

FCC 47 CFR MPE REPORT

Zylux Acoustic Corporation

36" Sound Bar 2.1 System

Model Number: M215aw-K6

FCC ID: XN6-M215AK6

Applicant: Zylux Acoustic Corporation					
Address: 7F, 70, Rui Guang Road, Neihu District, Taipei 114, Taiwan					
Prepared By: EST Technology Co., Ltd.					
	Chilingxiang, Qishantou, Santun, Houjie, Dongguan, Guangdong, China				
Tel: 86-769-83081888-808					

Report Number:	ESTE-R2205038		
Date of Test:	Apr. 11~May. 06, 2022		
Date of Report:	May. 07, 2022		

Maximum Permissible Exposure

1. Applicable Standards

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2m normally can be maintained between the user and the device.

1.1. Limits for Maximum Permissible Exposure (MPE)

(a) Limits for Occupational/Controlled Exposure

Frequency	Electric Field	Magnetic Field	Power Density (S)	Averaging Times
Range	Strength (E)	Strength (H)	(mW/cm^2)	$ E ^2, H ^2 \text{ or } S$
(MHz)	(V/m)	(A/m)		(minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842/f	4.89/f	(900/f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-10000			5	6

(b) Limits for General Population / Uncontrolled Exposure

Frequency	Electric Field	Magnetic Field	Power Density (S)	Averaging Times
Range (MHz)	Strength (E)	Strength (H)	(mW/cm^2)	$ E ^{2}$, $ H ^{2}$ or S
	(V/m)	(A/m)		(minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-10000			1.0	30

Note: f=frequency in MHz; *Plane-wave equivalent power density

1.2. MPE Calculation Method

$$E (V/m) = \frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: Pd $(W/m^2) = \frac{E^2}{377}$

E = Electric Field (V/m)

P = Peak RF output Power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained

2. Conducted Power Result

Mode	Frequency	Peak output power	Peak output	Target power	Antenna gain	
	(MHz)	(dBm)	power (mW)	(dBm)	(dBi)	(Linear)
GFSK	2402	6.32	4.285	6±1	4.1	2.570
	2441	5.78	3.784	5±1	4.1	2.570
	2480	5.94	3.926	5±1	4.1	2.570
8-DPSK	2402	8.16	6.546	8±1	4.1	2.570
	2441	7.71	5.902	7±1	4.1	2.570
	2480	7.87	6.124	7±1	4.1	2.570

3. Calculated Result and Limit

Mode	Target power	Anteni	na gain	Power Density (S)	Limited of Power Density	Test Result
	(dBm)	(dBi)	(Linear)	2	(S) (mW/cm^2)	
GFSK	7	4.1	2.570	0.00256	1	Complies
8-DPSK	9	4.1	2.570	0.00406	1	Complies

End of Test Report