

FC64E-B Hardware Design

Wi-Fi&Bluetooth Module Series

Version: 1.0

Date: 2023-08-10

Status: Released

At Quectel, our aim is to provide timely and comprehensive services to our customers. If you require any assistance, please contact our headquarters:

Quectel Wireless Solutions Co., Ltd.

Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai 200233, China Tel: +86 21 5108 6236 Email: info@guectel.com

Or our local offices. For more information, please visit: http://www.guectel.com/support/sales.htm.

For technical support, or to report documentation errors, please visit: http://www.quectel.com/support/technical.htm. Or email us at: support@quectel.com.

Legal Notices

We offer information as a service to you. The provided information is based on your requirements and we make every effort to ensure its quality. You agree that you are responsible for using independent analysis and evaluation in designing intended products, and we provide reference designs for illustrative purposes only. Before using any hardware, software or service guided by this document, please read this notice carefully. Even though we employ commercially reasonable efforts to provide the best possible experience, you hereby acknowledge and agree that this document and related services hereunder are provided to you on an "as available" basis. We may revise or restate this document from time to time at our sole discretion without any prior notice to you.

Use and Disclosure Restrictions

License Agreements

Documents and information provided by us shall be kept confidential, unless specific permission is granted. They shall not be accessed or used for any purpose except as expressly provided herein.

Copyright

Our and third-party products hereunder may contain copyrighted material. Such copyrighted material shall not be copied, reproduced, distributed, merged, published, translated, or modified without prior written consent. We and the third party have exclusive rights over copyrighted material. No license shall be granted or conveyed under any patents, copyrights, trademarks, or service mark rights. To avoid ambiguities, purchasing in any form cannot be deemed as granting a license other than the normal non-exclusive, royalty-free license to use the material. We reserve the right to take legal action for noncompliance with abovementioned requirements, unauthorized use, or other illegal or malicious use of the material.

Trademarks

Except as otherwise set forth herein, nothing in this document shall be construed as conferring any rights to use any trademark, trade name or name, abbreviation, or counterfeit product thereof owned by Quectel or any third party in advertising, publicity, or other aspects.

Third-Party Rights

This document may refer to hardware, software and/or documentation owned by one or more third parties ("third-party materials"). Use of such third-party materials shall be governed by all restrictions and obligations applicable thereto.

We make no warranty or representation, either express or implied, regarding the third-party materials, including but not limited to any implied or statutory, warranties of merchantability or fitness for a particular purpose, quiet enjoyment, system integration, information accuracy, and non-infringement of any third-party intellectual property rights with regard to the licensed technology or use thereof. Nothing herein constitutes a representation or warranty by us to either develop, enhance, modify, distribute, market, sell, offer for sale, or otherwise maintain production of any our products or any other hardware, software, device, tool, information, or product. We moreover disclaim any and all warranties arising from the course of dealing or usage of trade.

Privacy Policy

To implement module functionality, certain device data are uploaded to Quectel's or third-party's servers, including carriers, chipset suppliers or customer-designated servers. Quectel, strictly abiding by the relevant laws and regulations, shall retain, use, disclose or otherwise process relevant data for the purpose of performing the service only or as permitted by applicable laws. Before data interaction with third parties, please be informed of their privacy and data security policy.

Disclaimer

- a) We acknowledge no liability for any injury or damage arising from the reliance upon the information.
- b) We shall bear no liability resulting from any inaccuracies or omissions, or from the use of the information contained herein.
- c) While we have made every effort to ensure that the functions and features under development are free from errors, it is possible that they could contain errors, inaccuracies, and omissions. Unless otherwise provided by valid agreement, we make no warranties of any kind, either implied or express, and exclude all liability for any loss or damage suffered in connection with the use of features and functions under development, to the maximum extent permitted by law, regardless of whether such loss or damage may have been foreseeable.
- d) We are not responsible for the accessibility, safety, accuracy, availability, legality, or completeness of information, advertising, commercial offers, products, services, and materials on third-party websites and third-party resources.

Copyright © Quectel Wireless Solutions Co., Ltd. 2023. All rights reserved.

Safety Information

The following safety precautions must be observed during all phases of operation, such as usage, service or repair of any terminal or mobile incorporating the module. Manufacturers of the terminal should notify users and operating personnel of the following safety information by incorporating these guidelines into all manuals of the product. Otherwise, Quectel assumes no liability for customers' failure to comply with these precautions.

	Full attention must be paid to driving at all times in order to reduce the risk of an accident. Using a mobile while driving (even with a handsfree kit) causes distraction and can lead to an accident. Please comply with laws and regulations restricting the use of wireless devices while driving.
	Switch off the terminal or mobile before boarding an aircraft. The operation of wireless appliances in an aircraft is forbidden to prevent interference with communication systems. If there is an Airplane Mode, it should be enabled prior to boarding an aircraft. Please consult the airline staff for more restrictions on the use of wireless devices on an aircraft.
•	Wireless devices may cause interference on sensitive medical equipment, so please be aware of the restrictions on the use of wireless devices when in hospitals, clinics or other healthcare facilities.
SOS	Terminals or mobiles operating over radio signal and cellular network cannot be guaranteed to connect in certain conditions, such as when the mobile bill is unpaid or the (U)SIM card is invalid. When emergency help is needed in such conditions, use emergency call if the device supports it. In order to make or receive a call, the terminal or mobile must be switched on in a service area with adequate cellular signal strength. In an emergency, the device with emergency call function cannot be used as the only contact method considering network connection cannot be guaranteed under all circumstances.
Www	The terminal or mobile contains a transceiver. When it is ON, it receives and transmits radio frequency signals. RF interference can occur if it is used close to TV sets, radios, computers or other electric equipment.
,	In locations with explosive or potentially explosive atmospheres, obey all posted signs and turn off wireless devices such as mobile phone or other terminals. Areas

signs and turn off wireless devices such as mobile phone or other terminals. Areas with explosive or potentially explosive atmospheres include fueling areas, below decks on boats, fuel or chemical transfer or storage facilities, and areas where the air contains chemicals or particles such as grain, dust or metal powders.

About the Document

Revision History

Version	Date	Author	Description	
-	2021-01-19	Soni RAO/ Lucas HUANG	Creation of the document	
1.0	2023-01-18	Soni RAO	First official release	
			1.	Added the relevant information for FC62E.
4 4	2022 07 24	Soni RAO/	2.	Reserved pin 26 (VDD_3V3) and pin 55 (PA_MUTE).
1.1	2023-07-31	Amy HAN	3.	Added the thermal dissipation for the module
				(Chapter 4.8).

Contents

Safety Information	. 3
About the Document	. 4
Contents	. 5
Table Index	. 7
Figure Index	. 8
1 Introduction	. 9
2 Product Overview	10
2.1. General Description	10
2.2. Key Features	10
2.3. EVB Kit	12
3 Application Interfaces	13
3.1. General Description	13
3.2. Pin Assignment	14
3.3. Pin Description	15
3.4. Power Supply	18
3.5. Wi-Fi Application Interfaces	20
3.5.1. WLAN_EN	20
3.5.2. PCIe Interface	20
3.6. Bluetooth Application Interfaces	22
3.6.1. BT_EN	22
3.6.2. UART	23
3.6.3. BT_WAKE_HOST and HOST_WAKE_BT	23
3.6.4. PCM Interface	23
3.7. Coexistence Interfaces	24
3.8. Other Interfaces	25
3.8.1. WLAN_SLP_CLK	25
3.8.2. SW_CTRL	26
3.9. RF Antenna Interfaces	26
3.9.1. Operating Frequencies	27
3.9.2. RF Antenna Reference Design	27
3.9.3. RF Routing Guidelines	27
3.9.4. Antenna Design Requirements	29
3.9.5. RF Connector Recommendation	30
4 Electrical Characteristics & Reliability	32
4.1. Absolute Maximum Ratings	32
4.2. Power Supply Ratings	
4.3. Digital I/O Characteristics	33

4.4. Operating and Storage Temperatures
4.5. Power Consumption
4.6. RF Performances
4.6.1. Wi-Fi Performances
4.6.2. Bluetooth Performances 41
4.7. ESD Protection 41
4.8. Thermal Dissipation
5 Mechanical Information 44
5.1. Mechanical Dimensions
5.2. Recommended Footprint 46
5.3. Top and Bottom Views
6 Storage, Manufacturing and Packaging 48
6 Storage, Manufacturing and Packaging
6.1. Storage Conditions
6.1. Storage Conditions486.2. Manufacturing and Soldering49
6.1. Storage Conditions486.2. Manufacturing and Soldering496.3. Packaging Specifications51
6.1. Storage Conditions486.2. Manufacturing and Soldering496.3. Packaging Specifications516.3.1. Carrier Tape51
6.1. Storage Conditions 48 6.2. Manufacturing and Soldering 49 6.3. Packaging Specifications 51 6.3.1. Carrier Tape 51 6.3.2. Plastic Reel 52

