

FCC Test Report

FCC ID	:	XNAWSM02
Equipment	:	Nokia Sleep
Model No.	:	WSM02
Brand Name	:	NOKIA
Applicant	:	NOKIA TECHNOLOGIES (France)
Address	:	2 rue Maurice Hartmann 92130 Issy-Les-Moulineaux France
Standard	:	47 CFR FCC Part 15.247
Received Date	:	Sep. 28, 2017
Tested Date	:	Dec. 22, 2017 ~ Jan. 09, 2018

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Reviewed by:

ong Chen

Along Cher Assistant Manager

Approved by:

Gary Chang / Manager

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Local Support Equipment List	7
1.3	Test Setup Chart	7
1.4	The Equipment List	8
1.5	Test Standards	9
1.6	Measurement Uncertainty	9
2	TEST CONFIGURATION	10
2.1	Testing Condition	10
2.2	The Worst Test Modes and Channel Details	10
3	TRANSMITTER TEST RESULTS	11
3.1	Conducted Emissions	11
3.2	Unwanted Emissions into Restricted Frequency Bands	14
3.3	Unwanted Emissions into Non-Restricted Frequency Bands	30
3.4	Conducted Output Power	35
3.5	Number of Hopping Frequency	37
3.6	20dB and Occupied Bandwidth	39
3.7	Channel Separation	41
3.8	Number of Dwell Time	43
		-

Release Record

Report No.	Version	Description	Issued Date
FR792802AD	Rev. 01	Initial issue	Jan. 31, 2018

FCC Rules	Test Items	Measured	Result
15.207	Conducted Emissions	[dBuV]: 0.476MHz 31.90 (Margin -14.51dB) - AV	Pass
15.247(d)	Radiated Emissions	[dBuV/m at 3m]: 953.00MHz	Pass
15.209	Radiated Emissions	37.33 (Margin -8.67dB) - PK	F 855
15.247(d)	Band Edge	Meet the requirement of limit	Pass
15.247(b)(1)	Conducted Output Power	Power [dBm]: -3.07	Pass
15.247(a)(1)(iii)	Number of Hopping Channels	Meet the requirement of limit	Pass
15.247(a)(1)	Hopping Channel Separation	Meet the requirement of limit	Pass
15.247(a)(1)(iii)	Dwell Time	Meet the requirement of limit	Pass
15.203	Antenna Requirement	Meet the requirement of limit	Pass

Summary of Test Results

General Description 1

Information 1.1

1.1.1 Specification of the Equipment under Test (EUT)

	R	F General Information	on	
Frequency Range (MHz)	Bluetooth Mode	Ch. Frequency (MHz)	Channel Number	Data Rate
2400-2483.5	BR	2402-2480	0-78 [79]	1 Mbps
2400-2483.5	EDR	2402-2480	0-78 [79]	2 Mbps
2400-2483.5	EDR	2402-2480	0-78 [79]	3 Mbps
Note 1: RF output po Note 2: Bluetooth BR Note 3: Bluetooth ED	uses a GFSK.		·	

Note 3: Bluetooth EDR uses a combination of $\pi/4$ -DQPSK and 8DPSK.

1.1.2 Antenna Details

Ant. No.	Brand	Model	Туре	Connector	Gain (dBi)	Remarks
1	Broadcom	BCM9Fractal	PCB	N/A	2.8	

1.1.3 Power Supply Type of Equipment under Test (EUT)

Power Supply Type 5Vdc from AC adapter
--

1.1.4 Accessories

		Accessories
No.	Equipment	Description
1	AC adapter	Brand: ABP Model: SWA06B-050-1000U Power Rating: I/P: 100-240Vac, 50-60Hz, 0.3A O/P: 5Vdc, 1000mA

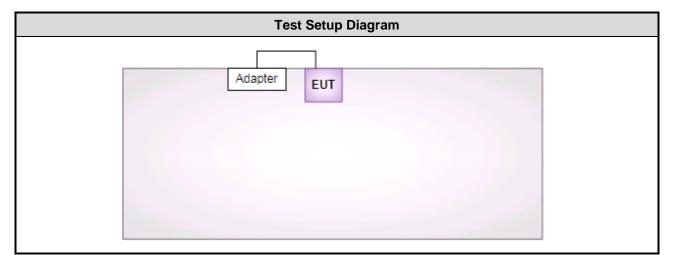
1.1.5 Channel List

	Frequency	band (MHz)		2400~2483.5			
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

1.1.6 Test Tool and Duty Cycle

Test Tool Tera Term, Version: 4.94

1.1.7 Power Setting


Modulation Mode		Test Frequency (MHz)	
	2402	2441	2480
GFSK/1Mbps	0x00	0x00	0x00
π/4-DQPSK /2Mbps	0x00	0x00	0x00
8DPSK/3Mbps	0x00	0x00	0x00

1.2 Local Support Equipment List

		Su	pport Equipment	List	
No.	Equipment	Brand	Model	FCC ID	Signal cable / Length (m)
1	Notebook	DELL	Latitude E6430	Doc	

1.3 Test Setup Chart

Note: The notebook is disconnected from EUT and removed from test table when EUT is set to transmit continuously.

The Equipment List 1.4

Test Item	Conducted Emission						
Test Site	Conduction room 1 / (CO01-WS)						
Tested Date	Jan. 09, 2018						
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until		
Receiver	R&S	ESR3	101657	Jan. 05, 2018	Jan. 04, 2019		
LISN	SCHWARZBECK	Schwarzbeck 8127	8127-667	Nov. 13, 2017	Nov. 12, 2018		
RF Cable-CON	EMC	EMCCFD300-BM-BM-6000	50821	Dec. 18, 2017	Dec. 17, 2018		
Measurement Software	AUDIX	e3	6.120210k	NA	NA		
Note: Calibration Int	Note: Calibration Interval of instruments listed above is one year.						

Test Item	Radiated Emission						
Test Site	966 chamber 3 / (03C	H03-WS)					
Tested Date	Dec. 25, 2017						
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until		
Spectrum Analyzer	R&S	FSV40	101063	Mar. 15, 2017	Mar. 14, 2018		
Receiver	R& S	ESR3	101658	Nov. 20, 2017	Nov. 19, 2018		
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-685	Apr. 28, 2017	Apr. 27, 2018		
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1206	Feb. 09, 2017	Feb. 08, 2018		
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Nov. 23, 2017	Nov. 22, 2018		
Loop Antenna	R&S	HFH2-Z2	100330	Nov. 13, 2017	Nov. 12, 2018		
Loop Antenna Cable	KOAX KABEL	101354-BW	101354-BW	Dec. 07, 2017	Dec. 06, 2018		
Preamplifier	EMC	EMC02325	980187	Sep. 04, 2017	Sep. 03, 2018		
Preamplifier	Agilent	83017A	MY53270014	Aug. 21, 2017	Aug. 20, 2018		
Preamplifier	EMC	EMC184045B	980192	Aug. 22, 2017	Aug. 21, 2018		
RF cable-3M	HUBER+SUHNER	SUCOFLEX104	MY22620/4	Nov. 27, 2017	Nov. 26, 2018		
RF cable-8M	HUBER+SUHNER	SUCOFLEX104	MY32487/4	Nov. 27, 2017	Nov. 26, 2018		
RF cable-1M	HUBER+SUHNER	SUCOFLEX104	MY22624/4	Nov. 27, 2017	Nov. 26, 2018		
LF cable-0.8M	EMC	EMC8D-NM-NM-800	EMC8D-NM-NM-800 -001	Nov. 27, 2017	Nov. 26, 2018		
LF cable-3M	EMC	EMC8D-NM-NM-300 0	131103	Nov. 27, 2017	Nov. 26, 2018		
LF cable-13M	EMC	EMC8D-NM-NM-130 00	131104	Nov. 27, 2017	Nov. 26, 2018		
Measurement Software	AUDIX	e3	6.120210g	NA	NA		
Note: Calibration Inter	val of instruments liste	d above is one year.					

RF Conducted				
(TH01-WS)				
Dec. 22, 2017				
Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until
R&S	FSV40	101063	Mar. 15, 2017	Mar. 14, 2018
Anritsu	ML2495A	1241002	Oct. 16, 2017	Oct. 15, 2018
Anritsu	MA2411B	1207366	Oct. 16, 2017	Oct. 15, 2018
G.W .	APS-9102	EL920581	Jun. 03, 2017	Jun. 02, 2018
Sporton	Sporton_1	1.3.30	NA	NA
	(TH01-WS) Dec. 22, 2017 Manufacturer R&S Anritsu Anritsu G.W .	(TH01-WS)Dec. 22, 2017ManufacturerModel No.R&SFSV40AnsitsuML2495AAnritsuML2495AAnritsuMA2411BG.W.APS-9102	Manufacturer Model No. Serial No. R&S FSV40 101063 Anritsu ML2495A 1241002 Anritsu MA2411B 1207366 G.W. APS-9102 EL920581	Manufacturer Model No. Serial No. Calibration Date R&S FSV40 101063 Mar. 15, 2017 Anritsu ML2495A 1241002 Oct. 16, 2017 Anritsu MA2411B 1207366 Oct. 16, 2017 G.W. APS-9102 EL920581 Jun. 03, 2017

1.5 Test Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.247 ANSI C63.10-2013

1.6 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty					
Parameters	Uncertainty				
Bandwidth	±34.134 Hz				
Conducted power	±0.808 dB				
Power density	±0.463 dB				
Conducted emission	±2.670 dB				
AC conducted emission	±2.90 dB				
Radiated emission ≤ 1GHz	±3.66 dB				
Radiated emission > 1GHz	±5.37 dB				

