FCC CFR47 PART 90 SUBPART Z

Test Report

3.65 GHz Fixed Wireless Base Station Transceiver – 2x2 MIMO Configuration

Model Number: Quantum 2236

FCC ID: XN3-QUANTUM6636 IC: 8974A-QUANTUM6636

Report Number: 10PRO01719

Issue Date: 4 September 2010

Prepared for PureWave Networks Inc. 2660-C Marine Way Mountain View, CA 94043

Prepared by T.N. Cokenias Consulting P.O. Box 1086 El Granada CA 94018

Report Revision History

Revision No.	Description	Revised by	Date
-	Original issue	T.N. Cokenias	4 Sept 2010

TABLE OF CONTENTS

1.	. TH	EST AND TEST LOCATION INFORMATION	4
2.	. TF	EST METHODOLOGY	5
3.	. E(QUIPMENT UNDER TEST	5
	3.1.	DESCRIPTION OF EUT	5
	3.2.	MAXIMUM OUTPUT POWER SETTINGS FOR TESTS	5
	3.3.	ANTENNA SELECTION AND EIRP LIMITS	6
	3.4.	SOFTWARE AND FIRMWARE	6
	3.5.	WORST-CASE CONFIGURATION AND MODE	6
	3.6.	DESCRIPTION OF TEST SETUP	7
	3.7	Modifications to EUT	7
	3.87	TEST AND MEASUREMENT EQUIPMENT	8
4.	. LIM	IITS AND RESULTS	9
	4.1A	NTENNA PORT CHANNEL TESTS	9
	4.	1.1 -26 dB and 99%OCCUPIED BANDWIDTH	9
		6.1.2 PEAK OUTPUT POWER	
		6.1.3 PEAK EIRP POWER DENSITY LIMIT	
		6.1.4 MAXIMUM PERMISSIBLE EXPOSURE	
		6.1.5 CONDUCTED SPURIOUS EMISSIONS	
		2 RADIATED EMISSIONS	41
		6.2.1 TRANSMITTER RADIATED EMISSIONS ABOVE 1 GHZ HARMONICS AND	
		PURIOUS EMISSIONS	
		6.2.2 TRANSMITTER RADIATED EMISSIONS BELOW 1 GHZ SPURIOUS AND DIGIT.	
		ECTION EMISSIONS	
	4.0	6.3 FREQUENCY STABILITY TEST	43

Date: 4 September 2010 Model No.: Quantum2236 IC: 8974A-QUANTUM6636

1. TEST AND TEST LOCATION INFORMATION

COMPANY NAME:	PureWave Networks, Inc. 2660-C Marine Way Mountain View, CA 94043
EUT DESCRIPTION:	FCC Part 90Z Base Station Frequency Range: 3650-3675MHz WiMax 6x6 MIMO Configuration Channel Bandwidths: 5 MHz, 10 MHz Modulations: QPSK, 16QAM, 64QAM
FCC ID: IC:	XN3-QUANTUM6636 8974A-QUANTUM6636
MODEL:	Quantum 2236

Radiated and Occupied Bandwidth antenna port conducted tests were performed by

22 June, 28-30 June, 8-13 July, 26 and 30 August 2010

Compliance Certification Services 47173 Benicia Street Fremont, CA 94538

DATE TESTED:

Other antenna port and frequency stability tests were performed at

PureWave Networks, Inc. 2660-C Marine Way Mountain View, CA 94043

1. M. Cohen

4 September 2010

T.N. Cokenias Agent for PureWave Networks, Inc.

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with EIA/TIA 603, FCC CFR 47 Part 2 and FCC CFR 47 Part 90Subpart Z.

3. EQUIPMENT UNDER TEST

3.1. DESCRIPTION OF EUT

The EUT is a WiMAX base station radio operating in the 3650-3675 MHz restricted contention-based protocol frequency band. Modulation is 802.16d/e in 5 MHz and 10 MHz channel bandwidths. The EUT is capable of operation in 2x2 MIMO and 6x6 MIMO modes. This report will cover only 2x2 MIMO operation measurements. A separate report covers 6x6 MIMO operation.

3.2. MAXIMUM OUTPUT POWER SETTINGS FOR TESTS

5 MHz EBV	V	QPSK	16QAM	64QAM
	(MHz)	(dBm)	(dBm)	(dBm)
Low	3652.5	28	28	28
Middle	3662.5	35	35	35
High	3672.5	29	29	29

10 MHz EB	W	QPSK	16QAM	64QAM
	(MHz)	(dBm)	(dBm)	(dBm)
Low	3655	29	29	29
Middle	3662.5	36	36	36
High	3670	30	30	30

All other 5 MHz Channels: 35 dBm power setting All other 10 MHz channels: 36 dBm power setting

3.3. ANTENNA SELECTION AND EIRP LIMITS

The licensee can select a variety of antenna types and gains from a variety of manufacturers in addition to PureWave Networks. It is the responsibility of the licensee to adjust transmitter output power such that the eirp limits specified in section 90.1321 (a) of the Rules are not exceeded:

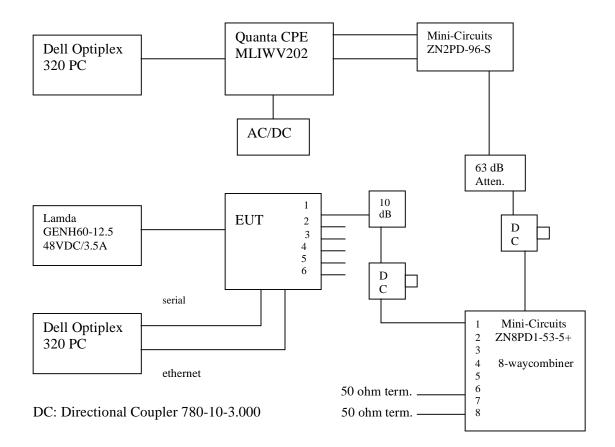
90.1321(a) Base stations and fixed stations are limited to 25watts/25 MHz equivalent isotropic radiated power (EIRP). In any event the EIRP power density shall not exceed 1 watt in any on-megahertz slice of spectrum.

The antenna port output powers for this product are calculated based on the following typical installation parameters:

- 1. A minimum 6 dBi antenna for use with base stations,
- 2. 30m cable loss for TMC LMR-400 at 3.65 MHz = 8.3 dB
- 3. Effective antenna gain: 6 8.3 = -2.3 dBi

The PureWave installation manual provides the installer guidance on how to calculate the maximum input power to the antenna so as to remain within the regulatory EIRP limits.

3.4. SOFTWARE AND FIRMWARE


The software controlling the EUT during testing was PureWave OS v1.1.1.

3.5. WORST-CASE CONFIGURATION AND MODE

Radiated and conducted emissions tests were performed for both 5 MHz and 10 MHz emission bandwidth channels. Testing was performed for all available modulations: QPSK, 16QAM and 64QAM. Worst-case emissions for both emissions bandwidths are reported.

3.6. DESCRIPTION OF TEST SETUP

SETUP DIAGRAM FOR TESTS

3.7 Modifications to EUT

None.

3.8 TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report CCS: Radiated Emissions

TEST EQUIPMENT LIST					
Description	Manufacturer	Model	Asset Number	Cal Due	
Spectrum Analyzer, 26.5 GHz	Agilent / HP	E4440A	C01179	08/24/10	
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01011	07/14/10	
Antenna, Horn, 18 GHz	EMCO	3115	C00945	07/29/10	
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00885	07/06/10	
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C01052	08/04/10	

CCS: Antenna Port Conducted Emissions (Occupied Bandwidth)

TEST EQUIPMENT LIST					
Description Manufacturer Model Asset/Serial Cal Du					
			Number		
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01069	01/05/11	
Vector signal generator, 20GHz	Agilent / HP	E8267C	C01066	11/16/10	

PureWave: Antenna Port Conducted Tests

Description	Manufacturer	Model	Asset/Serial Number	Cal Due
N9020A Signal Analyze	Agilent	N9020A	MY46472174	07/09/11

PureWave: Frequency Stability Test Equipment

TEST EQUIPMENT LIST					
Description	Manufacturer	Model	Asset Number	Cal Due	
Wireless Networking Test Set	Agilent	N8300A	GB47350121	20Sept2010	
Variable Voltage Source	Lambda	GENH60-12.5	27M4950F	N/A	
	Associated				
	Envoronmental				
Temperature Chamber	Systems	ZBD-108	6381	N/A	
Multi meter	GW Instek	GDM-8245	CH881834	N/A	

4. LIMITS AND RESULTS

4.1ANTENNA PORT CHANNEL TESTS

4.1.1 -26 dB and 99% OCCUPIED BANDWIDTH

REQUIREMENT

2.1049 Measurements required: Occupied bandwidth.

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 1% to 3% of the 99% bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The internal OCC BW function of the spectrum analyzer was activated to display both 99% BW and -26 dB BW values.