Table Index

Table 1 : Key Features	10
Table 2 : I/O Parameter Definition	15
Table 3 : Pin Description	15
Table 4 : Definition of Power Supply and GND Pins	18
Table 5 : Pin Definition of WLAN_EN	20
Table 6 : Pin Definition of PCIe Interface	20
Table 7 : Pin Definition of BT_EN	22
Table 8 : Pin Definition of UART	23
Table 9 : Pin Definition of BT_WAKE_HOST and HOST_WAKE_BT	23
Table 10 : Pin Definition of PCM Interface	24
Table 11 : Pin Definition of Coexistence Interfaces	24
Table 12 : Pin Definition of WLAN_SLP_CLK	25
Table 13 : Parameters of WLAN_SLP_CLK	26
Table 14 : Pin Definition of SW_CTRL	26
Table 15 : Pin Definition of RF Antenna Interfaces	26
Table 16 : Operating Frequencies of the Module (Unit: GHz)	27
Table 17 : Antenna Design Requirements	29
Table 18 : Absolute Maximum Ratings (Unit: V)	32
Table 19 : Module Power Supply Ratings (Unit: V)	33
Table 20 : VDD_IO I/O Requirements (Unit: V)	33
Table 21 : Operating and Storage Temperatures (Unit: °C)	34
Table 23 : Power Consumption in Non-signaling Mode (Unit: mA)	35
Table 24 : Tx Power at 2.4 GHz (Without 2.4 GHz Wi-Fi & LTE Coexistence Filter)	37
Table 25 : Tx Power at 2.4 GHz (With 2.4 GHz Wi-Fi/LTE Coexistence Filter)	37
Table 26 : Tx Power at 5 GHz	38
Table 27 : Rx Sensitivity at 2.4 GHz (Without 2.4 GHz Wi-Fi/LTE Coexistence Filter)	39
Table 28 : Rx Sensitivity at 2.4 GHz (With 2.4 GHz Wi-Fi/LTE Coexistence Filter)	39
Table 29 : Rx Sensitivity at 5 GHz (Unit: dBm)	40
Table 30 : Tx Power	41
Table 31 : Rx Sensitivity	41
Table 32 : ESD Characteristics (Temperature: 25–30 °C, Humidity: 40 ±5 %, Unit: kV)	42
Table 33 : Recommended Thermal Profile Parameters	49
Table 34 : Carrier Tape Dimension Table (Unit: mm)	51
Table 35 : Plastic Reel Dimension Table (Unit: mm)	52
Table 36 : Related Documents	54
Table 37 : Terms and Abbreviations	54

Figure Index

Figure 2 : Pin Assignment (Top View)	
Figure 3 : Power-on and Power-off Timings	19
Figure 4 : Block Diagram of Wi-Fi Application Interfaces	20
Figure 5 : Reference Design of PCIe Interface	21
Figure 6 : Block Diagram of Bluetooth Application Interfaces	22
Figure 7 : Block Diagram of PCM Interface	24
Figure 8 : Requirements of WLAN_SLP_CLK	25
Figure 9 : RF Antenna Reference Design	
Figure 10 : Microstrip Design on a 2-layer PCB	
Figure 11 : Coplanar Waveguide Design on a 2-layer PCB	28
Figure 12 : Coplanar Waveguide Design on a 4-layer PCB (Layer 3 as Reference Ground)	28
Figure 13 : Coplanar Waveguide Design on a 4-layer PCB (Layer 4 as Reference Ground)	29
Figure 14 : Receptacle Dimensions (Unit: mm)	30
Figure 15 : Specifications of Mated Plugs	31
Figure 16 : Space Factor of Mated Connectors (Unit: mm)	31
Figure 17 : Placement and Fixing of the Heatsink	
Figure 18 : Top and Side Dimensions	44
Figure 19 : Bottom Dimensions (Bottom View)	45
Figure 20 : Recommended Footprint	46
Figure 21 : FC64E-B Top and Bottom Views	47
Figure 22 : Recommended Reflow Soldering Thermal Profile	49
Figure 23 : Carrier Tape Specifications	51
Figure 24 : Plastic Reel Specifications	52
Figure 25 : Mounting Direction	52
Figure 26 : Packaging Process	53

1 Introduction

This document defines the FC64E-B module and describes its air interfaces and hardware interfaces, which are connected with your application.

This document provides a quick insight into module interface specifications, electrical and mechanical details, as well as other module-related information. Coupled with application notes and user guides, the document makes it easy for you to use the module to design and set up mobile applications.

NOTE

For conciseness purposes, FC64E-B will hereinafter be referred to collectively as "the module/modules" in parts hereof applicable to both models, and individually as "FC64E-B" in parts hereof referring to the differences between them.

2 Product Overview

2.1. General Description

The module is a low-power single-die Wi-Fi and Bluetooth combo solution supporting IEEE 802.11a/b/g/n/ac/ax 2.4 GHz and 5 GHz Wi-Fi standards and Bluetooth 5.2 standard, which enables seamless integration of Wi-Fi and Bluetooth low energy technologies.

It supports Wi-Fi and Bluetooth functions with the low-power PCIe Gen 3, UART, and PCM interfaces.

The built-in 2.4 GHz Wi-Fi & LTE coexistence filter is optional.

2.2. Key Features

Table 1:	Key	Features
----------	-----	----------

Feature	Detail		
	• Core supply voltage: 0.95 V, 1.35 V, 1.95 V		
Power Supply	 I/O supply voltage: 1.8 V 		
	RF supply voltage: 2.2 V		
	• 2.4 GHz Wi-Fi: 2.400–2.4835 GHz		
Operating Frequencies	• 5 GHz Wi-Fi: 5.150–5.850 GHz		
	• Bluetooth: 2.400–2.4835 GHz		
	Compliant with IEEE 802.11a/b/g/n/ac/ax		
	 Supported channel bandwidth: 		
	20/40 MHz at 2.4 GHz		
Wi-Fi Features	20/40/80 MHz at 5 GHz		
WI-FI Fealules	 2 × 2 Multi-User Multiple-Input Multiple-Output (MU-MIMO) 		
	FC64E-B:		
	• Dual Band Simultaneous (DBS) with dual MAC, up to 1.8 Gbps data rate		
	(2 × 2 + 2 × 2 802.11ax DBS)		
Bluetooth Features	 Adaptive frequency hopping (AFH) for reducing radio frequency 		
Diveroutin reatures	interference		

	Compliance with Bluetooth Core Specification Version 5.2 with provisions				
	for supporting future specifications.				
	 2 Mbps Bluetooth Low Energy (BLE), BLE Long Range 				
	• 802.11b: 1 Mbps, 2 Mbps, 5.5 Mbps, 11 Mbps				
	 802.11a/g: 6 Mbps, 9 Mbps, 12 Mbps, 18 Mbps, 24 Mbps, 36 Mbps, 				
Wi-Fi Data	48 Mbps, 54 Mbps				
Transmission Rates	 802.11n: HT20 (MCS 0–7), HT40 (MCS 0–7) 				
	• 802.11ac: VHT20 (MCS 0–8), VHT40 (MCS 0–9), VHT80 (MCS 0–9)				
	• 802.11ax: HE20 (MCS 0–11), HE40 (MCS 0–11), HE80 (MCS 0–11)				
	Without 2.4 GHz Wi-Fi & LTE Coexistence Filter				
	802.11b @ 11 Mbps: 17 dBm ±2 dB				
	802.11g @ 54 Mbps: 14.5 dBm ±2 dB				
	802.11n, HT20 @ MCS 7: 13.5 dBm ±2 dB				
	802.11n, HT40 @ MCS 7: 13 dBm ±2 dB				
	802.11ax, HE20 @ M FC64E-B CS 11: 11 dBm ±2 dB				
	802.11ax, HE40 @ MCS 11: 10 dBm ±2 dB				
	• With 2.4 GHz Wi-Fi & LTE Coexistence Filter				
	802.11b @ 11 Mbps: 16 dBm ±2 dB				
	802.11g @ 54 Mbps: 13 dBm ±2 dB				
	802.11g @ 54 Mbps. 13 dBm ±2 dB 802.11n, HT20 @ MCS 7: 12.5 dBm ±2 dB				
Wi-Fi Transmitting					
Power	802.11n, HT40 @ MCS 7: 11.5 dBm ±2 dB				
FOWEI	802.11ax, HE20 @ MCS 11: 11 dBm ±2 dB				
	802.11ax, HE40 @ MCS 11: 10 dBm ±2 dB				
	• 5 GHz				
	802.11a @ 54 Mbps: 13 dBm ±2 dB				
	802.11n, HT20 @ MCS 7: 12 dBm ±2 dB				
	802.11n, HT40 @ MCS 7: 11.5 dBm ±2 dB				
	802.11ac, VHT20 @ MCS 8: 11.5 dBm ±2 dB				
	802.11ac, VHT40 @ MCS 9: 10.5 dBm ±2 dB				
	802.11ac, VHT80 @ MCS 9: 10 dBm ±2 dB				
	802.11ax, HE20 @ MCS 11: 9.5 dBm ±2 dB				
	802.11ax, HE40 @ MCS 11: 9.5 dBm ±2 dB				
	802.11ax, HE80 @ MCS 11: 8.5 dBm ±2 dB				
Wi-Fi Operating	• AP				
Modes	• STA				
Wi-Fi Modulations					
Wi-Fi Application					
Wi-Fi Modulations Wi-Fi Application Interface	DBPSK, DQPSK, CCK, BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM PCle				
Wi-Fi Application Interface Bluetooth Application	DBPSK, DQPSK, CCK, BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM PCle • UART				
Wi-Fi Application	DBPSK, DQPSK, CCK, BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM PCle				
Wi-Fi Application Interface Bluetooth Application	DBPSK, DQPSK, CCK, BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM PCle • UART				
Wi-Fi Application Interface Bluetooth Application	DBPSK, DQPSK, CCK, BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM PCle • UART • PCM				