2 Test Configuration

2.1 Testing Condition

Test Item	Test Site	Ambient Condition	Tested By
AC Conduction	CO01-WS	23°C / 59%	Alex Tsai
Radiated Emissions	03CH03-WS	23-24°C / 64-66%	Aska Huang
RF Conducted	TH01-WS	21°C / 64%	Aska Huang

➢ FCC Designation No.: TW0009

➢ FCC site registration No.: 207696

➢ IC site registration No.: 10807C-1

2.2 The Worst Test Modes and Channel Details

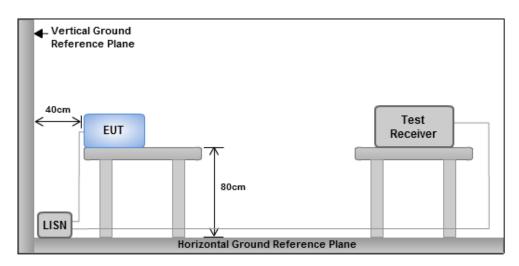
Test item	Mode	Test Frequency (MHz)	Data Rate (Mbps)	Test Configuration
Conducted Emissions	GFSK	2402	1Mbps	
Radiated Emissions ≤ 1GHz	GFSK	2402	1Mbps	
Radiated Emissions > 1GHz	GFSK 8DPSK	2402, 2441, 2480 2402, 2441, 2480	1Mbps 3Mbps	
Conducted Output Power	GFSK л /4 QDPSK 8DPSK	2402, 2441, 2480 2402, 2441, 2480 2402, 2441, 2480	1Mbps 2Mbps 3Mbps	
Number of Hopping Channels	GFSK 8DPSK	2402~2480 2402~2480	1Mbps 3Mbps	
Hopping Channel Separation 20dB and Occupied bandwidth	GFSK 8DPSK	2402, 2441, 2480 2402, 2441, 2480	1Mbps 3Mbps	
Dwell Time	GFSK 8DPSK	2402 2402	1Mbps 3Mbps	

NOTE:

 The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement – X, Y, and Z-plane. The **Y-plane** results were found as the worst case and were shown in this report.

3 Transmitter Test Results

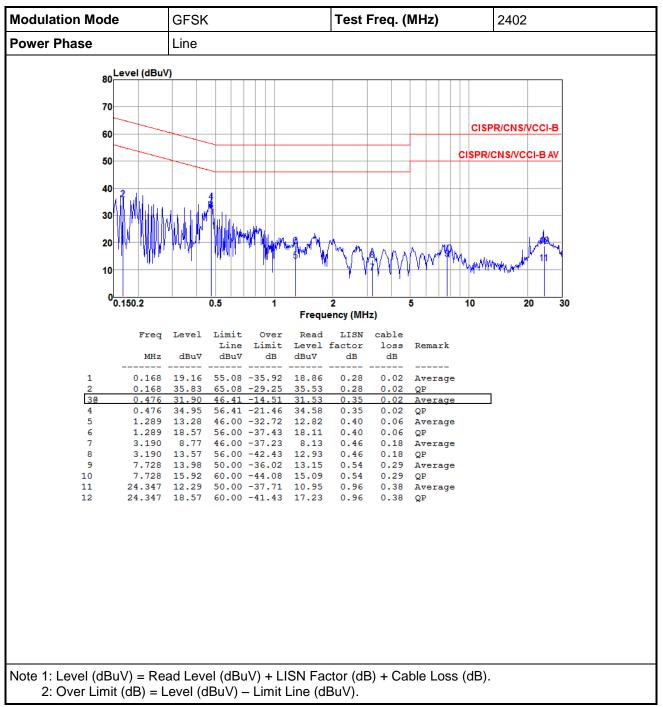
3.1 Conducted Emissions


3.1.1 Limit of Conducted Emissions

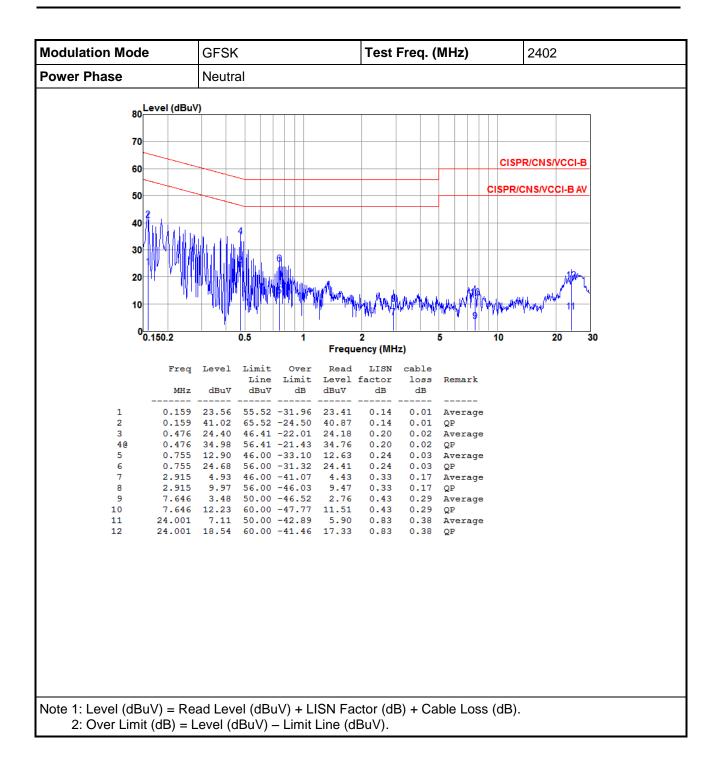
Conducted Emissions Limit						
Frequency Emission (MHz)	Quasi-Peak	Average				
0.15-0.5	66 - 56 *	56 - 46 *				
0.5-5	56	46				
5-30	60	50				
Note 1: * Decreases with the logarith	nm of the frequency.					

3.1.2 Test Procedures

- 1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device.
- The device is connected to line impedance stabilization network (LISN) and other accessories are connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.
- 3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz.
- 4. This measurement was performed with AC 120V/60Hz


3.1.3 Test Setup

Note: 1. Support units were connected to second LISN.


2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

3.1.4 Test Result of Conducted Emissions

3.2 Unwanted Emissions into Restricted Frequency Bands

3.2.1 Limit of Unwanted Emissions into Restricted Frequency Bands

Restricted Band Emissions Limit							
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)				
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300				
0.490~1.705	24000/F(kHz)	33.8 - 23	30				
1.705~30.0	30	29	30				
30~88	100	40	3				
88~216	150	43.5	3				
216~960	200	46	3				
Above 960	500	54	3				

Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2:**

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

3.2.2 Test Procedures

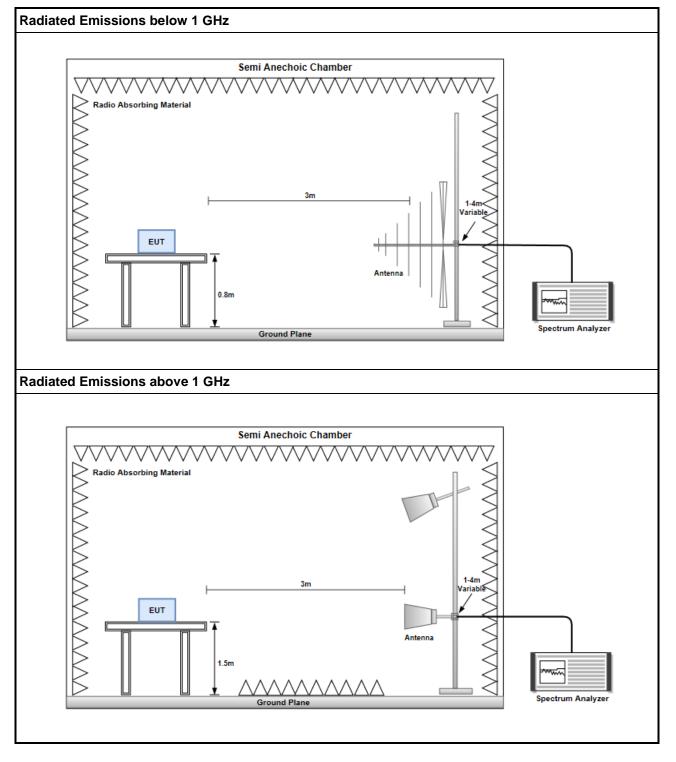
- Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m
- Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

Note:

