNCO Mast Controller	1.02.62
TS 8997	
WMC32 Measurement Software	11.40.00
Conducted AC Emissions:	
Software	Version
EMC32 Measurement Software	10.60.20

7 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

		LISN insertion loss ESH3-	cable loss (incl. 10 dB atten-
Frequency	Corr.	Z5	uator)
MHz	dB	dB	dB
0.15	10.1	0.1	10.0
5	10.3	0.1	10.2
7	10.5	0.2	10.3
10	10.5	0.2	10.3
12	10.7	0.3	10.4
14	10.7	0.3	10.4
16	10.8	0.4	10.4
18	10.9	0.4	10.5
20	10.9	0.4	10.5
22	11.1	0.5	10.6
24	11.1	0.5	10.6
26	11.2	0.5	10.7
28	11.2	0.5	10.7
30	11.3	0.5	10.8

7.1 LISN R&S ESH3-Z5 (150 KHZ - 30 MHZ)

Sample calculation

 U_{LISN} (dB μ V) = U (dB μ V) + Corr. (dB)

U = Receiver reading

LISN Insertion loss = Voltage Division Factor of LISN

Corr. = sum of single correction factors of used LISN, cables, switch units (if used)

Linear interpolation will be used for frequencies in between the values in the table.

							-11-4-	-	-
			cable loss 1	cable loss 2	cable loss 3	cable	distance	d _{Limit}	d _{used}
	AF		(inside	outside	(switch	loss 4 (to	corr. (-40 dB/	(meas. distance	(meas. distance
Frequency	HFH-Z2)	Corr.	chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
MHz	dB (1/m)	dB	dB	dB	dB	dB	dB	m	m
0.009	20.50	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.01	20.45	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.015	20.37	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.02	20.36	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.025	20.38	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.03	20.32	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.05	20.35	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.08	20.30	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.1	20.20	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.2	20.17	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.3	20.14	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.49	20.12	-79.6	0.1	0.1	0.1	0.1	-80	300	3
0.490001	20.12	-39.6	0.1	0.1	0.1	0.1	-40	30	3
0.5	20.11	-39.6	0.1	0.1	0.1	0.1	-40	30	3
0.8	20.10	-39.6	0.1	0.1	0.1	0.1	-40	30	3
1	20.09	-39.6	0.1	0.1	0.1	0.1	-40	30	3
2	20.08	-39.6	0.1	0.1	0.1	0.1	-40	30	3
3	20.06	-39.6	0.1	0.1	0.1	0.1	-40	30	3
4	20.05	-39.5	0.2	0.1	0.1	0.1	-40	30	3
5	20.05	-39.5	0.2	0.1	0.1	0.1	-40	30	3
6	20.02	-39.5	0.2	0.1	0.1	0.1	-40	30	3
8	19.95	-39.5	0.2	0.1	0.1	0.1	-40	30	3
10	19.83	-39.4	0.2	0.1	0.2	0.1	-40	30	3
12	19.71	-39.4	0.2	0.1	0.2	0.1	-40	30	3
14	19.54	-39.4	0.2	0.1	0.2	0.1	-40	30	3
16	19.53	-39.3	0.3	0.1	0.2	0.1	-40	30	3
18	19.50	-39.3	0.3	0.1	0.2	0.1	-40	30	3
20	19.57	-39.3	0.3	0.1	0.2	0.1	-40	30	3
22	19.61	-39.3	0.3	0.1	0.2	0.1	-40	30	3
24	19.61	-39.3	0.3	0.1	0.2	0.1	-40	30	3
26	19.54	-39.3	0.3	0.1	0.2	0.1	-40	30	3
28	19.46	-39.2	0.3	0.1	0.3	0.1	-40	30	3
30	19.73	-39.1	0.4	0.1	0.3	0.1	-40	30	3

7.2 ANTENNA R&S HFH2-Z2 (9 KHZ – 30 MHZ)

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable)

distance correction = -40 * LOG ($d_{\text{Limit}}/d_{\text{used}}$) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values