	• 50 Ω characteristic impedance
Physical Characteristics	 Size: (18 ±0.15) mm × (19.9 ±0.15) mm × (2.1 ±0.2) mm Package: LCC Weight: approx. 1.6 g
Temperature Ranges	 Operating temperature range ¹: -30 °C to +75 °C Storage temperature range: -40 °C to +85 °C
RoHS All hardware components are fully compliant with EU RoHS directive	

2.3. EVB Kit

To help you develop applications with the module, Quectel supplies an evaluation board (FC6xE M.2 EVB) with accessories to develop and test the module. For more details, see *document* [1].

¹ To meet the normal operating temperature range requirements, it is necessary to ensure effective thermal dissipation, e.g., by adding passive or active heatsinks, heat pipes, vapor chambers, etc. Within this range, the module's indicators comply with IEEE and Bluetooth specification requirements.

3 Application Interfaces

3.1. General Description

The module has 52 LCC pins and 28 LGA pins. The following interfaces are described in detail in subsequent chapters:

- Power supply
- Wi-Fi application interfaces
- Bluetooth application interfaces
- Coexistence interfaces
- Other interfaces
- RF antenna interfaces

3.2. Pin Assignment

	37 37 33 33 33 33 33 33 33 33 33 33 33 3	
38 GND		26 RESERVED
39 _{GND}		25 GND
40 VDD_RF	62 61 60 GND	24 VDD_RF
41 BT_WAKE_HOST	76 75 74 GND	23 sw_ctrl
42 PCM_SYNC		22 COEX_RXD/ HOST_WAKE_BT
43 PCM_DOUT	63 77 73 59 COEX_TXD	21 BT_TXD
44 PCM_DIN	64 78 CND Top View 72 58 CND CND CND CND CND CND CND CND CND CND	20 BT_RXD
45 PCM_CLK	65 79 71 57 GND GND GND GND	19 BT_CTS
46		18 BT_RTS
47	66 80 70 56 LAA.RX	17 BT_EN
	67 68 69 GND GND GND	16 WLAN_SLP_CLK
49 _{GND}	53 54 55 GND GND RESERVED	15 GND
50 GND		14 VDD_IO
51 VDD_CORE_VL		13 WLAN_EN
52 VDD_CORE_VL		12 PCIE_WAKE_N
	POLE REFOLUCION POLE REFOLUCION POLE REFOLUCION POLE REMAINANCE POLE REMAINANC	
		DEGE
Power	GND WLAN Bluetooth ANT COEX Others	RESEF

NOTE

- 1. Keep all RESERVED and unused pins unconnected.
- 2. All GND pins should be connected to ground.

3.3. Pin Description

Table 2: I/O Parameter Definition

Туре	Description
AI	Analog Input
AIO	Analog Input/Output
AO	Analog /Output
DI	Digital Input
DO	Digital Output
PI	Power Input

Table 3: Pin Description

Power Supply

Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
VDD_CORE_VL	51, 52	PI	Provides 0.95 V for the module's main chip	Vmin = 0.9 V Vnom = 0.95 V Vmax = 1.05 V	It must be provided with sufficient current up to 1 A.
VDD_CORE_VM	48	PI	Provides 1.35 V for the module's main chip	Vmin = 1.3 V Vnom = 1.35 V Vmax = 2.1 V	It must be provided with sufficient current up to 0.4 A.
VDD_CORE_VH	47	PI	Provides 1.95 V for the module's main chip	Vmin = 1.85 V Vnom = 1.95 V Vmax = 2.1 V	It must be provided with sufficient current up to 0.4 A.
VDD_IO	14	PI	Provides 1.8 V for the module's I/O pins	Vmin = 1.71 V Vnom = 1.8 V Vmax = 1.89 V	It must be provided with sufficient current up to 0.05 A.
VDD_RF	24, 40	PI	Provides 2.2 V for RF circuit	Vmin = 1.9 V Vnom = 2.2 V Vmax = 2.4 V	It must be provided with sufficient current up to 2.0 A.
GND	·				

Wi-Fi Application Interfaces

Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
WLAN_EN	13	DI	Power up/down internal regulators used by WLAN section	VDD_IO	Active high. Keep it connected.	
PCIE_REFCLK_M	1	AI	PCIe reference clock (-)	_		
PCIE_REFCLK_P	2	AI	PCIe reference clock (+)	_		
PCIE_TX_M	4	AO	PCIe transmit (-)	_	Require differential	
PCIE_TX_P	5	AO	PCIe transmit (+)	_	impedance of 85 Ω.	
PCIE_RX_M	7	AI	PCIe receive (-)	_		
PCIE_RX_P	8	AI	PCIe receive (+)			
PCIE_CLKREQ_ N	10	DO	PCIe clock request			
PCIE_RST_N	11	DI	PCIe reset	VDD_IO	Active low.	
PCIE_WAKE_N	12	DO	PCIe wake up			
Bluetooth Applica	tion Interf	aces				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
BT_EN	17	DI	Power up/down internal regulators used by Bluetooth section	_	Active high. Pull it down with a 10 k Ω resistor when Bluetooth function is not used.	
PCM_DIN	44	DI	PCM data input	_		
PCM_SYNC	42	DI	PCM data frame sync	VDD_IO	If unused, keep them open.	
PCM_CLK	45	DI	PCM clock	_		
PCM_DOUT	43	DO	PCM data output	_	Do not pull it down when Bluetooth is booting.	
BT_RTS	18	DO	Request to send signal from the module		If unused, keep them open.	

BT_CTS	19	DI	Clear to send signal to the module		
BT_RXD	20	DI	Bluetooth UART receive	_	
BT_TXD	21	DO	Bluetooth UART transmit	-	
BT_WAKE_HOST	41	DO	Bluetooth wakes up host	_	
COEX_RXD/ HOST_WAKE_BT	22	DI	Host wakes up Bluetooth	-	
RF Antenna Interfa	aces				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
ANT_WIFI0	32	AIO	Wi-Fi 0 antenna interface		
ANT_WIFI1	36	AIO	Wi-Fi 1 antenna interface		50 Ω characteristic impedance.
ANT_BT ²	28	AIO	Bluetooth antenna interface		
Other Interfaces					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
WLAN_SLP_CLK	16	DI	WLAN sleep clock	- VDD IO	Pull it down with a 10 kΩ resistor when it is not used.
SW_CTRL	23	DO	VDD_RF switch control		Active high. If unused, keep it open.
Coexistence Interf	aces				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
COEX_RXD/ HOST_WAKE_BT	22	DI	LTE & Wi-Fi/ Bluetooth coexistence receive	VDD_IO	If unused, keep them open.

			LTE & Wi-Fi/	
COEX_TXD	59	DO	Bluetooth coexistence transmit	
LAA_TXEN	65	DI	If it is at high level, the module puts the 5 GHz receiver in a protected state.	
WLAN_TXEN	66	DO	Module pulls it high when 5 GHz is set to transmit at power greater than 10 dBm.	
LAA_RX	56	DI	If it is at high level, module allows LAA to receive through the Wi-Fi antennas.	
RESERVED Pin				
Pin Name	Pin No.			Comment
RESERVED	9, 26, 55			Keep them open.

3.4. Power Supply

Power supply and ground pins of the module are described in the following table.

Table 4:	Definition	of	Power	Supply	and	GND	Pins
	Dennition	U 1	1 01101	Cappiy	ana	OND	1 1110

Pin Name	Pin No.	Description	Min.	Тур.	Max.	Unit
VDD_CORE_VL	51, 52	Provides 0.95 V for the module's main chip	0.9	0.95	1.05	V
VDD_CORE_VM	48	Provides 1.35 V for the module's main chip	1.3	1.35	2.1	V
VDD_CORE_VH	47	Provides 1.95 V for the module's main chip	1.85	1.95	2.1	V
VDD_IO	14	Provides 1.8 V for the module's I/O pins	1.71	1.8	1.89	V

VDD_RF	24, 40	Provides 2.2 V for RF circuit	1.9	2.2	2.4	V
GND	3, 6, 15, 25	i, 27, 29–31, 33–35, 37–39, 46, 4	9, 50, 5	3, 54, 57, \$	58, 60–64	, 67–80

The power-on and power-off timings are illustrated in the following figure.