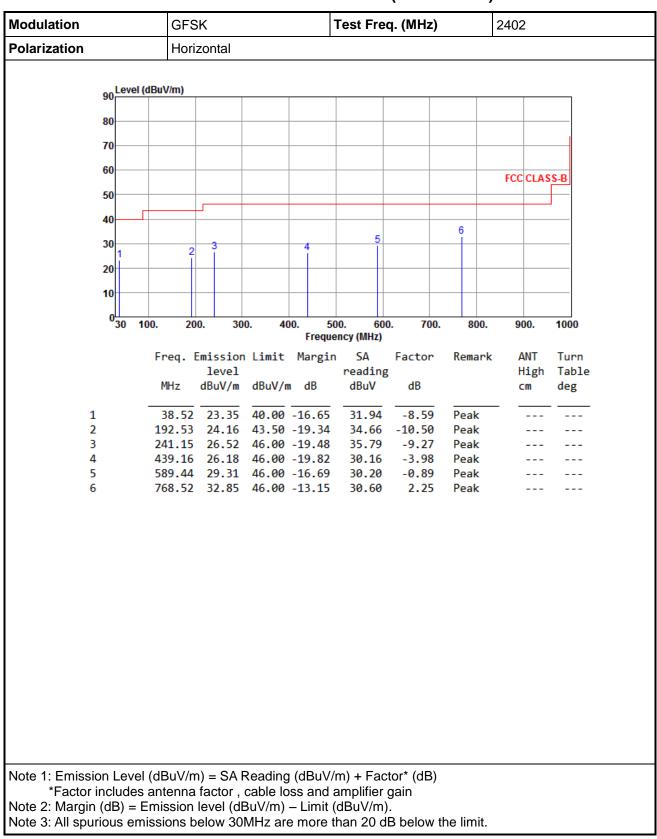
- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. Radiated emission above 1GHz / Peak value RBW=1MHz, VBW=3MHz and Peak detector

Radiated emission above 1GHz / Average value for harmonics The average value is: Average = Peak value + 20log(Duty cycle) Where the duty factor is calculated from following formula for DH5 packet type which has worst duty factor:

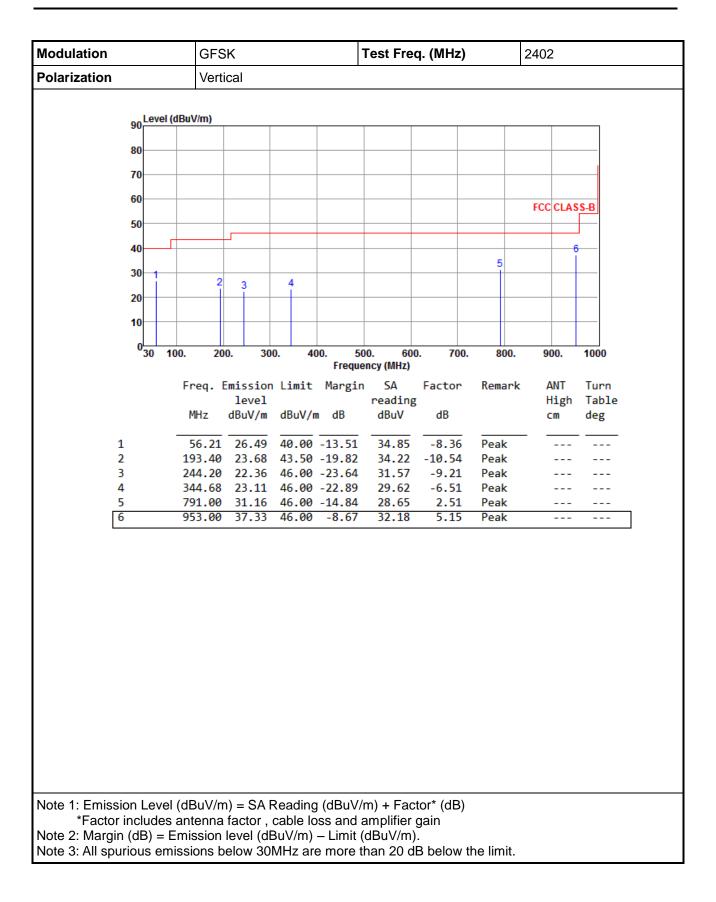
3.