7.3 ANTENNA R&S HL562 (30 MHZ – 1 GHZ)

$(d_{\text{Limit}} = 3 \text{ m})$

•						
	Fraguanay	AF R&S HL562	Corr	cable loss 1 (inside chamber)	cable loss 2 (outside chamber)	c lc (s
	Frequency		Corr.			ι
	MHz	dB (1/m)	dB	dB	dB	
	30	18.6	0.6	0.29	0.04	
	50	6.0	0.9	0.39	0.09	
	100	9.7	1.2	0.56	0.14	
	150	7.9	1.6	0.73	0.20	
	200	7.6	1.9	0.84	0.21	
	250	9.5	2.1	0.98	0.24	
	300	11.0	2.3	1.04	0.26	
	350	12.4	2.6	1.18	0.31	
	400	13.6	2.9	1.28	0.35	
	450	14.7	3.1	1.39	0.38	
	500	15.6	3.2	1.44	0.39	
	550	16.3	3.5	1.55	0.46	
	600	17.2	3.5	1.59	0.43	
	650	18.1	3.6	1.67	0.34	
	700	18.5	3.6	1.67	0.42	
	750	19.1	4.1	1.87	0.54	
	800	19.6	4.1	1.90	0.46	
	850	20.1	4.4	1.99	0.60	
	900	20.8	4.7	2.14	0.60	
	950	21.1	4.8	2.22	0.60	
	1000	21.6	4.9	2.23	0.61	
		(

cable	cable	cable	cable	distance	d _{Limit}	dused
loss 1	loss 2	loss 3	loss 4	corr.	(meas.	(meas.
(inside	(outside	(switch	(to	(-20 dB/	distance	distance
chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
dB	dB	dB	dB	dB	m	m
0.29	0.04	0.23	0.02	0.0	3	3
0.39	0.09	0.32	0.08	0.0	3	3
0.56	0.14	0.47	0.08	0.0	3	3
0.73	0.20	0.59	0.12	0.0	3	3
0.84	0.21	0.70	0.11	0.0	3	3
0.98	0.24	0.80	0.13	0.0	3	3
1.04	0.26	0.89	0.15	0.0	3	3
1.18	0.31	0.96	0.13	0.0	3	3
1.28	0.35	1.03	0.19	0.0	3	3
1.39	0.38	1.11	0.22	0.0	3	3
1.44	0.39	1.20	0.19	0.0	3	3
1.55	0.46	1.24	0.23	0.0	3	3
1.59	0.43	1.29	0.23	0.0	3	3
1.67	0.34	1.35	0.22	0.0	3	3
1.67	0.42	1.41	0.15	0.0	3	3
1.87	0.54	1.46	0.25	0.0	3	3
1.90	0.46	1.51	0.25	0.0	3	3
1.99	0.60	1.56	0.27	0.0	3	3
2.14	0.60	1.63	0.29	0.0	3	3
2.22	0.60	1.66	0.33	0.0	3	
2.23	0.61	1.71	0.30	0.0	3	3

$(d_{\text{Limit}} = 10 \text{ m})$

	·/								
30	18.6	-9.9	0.29	0.04	0.23	0.02	-10.5	10	3
50	6.0	-9.6	0.39	0.09	0.32	0.08	-10.5	10	3
100	9.7	-9.2	0.56	0.14	0.47	0.08	-10.5	10	3
150	7.9	-8.8	0.73	0.20	0.59	0.12	-10.5	10	3
200	7.6	-8.6	0.84	0.21	0.70	0.11	-10.5	10	3
250	9.5	-8.3	0.98	0.24	0.80	0.13	-10.5	10	3
300	11.0	-8.1	1.04	0.26	0.89	0.15	-10.5	10	3
350	12.4	-7.9	1.18	0.31	0.96	0.13	-10.5	10	3
400	13.6	-7.6	1.28	0.35	1.03	0.19	-10.5	10	3
450	14.7	-7.4	1.39	0.38	1.11	0.22	-10.5	10	3
500	15.6	-7.2	1.44	0.39	1.20	0.19	-10.5	10	3
550	16.3	-7.0	1.55	0.46	1.24	0.23	-10.5	10	3
600	17.2	-6.9	1.59	0.43	1.29	0.23	-10.5	10	3
650	18.1	-6.9	1.67	0.34	1.35	0.22	-10.5	10	3
700	18.5	-6.8	1.67	0.42	1.41	0.15	-10.5	10	3
750	19.1	-6.3	1.87	0.54	1.46	0.25	-10.5	10	3
800	19.6	-6.3	1.90	0.46	1.51	0.25	-10.5	10	3
850	20.1	-6.0	1.99	0.60	1.56	0.27	-10.5	10	3
900	20.8	-5.8	2.14	0.60	1.63	0.29	-10.5	10	3
950	21.1	-5.6	2.22	0.60	1.66	0.33	-10.5	10	3
1000	21.6	-5.6	2.23	0.61	1.71	0.30	-10.5	10	3

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-20 * LOG (d_{Limit}/d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