All input power supplies must be ON and available no later than that the WLAN_EN/BT_EN is asserted. There is no requirement for the timings between input power supplies. For more details about reference design of power supply, see *document [2]*.

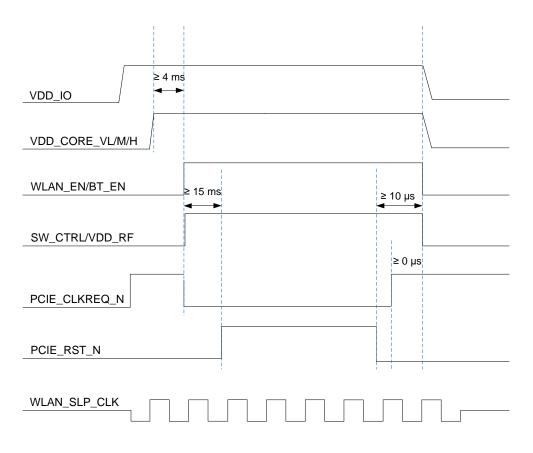


Figure 2: Power-on and Power-off Timings

3.5. Wi-Fi Application Interfaces

Wi-Fi application interface connection between the module and the host is illustrated in the figure below.

Figure 3: Block Diagram of Wi-Fi Application Interfaces

3.5.1. WLAN_EN

Used to power up or power down the internal regulators used by the WLAN section. When this pin is high, the regulators are enabled and the WLAN section is out of reset. When this pin is low the WLAN section is in reset.

Table 5: Pin Definition of WLAN_EN

Pin Name	Pin No.	I/O	Description	Comment
WLAN_EN	13	DI	Power up/down internal regulators used by WLAN section	Active high. Keep it connected.

3.5.2. PCIe Interface

The module supports a PCIe interface with key features listed below:

- PCI Express Base Specification Revision 3.0 compliant.
- Date rate up to 8 Gbps/lane.
- Can be used to connect to a host as a Wi-Fi function interface.

Table 6: Pin Definition of PCIe Interface

Pin Name	Pin No.	I/O	Description	Comment
PCIE_REFCLK_M	1	AI	PCIe reference clock (-)	Require differential

PCIE_REFCLK_P	2	AI	PCIe reference clock (+)	impedance of 85 Ω .
PCIE_TX_M	4	AO	PCIe transmit (-)	
PCIE_TX_P	5	AO	PCIe transmit (+)	
PCIE_RX_M	7	AI	PCIe receive (-)	
PCIE_RX_P	8	AI	PCIe receive (+)	
PCIE_CLKREQ_N	10	DO	PCIe clock request	
PCIE_RST_N	11	DI	PCIe reset	Active low.
PCIE_WAKE_N	12	DO	PCIe wake up	_

PCIe interface connection between the module and the host is illustrated in the figure below.

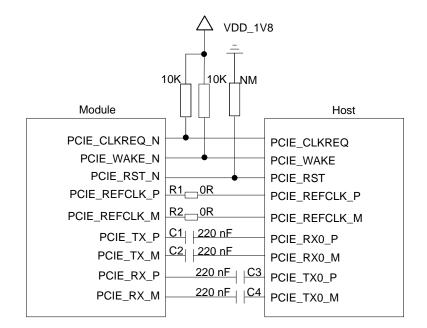
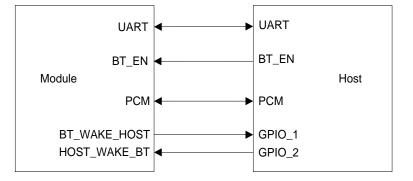


Figure 4: Reference Design of PCIe Interface

To ensure signal integrity of PCIe interface, C1 and C2 should be placed close to the module, and C3 and C4 should be placed close to the host. Extra stubs must be as short as possible.

The following principles of PCIe interface design should be complied with to meet PCIe Gen 3 specifications.

- It is important to route PCIE_TX_P/M, PCIE_RX_P/M, and PCIE_REFCLK_P/M as differential pairs surrounded with ground. Differential impedance should be 85 Ω ±10 %.
- Maximum trace length of each differential pair (PCIE_TX_P/M, PCIE_RX_P/M, and



PCIE_REFCLK_P/M) should not exceed 200 mm, and length mismatch of each differential pair should not exceed 0.5 mm.

- Space between PCIe signals and all other signals should be four times the trace width.
- Do not route signal traces under crystals, oscillators, magnetic devices, or RF signal traces. It is
 important to route the PCIe differential traces in the inner layer of the PCB and surround the traces
 with ground on that layer and with ground planes above and below.

3.6. Bluetooth Application Interfaces

Bluetooth application interface connection between the module and the host is illustrated in the figure below.

Figure 5: Block Diagram of Bluetooth Application Interfaces

NOTE

The GPIO_1 connected to BT_WAKE_HOST must be interruptible.

3.6.1. BT_EN

Used to power up or power down the internal regulators used by the BT section. Low asserting reset for Bluetooth. This pin has no effect on WLAN and must be driven high or low (not left floating). If Bluetooth function is not needed, pull BT_EN down with a 10 k Ω resistor.

Table	7:	Pin	Definition	of	BT_	EN
-------	----	-----	------------	----	-----	----

Pin Name	Pin No.	I/O	Description	Comment
BT EN	17	Power up/dowr	Power up/down	Active high.
	17	DI	internal regulators	Pull it down with a 10 $k\Omega$ resistor when

used by Bluetooth	Bluetooth function is not used.
section	

3.6.2. UART

The module supports an HCI UART as defined in *Bluetooth Core Specification Version 4.0*. The UART supports hardware flow control, and it is used for data transmission with the host. It supports baud rates up to 3.2 Mbps.

Table 8: Pin Definition of UART

Pin Name	Pin No.	I/O	Description	Comment
BT_RTS	18	DO	Request to send signal from the module	
BT_CTS	19	DI	Clear to send signal to the module	If unused, keep them
BT_TXD	21	DO	Bluetooth UART transmit	open.
BT_RXD	20	DI	Bluetooth UART receive	_

3.6.3. BT_WAKE_HOST and HOST_WAKE_BT

BT_WAKE_HOST wakes up the host and HOST_WAKE_BT wakes up the module.

Table 9: Pin Definition of BT_WAKE_HOST and HOST_WAKE_BT

Pin Name	Pin No.	I/O	Description	Comment	
BT_WAKE_HOST	41	DO	Bluetooth wakes up host	If unused loss them onen	
HOST_WAKE_BT	22	DI	Host wakes up Bluetooth	 If unused, keep them open. 	

3.6.4. PCM Interface

The PCM interface is used for Bluetooth audio. Pin definition of PCM interface is provided in the table below.

Pin Name	Pin No.	I/O	Description	Comment
PCM_DIN	44	DI	PCM data input	
PCM_SYNC	42	DI	PCM data frame sync	If unused, keep them open.
PCM_CLK	45	DI	PCM clock	
PCM_DOUT	43	DO	PCM data output	Do not pull it down when Bluetooth is booting.

Table 10: Pin Definition of PCM Interface

PCM interface connection between the module and the host is illustrated in the figure below.

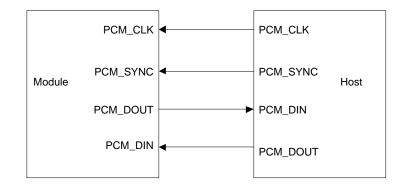


Figure 6: Block Diagram of PCM Interface

3.7. Coexistence Interfaces

The module supports 2.4 GHz and 5 GHz LTE/Wi-Fi & Bluetooth coexistence.

Pin definition of coexistence interfaces is provided in the following table.

Pin Name	Pin No.	I/O	Description	Comment
COEX_RXD/ HOST_WAKE_BT	22	DI	LTE & Wi-Fi/Bluetooth coexistence receive	
COEX_TXD	59	DO	LTE & Wi-Fi/Bluetooth coexistence transmit	If unused, keep them open.
LAA_TXEN	65	DI	If it is at high level, the module	

Table 11: Pin Definition of Coexistence Interfaces

			puts the 5 GHz receiver in a protected state.
WLAN_TXEN	66	DO	Module pulls it high when 5 GHz is set to transmit at power greater than 10 dBm.
LAA_RX	56	DI	If it is at high level, module allows LAA to receive through the Wi-Fi antennas.

3.8. Other Interfaces

3.8.1. WLAN_SLP_CLK

The WLAN_SLP_CLK (32.768 kHz clock) is used in low-power modes, such as IEEE power saving mode and sleep mode. It serves as a timer in various power saving schemes, and can maintain basic logic operations when the module is in sleep mode.

Table 12: Pin Definition of WLAN_SLP_CLK

Pin Name	Pin No.	I/O	Description	Comment
WLAN_SLP_CLK	16	DI	WLAN sleep clock	Pull it down with a 10 k Ω resistor when it is not used.

Figure and table below show the sleep clock requirements.