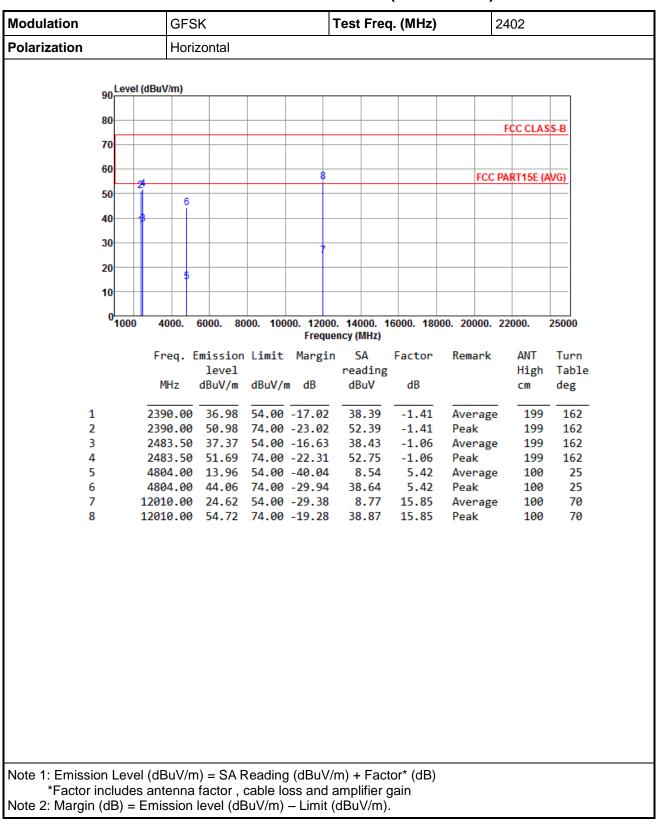

20log (Duty cycle) = 20log
$$\frac{1s / 1600 * 5}{100 \text{ ms}}$$
 = -30.1dB

Radiated emission above 1GHz / Average value for other emissions

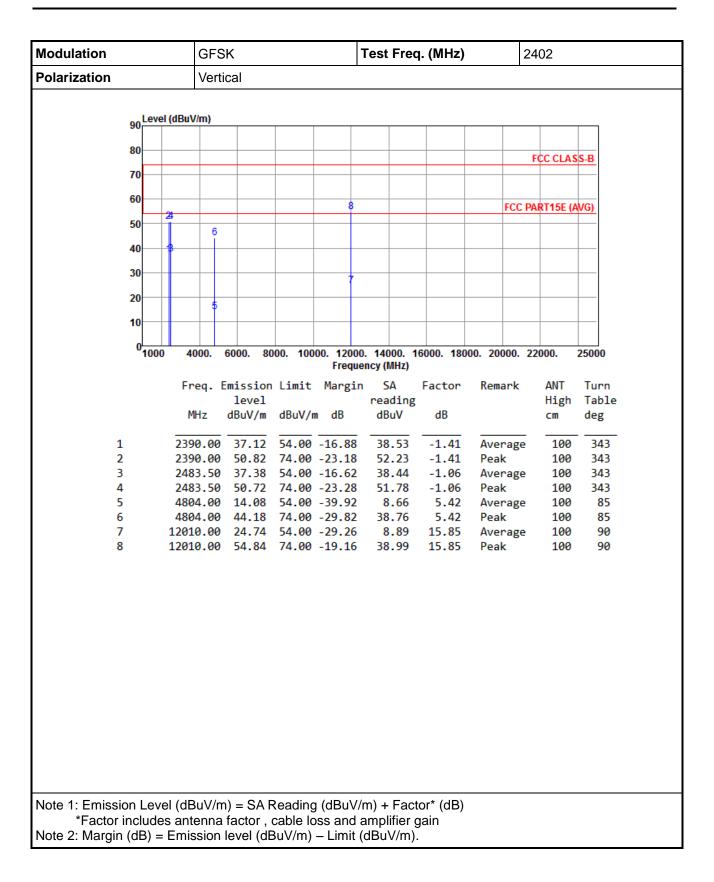

4. RBW=1MHz, VBW=1/T and Peak detector

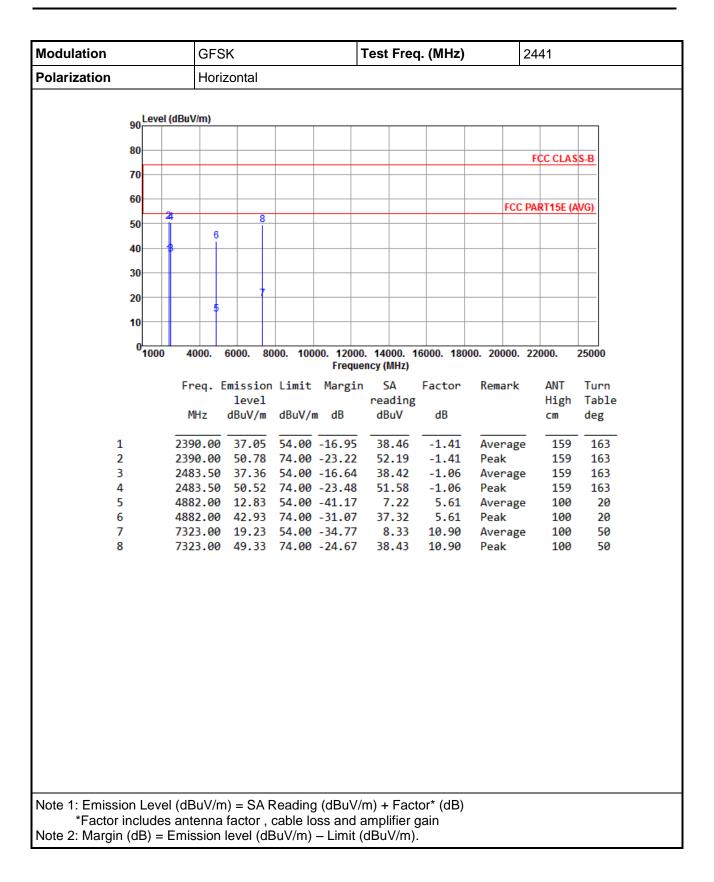
3.2.3 Test Setup



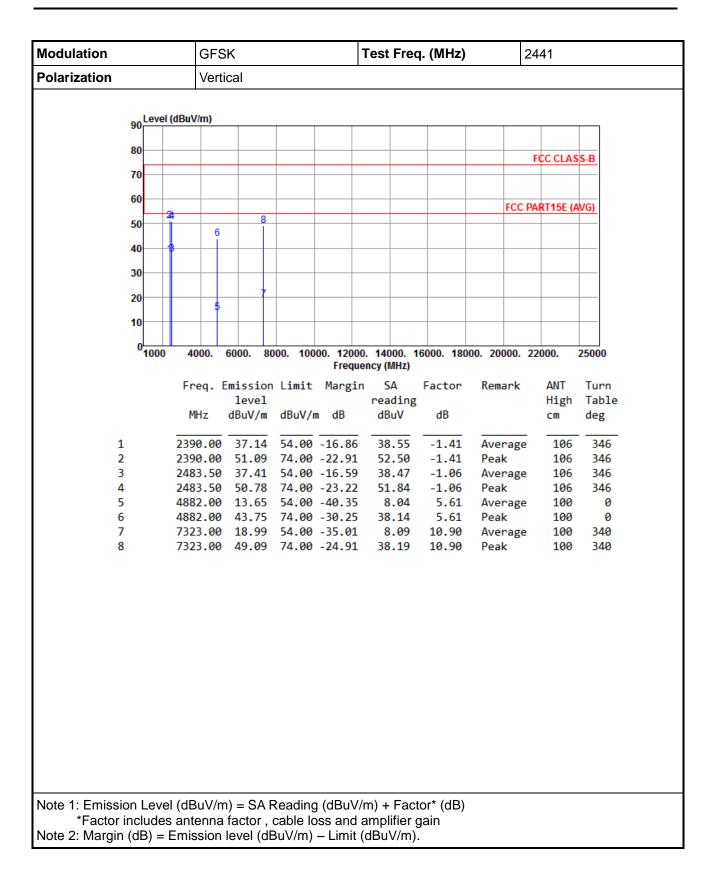


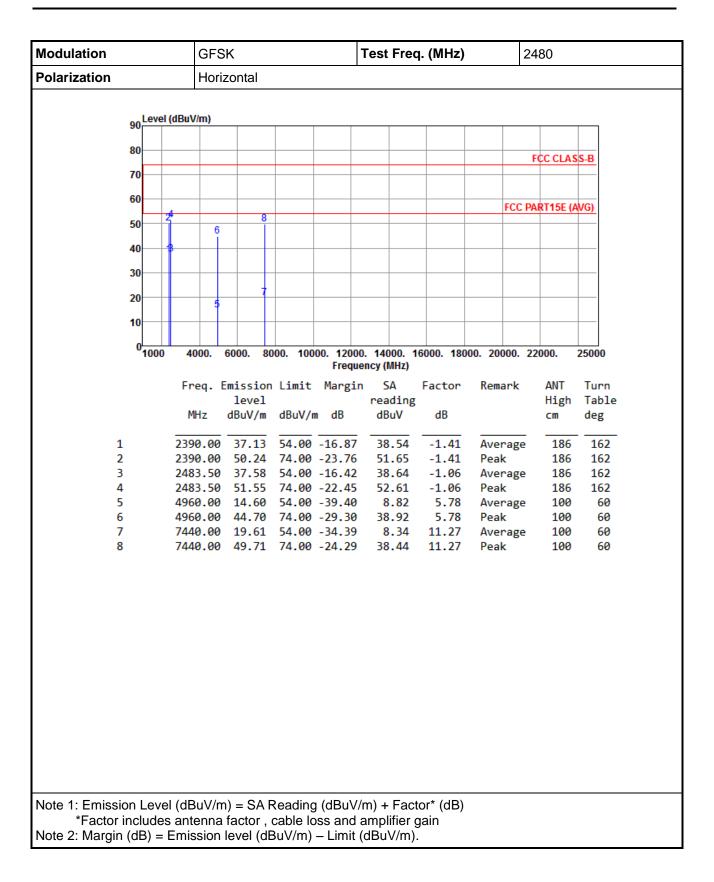
3.2.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

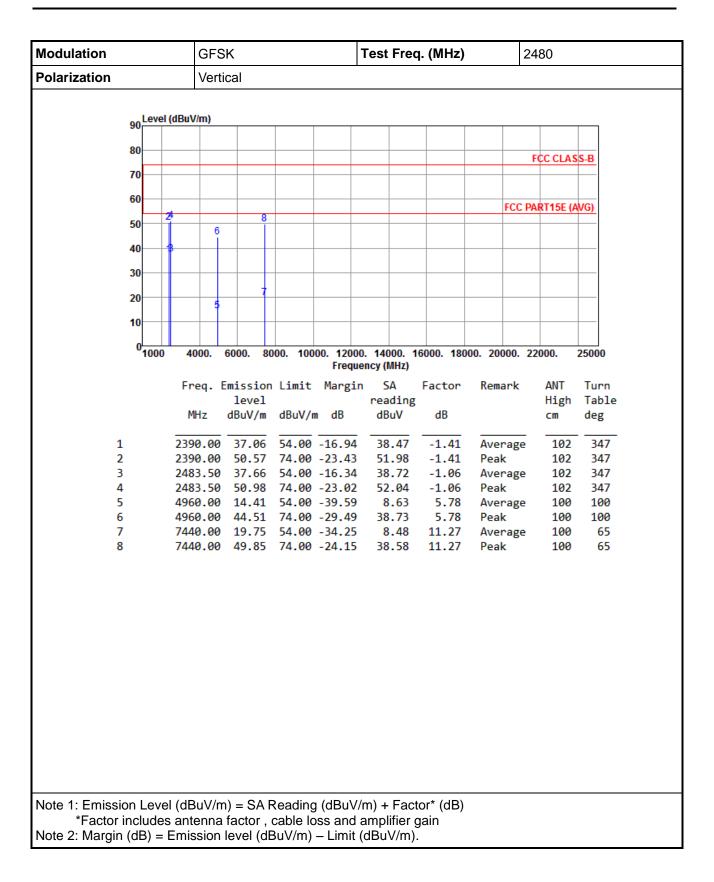


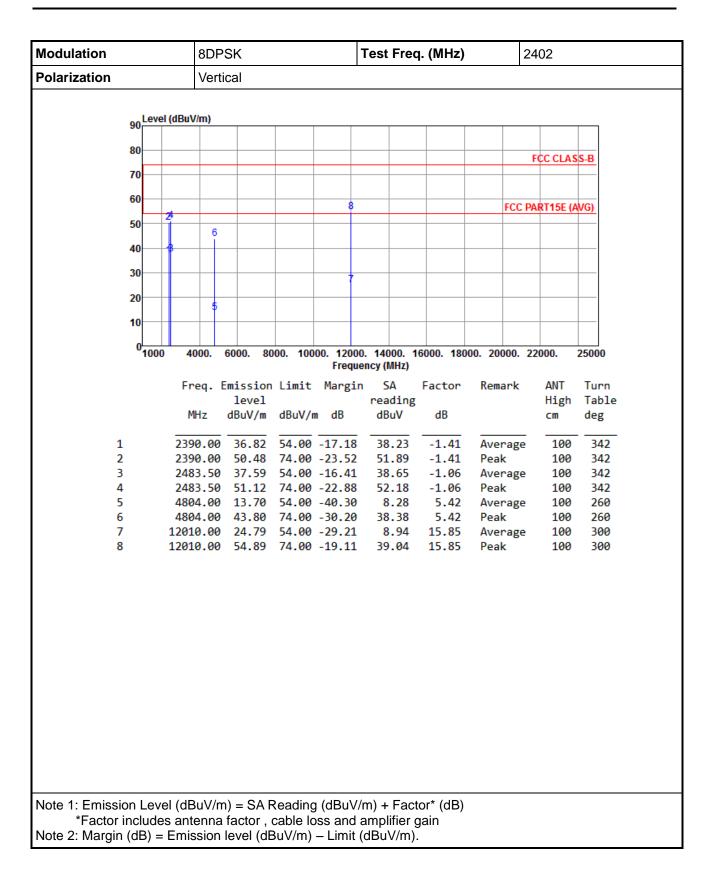


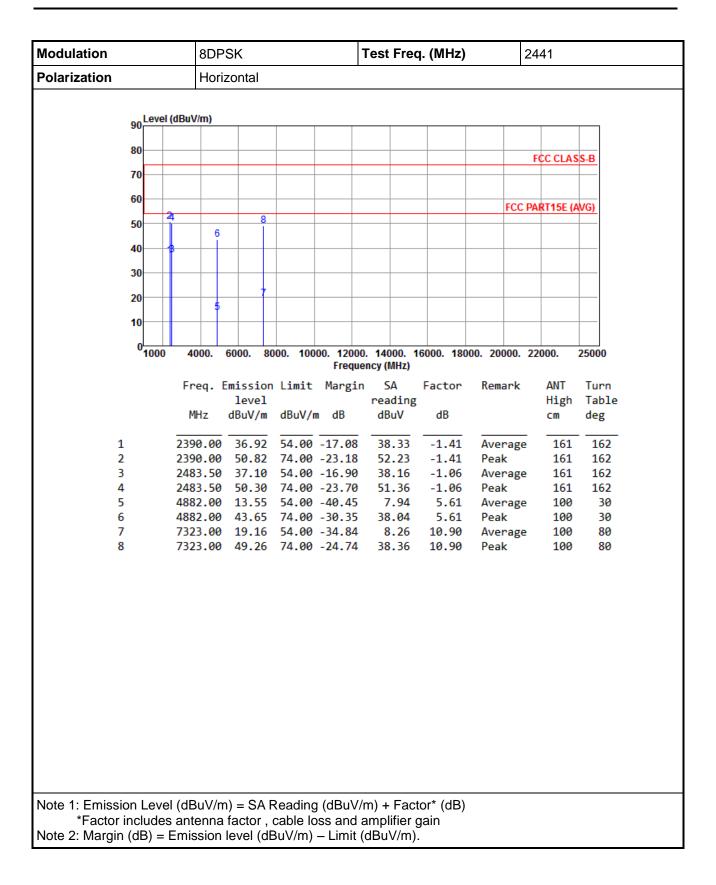
3.2.5 Transmitter Radiated Unwanted Emissions (Above 1GHz) for GFSK