TEST RESULTS

For each EBW and modulation, occupied bandwidth was measured for each chain. The values obtained were very similar chain by chain, within 2% of each other. The same can be said for the different modulations – for a given EBW, the measured value changed very little from modulation to modulation or from chain to chain.

Spectrum analyzer plots for all chains and all modulations at Low channel are presented below to document the fact that there are only small variations in value from chain to chain (B).

These values are summarized in the table below (A).

Report No: 10PRO0179 3.65 GHz Fixed Wireless Transceiver FCC ID: XN3-QUANTUM6636

A. Occupied BW Summay

5MHz EBW QPSK

Channel	Frequency	99% Occupied	-26 dB
	MHz	Bandwidth, MHz	Bandwidth, MHz
Low	3652.5	4.5406	4.796
Middle	3662.5	4.5737	4.748
High	3672.5	4.5454	4.771

5MHz EBW 16QAM

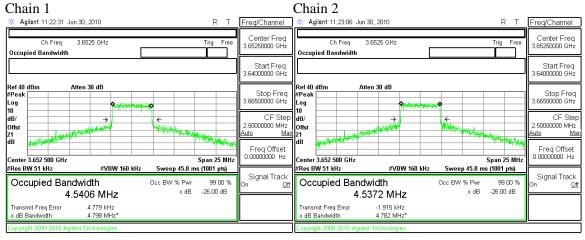
Channel	Frequency MHz	99% Occupied Bandwidth, MHz	-26 dB Bandwidth, MHz
Low	3652.5	4.5601	4.743
Middle	3662.5	4.5411	4.740
High	3672.5	4.5371	4.745

5MHz EBW 64QAM

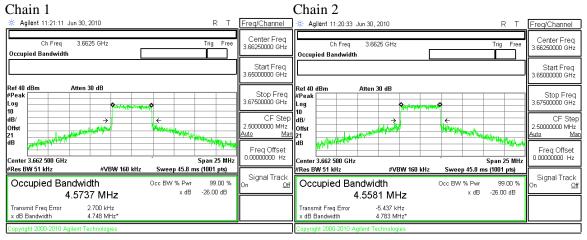
Channel	Frequency MHz	99% Occupied Bandwidth, MHz	-26 dB Bandwidth, MHz
Low	3652.5	4.5452	4.747
Middle	3662.5	4.547	4.788
High	3672.5	4.5473	4.743

10 MHz EBW QPSK

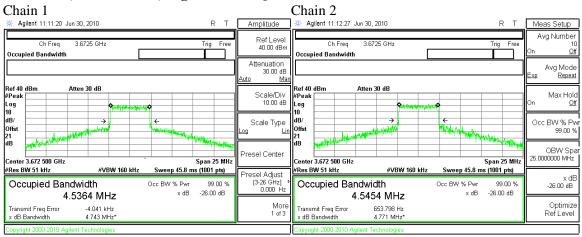
Channel	Frequency MHz	99% Occupied Bandwidth, MHz	-26 dB Bandwidth, MHz
Low	3655	9.0819	9.391
Middle	3662.5	9.1128	9.379
High	3670	9.1157	9.402


10 MHz EBW 16QAM

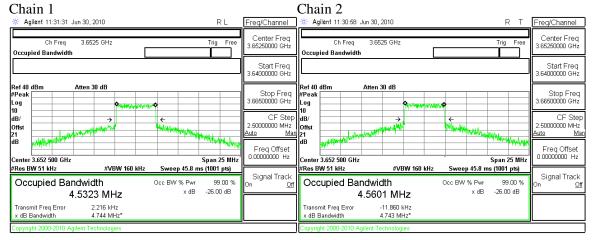
Channel	Frequency	99% Occupied	-26 dB		
	MHz	Bandwidth, MHz	Bandwidth, MHz		
Low	3655	9.0886	9.384		
Middle	3662.5	9.0428	9.370		
High	3670	9.1021	9.394		

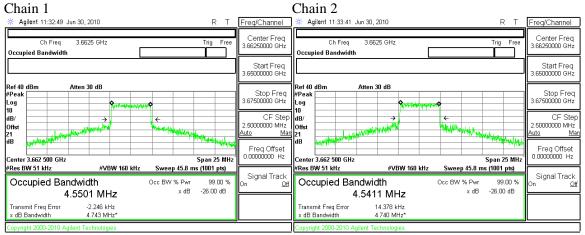

10 MHz EBW 64QAM

Channel	Frequency	99% Occupied	-26 dB		
	MHz	Bandwidth, MHz	Bandwidth, MHz		
Low	3655	9.0837	9.378		
Middle	3662.5	9.0714	9.410		
High	3670	9.0966	9.395		

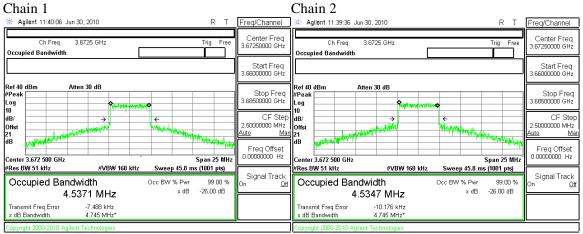

B. 5 MHz EBW, Low Channel QPSK

Chains 1-6, 5 MHz EBW, Mid Channel QPSK

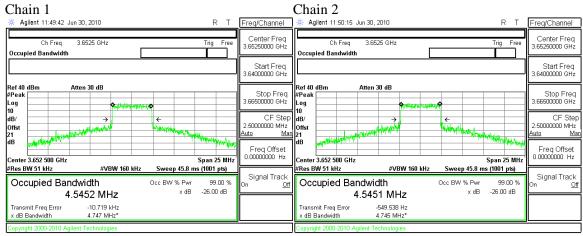

Chains 1-6, 5 MHz EBW, High Channel QPSK


Highest OccBW: 4.5737 MHz

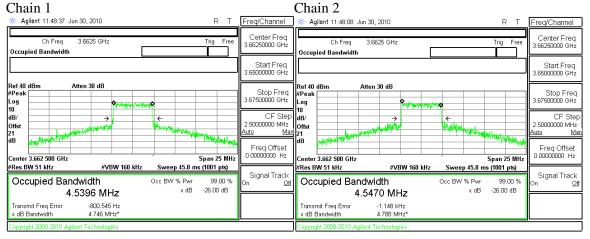
Report No: 10PRO0179 3.65 GHz Fixed Wireless Transceiver FCC ID: XN3-QUANTUM6636