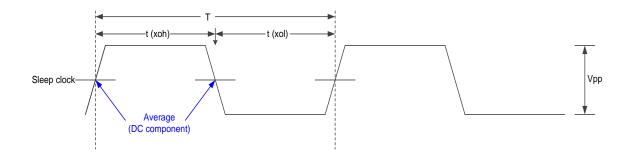


Figure 7: Requirements of WLAN_SLP_CLK

Table 13: Parameters of WLAN_SLP_CLK

Parameter	Description	Min.	Тур.	Max.	Unit
t (xoh)	Sleep-clock logic high	4.58	4.58	25.94	μs
t (xol)	Sleep-clock logic low	4.58	4.58	25.94	μs
Т	Sleep-clock period	-	30.5208	-	μs
F	Sleep-clock frequency (F = $1/T$)	-	32.7645	-	kHz
Vpp	Peak-to-peak voltage	-	1.8	-	V

3.8.2. SW_CTRL

SW_CTRL can be used to control external VDD_RF power supply chip. Pin definition of SW_CTRL is presented in the following table.

Table 14: Pin Definition of SW_CTRL

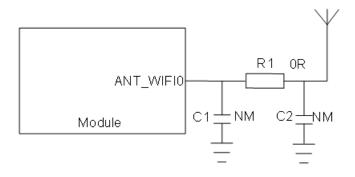
Pin Name	Pin No.	I/O	Description	Comment
SW_CTRL	23	DO	VDD_RF switch control	Active high. If unused, keep it open.

3.9. RF Antenna Interfaces

Table 15: Pin Definition of RF Antenna Interfaces

Pin Name	Pin No.	I/O	Description	Comment
ANT_WIFI0	32	AIO	Wi-Fi 0 antenna interface	
ANT_WIFI1	36	AIO	Wi-Fi 1 antenna interface	50 Ω characteristic impedance.
ANT_BT ³	28	AIO	Bluetooth antenna interface	·

3.9.1. Operating Frequencies


Table 16: Operatir	g Frequencies of the Module	(Unit: GHz)
--------------------	-----------------------------	-------------

Mode	Frequency
2.4 GHz Wi-Fi	2.400–2.4835
5 GHz Wi-Fi	5.150–5.850
Bluetooth	2.400–2.4835

3.9.2. RF Antenna Reference Design

The module supports maximally three RF antenna interfaces for antenna connection. An example reference design with ANT_WIFIO, which applies to other RF antenna interfaces as well, is illustrated in the following figure.

It is recommended to reserve a π -type matching circuit for better RF performance. π -type matching components (C1, C2, R1) should be placed as close to the antenna as possible. C1 and C2 are not mounted by default.

3.9.3. RF Routing Guidelines

For user's PCB, The characteristic impedance of all RF traces should be controlled to 50 Ω . The impedance of the RF traces is usually determined by the trace width (W), the materials' dielectric constant, the height from the reference ground to the signal layer (H), and the spacing between RF traces and ground (S). Microstrip or coplanar waveguide is typically used in RF layout to control characteristic impedance. The following are reference designs of microstrip or coplanar waveguide with different PCB structures.

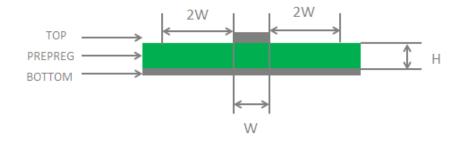


Figure 9: Microstrip Design on a 2-layer PCB

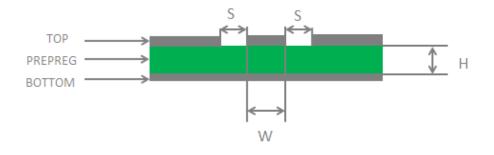


Figure 10: Coplanar Waveguide Design on a 2-layer PCB

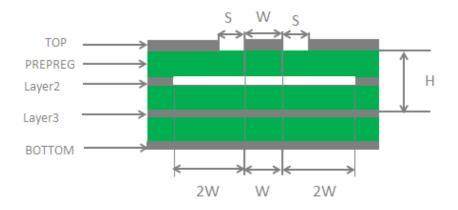
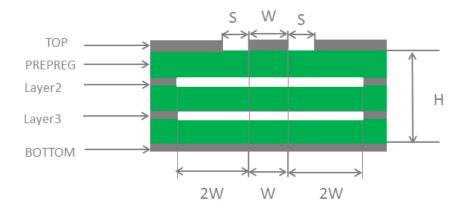



Figure 11: Coplanar Waveguide Design on a 4-layer PCB (Layer 3 as Reference Ground)

Figure 12: Coplanar Waveguide Design on a 4-layer PCB (Layer 4 as Reference Ground)

To ensure RF performance and reliability, follow the principles below in RF layout design:

- Use an impedance simulation tool to accurately control the characteristic impedance of RF traces to 50 Ω.
- The GND pins adjacent to RF pins should not be designed as thermal relief pads, and should be fully connected to ground.
- The distance between the RF pins and the RF connector should be as short as possible, and all the right-angle traces should be changed to curved ones. The recommended trace angle is 135°.
- There should be clearance under the signal pin of the antenna connector or solder joint.
- The reference ground of RF traces should be complete. Meanwhile, adding some ground vias around RF traces and the reference ground could help to improve RF performance. The distance between the ground vias and RF traces should be no less than twice the width of RF signal traces (2 × W).
- Keep RF traces away from interference sources, and avoid intersection and paralleling between traces on adjacent layers.

For more details about RF layout, see document [3].

3.9.4. Antenna Design Requirements

Antenna design requirements are provided in the following table.

Table 17: Antenna Design Requirements

Parameter	Requirement		
Frequency Ranges (GHz)	 2.400-2.4835 5.150-5.850 		
Cable insertion loss (dB)	< 1		

VSWR	≤2
Gain (dBi)	WIFI 2.4G:≪0.73,WIFI 5G:≪1.14
Max. Input Power (W)	50
Input Impedance (Ω)	50
Polarization Type	Vertical

• Note: The antenna connector will be fixed in the actual use of the finished product and cannot be replaced.

3.9.5. RF Connector Recommendation

If RF connector is used for antenna connection, it is recommended to use the U.FL-R-SMT connector provided by Hirose.

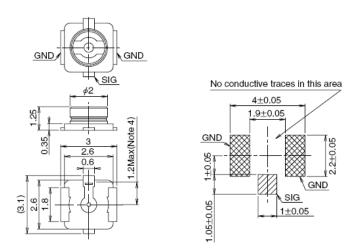


Figure 13: Receptacle Dimensions (Unit: mm)

U.FL-LP series mated plugs listed in the following figure can be used to match the U.FL-R-SMT connector.

	U.FL-LP-040	U.FL-LP-066	U.FL-LP(V)-040	U.FL-LP-062	U.FL-LP-088	
Part No.						
Mated Height	2.5mm Max. (2.4mm Nom.)	2.5mm Max. (2.4mm Nom.)	2.0mm Max. (1.9mm Nom.)	2.4mm Max. (2.3mm Nom.)	2.4mm Max. (2.3mm Nom.)	
Applicable cable	Dia. 0.81mm Coaxial cable	Dia. 1.13mm and Dia. 1.32mm Coaxial cable	Dia. 0.81mm Coaxial cable	Dia. 1mm Coaxial cable	Dia. 1.37mm Coaxial cable	
Weight (mg)	53.7	59.1	34.8	45.5	71.7	
RoHS	YES					

Figure 14: Specifications of Mated Plugs

The following figure describes the space factor of mated connectors.

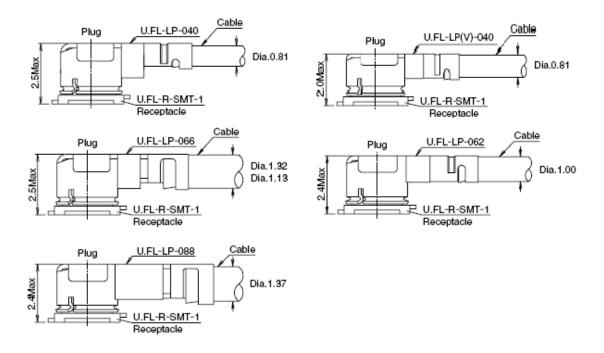


Figure 15: Space Factor of Mated Connectors (Unit: mm)

For more details, please visit <u>http://www.hirose.com</u>.

4 Electrical Characteristics & Reliability

4.1. Absolute Maximum Ratings

Absolute maximum ratings for power supply and voltage on digital pins of the module are listed in the following table.

Table 18: Absolute Maximum Ratings (Unit: V)

Parameter	Min.	Max.
VDD_CORE_VL	-0.3	V _{DDX} + 0.2
VDD_CORE_VM	-0.3	V _{DDX} + 0.2
VDD_CORE_VH	-0.3	V _{DDX} + 0.2
VDD_IO	-0.3	V _{DDX} + 0.2
VDD_RF	-0.3	V _{DDX} + 0.2
I/O pins input voltage	-0.3	VDD_IO + 0.2

NOTE

V_{DDX} is the external supply voltage for the corresponding power input pins.