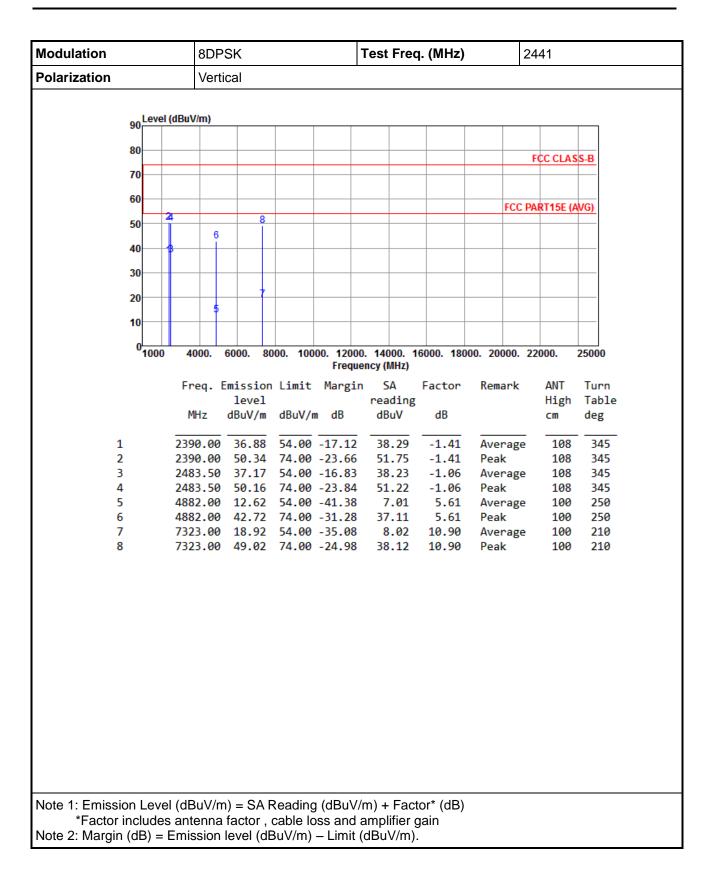


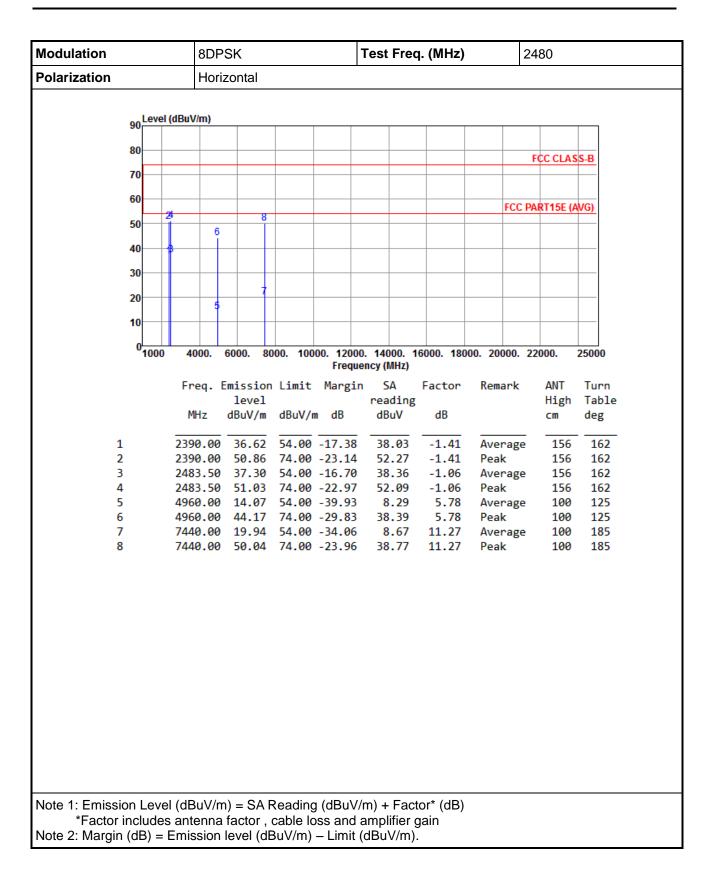


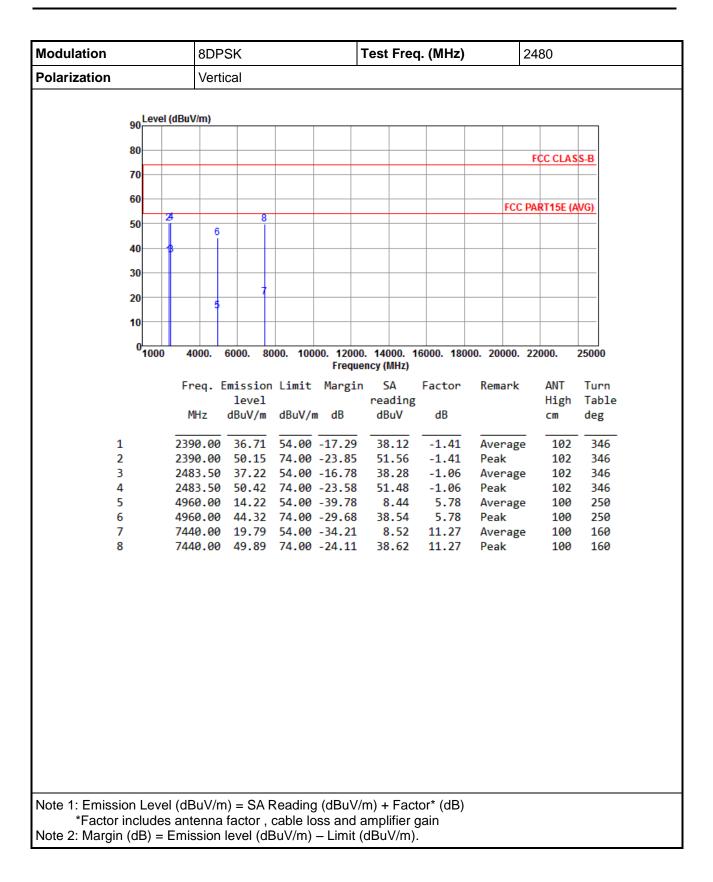



Modulation	8DP	8DPSK Test Freq. (MHz) 2402								
Polarization	Polarization Horizontal									
90.	Level (dBuV/m)								
80									FCC CLA	SS-B
70										
60										
00	-				8			FC	C PART15E (AVG)
50	1	. 6								
40										
20										
30					7					
20		5								
10		Ĭ								
0	1000	4000.	6000. 80	00. 100		0. 14000. 1 ency (MHz)	6000. 180	00. 20000	22000.	25000
		Frea. I	Emission	Limit	Margir	n SA	Factor	Remark	ANT	Turn
			level			reading			High	
		MHz	dBuV/m	dBuV/n	ı dB	dBuV	dB		cm	deg
1		2390.00	37.19	54.00	-16.81	38.60	-1.41	Averag	e 196	159
2			50.32				-1.41	Peak	196	
3			37.76				-1.06	Averag		
4			51.16 13.99				-1.06 5.42	Peak Averag	196 e 100	
6			44.09				5.42	_	100	
7	1	12010.00					15.85			
8	1	12010.00	54.80	74.00	-19.20	38.95	15.85	Peak	100	230
) ¹ .		() . F				
Note 1: Emission I										
Factor incl* Note 2: Margin (dE										
	-, - L			, a v/m)			•			

3.2.6 Transmitter Radiated Unwanted Emissions (Above 1GHz) for 8DPSK





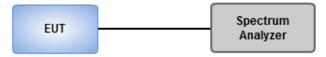


3.3 Unwanted Emissions into Non-Restricted Frequency Bands

3.3.1 Limit of Unwanted Emissions into Non-Restricted Frequency Bands

The peak output power measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz.