7.4 ANTENNA R&S HF907 (1 GHZ – 18 GHZ)

				r					
						cable			
				cable		loss 3			
				loss 1		(switch			
				(relay +	cable	unit,			
	AF			cable	loss 2	atten-	cable		
	R&S			inside	(outside	uator &	loss 4 (to		
Frequency	HF907	Corr.		chamber)	chamber)	pre-amp)	receiver)		
MHz	dB (1/m)	dB		dB	dB	dB	dB		
1000	24.4	-19.4		0.99	0.31	-21.51	0.79		
2000	28.5	-17.4		1.44	0.44	-20.63	1.38		
3000	31.0	-16.1		1.87	0.53	-19.85	1.33		
4000	33.1	-14.7		2.41	0.67	-19.13	1.31		
5000	34.4	-13.7		2.78	0.86	-18.71	1.40		
6000	34.7	-12.7		2.74	0.90	-17.83	1.47		
7000	35.6	-12.7		2.74	0.90	-16.19	1.47		
7000	55.0	-11.0		2.02	0.80	-10.19	1.40		
<u>г</u>			1				an-1-1-		1
							cable		
				aphla			loss 4		
				cable	ophia	ophia	(switch		used
	<u>۸</u> ۲			loss 1	cable	cable	unit,	ashla	used
	AF			(relay	loss 2	loss 3	atten-	cable	for
F	R&S	Com		inside	(inside	(outside	uator &	loss 5 (to	FCC
Frequency	HF907	Corr.		chamber)	chamber)	chamber)	pre-amp)	receiver)	15.247
MHz	dB (1/m)	dB		dB	dB	dB	dB	dB	
3000	31.0	-23.4		0.47	1.87	0.53	-27.58	1.33	
4000	33.1	-23.3		0.56	2.41	0.67	-28.23	1.31	
5000	34.4	-21.7		0.61	2.78	0.86	-27.35	1.40	
6000	34.7	-21.2		0.58	2.74	0.90	-26.89	1.47	
7000	35.6	-19.8		0.66	2.82	0.86	-25.58	1.46	
				cable					
				loss 1	cable	cable	cable	cable	cable
	AF			(relay	loss 2	loss 3	loss 4	loss 5	loss 6
	R&S			inside	(High	(pre-	(inside	(outside	(to
Frequency	HF907	Corr.		chamber)	Pass)	amp)	chamber)	chamber)	receiver)
MHz	dB (1/m)	dB		dB	dB	dB	dB	dB	dB
7000	35.6	-57.3		0.56	1.28	-62.72	2.66	0.94	1.46
8000	36.3	-56.3		0.69	0.71	-61.49	2.84	1.00	1.53
9000	37.1	-55.3		0.68	0.65	-60.80	3.06	1.09	1.60
10000	37.5	-56.2		0.70	0.54	-61.91	3.28	1.20	1.67
11000	37.5	-55.3		0.80	0.61	-61.40	3.43	1.27	1.70
12000	37.6	-53.7		0.84	0.42	-59.70	3.53	1.26	1.73
13000	38.2	-53.5		0.83	0.44	-59.81	3.75	1.32	1.83
14000	39.9	-56.3		0.05	0.53	-63.03	3.91	1.40	1.05
15000	40.9	-54.1		0.91	0.55	-61.05	4.02	1.44	1.83
16000	41.3	-54.1		1.23	0.34	-61.51	4.02	1.44	1.85
17000	41.3								
	-	-54.4		1.36	0.76	-62.36	4.34	1.53	2.00
18000	44.2	-54.7		1.70	0.53	-62.88	4.41	1.55	1.91

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table. Tables show an extract of values.

			cable	cable	cable	cable	cable
	AF		loss 1	loss 2	loss 3	loss 4	loss 5
	EMCO		(inside	(pre-	(inside	(switch	(to
Frequency	3160-09	Corr.	chamber)	amp)	chamber)	unit)	receiver)
MHz	dB (1/m)	dB	dB	dB	dB	dB	dB
18000	40.2	-23.5	0.72	-35.85	6.20	2.81	2.65
18500	40.2	-23.2	0.69	-35.71	6.46	2.76	2.59
19000	40.2	-22.0	0.76	-35.44	6.69	3.15	2.79
19500	40.3	-21.3	0.74	-35.07	7.04	3.11	2.91
20000	40.3	-20.3	0.72	-34.49	7.30	3.07	3.05
20500	40.3	-19.9	0.78	-34.46	7.48	3.12	3.15
21000	40.3	-19.1	0.87	-34.07	7.61	3.20	3.33
21500	40.3	-19.1	0.90	-33.96	7.47	3.28	3.19
22000	40.3	-18.7	0.89	-33.57	7.34	3.35	3.28
22500	40.4	-19.0	0.87	-33.66	7.06	3.75	2.94
23000	40.4	-19.5	0.88	-33.75	6.92	3.77	2.70
23500	40.4	-19.3	0.90	-33.35	6.99	3.52	2.66
24000	40.4	-19.8	0.88	-33.99	6.88	3.88	2.58
24500	40.4	-19.5	0.91	-33.89	7.01	3.93	2.51
25000	40.4	-19.3	0.88	-33.00	6.72	3.96	2.14
25500	40.5	-20.4	0.89	-34.07	6.90	3.66	2.22
26000	40.5	-21.3	0.86	-35.11	7.02	3.69	2.28
26500	40.5	-21.1	0.90	-35.20	7.15	3.91	2.36