4.2. Power Supply Ratings

Table 19: Module Power Supply Ratings (Unit: V)

Parameter	Min.	Тур.	Max.
VDD_CORE_VL	0.9	0.95	1.05
VDD_CORE_VM	1.3	1.35	2.1
VDD_CORE_VH	1.85	1.95	2.1
VDD_IO	1.71	1.8	1.89
VDD_RF	1.9	2.2	2.4

4.3. Digital I/O Characteristics

Table 20: VDD_IO I/O Requirements (Unit: V)

Symbol	Parameter	Min.	Max.
VIH	High-level input voltage	0.65 × VDD_IO	VDD_IO + 0.3
VIL	Low-level input voltage	-0.3	0.35 × VDD_IO
V _{OH}	High-level output voltage	VDD_IO - 0.45	VDD_IO
Vol	Low-level output voltage	0	0.45

4.4. Operating and Storage Temperatures

Table 21: Operating and Storage Temperatures (Unit: °C)

Parameter	Min.	Тур.	Max.
Operating Temperature Range ⁴	-30	25	+75
Storage Temperature Range	-40	-	+85

⁴ To meet the normal operating temperature range requirements, it is necessary to ensure effective thermal dissipation, e.g., by adding passive or active heatsinks, heat pipes, vapor chambers, etc. Within this range, the module's indicators comply with IEEE and Bluetooth specification requirements.

4.5. Power Consumption

Table 22: Power Consumption in Non-signaling Mode (Unit: mA)

Description	Condition	VDD_CORE_VL (0.95 V)	VDD_CORE_VM (1.35 V)	VDD_CORE_VH (1.95 V)	VDD_IO (1.8 V)	VDD_RF (2.2 V)
	2.4 GHz 802.11n HT20 @ MCS 0	386.73	173.39	123.84	2.92	717.42
	2.4 GHz 802.11n HT40 @ MCS 7	394.78	179.08	118.99	2.83	606.19
	2.4 GHz 802.11ax HE40 @ MCS 11	390.55	185.37	117.55	2.9	554.28
2×2	5 GHz 802.11n HT20 @ MCS 0	402.2	260.99	143.97	2.84	663.39
	5 GHz 802.11ac VHT40 @ MCS 9	439.5	264.94	141.83	2.91	552.6
	5 GHz 802.11ax HE80 @ MCS 11	583.84	268.09	151.57	2.95	540.68
	5 GHz 802.11ax HE80 @ MCS 0	563.83	273.32	153.62	2.91	630.2
2 × 2 + 2 × 2	802.11n HT20 @ MCS 0	417.56	303.69	222.21	2.92	1336
	802.11n HT40 @ MCS 0	526.4	316.91	218.83	2.91	1087
	802.11n HT20 @ MCS 0 + 802.11ac VHT20 @ MCS 0	424.04	306.3	223.24	2.91	1342
	802.11n HT40 @ MCS 7 + 802.11ac VHT80 MCS 9	672.59	319.42	218.2	2.9	1127

802.11ax HE20 @ MCS 0	429.49	311.57	232.78	2.91	1355
802.11ax 2.4 GHz HE40 @ MCS 11 + 5 GHz HE80 @ MCS 11	674.75	324.69	228.4	2.92	1111

4.6. RF Performances

4.6.1. Wi-Fi Performances

Table 23: Tx Power at 2.4 GHz (Without 2.4 GHz Wi-Fi & LTE Coexistence Filter)

Standard	Typ. (dBm)	Tolerance (dB)
802.11b @ 1 Mbps	17	±2
802.11b @ 11 Mbps	17	±2
802.11g @ 6 Mbps	16	±2
802.11g @ 54 Mbps	14.5	±2
802.11n, HT20 @ MCS 0	16	±2
802.11n, HT20 @ MCS 7	13.5	±2
802.11n, HT40 @ MCS 0	15.5	±2
802.11n, HT40 @ MCS 7	13	±2
802.11ax, HE20 @ MCS 0	16	±2
802.11ax, HE20 @ MCS 11	11	±2
802.11ax, HE40 @ MCS 0	15.5	±2
802.11ax, HE40 @ MCS 11	10	±2

Table 24: Tx Power at 2.4 GHz (With 2.4 GHz Wi-Fi/LTE Coexistence Filter)

Standard	Typ. (dBm)	Tolerance (dB)
802.11b @ 1 Mbps	16	±2
802.11b @ 11 Mbps	16	±2
802.11g @ 6 Mbps	15	±2
802.11g @ 54 Mbps	13	±2
802.11n, HT20 @ MCS 0	15	±2

802.11n, HT20 @ MCS 7	12.5	±2
802.11n, HT40 @ MCS 0	14.5	±2
802.11n, HT40 @ MCS 7	11.5	±2
802.11ax, HE20 @ MCS 0	15	±2
802.11ax, HE20 @ MCS 11	11	±2
802.11ax, HE40 @ MCS 0	14	±2
802.11ax, HE40 @ MCS 11	10	±2

Table 25: Tx Power at 5 GHz

Standard	Typ. (dBm)	Tolerance (dB)
802.11a @ 6 Mbps	15	±2
802.11a @ 54 Mbps	13	±2
802.11n, HT20 @ MCS 0	15	±2
802.11n, HT20 @ MCS 7	12	±2
802.11n, HT40 @ MCS 0	14.5	±2
802.11n, HT40 @ MCS 7	11.5	±2
802.11ac, VHT20 @ MCS 0	15	±2
802.11ac, VHT20 @ MCS 8	11.5	±2
802.11ac, VHT40 @ MCS 0	14.5	±2
802.11ac, VHT40 @ MCS 9	10.5	±2
802.11ac, VHT80 @ MCS 0	14	±2
802.11ac, VHT80 @ MCS 9	10	±2
802.11ax, HE20 @ MCS 0	15	±2
802.11ax, HE20 @ MCS 11	9.5	±2
802.11ax, HE40 @ MCS 0	14	±2

802.11ax, HE40 @ MCS 11	9.5	±2	
802.11ax, HE80 @ MCS 0	14	±2	
802.11ax, HE80 @ MCS 11	8.5	±2	

Table 26: Rx Sensitivity at 2.4 GHz (Without 2.4 GHz Wi-Fi/LTE Coexistence Filter)

Standard	Typ. (dBm)	Tolerance (dB)
802.11b @ 1 Mbps	-96	±2
802.11b @ 11 Mbps	-87	±2
802.11g @ 6 Mbps	-92	±2
802.11g @ 54 Mbps	-74	±2
802.11n, HT20 @ MCS 0	-91	±2
802.11n, HT20 @ MCS 7	-72	±2
802.11n, HT40 @ MCS 0	-89	±2
802.11n, HT40 @ MCS 7	-67	±2
802.11ax, HE20 @ MCS 0	-92	±2
802.11ax, HE20 @ MCS 11	-62	±2
802.11ax, HE40 @ MCS 0	-89	±2
802.11ax, HE40 @ MCS 11	-59	±2

Table 27: Rx Sensitivity at 2.4 GHz (With 2.4 GHz Wi-Fi/LTE Coexistence Filter)

Standard	Typ. (dBm)	Tolerance (dB)
802.11b @ 1 Mbps	-96	±2
802.11b @ 11 Mbps	-87	±2
802.11g @ 6 Mbps	-90	±2
802.11g @ 54 Mbps	-72	±2

802.11n, HT20 @ MCS 0 -88 ±2 802.11n, HT20 @ MCS 7 -70 ±2 802.11n, HT40 @ MCS 0 -86 ±2 802.11n, HT40 @ MCS 7 -67 ±2 802.11ax, HE20 @ MCS 0 -90 ±2 802.11ax, HE20 @ MCS 11 -60 ±2 802.11ax, HE40 @ MCS 0 -86 ±2 802.11ax, HE40 @ MCS 11 -58 ±2			
802.11n, HT40 @ MCS 0 -86 ±2 802.11n, HT40 @ MCS 7 -67 ±2 802.11ax, HE20 @ MCS 0 -90 ±2 802.11ax, HE20 @ MCS 11 -60 ±2 802.11ax, HE40 @ MCS 0 -86 ±2	802.11n, HT20 @ MCS 0	-88	±2
802.11n, HT40 @ MCS 7 -67 ±2 802.11ax, HE20 @ MCS 0 -90 ±2 802.11ax, HE20 @ MCS 11 -60 ±2 802.11ax, HE40 @ MCS 0 -86 ±2	802.11n, HT20 @ MCS 7	-70	±2
802.11ax, HE20 @ MCS 0 -90 ±2 802.11ax, HE20 @ MCS 11 -60 ±2 802.11ax, HE40 @ MCS 0 -86 ±2	802.11n, HT40 @ MCS 0	-86	±2
802.11ax, HE20 @ MCS 11 -60 ±2 802.11ax, HE40 @ MCS 0 -86 ±2	802.11n, HT40 @ MCS 7	-67	±2
802.11ax, HE40 @ MCS 0 -86 ±2	802.11ax, HE20 @ MCS 0	-90	±2
	802.11ax, HE20 @ MCS 11	-60	±2
802.11ax, HE40 @ MCS 11 -58 ±2	802.11ax, HE40 @ MCS 0	-86	±2
	802.11ax, HE40 @ MCS 11	-58	±2