B. 5MHz EBW, Low Channel 16QAM

5MHz EBW, Mid Channel 16QAM

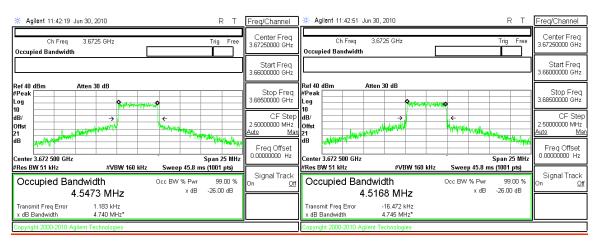


5MHz EBW, High Channel 16QAM



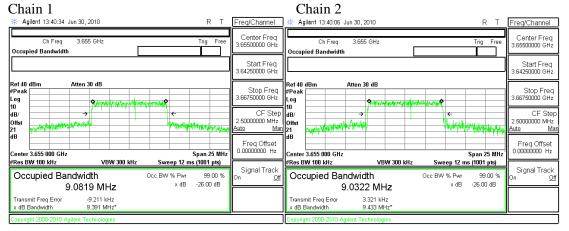
Highest OccBW: 4.5601 MHz

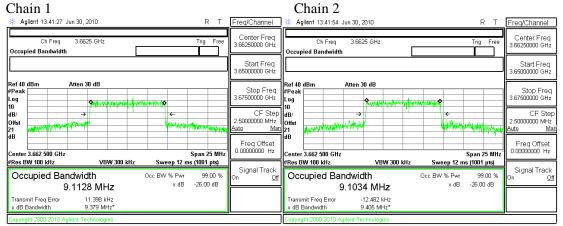
B. 5MHz EBW, Low Channel 64QAM


5MHz EBW, Mid Channel 64QAM

5MHz EBW, High Channel 64QAM

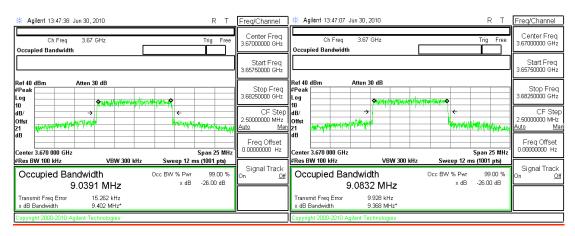
Chain 1


Chain


Highest OccBW: 4.5452 MHz

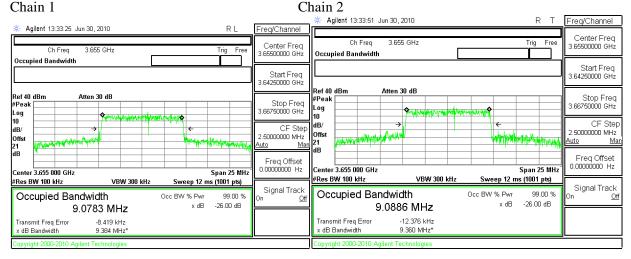
Report No: 10PRO0179 3.65 GHz Fixed Wireless Transceiver FCC ID: XN3-QUANTUM6636

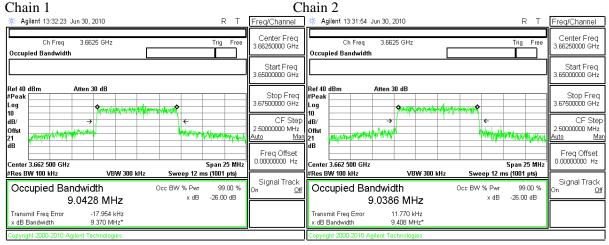
B. 10 MHz EBW, Low Channel QPSK


10MHz EBW, Mid Channel QPSK

10MHz EBW, High Channel QPSK

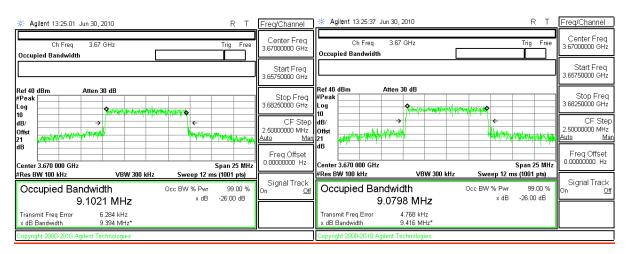
Chain 1


Chain

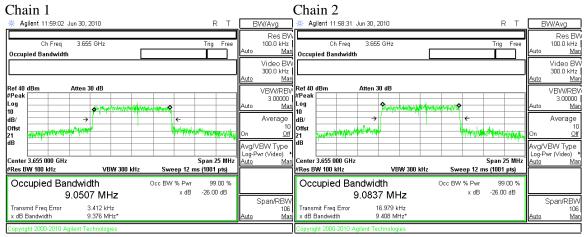

Highest OccBW: 9.1128 MHz

Report No: 10PRO0179 3.65 GHz Fixed Wireless Transceiver FCC ID: XN3-QUANTUM6636 B 10 MHz FRW Low Channel 160

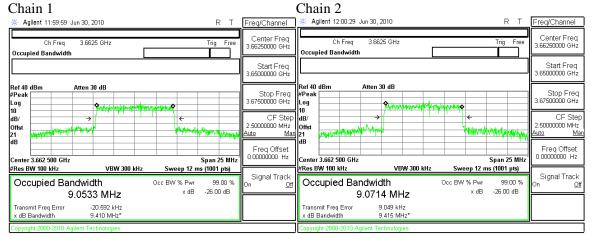
B. 10 MHz EBW, Low Channel 16QAM


10MHz EBW, Mid Channel 16QAM

10MHz EBW, High Channel 16QAM

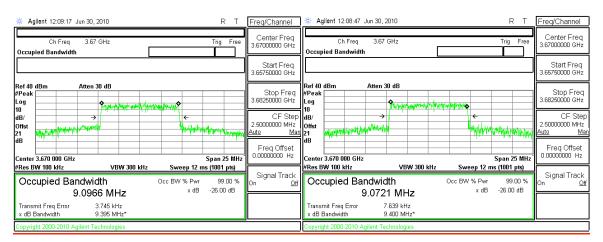

Chain 1

Chain



Highest OccBW: 9.1021 MHz

B. 10 MHz EBW, Low Channel 64QAM


10MHz EBW, Mid Channel 64QAM

10MHz EBW, High Channel 64QAM

Chain 1

Chain

Highest OccBW: 9.0966 MHz

4.6.1.2 PEAK OUTPUT POWER

PEAK EIRP LIMIT

90.1321(a) Base stations and fixed stations are limited to 25watts/25 MHz equivalent isotropic radiated power (EIRP). In any event the EIRP power density shall not exceed 1 watt in any on-megahertz slice of spectrum.

The maximum permitted antenna port output powers for this product are calculated based on the following typical installation parameters:

-A minimum 6 dBi antenna for use with base stations.

-30m cable loss for TMC LMR-400 at 3.65 MHz = 8.3 dB

-Effective antenna gain: 6 - 8.3 = -2.3 dBi

TEST PROCEDURE

Channel power measurements were made using the spectrum analyzer built-in function. The settings and procedures followed are found in FCC KDB document 965270 D01 Pwr Meas Part 90 Z Equipment v01.

Measurements were taken for each modulation and for each chain at Low, Mid, and High frequencies, and the results summed algebraically to determine total output power and EIRP.

Power output calculations are found in the spread sheet below. Spectrum analyzer plots of conducted antenna port channel power are located in Annex A of this report for reference.

Note: PSD and band edge emissions were limiting factors for output power.

PureWave Quantum 2236 Output Power FCC Part 90Z IC RSS-197

Single Element Minimum Antenna Gain = 6dBi Single Element Maximum Cable Loss = 8.3dB (e.g. 30 meters TMC LMR-400) Single Element Net Antenna Gain = 6dBi - 8.3dB = -2.3dBi

Specification Limit: EIRP 25Watts/25MHz Maximum, 1Watt/MHz Maximum. 5MHz Channel = 5Watts/5MHz, 10MHz Channel = 10Watts/10MHz