3.3.2 Test Procedures

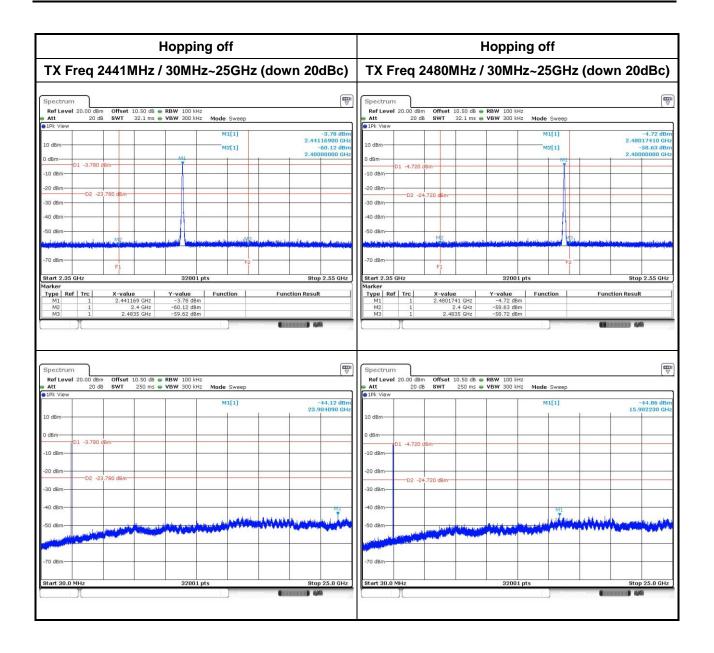

Reference Level Measurement

- 1. Set the RBW = 100 kHz, VBW = 300 kHz, Detector = peak.
- 2. Set Sweep time = auto couple, Trace mode = max hold.
- 3. Allow trace to fully stabilize.
- 4. Use the peak marker function to determine the maximum amplitude level.

Unwanted Emissions Level Measurement

- 1. Set RBW = 100 kHz, VBW = 300 kHz, Detector = peak.
- 2. Trace Mode = max hold, Sweep = auto couple.
- 3. Allow the trace to stabilize.
- 4. Use peak marker function to determine maximum amplitude of all unwanted emissions within any 100 kHz bandwidth.

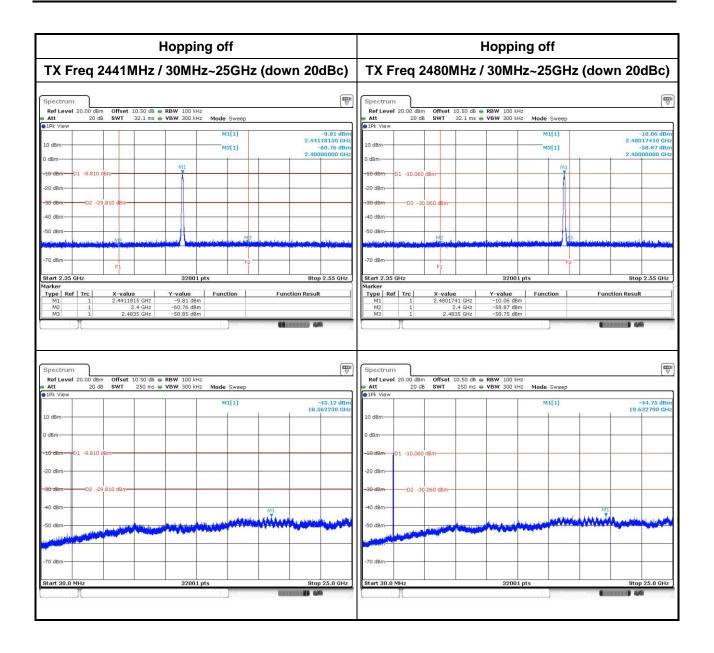
3.3.3 Test Setup



3.3.4 Unwanted Emissions into Non-Restricted Frequency Bands

GFSK

	Hopping on		Hopping off							
30MHz~	25GHz (dowi	n 20dBc)	TX F	req 240	02MHz	/ 30MH	z∼25Gŀ	lz (dov	wn 20	dBc)
	dB B RBW 100 kHz			20.00 dBm 0	ffset 10.50 dB	RBW 100 kHz				H
Att 20 dB 🖷 SWT 32.1 m 1Pk View	ns 🖷 VBW 300 kHz 🛛 Mode 9	-	Att 1Pk View	20 dB 8'	WT 32.1 ms	• VBW 300 kHz				
10 dBm-	M3[: M1[:	2.48350000 GHz	10 dBm				M3[1]		2.483	-61.78 dB 350000 GH -3.42 dB 203270 GH
To dam.	nin and the second second		-10 dBm	D1 -3.420 dBm—	Ì					
-20 dBm D2 -22.510 dBm dBm			-20 dBm		d8m					-
-40 dBm		M3	-40 dBm							
-70 dBm F1		F2	-70 dBm	has the state	F1	di de la construit		Render Allands and an and a second se		
Start 2.35 GHz	32001 pts	Stop 2.55 GHz	Start 2.35		Î	32001	pts		Stop	p 2.55 GHz
Marker Type Ref Trc X-value M1 1 2.4261757 GHz 2.4 GHz M2 1 2.4 GHz M3 1 2.480 GHz	Y-value Functio -2.51 dBm -59.43 dBm -57.89 dBm	n Function Result	Marker Type Ref M1 M2 M3	Trc X	-value .4020327 GHz 2.4 GHz 2.4835 GHz	Y-value -3.42 dBm -62.15 dBm -61.78 dBm		Fur	nction Result	t
Ref Level 20.00 dBm Offset 10.50 dB Att 20 dB SWT 250 ms	8 • RBW 100 kHz 5 • VBW 300 kHz Mode St	(₩ veep	Spectrum Ref Level Att	20.00 dBm 0		 RBW 100 kHz VBW 300 kHz 		1		(q
Ref Level 20.00 dBm Offset 10.50 dB Att 20 dB SWT 250 ms 1Pk View		veep	Ref Level Att	20.00 dBm 0						-44.92 dBi
Spectrum Ref Level 20.00 dBm Offset 10.50 dB Att 20 dB SWT 250 ms 1/k View 10 dBm 0 dBm 0 dBm 0 dBm 0 1-2.510 dBm 0 dBm 0 dBm	s 🖶 VBW 300 kHz Mode Sv	veep	Ref Level Att 1Pk View 10 dBm	20.00 dBm O 20 dB S			Mode Sweep			-44.92 dBi
Ref Level 20.00 dBm Offset 10.50 dB Att 20 B SWT 250 ms 10 dBm 01 -2.510 cBm -10 dBm -10 dBm -10 -1	s 🖶 VBW 300 kHz Mode Sv	veep	Ref Level Att 1Pk View 10 dBm 0 dBm -10 dBm	20.00 dBm 0			Mode Sweep			-44.92 dBi
Ref Level 20.00 dBm Offset 10.50 dB Att 20 20 SWT 250 ms D1Pk View 0 0 Mm 0 0 ms 0 dBm 0 -2.510 dBm 0 0 ms	s 🖶 VBW 300 kHz Mode Sv	veep	Ref Level Att 1Pk View 10 dBm 0 dBm	20.00 dBm O 20 dB S	WT 250 ms		Mode Sweep			-44.92 dBr 214220 GH
Ref Level 20.00 dBm Offset 10.50 dB Att 20 dB SWT 250 ms JPk View 10 dBm 01 - 0 dBm 01 -2.510 dBm - - -10 dBm 02 -22.510 dBm - - -30 dBm - - - -	VBW 300 kHz Mat	veep	Ref Level Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20.00 dBm O 20 dB S D1 -3.420 dBm-	WT 250 ms	YBW 300 kHz	Made Sweep	Mas		-44.92 dB
Ref Level 20.00 dBm Offset 10.50 dB Att 20 dB SWT 250 ms JPk View 10 dBm 01 - 0 dBm 01 -2.510 dBm - - -10 dBm 02 -22.510 dBm - - -30 dBm - - - -	s • VBW 300 kHz Mode Sv	M1	Ref Level Att 1Pk View 10 dBm 0 dBm 10 dBm -10 dBm -10 dBm -30 dBm -30 dBm	20.00 dBm O 20 dB S D1 -3.420 dBm-	WT 250 ms	YBW 300 kHz	Mode Sweep			-44.92 dB
Ref Level 20.00 dBm Offset 10.50 dE Att 20 dB SWT 250 ms 250 ms 10 Bm 0 <td>VBW 300 kHz Mat</td> <td>M1</td> <td>Ref Level Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm</td> <td>20.00 dBm O 20 dB S D1 -3.420 dBm-</td> <td>WT 250 ms</td> <td>YBW 300 kHz</td> <td>Made Sweep</td> <td></td> <td></td> <td>-44.92 dBi</td>	VBW 300 kHz Mat	M1	Ref Level Att 1Pk View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20.00 dBm O 20 dB S D1 -3.420 dBm-	WT 250 ms	YBW 300 kHz	Made Sweep			-44.92 dBi