Table 28: Rx Sensitivity at 5 GHz (Unit: dBm)

Standard	Typ. (dBm)	Tolerance (dB)
802.11a @ 6 Mbps	-90	±2
802.11a @ 54 Mbps	-72	±2
802.11n, HT20 @ MCS 0	-89	±2
802.11n, HT20 @ MCS 7	-70	±2
802.11n, HT40 @ MCS 0	-87	±2
802.11n, HT40 @ MCS 7	-68	±2
802.11ac, VHT20 @ MCS 0	-89	±2
802.11ac, VHT20 @ MCS 8	-66	±2
802.11ac, VHT40 @ MCS 0	-87	±2
802.11ac, VHT40 @ MCS 9	-63	±2
802.11ac, VHT80 @ MCS 0	-84	±2
802.11ac, VHT80 @ MCS 9	-57	±2
802.11ax, HE20 @ MCS 0	-90	±2
802.11ax, HE20 @ MCS 11	-60	±2

802.11ax, HE40 @ MCS 0	-87	±2	
802.11ax, HE40 @ MCS 11	-58	±2	
802.11ax, HE80 @ MCS 0	-84	±2	
802.11ax, HE80 @ MCS 11	-55	±2	

4.6.2. Bluetooth Performances

Table 29: Tx Power

Description	Typ. (dBm)	Tolerance (dB)
GFSK	7	±2
π/4-DQPSK	4	±2
8-DQPSK	4	±2
BLE (1 Mbps)	7	±2
BLE (2 Mbps)	7	±2

Table 30: Rx Sensitivity

Description	Typ. (dBm)	Tolerance (dB)
GFSK	-92	±2
π/4-DQPSK	-90	±2
8-DQPSK	-85	±2
BLE (1 Mbps)	-95	±2
BLE (2 Mbps)	-93	±2

4.7. ESD Protection

Static electricity occurs naturally and may damage the module. Therefore, applying proper ESD countermeasures and handling methods is imperative. For example, wear anti-static gloves during the

development, production, assembly and testing of the module; add ESD protection components to the ESD sensitive interfaces and points in the product design.

Tested Interfaces	Contact Discharge	Air Discharge
Antenna Interfaces	±4	±6
Other Interfaces	±0.5	±1

4.8. Thermal Dissipation ⁵

The module offers the best performance when all internal IC chips are working within their operating temperatures. When the IC chip reaches or exceeds the maximum junction temperature, the module may still work but the performance and functions (such as RF output power, data rate, etc.) will be affected to a certain extent. Therefore, the thermal design should be maximally optimized to ensure all internal IC chips always work within the recommended operating temperature range. For applications that use the AP mode, it is recommended to take heat dissipation structure.

The following principles for thermal consideration are provided for reference:

- Keep the module away from heat sources on your PCB, especially high-power components such as processor, power amplifier, and power supply.
- Maintain the integrity of the PCB copper layer and drill as many thermal vias as possible.
- Follow the principles below when the heatsink is necessary:
 - Do not place large size components in the area where the module is mounted on your PCB to reserve enough place for heatsink installation.
 - Attach the heatsink to the shielding cover of the module; In general, the base plate area of the heatsink should be larger than the module area to cover the module completely;
 - Choose the heatsink with adequate fins to dissipate heat;
 - Choose a TIM (Thermal Interface Material) with high thermal conductivity, good softness and good wettability and place it between the heatsink and the module;
 - Fasten the heatsink with four screws to ensure that it is in close contact with the module to prevent the heatsink from falling off during the drop, vibration test, or transportation.

⁵ Thermal dissipation is necessary for module in AP mode.

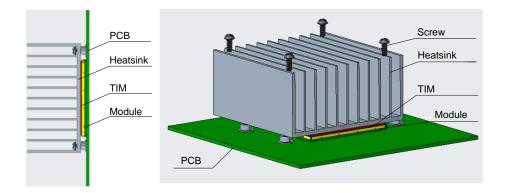


Figure 16: Placement and Fixing of the Heatsink

5 Mechanical Information

This chapter describes the mechanical dimensions of the module. All dimensions are measured in millimeters (mm), and the dimensional tolerances are ± 0.2 mm unless otherwise specified.

5.1. Mechanical Dimensions

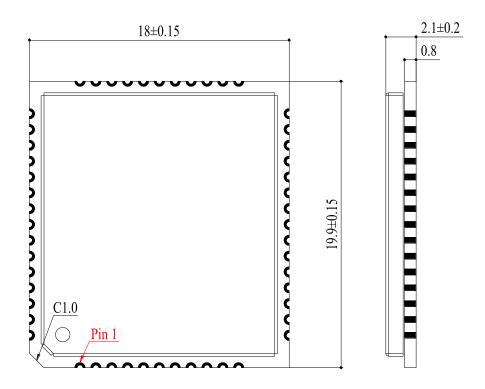


Figure 17: Top and Side Dimensions

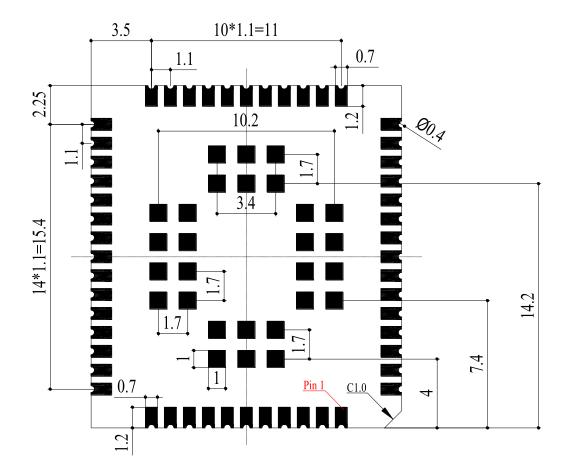
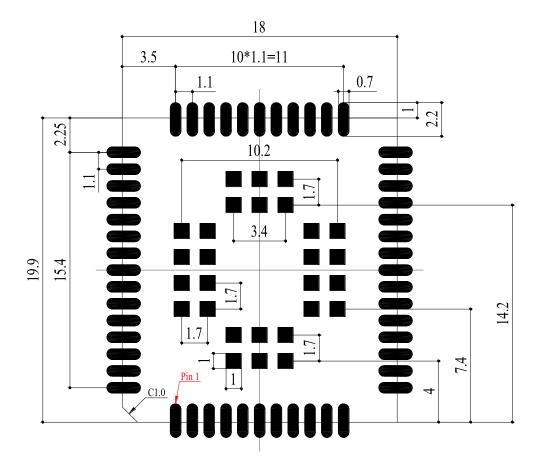



Figure 18: Bottom Dimensions (Bottom View)

5.2. Recommended Footprint

Figure 19: Recommended Footprint

NOTE

Keep at least 3 mm between the module and other components on the motherboard to improve soldering quality and maintenance convenience.

5.3. Top and Bottom Views

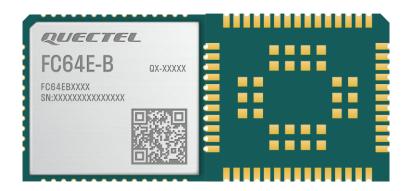


Figure 20: FC64E-B Top and Bottom Views

NOTE

Images above are for illustrative purposes only and may differ from the actual module. For authentic appearance and label, please refer to the module received from Quectel.

6 Storage, Manufacturing and Packaging

6.1. Storage Conditions

The module is provided with vacuum-sealed packaging. MSL of the module is rated as 3. The storage requirements are shown below.

- 1. Recommended Storage Condition: the temperature should be 23 ±5 °C and the relative humidity should be 35–60 %.
- 2. Shelf life (in a vacuum-sealed packaging): 12 months in Recommended Storage Condition.
- 3. Floor life: 168 hours ⁶ in a factory where the temperature is 23 ±5 °C and relative humidity is below 60 %. After the vacuum-sealed packaging is removed, the module must be processed in reflow soldering or other high-temperature operations within 168 hours. Otherwise, the module should be stored in an environment where the relative humidity is less than 10 % (e.g., a drying cabinet).
- 4. The module should be pre-baked to avoid blistering, cracks and inner-layer separation in PCB under the following circumstances:
 - The module is not stored in Recommended Storage Condition;
 - Violation of the third requirement mentioned above;
 - Vacuum-sealed packaging is broken, or the packaging has been removed for over 24 hours;
 - Before module repairing.
- 5. If needed, the pre-baking should follow the requirements below:
 - The module should be baked for 8 hours at 120 ±5 °C;
 - The module must be soldered to PCB within 24 hours after the baking, otherwise it should be put in a dry environment such as in a dry cabinet.