5 MHZ OPSK Low Peak Mid Peak High Peak	F, MHz 3652.5 3662.5 3672.5	Chain 1 31.77 31.56 31.35	Chain 2 32.05 32.44 32.54	Total Output Power, Sum 6 Chains 34.92 35.03 35.00	Antenna Gain, dBi -2.30 -2.30 -2.30	Maximum Output EIRP dBm 32.62 32.73 32.70	Maximum Output EIRP, Watts 1.829 1.876 1.860	Specification Max EIRP, Watts/5MHz 5.00 5.00 5.00 5.00
10 MHz QPSK		Chain 1	Chain 2	Maximum Chain Output Power, dBm	Net Antenna Array Factor, dBi	Maximum Output Power dBm	Maximum Output Power, Watts	Specification Max EIRP, Watts/10MHz
Low Peak	3655	32.4	32.72	35.57	-2.30	33.27	2.125	10.00
Mid Peak	3662.5	32.25	32.84	35.57	-2.30	33.27	2.121	10.00
High Peak	3670	32.1	32.49	35.31	-2.30	33.01	2.000	10.00
5 MHZ 160AM	F. MHz	Chain 1	Chain 2	Maximum Chain Output Power, dBm	Net Antenna Array Factor, dBi	Maximum Output EIRP dBm	Maximum Output EIRP, Watts	Specification Max EIRP, Watts/5MHz
Low Peak	3652.5	31.38	31.69	34.55	-2.30	32.25	1.678	5.00
Mid Peak	3662.5	31.11	32.14	34.55	-2.30	32.25	1.724	5.00
High Peak	3672.5	31.01	32.24	34.68	-2.30	32.38	1.729	5.00
riigirreak	3072.3	31.01	52.24	54.00	-2.50	32.30	1.727	5.00
				Maximum Chain Output	Net Antenna Array	Maximum Output Power	Maximum Output	Specification Max EIRP,
10 MHz 16QAM		Chain 1	Chain 2	Power, dBm	Factor, dBi	dBm	Power, Watts	Watts/10MHz
Low Peak	3655	32.46	32.77	35.63	-2.30	33.33	2.152	10.00
Mid Peak	3662.5	32.21	32.33	35.28	-2.30	32.98	1.986	10.00
High Peak	3670	32.05	32.39	35.23	-2.30	32.93	1.965	10.00
				Maximum Chain Output	Net Antenna Array	Maximum Output EIRP	Maximum Output EI RP,	Specification Max EIRP,
5 MHZ 64QAM	F, MHz	Chain 1	Chain 2	Power, dBm	Factor, dBi	dBm	Watts	Watts/5MHz
Low Peak	3652.5	31.43	31.94	34.70	-2.30	32.40	1.739	5.00
Mid Peak	3662.5	31.17	32.06	34.65	-2.30	32.35	1.717	5.00
High Peak	3672.5	31.07	32.3	34.74	-2.30	32.44	1.753	5.00
				Maximum Chain Output	Net Antenna Array	Maximum Output Power	Maximum Output	Specification Max EIRP,
10 MHz 64QAM		Chain 1	Chain 2	Power, dBm	Factor, dBi	dBm	Power, Watts	Watts/10MHz
Low Peak	3655	32.41	32.16	35.30	-2.30	33.00	1.994	10.00
Mid Peak High Peak	3662.5 3670	32.2 32	32.3 32.23	35.26 35.13	-2.30 -2.30	32.96 32.83	1.977 1.917	10.00 10.00

4.6.1.3 PEAK EIRP POWER DENSITY LIMIT

90.1321(a) Base stations and fixed stations are limited to 25watts/25 MHz equivalent isotropic radiated power (EIRP). In any event the EIRP power density shall not exceed 1 watt in any on-megahertz slice of spectrum.

TEST PROCEDURE

Peak PSD measurements were made using the settings and procedures in FCC KDB document 965270 D01 Pwr Meas Part 90 Z Equipment v01.

Measurements were taken for each modulation and for each chain at Low, Mid, and High frequencies, and the results summed algebraically to determine total output power and EIRP.

Peak PSD EIRP calculations are found in the spread sheet below. Spectrum analyzer plots of conducted antenna port PSD measurements are located in Annex B of this report for reference.

Power settings for PSD were the same as for maximum power settings for power (35 dBm or 36 dBm).

PureWave Quantum 2236 PSD FCC Part 90Z IC RSS-197

Single Element Minimum Antenna Gain = 6dBi (e.g. Mobile Mark 6dBi Omni, ECO6-3500) Single Element Maximum Cable Loss = 8.3dB (e.g. 30 meters TMC LMR-400) Single Element Net Antenna Gain = 6dBi - 8.3dB = -2.3dBi

Specification Limit: EIRP 1Watt/MHz Maximum.

5 MHZ OPSK Low Peak Mid Peak High Peak	F, MHz 3652.5 3662.5 3672.5	Chain 1 28.38 28.03 27.785	Chain 2 28.76 28.875 28.922	Sum 6 Chains Output Power, dBm/MHz 31.61 31.48 31.40	Net Antenna Array Factor, dBi -2.30 -2.30 -2.30	Maximum Output EIRP dBm/MHz 29.31 29.18 29.10	Maximum Output EIRP, Watts/MHz 0.854 0.829 0.813	Specification Max EIRP, Watts/MHz 1.00 1.00 1.00
				Sum 6 Chains Output	Net Antenna Array	Maximum Output EIRP	Maximum Output EIRP,	
10 MHz QPSK		Chain 1	Chain 2	Power, dBm/MHz	Factor, dBi	dBm/MHz	Watts/MHz	Watts/MHz
Low Peak	3655	27.05	26.41	29.75	-2.30	27.45	0.556	1.00
Mid Peak	3662.5	27.2	26.56	29.90	-2.30	27.60	0.576	1.00
High Peak	3670	26.208	26.951	29.61	-2.30	27.31	0.538	1.00
5 MHZ 16QAM	F. MHz	Chain 1	Chain 2	Sum 6 Chains Output Power, dBm/MHz	Net Antenna Array Factor, dBi	Maximum Output EIRP dBm/MHz	Maximum Output EIRP, Watts/MHz	Specification Max EIRP, Watts/MHz
Low Peak	3652.5	27.919	27.596	30.77	-2.30	28.47	0.703	1.00
Mid Peak	3662.5	27.747	29.119	31.50	-2.30	29.20	0.831	1.00
	3672.5	27.283	28.642	31.03	-2.30	29.20	0.746	1.00
High Peak	3672.5	27.283	28.042	31.03	-2.30	28.73	0.746	1.00
10 MHz 16QAM		Chain 1	Chain 2	Sum 6 Chains Output Power, dBm/MHz	Net Antenna Array Factor, dBi	Maximum Output EIRP dBm/MHz	Maximum Output EIRP, Watts/MHz	Specification Max EIRP, Watts/MHz
Low Peak	3655	26.387	26.835	29.63	-2.30	27.33	0.540	1.00
Mid Peak	3662.5	26 451	26 473	29.47	-2.30	27.17	0.521	1.00
High Peak	3670	26.462	26.991	29.74	-2.30	27.44	0.555	1.00
5 MHZ 64QAM				Sum 6 Chains Output	Net Antenna Array	Maximum Output EIRP	Maximum Output EIRP,	Specification Max EIRP,
27dBm Pset	F. MHz	Chain 1	Chain 2	Power, dBm/MHz	Factor, dBi	dBm/MHz	Watts/MHz	Watts/MHz
Low Peak	3652.5	28.31	28,448	31.39	-2.30	29.09	0.811	1.00
Mid Peak	3662.5	28.033	29,119	31.62	-2.30	29.32	0.855	1.00
High Peak	3672.5	27.864	28.74	31.33	-2.30	29.03	0.801	1.00
5								
				Sum 6 Chains Output	Net Antenna Array	Maximum Output EIRP	Maximum Output EIRP,	
10 MHz 64QAM		Chain 1	Chain 2	Power, dBm/MHz	Factor, dBi	dBm/MHz	Watts/MHz	Watts/MHz
Low Peak	3655	27.293	26.835	30.08	-2.30	27.78	0.600	1.00
Mid Peak	3662.5	26.418	26.775	29.61	-2.30	27.31	0.538	1.00
High Peak	3670	26.848	26.951	29.91	-2.30	27.61	0.577	1.00

4.6.1.4 MAXIMUM PERMISSIBLE EXPOSURE

LIMITS

\$1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

			. ,		
Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)	
(A) Lim	its for Occupational	I/Controlled Exposu	res		
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842/f 61.4	1.63 4 <i>.89/</i> f 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 8	
(B) Limits	for General Populati	on/Uncontrolled Exp	posure		
0.3–1.34 1.34–30	614 824/f	1.63 2.19/f	*(100) *(180/f ²)	30 30	

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)	
30-300	27.5	0.073	0.2	30	
300–1500 1500–100,000			f/1500 1.0	30 30	

f = frequency in MHz
 * = Plane-wave equivalent power density NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure.
 Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided the or she is made aware of the potential for exposure.
 NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

exposure or can not exercise control over their exposure.