8DPSK

Hopping on	Hopping off				
30MHz~25GHz (down 20dBc)	TX Freq 2402MHz / 30MHz~25GHz (down 20dBc)				
Spectrum					
Ref Level 20.00 dBm Offset 10.50 dB RBW 100 kHz Att 20 dB SWT 32.1 ms YBW 300 kHz Mode Sweep	Ref Level 20.00 dBm Offset 10.50 dB RBW 100 kHz Att 20 dB SWT 32.1 ms VBW 300 kHz Mode Sweep				
11Pk View M1[1] -8.56 dBr 10 dBm M2[1] -8.59 dBr 2.42318210 GH 2.4300000 GH	12 10 dBm 2.40219520 G/ m M2[1]59.91 dB 2.4000000 G/ 2.4000000 G/ 2.400000 G/ 2.4000000 G/ 2.40000000 G/ 2.400000000 G/ 2.4000000000000000000000000000000000000				
1 dBm	0 d8m				
20 dBm 02 -28 550 dBm 40 dBm 4	-20 dBm				
	-50 dBm				
70 dBm F1 F2	-70 dBm F1 F2				
Type Ref Trc X-value Y-value Function Function Result M1 1 2.423121 GHz -6.55 dBm -6.55 dBm -6.56 dBm M2 1 2.42305 GHz -57.30 dBm -67.30 dBm -67.30 dBm	Type Ref Trc X-value Y-value Function Function Result M1 1 2.4021955 cHz -9.52 dHz -9.52 dHz -9.12				
	() ((1) (1) (2,4035 GHz) (39,31 GBM) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1				
Ref Level 20.00 dBm Offset 10.50 dB . RBW 100 kHz	Spectrum Ref Level 20.00 dBm Offset 10.50 dB				
Ref Level 20.00 dBm Offset 10.50 dB ■ RBW 100 kHz Att 20 dB SWT 250 ms ♥ UBW 300 kHz Mode Sweep JPk View JPk Vie	Spectrum Image: Construct of the second				
Ref Level 20.00 dBm Offset 10.50 dB ■ RBW 100 HH: Att 20 dB SWT 250 ms ♥ UBW 300 HH: Made Sweep 1Pk View M1[1] -44.34 dBr 18.556770 GH 18.556770 GH	B Spectrum Image: Spectrum <t< td=""></t<>				
Ref Level 20.00 dBm Offset 10.50 dB ● RBW 100 kHz Mode Sweep Att 20 dB SWT 250 ms ● VBW 300 kHz Mode Sweep JPk View 111 -+4-34 dBr 0 dBm 111 118.556770 GH 0 dBm 116.556770 GH	Spectrum Image: Constraint of the second secon				
Mile Mile Att 20 dB SWT 250 ms VBW 300 kHz Mode Sweep IPk View Mile 10 dBm -44.34 dBr 100 56770 GH 0 dBm 0 dBm 10 dBm 10 -8.560 dBm 10 dBm	By Spectrum Image: Constraint of the im				
Non- Offset 10.50 dB RBW 100 kHz Att 20 dB SWT 250 ms VIBW 300 kHz Mode Sweep IPk View M1[1] -44.34 dBr 10.56770 GH 0 dBm 0 0 10.56770 GH 0 dBm 0 0 0 30 dBm 02 -20,560 dBm 02 -20,560 dBm	Bit Spectrum Image: Construct of the second				
Ref Level 20.00 dBm Offset 10.50 dB RBW 100 kH2 Att 20 dB SWT 250 ms WBW 300 kH2 Mode Sweep IPk View 0 dBm 0 dBm 10.556770 GH 10.556770 GH 10 dBm 01 -0.560 dBm 0 0 0 0 30 dBm 02 -20.560 dBm 0 0 0 0	P Spectrum (*) Ref Level 20.00 dBm Offset 10.50 dB RBW 100 kHz Mode Sweep Alt 20 dB SWT 250 ms VBW 300 kHz Mode Sweep 10 dBm 0 dBm 0 dBm 0 dBm 0 dBm 0 dBm -44.45 dB -10 dBm 0 dBm 0 dBm 0 dBm -45.20 dBm -45.20 dBm				
Normalize Mail	Spectrum Image: Constraint of the second secon				
Note Note <th< td=""><td>Spectrum Image: Construct of the second second</td></th<>	Spectrum Image: Construct of the second				

3.4 Conducted Output Power

3.4.1 Limit of Conducted Output Power

1 Watt

For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band.

🛛 0.125 Watt

For all other frequency hopping systems in the 2400–2483.5 MHz band.

0.125 Watt

For Frequency hopping systems operating in the 2400–2483.5 MHz band have hopping channel carrier frequencies that are separated by two-thirds of the 20 dB bandwidth of the hopping channel.

3.4.2 Test Procedures

- 1. A wideband power meter is used for power measurement. Bandwidth of power senor and meter is 50MHz
- 2 If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission burst for measuring output power

3.4.3 Test Setup

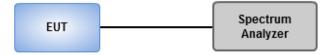
Modulation Mode	Freq. (MHz)	Output Power (mW)	Output Power (dBm)	Limit (mW)
GFSK	2402	0.49	-3.07	125
GFSK	2441	0.43	-3.62	125
GFSK	2480	0.36	-4.47	125
л /4 DQPSK	2402	0.23	-6.44	125
л /4 DQPSK	2441	0.19	-7.16	125
л /4 DQPSK	2480	0.18	-7.37	125
8DPSK	2402	0.24	-6.18	125
8DPSK	2441	0.21	-6.84	125
8DPSK	2480	0.19	-7.12	125

3.4.4 Test Result of Conducted Output Power

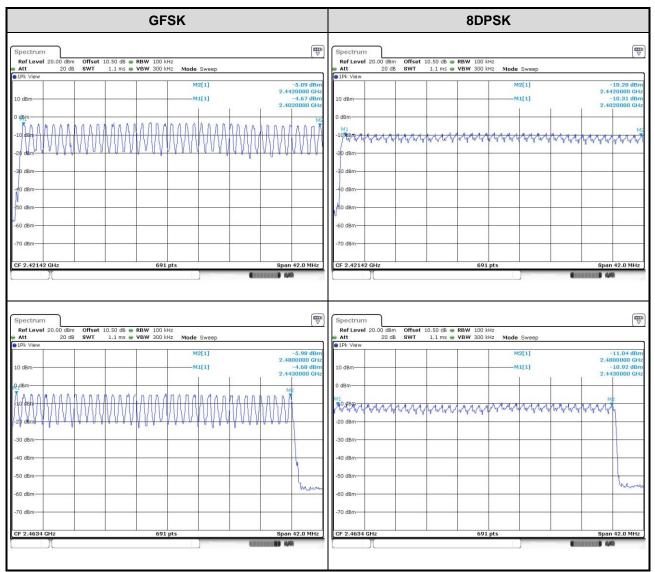
Modulation Mode	Freq. (MHz)	AV Output Power (mW)	AV Output Power (dBm)
GFSK	2402	0.45	-3.47
GFSK	2441	0.39	-4.07
GFSK	2480	0.32	-5.01
л /4 DQPSK	2402	0.13	-9.03
л /4 DQPSK	2441	0.11	-9.77
л /4 DQPSK	2480	0.10	-9.99
8DPSK	2402	0.13	-9.02
8DPSK	2441	0.11	-9.76
8DPSK	2480	0.10	-9.98

Note: Average power is for reference only.

3.5 Number of Hopping Frequency


3.5.1 Limit of Number of Hopping Frequency

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.


3.5.2 Test Procedures

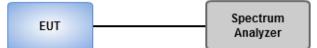
- 1. Set RBW = 100kHz, VBW = 300kHz, Sweep time = Auto, Detector = Peak Trace max hold.
- 2 Allow trace to stabilize.

3.5.3 Test Setup

3.5.4 Test Result of Number of Hopping Frequency

3.6 20dB and Occupied Bandwidth

3.6.1 Test Procedures


20dB Bandwidth

- 1. Set RBW=30kHz, VBW=100kHz, Sweep time = Auto, Detector=Peak, Trace max hold
- 2 Allow trace to stabilize
- 3 Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.

Occupied Bandwidth

- 1. Set RBW=30kHz, VBW=100kHz, Sweep time = Auto, Detector=Sample, Trace max hold
- 2 Allow trace to stabilize
- 3. Use Occupied bandwidth function of spectrum analyzer to measuring 99% occupied bandwidth

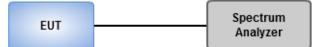
3.6.2 Test Setup

Modulation Mode	Freq. (MHz)	20dB Bandwidth (MHz)	Occupied Bandwidth (MHz)
GFSK	2402	1.017	0.927
GFSK	2441	1.026	0.927
GFSK	2480	1.022	0.933
8DPSK	2402	1.326	1.211
8DPSK	2441	1.326	1.211
8DPSK	2480	1.326	1.210

3.6.3 Test result of 20dB and Occupied Bandwidth

Worst Plot of 20dB Bandwidth			Worst Plot of Occupied Bandwidth			
	dB • RBW 30 kHz ns • VBW 100 kHz Mode Sweep M1[1]	-31.08 dBm 2.47934783 GHz	Spectrum Ref Level 20.00 dBm Att 20 dB 1Pk View		0 kHz 0 kHz Mode Sweep M1[1]	-10.53 dBn 2.402179500 GH
10 dBm	Occ Bw D1[1]	1.211287988 MHz -0.22 dB 1.32609 MHz	10 dBm		Occ Bw	1.211000000 MHz
-10 dBm D1 -11.304 dBm	mann	22	-10 dBm	Brownw	White many 22	
-30 dBm D2 -31.304 dBm			-30 dBm			
-50 dBm		Man	-50 dBm	M		homen
-70 dBm F1	691 pts	F2 Span 3.0 MHz	-70 dBm	30	100 pts	Span 3.0 MHz
	Mexius	CERTIFICATION AND			Measuring	(manager) (JO

3.7 Channel Separation


3.7.1 Limit of Channel Separation

- Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.
- Frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

3.7.2 Test Procedures

- 1. Set RBW=100kHz, VBW=300kHz, Sweep time = Auto, Detector=Peak Trace max hold
- 2 Allow trace to stabilize
- 3 Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The EUT shall show compliance with the appropriate regulatory limit