7.5 ANTENNA EMCO 3160-09 (18 GHZ - 26.5 GHZ)

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table. Table shows an extract of values.

	AF EMCO		cable loss 1 (inside	cable loss 2 (outside	cable loss 3 (switch	cable loss 4 (to	distance corr. (-20 dB/	d _{Limit} (meas. distance	d _{used} (meas. distance
Frequency	3160-10	Corr.	chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
GHz	dB (1/m)	dB	dB	dB	dB	dB	dB	m	m
26.5	43.4	-11.2	4.4				-9.5	3	1.0
27.0	43.4	-11.2	4.4				-9.5	3	1.0
28.0	43.4	-11.1	4.5				-9.5	3	1.0
29.0	43.5	-11.0	4.6				-9.5	3	1.0
30.0	43.5	-10.9	4.7				-9.5	3	1.0
31.0	43.5	-10.8	4.7				-9.5	3	1.0
32.0	43.5	-10.7	4.8				-9.5	3	1.0
33.0	43.6	-10.7	4.9				-9.5	3	1.0
34.0	43.6	-10.6	5.0				-9.5	3	1.0
35.0	43.6	-10.5	5.1				-9.5	3	1.0
36.0	43.6	-10.4	5.1				-9.5	3	1.0
37.0	43.7	-10.3	5.2				-9.5	3	1.0
38.0	43.7	-10.2	5.3				-9.5	3	1.0
39.0	43.7	-10.2	5.4				-9.5	3	1.0
40.0	43.8	-10.1	5.5				-9.5	3	1.0

7.6 ANTENNA EMCO 3160-10 (26.5 GHZ - 40 GHZ)

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

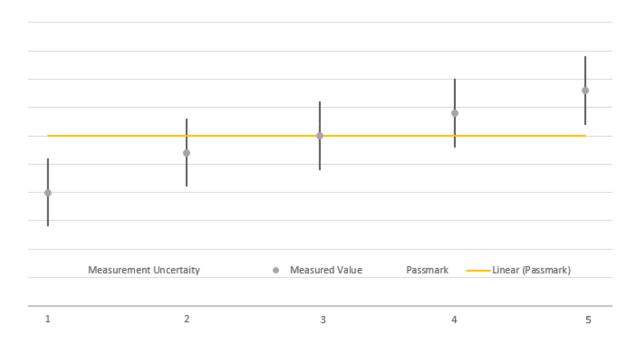
U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

distance correction = $-20 * LOG (d_{Limit}/d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.


Table shows an extract of values.

8 MEASUREMENT UNCERTAINTIES

Test Case	Parameter	Uncertainty
AC Power Line	Power	± 3.4 dB
Field Strength of spurious radiation	Power	± 5.5 dB
6 dB / 26 dB / 99% Bandwidth	Power Frequency	± 2.9 dB ± 11.2 kHz
Conducted Output Power	Power	± 2.2 dB
Band Edge Compliance	Power Frequency	± 2.2 dB ± 11.2 kHz
Frequency Stability	Frequency	± 25 Hz
Power Spectral Density	Power	± 2.2 dB

The measurement uncertainties for all parameters are calculated with an expansion factor (coverage factor) k = 1.96. This means, that the true value is in the corresponding interval with a probability of 95 %.

The verdicts in this test report are given according the above diagram:

Case	Measured Value	Uncertainty Range	Verdict
1	below pass mark	below pass mark	Passed
2	below pass mark	within pass mark	Passed
3	on pass mark	within pass mark	Passed
4	above pass mark	within pass mark	Failed
5	above pass mark	above pass mark	Failed

That means, the laboratory applies, as decision rule (see ISO/IEC 17025:2017), the so-called shared risk principle.

9 PHOTO REPORT

Please see separate photo report.