CALCULATIONS

Given

 $E = \sqrt{(30 * P * G)} / d$

and

 $S = E^{2}/3770$

where

E = Field Strength in Volts/meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations and rearranging the terms to express the distance as a function of the remaining variables yields:

 $d = \sqrt{((30 * P * G) / (3770 * S))}$

Changing to units of Power to mW and Distance to cm, using:

P (mW) = P (W) / 1000 and d (cm) = 100 * d (m)

yields

 $d = 100 * \sqrt{((30 * (P / 1000) * G) / (3770 * S))}$ $d = 0.282 * \sqrt{(P * G / S)}$

where

d = distance in cm P = Power in mW G = Numeric antenna gain S = Power Density in mW/cm^2

Substituting the logarithmic form of power and gain using:

P (mW) = 10 ^ (P (dBm) / 10) and G (numeric) = 10 ^ (G (dBi) / 10) yields $d = 0.282 * 10 ^ ((P + G) / 20) / \sqrt{S}$ Equation (1) where d = MPE distance in cm P = Power in dBm G = Antenna Gain in dBi $S = Power Density Limit in mW/cm^2$

Equation (1) and the measured peak power is used to calculate the MPE distance.

LIMITS

From §1.1310 Table 1 (B), S = 1.0 mW/cm^2

RESULTS

RF exposure considerations will be addressed by the licensee at the time of installation. The maximum eirp allowed under Part 90 for this product is 10 Watts/10 MHz channels, or 40 dBm EIRP. The MPE distance for 40 dBm eirp calculated below:

Power Density	Output	Antenna	MPE
Limit	Power	Gain	Distance
(mW/cm^2)	(dBm)	(dBi)	(cm)
1.0	40.00	0.00	28.20

4.6.1.5 CONDUCTED SPURIOUS EMISSIONS

REQUIREMENT

2.1051 Measurements required: Spurious emissions at antenna terminals.

The radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of each harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in §2.1049 as appropriate. The magnitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be specified.

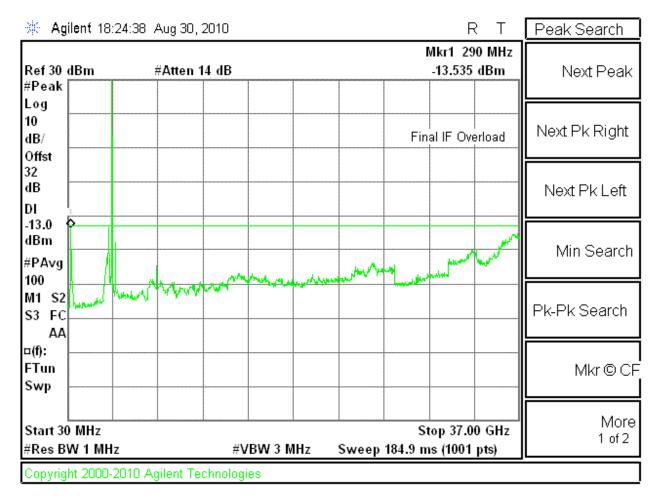
90.1323(a) Emission limits.

(a) The power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or less, but at least one percent of the emission bandwidth of the fundamental emission of the transmitter, provided the measured energy is integrated over a 1 MHz bandwidth.


TEST PROCEDURE

The transmitter outputs are connected to a spectrum analyzer using a combiner. At the Low and High channels, in the 1 MHz band immediately adjacent to the band edge, RBW=1% EBW, VBW=3xRBW. Elsewhere RBW = 1 MHZ, VBW=3 MHz.

RESULTS

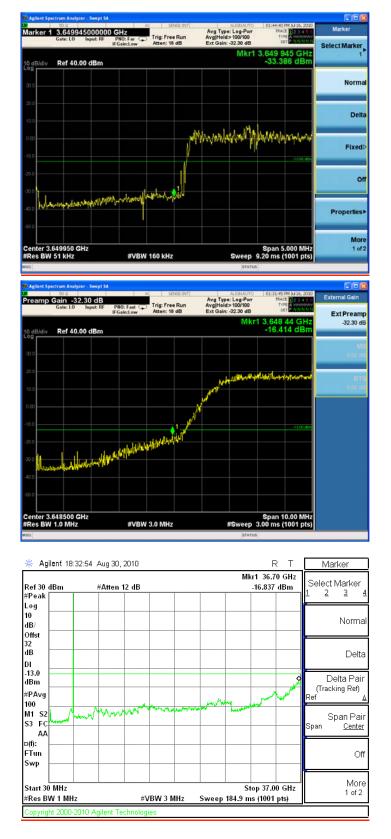

No non-compliance noted:

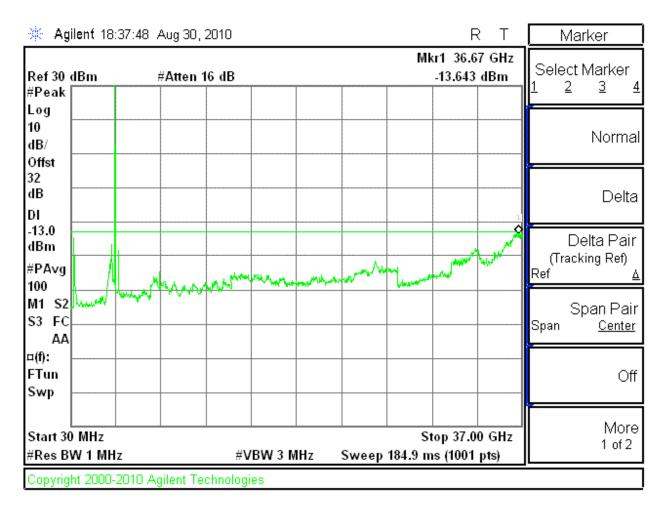
5 MHZ QPSK CONDUCTED SPURIOUS, LOW CHANNEL 3652.5 MHz, P=27 dBm



W Aglient	18:14:59	Aug 30, .	2010					r	< I	iviari	ker	
Ref30dBn #Peak		#Atten 1	2 dB		1	1	м	kr1 36.4 -17.927		Select N 1 2	/larkei 3	r 4
Log 10 dB/											Norm	na
Offst 32 dB DI											Del	ita
-13.0 dBm #PAvg 100						-M		June	×	De (Tracki Ref	lta Pa ng Ref)	
AA		m	w.	and a straight of the st	and the state		- Lucker			Sp Span	an Pa <u>Cent</u>	
¤(f): FTun Swp —										-	C	Dff
Start 30 Mi #Res BW 1			#\	/BW 3 N	l IHz	Sweep		top 37.0 1s (1001			Mo 1 of	
Copyright 2	000-2010 A	gilent Te	chnolog	ies								

5 MHZ QPSK CONDUCTED SPURIOUS, MID CHANNEL, P=35 dBm


5 MHZ QPSK CONDUCTED SPURIOUS, HIGH CHANNEL 3672.5 MHz, P=28



5 MHZ 16QAM CONDUCTED SPURIOUS, LOW CHANNEL, P=27 dBm

Page 26 of 61

5 MHZ 16QAM CONDUCTED SPURIOUS, MID CHANNEL, P=35 dBm

5 MHZ 16QAM CONDUCTED SPURIOUS, 3672.5 MHz, HIGH CHANNEL, P=28

Report No: 10PRO0179 3.65 GHz Fixed Wireless Transceiver FCC ID: XN3-QUANTUM6636

5 MHZ 64QAM CONDUCTED SPURIOUS, 3652.5 MHZLOW CHANNEL, P=27 dBm

FCC ID: XN3-QUANTUM6636 IC: 8974A-QUANTUM6636 5 MHZ 64QAM CONDUCTED SPURIOUS, MID CHANNEL, P=35 dBm 🔆 Agilent 18:48:56 Aug 30, 2010 Т R Marker Mkr1 36.63 GHz Select Marker Ref 30 dBm #Atten 16 dB -13.930 dBm 2 3 4 #Peak Log 10 Normal dB/ Offst 32 dB Delta DI -13.0 Delta Pair dBm (Tracking Ref) m #PAvg Ref ₫ mayilu 100 M1 S2 Span Pair \$3 FC Span <u>Center</u> AA ¤(f): FTun Off Swp More Start 30 MHz Stop 37.00 GHz 1 of 2 #Res BW 1 MHz #VBW 3 MHz Sweep 184.9 ms (1001 pts) Copyright 2000-2010 Agilent Technologies