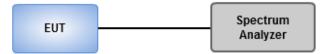
3.7.3 Test Setup

Modulation Mode	Freq. (MHz)	Channel Separation (MHz)	20dB Bandwidth (MHz)	Minimum Limit (MHz)
GFSK	2402	1.003	1.017	0.678
GFSK	2441	1.003	1.026	0.684
GFSK	2480	1.003	1.022	0.681
8DPSK	2402	1.003	1.326	0.884
8DPSK	2441	1.003	1.326	0.884
8DPSK	2480	1.003	1.326	0.884

3.7.4 Test result of Channel Separation

IPk View @ 2Pk View D1[2] -0.01 dB 10 dBm M1[1] -3.21 dBm 0 dBm M1 D1 -10 dBm D1 0 -20 dBm 0 0 -3.21 dBm 0 0 -10 dBm 0 0 -20 dBm 0 0 -3.21 dBm 0 0 -10 dBm 0 0 -20 dBm 0 0 -3.21 dBm 0 0 <	Worst Plot					
Ref Level 20.00 dBm Offset 10.50 dB RBW 100 kHz Mode Sweep 1Pk View @2Pk View D1[2] -0.01 dB 10 dBm M1[1] -3.21 dBm 0 dBm M1 2.40217440 GHz 0 dBm M1 0 -20 dBm M1 -3.21 dBm -30 dBm M1 -3.21 dBm -70 dBm M1 -3.21 dBm	Spectrum					Ē
Att 20 dB SWT 1 ms VBW 300 kHz Mode Sweep IPk View 2Pk View D1[2] -0.01 dB 1.00290 MHz 10 dBm M1[1] -3.21 dBm 2.40217440 GHz 0 dBm 01 01 01 01 -10 dBm 01 01 01 01 -20 dBm 00 00 00 00 00 -30 dBm 00 00 00 00 00 00 -70 dBm 00		Offset 10 50 dB 👄 1	PRW 100 kHz			(~
1Pk View 2Pk View 10 dBm 10				Mode Sween		
10 dBm 1.00290 MHz -3.21 dBm 2.40217440 GHz -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -70 dBm -7	●1Pk View●2Pk View		14 9990 2002 observations 20042222294			
10 dBm				D1[2]		-0.01 dB
0 dBm 0.40217440 GHz -10 dBm 01 -20 dBm 0 -30 dBm 0 -30 dBm 0 -00 dBm 0 -20 dBm 0 -30 dBm 0 -30 dBm 0 -30 dBm 0 -50 dBm 0 -50 dBm 0 -70 dBm 0						
0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm -70 d	10 dBm			M1[1]		
-10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70				1	Ĩ Ĩ	2.40217440 GHz
-10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -50 dBm -70	0 dBm	M3			D1	
-20 dBm -30 dBm -30 dBm -40 dBm -50 dBm -50 dBm -50 dBm -70						
-30 dBm -30 dBm -40 dBm -50 dBm -50 dBm -50 dBm -70	-10 dBm-			/		
40 dBm -50 dBm -50 dBm -60 dBm -60 dBm -60 dBm -60 dBm -60 dBm -60 dBm -70 dBm				<		$\overline{}$
-50 dBm -50 dBm -60 dBm -70 dBm -70 dBm CF 2.4025 GHz 691 pts Span 3.0 MHz	mooned		~~	My .		
-70 dBm70 dB		. Ind have marked and and and and and and and and and an			w.	
-70 dBm70 dB	- JO UBIII-				" Vhorman	mar marine
CF 2.4025 GHz 691 pts Span 3.0 MHz	-60 dBm					
	-70 dBm					
Measuring	CF 2.4025 GHz	I	691 pts	I	I I	Span 3.0 MHz
	1 Y			Measuri		

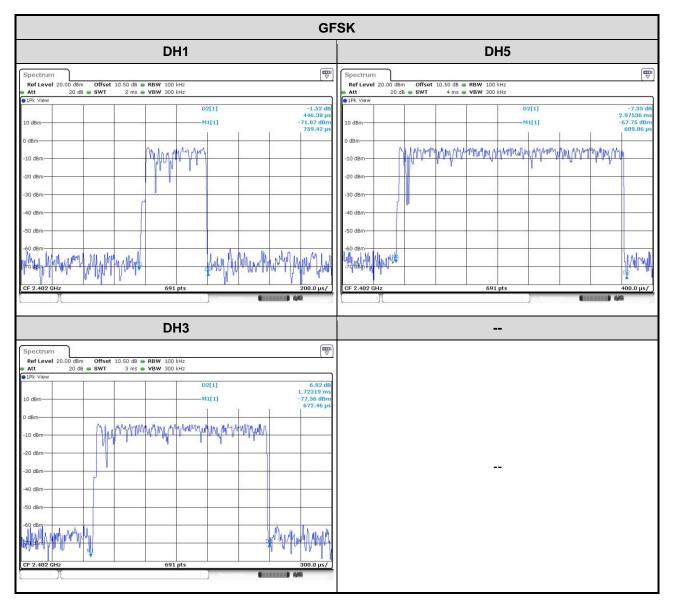
3.8 Number of Dwell Time

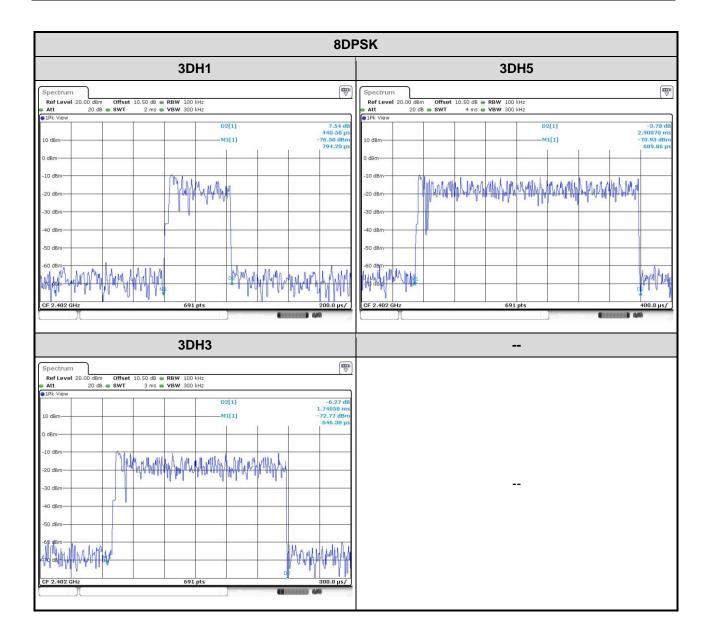

3.8.1 Limit of Dwell time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

3.8.2 Test Procedures

- 1. Set RBW=100kHz,VBW=300kHz,Sweep time = 500us(DH1),2ms(DH3),4ms(DH5), Detector=Peak, Span=0Hz,Trace max hold
- 2 Enable gating and trigger function of spectrum analyzer to measure burst on time.
- 3. The DH1 packet can cover a single time slot. A maximum length packet has duration of 1 time slots. The hopping rate is 1600 hops/second so the maximum dwell time is 1/1600 seconds, or 0.625ms. DH1 Packet permit maximum 1600 / 79 /2 = 10.12 hops per second in each channel (1 time slot TX, 1 time slot RX). So, the dwell time is the time duration of the pulse times 10.12 x 31.6 = 320 within 31.6 seconds.
- 4. The DH3 packet can cover up to 3 time slots. A maximum length packet has duration of 3 time slots. The hopping rate is 1600 hops/second so the maximum dwell time is 3/1600 seconds, or 1.875ms. DH3 Packet permit maximum 1600 / 79 / 4 = 5.06 hops per second in each channel (3 time slots TX, 1 time slot RX). So, the dwell time is the time duration of the pulse times 5.06 x 31.6 = 160 within 31.6 seconds.
- 5 The DH5 packet can cover up to 5 time slots. Operate DH5 at maximum dwell time and maximum duty cycle. A maximum length packet has duration of 5 time slots. The hopping rate is 1600 hops/second so the maximum dwell time is 5/1600 seconds, or 3.125ms. DH5 Packet permit maximum 1600/ 79 / 6 = 3.37 hops per second in each channel (5 time slots TX, 1 time slot RX). So, the dwell time is the time duration of the pulse times 3.37 x 31.6 = 106.6 within 31.6 seconds


3.8.3 Test Setup



3.8.4 Test Result of Dwell Time

Modulation Mode	Freq. (MHz)	Length of Transmission Time (msec)	Number of Transmission in a 31.6 (79 Hopping*0.4)	Result (s)	Limit (s)
GFSK-DH1	2402	0.44638	320	0.143	0.4
GFSK-DH3	2402	1.72319	160	0.276	0.4
GFSK-DH5	2402	2.97536	106.6	0.317	0.4
8DPSK-DH1	2402	0.44058	320	0.141	0.4
8DPSK-DH3	2402	1.74058	160	0.278	0.4
8DPSK-DH5	2402	2.90870	106.6	0.310	0.4

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp (EMC and Wireless Communication Laboratory), it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan District. Location map can be found on our website <u>http://www.icertifi.com.tw</u>.

Linkou Tel: 886-2-2601-1640 No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan, R.O.C. Kwei Shan Tel: 886-3-271-8666 No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C. Kwei Shan Site II Tel: 886-3-271-8640 No. 14-1, Lane 19, Wen San 3rd St., Kwei Shan District, Tao Yuan City 333, Taiwan, R.O.C.

If you have any suggestion, please feel free to contact us as below information.

Tel: 886-3-271-8666 Fax: 886-3-318-0155 Email: ICC_Service@icertifi.com.tw

—END—