Date: 4 September 2010

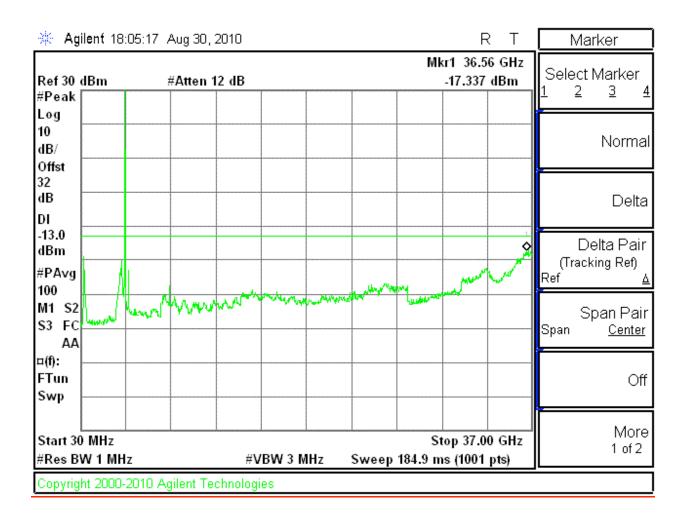
Model No.: Quantum2236

Report No: 10PRO0179

3.65 GHz Fixed Wireless Transceiver

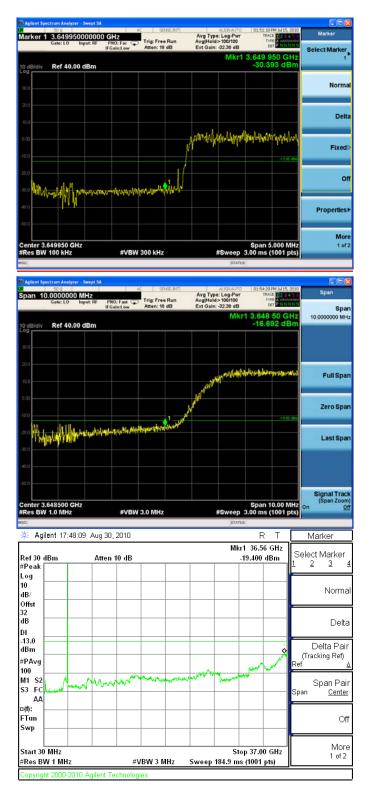
5 MHZ 64QAM CONDUCTED SPURIOUS, 3672.5 MHz, HIGH CHANNEL, P=28 dBm

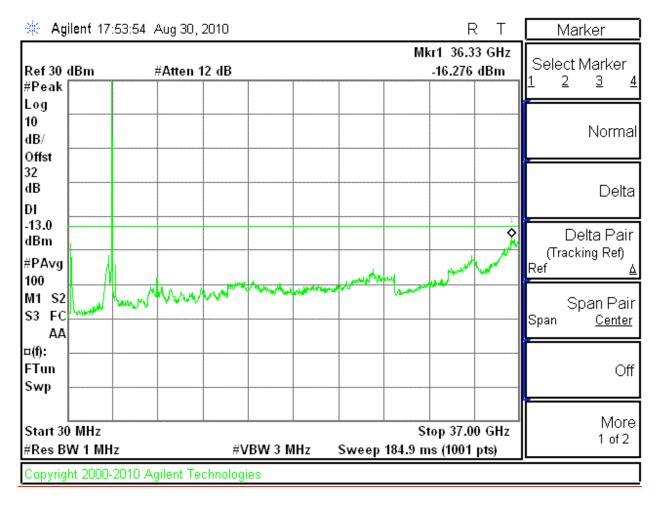
10 MHZ QPSK CONDUCTED SPURIOUS, 3655 MHz, LOW CHANNEL, P=29



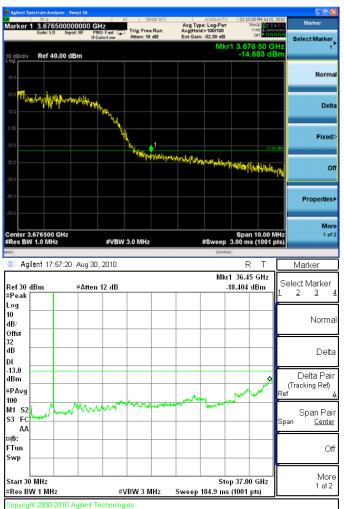


Page 32 of 61

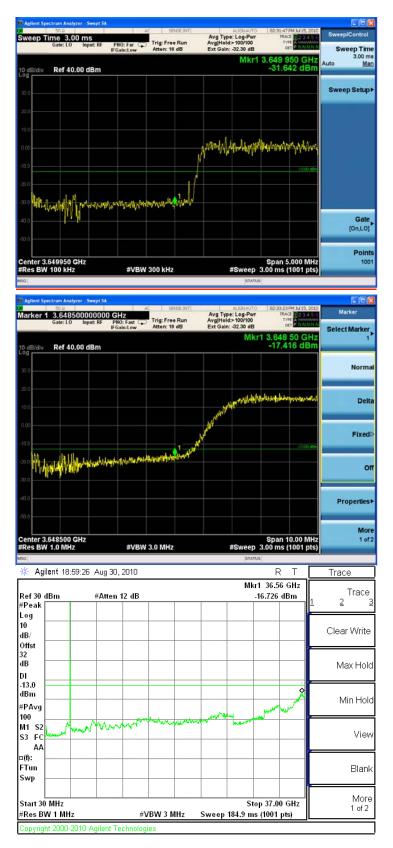

10 MHZ QPSK CONDUCTED SPURIOUS, MID CHANNEL, P=36 dBm


10 MHZ QPSK <u>CONDUCTED SPURIOUS, 3670 MHz, HIGH CHANNEL, P=30</u>

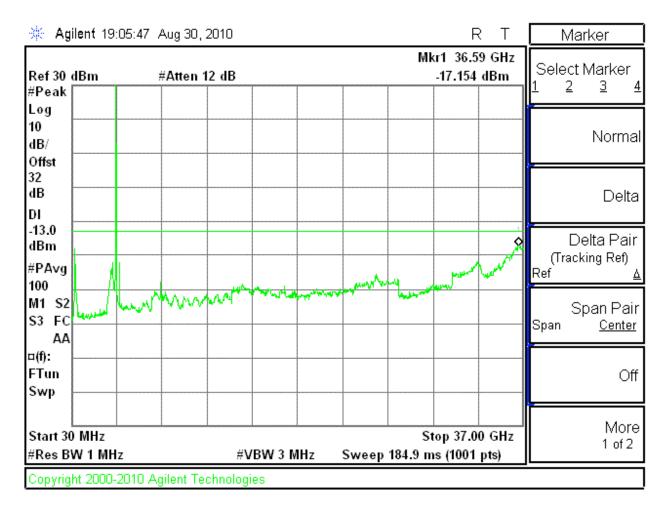
10 MHZ 16QAM CONDUCTED SPURIOUS, 3655 MHz, LOW CHANNEL, P=29 dBm



10 MHZ 16QAM CONDUCTED SPURIOUS, MID CHANNEL, P=36 dBm



10 MHZ 16QAM CONDUCTED SPURIOUS, 3670 MHz, HIGH CHANNEL, P=30



10 MHZ 64QAM CONDUCTED SPURIOUS, 3655 MHz, LOW CHANNEL, P=29

10 MHZ 64QAM CONDUCTED SPURIOUS, MID CHANNEL, P=36 dBm

10 MHZ 64QAM CONDUCTED SPURIOUS, HIGH CHANNEL, P=30

Log 10 dB/ Offst			Normal		
32 dB DI			Delta		
-13.0 dBm #PAvg 100		مر سر سر	Delta Pair (Tracking Ref) Ref <u>∆</u>		
#PAvg 100 M1 S2 S3 FC AA	Mr Marthan		Span Pair _{Span <u>Center</u>}		
¤(f): FTun Swp			Off		
Start 30 MHz #Res BW 1 MHz	#VBW 3 MHz	Stop 37.00 GHz Sweep 184.9 ms (1001 pts)	More 1 of 2		
Copyright 2000-2010 Agilent Technologies					

4.6.2 RADIATED EMISSIONS

REQUIREMENT

2.1053 Measurements required: Field strength of spurious radiation

Information submitted shall include the relative radiated power of each spurious emission with reference to the rated power output of the transmitter, assuming all emissions are radiated from half wave dipole antennas.

90.1323(a) Emission limits.

(a) The power of any emission outside a licensee's frequency band(s) of operation shall be attenuated below the transmitter power (P) within the licensed band(s) of operation, measured in watts, by at least 43 + 10 log (P) dB. Compliance with this provision is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or less, but at least one percent of the emission bandwidth of the fundamental emission of the transmitter, provided the measured energy is integrated over a 1 MHz bandwidth.

TEST PROCEDURE

Testing was performed using the substitution method.

Power settings for all channels during tests: 5MHz channels: 35 dBm 10MHz channels: 36 dBm

1. The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna port was terminated with a resistive non-radiating 50 ohm termination.

2. The spectrum from 30 MHz to 37 GHz was investigated with the transmitter set to the lowest, middle, and highest channels in each 5 GHz band.

3. The frequency range of interest was monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

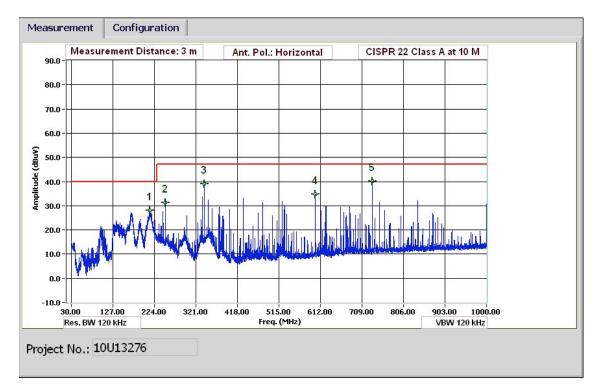
4. The EUT was replaced by a signal generator and antenna. The signal generator was set to produce field strengths matching the levels obtained in step 3 above. The equivalent eirp was calculated from the signal generator output and antenna gain with respect to isotropic.

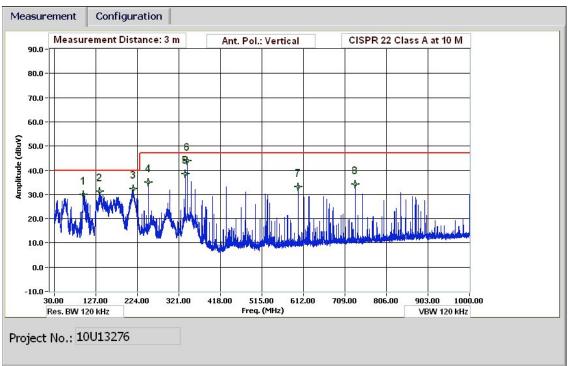
Note: For emissions below 1 GHz, the field strength of the emission is also compared against the EN55022 class A limits for digital devices

TEST RESULTS

Refer to plots and tabulated data below. All emissions below 1 GHz were at least 20 dB below -13 dBm limit and were determined to be from the digital section of the product.

For all modulations for 5/10 MHz bandwidths, worst-case emissions above 1 GHz are at least 24 dB below limits. Worst-case emissions were for 5 MHz QPSK, refer to spread sheet below.


4.6.2.1 TRANSMITTER RADIATED EMISSIONS ABOVE 1 GHZ HARMONICS AND SPURIOUS EMISSIONS


QPSK 5 MHz Channels

f S GHz GPSK, 5 MH w Ch 3.652.5 1.08 1.25 1.87 2.49 3.02 armonis Spur	Chamber Chamber A Chamber	Тх QPSK, 5 МI r	n te support equ Hz BW	re-amplifer 8449B Path Loss (dB)	▼ Preamp (dB)	Filter	Filter	•	L	-imit -
f S GHz GPSK, 5 MH w Ch 3.652.5 1.08 1.25 1.87 2.49 3.02 armonis Spur	Chamber A CA reading (dBm) Iz BW -50.6 -49.3 -56.5 -58.6 -60.3 rious -59.7	Ant. Pol. (H/V) V V V	T144 Distance (m) 3.0 3.0	8449B Path Loss (dB)	Preamp		Filter	•	L	
f S GHz GPSK, 5 MH w Ch 3.652.5 1.08 1.25 1.87 2.49 3.02 armonis Spur	GA reading (dBm) iz BW GHz -50.6 -49.3 -56.5 -58.6 -60.3 -60.3 -59.0 -59.0	Ant. Pol. (H/V) V V V V	Distance (m) 3.0 3.0	Path Loss (dB)	Preamp	Filter		•		-
GHz QPSK, 5 MH w Ch 3.652.5 1.08 1.25 1.87 2.49 3.02 armonis Spur	(dBm) Iz BW -50.6 -49.3 -56.5 -58.6 -60.3 -fous -59.0 -59.7	(H/V) V V V V V	(m) 3.0 3.0	(dB)		Filter				
C QPSK, 5 MH bw Ch 3.652.5 1.08 1.25 1.87 2.49 3.02 armonis Spur	Iz BW iGHz -50.6 -49.3 -56.5 -58.6 -60.3 rious -59.0 -59.7	V V V V	3.0 3.0		(ав)		EIRP	Limit	Delta	Notes
w Ch 3.652.5 1.08 1.25 1.87 2.49 3.02 armonis Spur	iGHz -50.6 -49.3 -56.5 -58.6 -60.3 ious -59.0 -59.7	V V V	3.0			(dB)	(dBm)	(dBm)	(dB)	
1.08 1.25 1.87 2.49 3.02 armonis Spur	-50.6 -49.3 -56.5 -58.6 -60.3 rious -59.0 -59.7	V V V	3.0							
1.25 1.87 2.49 3.02 armonis Spur	-49.3 -56.5 -58.6 -60.3 rious -59.0 -59.7	V V V	3.0	31.4	39.4		-58.5	-13.0	-45.5	
1.87 2.49 3.02 armonis Spur	-56.5 -58.6 -60.3 'ious -59.0 -59.7	v v		31.4	39.4		-55.3	-13.0	-45.5	
2.49 3.02 armonis Spur	-58.6 -60.3 'ious -59.0 -59.7	v	0.0	39.3	37.9		-55.0	-13.0	-42.0	
armonis Spur	rious -59.0 -59.7	V	3.0	41.8	37.5		-54.3	-13.0	-41.3	
	-59.0 -59.7		3.0	43.4	37.3		-54.3	-13.0	-41.3	
	-59.7							40.0		
7.31		<u>v</u>	3.0	51.7	36.6		-43.8	-13.0	-30.8	
10.96 14.61		<u>v</u> v	3.0 3.0	56.2 59.9	36.9 35.0		-40.5 -41.0	-13.0 -13.0	-27.5 -28.0	Noise floor
14.01	-65.9		0.0		55.0			- 13.0	-20.0	110130 11001
			3.0							
7.31	-59.8	н	3.0	52.8	36.6		-43.6	-13.0	-30.6	
10.96 14.61	-58.6 -64.0	H H	3.0 3.0	55.9 60.1	36.9 35.0		-39.7 -38.9	-13.0 -13.0	-26.7 -25.9	Noise floor
14.01	-64.0	п	3.0	60.1	35.0		-38.9	-13.0	-25.9	Noise floor
id Ch 3662.5N										
7.33	-57.9	V	3.0	51.7	36.6		-42.7	-13.0	-29.7	
10.99	-61.3	V	3.0	56.2	36.9		-42.0	-13.0	-29.0	
14.65	-64.0	<u>v</u>	3.0	59.9	34.9		-39.1	-13.0	-26.1	Noise floor
7.33	-58.1 -56.0	H	3.0 3.0	52.8 55.9	36.6 36.9		-41.9 -37.0	-13.0 -13.0	-28.9 -24.0	
14.65	-63.5	H	3.0	60.2	34.9		-38.3	-13.0	-25.3	Noise floor
gh Ch 3672.5										
7.35	-57.1	V	3.0	51.8	36.6		-41.9	-13.0	-28.9	
11.01 14.68	-61.7 -62.8	v v	3.0 3.0	56.2 59.9	36.9 34.9		-42.4 -37.7	-13.0 -13.0	-29.4 -24.7	Noise floor
7.35	-62.8	H H	3.0	59.9 52.8	34.9 36.6		-37.7	-13.0	-24.7 -34.1	Noise floor
11.02	-57.8	н	3.0	55.9	36.9		-38.8	-13.0	-25.8	
14.69	-64.0	H	3.0	60.2	34.9		-38.7	-13.0	-25.7	Noise floor
							1			
			1	I I			1			
v. 03.03.09										

4.6.2.2 TRANSMITTER RADIATED EMISSIONS BELOW 1 GHZ SPURIOUS AND DIGITAL SECTION EMISSIONS

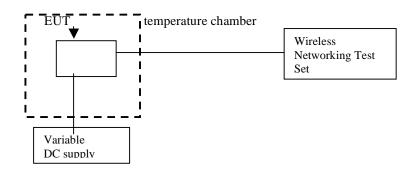
64 QAM5 MHz Channels (Worst case emissions)

30-1000MHz Frequency Measurement Compliance Certification Services, Fremont 5m Chamber													
Test Engr: Date: Project #: Company: EUT Descripti EUT M/N: Test Target: Mode Oper:	f Dist Read AF CL	Thanh Nguy 06/22/10 10U13276 PureWave N 6X6 3.65GH Quantum 66 EN55022 Cla Tx 64QAM 5 Measurement Distance to A Analyzer Rea Antenna Fact Cable Loss	Networsks I z WIMAX 00 ass A 5MHz BW, t Frequency untenna kding	Base Sta		Iz Preamp Ga Distance Co Filter Insern Calculated Field Streng	orrect to 3 i t Loss Field Stren			Margin	Margin vs. L	imit	
f MHz	Dist	Read	AF dB/m	CL dB	Amp dB	D Corr dB	Filter	Corr.	Limit	Margin	Ant. Pol.	Det.	
	(m)	dBuV					dB	dBuV/m	dBuV/m	dB	V/H	P/A/QP	
98.163	3.0	58.3	9.5	0.9	28.3	-10.5	0.0	29.9	40.0	-10.1	V	P	
136.684 215.528	3.0	55.5 57.8	13.3 11.9	1.1	28.3 28.2	-10.5	0.0	31.2 32.4	40.0	-8.8	V V	P P	
215.528 249.969	3.0	60.5	11.9	1.3 1.4	28.2	-10.5 -10.5	0.0	32.4	40.0 47.0	-7.6 -12.0	V V	P P	
249.969 336.013	3.0	60.5	11.8	1.4	28.2	-10.5	0.0	35.0	47.0	-12.0	V V	Р Р	
336.013 340.933	3.0	66.8	14.0	1.6	28.1	-10.5	0.0	<u> </u>	47.0	-8.4	V V	P P	
540.955 599.904	3.0	50.5	14.0	2.2	28.1	-10.5	0.0	43.9 33.1	47.0	-3.1	V V	P P	
599.904 733.349	3.0	49.4	20.0	2.2	27.3	-10.5	0.0	34.3	47.0	-13.9	V V	P P	
755.549 212.768	3.0	53.4	20.0	2.5 1.3	27.3	-10.5	0.0	28.0	47.0	-12.7	V H	P P	
212.768 250.089	3.0	53.4	11.9	1.3	28.2	-10.5	0.0	<u></u> 31.2	40.0	-12.0	H	P P	
250.089 340.933	3.0	61.9		1.4	28.2	-10.5	0.0	<u>31.2</u> <u>39.0</u>	47.0	-15.8	H	P P	
340.933 600.024	3.0	52.0	14.0 18.4	1.6	28.1	-10.5	0.0	<u> </u>	47.0		H	P P	
600.024 733.349	3.0	52.0	18.4	2.2	27.5	-10.5	0.0	<u> </u>	47.0	-12.3	H	P P	
	3.0	55.4	20.0	2.5	21.3	-10.5	0.0	40.2	47.0	-0.8	H	ľ	
Rev. 1.27.09 Note: No oth	er emissi	ons were det	tected abo	ove the s	system no	ise floor.							

4.6.3 FREQUENCY STABILITY TEST

REQUIREMENT

2.1055 Measurements required: Frequency stability


(a) The frequency stability shall be measured with variation of ambient temperature as follows:

(1) From -30° to $+50^{\circ}$ centigrade

(d) The frequency stability shall be measured with variation of primary supply voltage as follows:

(1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.

Test Set-up

Test Procedures

- 1. Wireless Networking Test Set center frequency was set to 3662.5 MHZ operating frequency. Frequency was measured at +20C using Wireless Test Set frequency error function.
- 2. The transmitter was allowed to stabilize at every 10 degrees C from -30C to +50C and measurements were recorded at each temperature.

Test Results

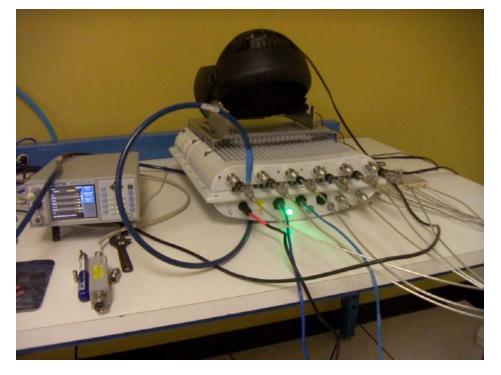
Refer to table below. Frequency remains within 6.91 kHz throughout all required temperature and supply voltage variations. The fundamental emissions of the transmitter remain within the authorized bands of operation under all conditions of temperature and operating voltage

Report No: 10PRO0179 3.65 GHz Fixed Wireless Transceiver FCC ID: XN3-QUANTUM6636

Quantum 6636 Frequency Accuracy Test Data Center frequency = 3.6625GHz -30C to + 50C in 10C steps 45 minute minimum soak time at each temperature between readings.

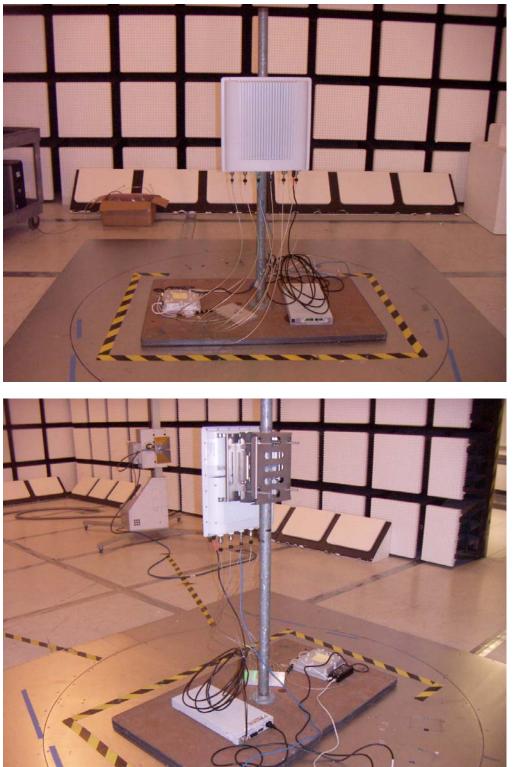
Frequency measured using Agilent MXA spectrum analyzer in VSA mode to demodulate WiMAX signal.

Temperature C	Measured Center Frequency kHz	Deviation from nominal @ 20C kHz
-30	3662494.63	-6.91
-20	3662495.5	-6.04
-10	3662496.81	-4.73
0	3662498.9	-2.64
10	3662500.258	-1.282
20	3662501.54	0
30	3662502.18	0.64
40	3662503.05	1.51
50	3662502.6	1.06


Frequency Variation with voltage @ 20C

Voltage	I	Measured Center Frequency kHz	Deviation from nominal @ -48VDC kHz				
	-40.8 -48	3662501.54 3662501.54	0				
	-40 -55.2	3662501.51	-0.03				

5. SETUP PHOTOS


ANTENNA PORT CONDUCTED RF MEASUREMENT SETUP

Date: 4 September 2010 Model No.: Quantum2236 IC: 8974A-QUANTUM6636

RADIATED RF MEASUREMENT SETUP

Report No: 10PRO0179 3.65 GHz Fixed Wireless Transceiver FCC ID: XN3-QUANTUM6636 Date: 4 September 2010 Model No.: Quantum2236 IC: 8974A-QUANTUM6636

FREQUENCY STABILITY MEASUREMENT SETUP

END OF REPORT

Page 49 of 61