NOTE

⁶ This floor life is only applicable when the environment conforms to *IPC/JEDEC J-STD-033*. It is recommended to start the solder reflow process within 24 hours after the package is removed if the temperature and moisture do not conform to, or are not sure to conform to *IPC/JEDEC J-STD-033*. And do not remove the packages of tremendous modules if they are not ready for soldering.

- 1. To avoid blistering, layer separation and other soldering issues, extended exposure of the module to the air is forbidden.
- 2. Take out the module from the package and put it on high-temperature-resistant fixtures before baking. If shorter baking time is desired, see *IPC/JEDEC J-STD-033* for the baking procedure.
- 3. Pay attention to ESD protection, such as wearing anti-static gloves, when touching the modules.

6.2. Manufacturing and Soldering

Push the squeegee to apply the solder paste on the surface of stencil, thus making the paste fill the stencil openings and then penetrate to the PCB. Apply proper force on the squeegee to produce a clean stencil surface on a single pass. To guarantee module soldering quality, the thickness of stencil for the module is recommended to be 0.15–0.18 mm. For more details, see *document [4]*.

The recommended peak reflow temperature should be 235–246 °C, with 246 °C as the absolute maximum reflow temperature. To avoid damage to the module caused by repeated heating, it is recommended that the module should be mounted only after reflow soldering for the other side of PCB has been completed. The recommended reflow soldering thermal profile (lead-free reflow soldering) and related parameters are shown below.

Figure 21: Recommended Reflow Soldering Thermal Profile

Factor	Recommended Value
Soak Zone	
Ramp-to-soak slope	0–3 °C/s
Soak time (between A and B: 150 °C and 200 °C)	70–120 s
Reflow Zone	
Ramp-up slope	0–3 °C/s
Reflow time (D: over 217 °C)	40–70 s
Max. temperature	235–246 °C
Cool-down slope	-3–0 °C/s
Reflow Cycle	
Max. reflow cycle	1

NOTE

- 1. The above profile parameter requirements are for the measured temperature of the solder joints. Both the hottest and coldest spots of solder joints on the PCB should meet the above requirements.
- 2. During manufacturing and soldering, or any other processes that may contact the module directly, NEVER wipe the module's shielding can with organic solvents, such as acetone, ethyl alcohol, isopropyl alcohol, trichloroethylene, etc., Otherwise, the shielding canmay become rusted.
- 3. The shielding can for the module is made of Cupro-Nickel base material. It is tested that after 12 hours' Neutral Salt Spray test, the laser engraved label information on the shielding can is still clearly identifiable and the QR code is still readable, although white rust may be found.
- 4. If a conformal coating is necessary for the module, do NOT use any coating material that may chemically react with the PCB or shielding cover, and prevent the coating material from flowing into the module.
- 5. Avoid using ultrasonic technology for module cleaning since it can damage crystals inside the module.
- 6. Due to the complexity of the SMT process, please contact Quectel Technical Support in advance for any situation that you are not sure about, or any process (e.g. selective soldering, ultrasonic soldering) that is not mentioned in *document [4]*.

6.3. Packaging Specifications

This chapter describes only the key parameters and process of packaging. All figures below are for reference only. The appearance and structure of the packaging materials are subject to the actual delivery.

6.3.1. Carrier Tape

Carrier tape dimensions are detailed below:

Figure 22: Carrier Tape Specifications

Table 33: Carrier Tape Dimension Table (Unit: mm)

W	Р	т	A0	B0	K0	K1	F	E
44	32	0.4	20.4	18.5	2.6	6.8	20.2	1.75

6.3.2. Plastic Reel

QUECTEL

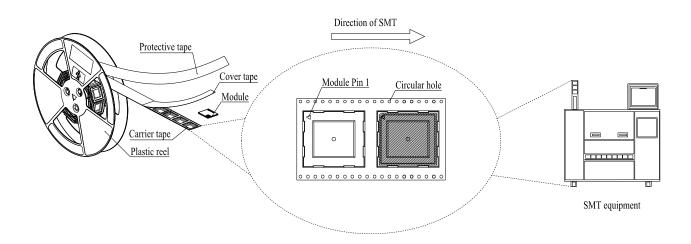
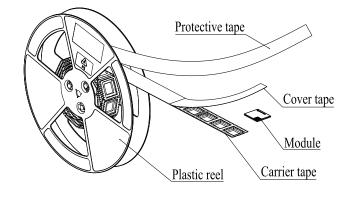
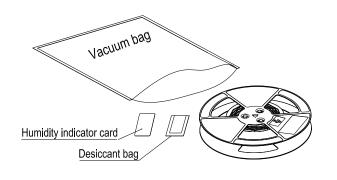


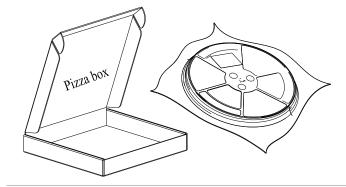
Figure 23: Plastic Reel Specifications

Table 34: Plastic Reel Dimension Table (Unit: mm)

øD1	øD2	W
330	100	44.5


6.3.3. Mounting Direction


6.3.4. Packaging Process



Place the module into the carrier tape and use the cover tape to cover it; then wind the heat-sealed carrier tape to the plastic reel and use the protective tape for protection. 1 plastic reel can load 250 modules.

Place the packaged plastic reel, 1 humidity indicator card and 1 desiccant bag into a vacuum bag, vacuumize it.

Place the vacuum-packed plastic reel into the pizza box.

Put 4 pizza boxes into 1 carton and seal it. 1 carton can pack 1000 modules.

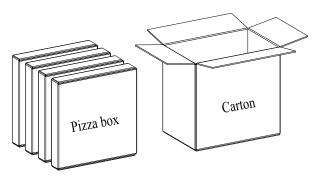


Figure 25: Packaging Process

7 Appendix References

Table 35: Related Documents

Document Name

- [1] Quectel_FC6xE_M.2_EVB_User_Guide
- [2] Quectel_FC6xE_Reference_Design
- [3] Quectel_RF_Layout_Application_Note
- [4] Quectel_Module_SMT_Application_Note

Table 36: Terms and Abbreviations

Abbreviation	Description
AFH	Adaptive Frequency Hopping
AP	Access Point
BPSK	Binary Phase Shift Keying
BLE	Bluetooth Low Energy
ССК	Complementary Code Keying
DBPSK	Differential Binary Phase Shift Keying
DBS	Dual Band Simultaneous
DQPSK	Differential Quadrature Phase Shift Keying
ESD	Electrostatic Discharge
EVB	Evaluation Board
GFSK	Gauss frequency Shift Keying

GND	Ground
HCI	Host Controller Interface
HE	High Efficiency
HT	High Throughput
IEEE	Institute of Electrical and Electronics Engineers
I/O	Input/Output
LAA	License Assisted Access
LCC	Leadless chip carrier
LGA	Land Grid Array
LTE	Long Term Evolution
MAC	Medium Access Control
Mbps	Megabits per second
MCS	Modulation and Coding Scheme
MSL	Moisture Sensitivity Levels
MU-MIMO	Multi-User Multiple-Input Multiple-Output
PA	Power Amplifier
PCB	Printed Circuit Board
PCIe	Peripheral Component Interconnect Express
PCM	Pulse Code Modulation
QAM	Quadrature Amplitude Modulation
QPSK	Quadrature Phase Shift Keying
RF	Radio Frequency
RoHS	Restriction of Hazardous Substances
Rx	Receive
SMT	Surface Mount Technology

STA	Station
Тх	Transmit
UART	Universal Asynchronous Receiver/Transmitter
VHT	Very High Throughput
V _{IH}	High-level Input Voltage
VIL	Low-level Input Voltage
Vmax	Maximum Voltage
Vmin	Minimum Voltage
Vnom	Nominal Voltage
V _{OH}	High-level Output Voltage
V _{OL}	Low-level Output Voltage
VSWR	Voltage Standing Wave Ratio

FCC Certification Requirements.

According to the definition of mobile and fixed device is described in Part 2.1091(b), this device is a mobile device.

And the following conditions must be met:

1. This Modular Approval is limited to OEM installation for mobile and fixed applications only. The antenna installation and operating configurations of this transmitter, including any applicable source-based time-averaging duty factor, antenna gain and cable loss must satisfy MPE categorical Exclusion Requirements of 2.1091.

2. The EUT is a mobile device; maintain at least a 20 cm separation between the EUT and the user's body and must not transmit simultaneously with any other antenna or transmitter.

3.A label with the following statements must be attached to the host end product: This device contains FCC ID: XMR2023FC64EB.

4.To comply with FCC regulations limiting both maximum RF output power and human exposure to RF radiation, maximum antenna gain (including cable loss) must not exceed:

□ Bluetooth/Bluetooth LE/Wi-Fi 2.4G:≤0.73dBi

☐ Wi-Fi 5G:≤1.14 dBi

5. This module must not transmit simultaneously with any other antenna or transmitter

6. The host end product must include a user manual that clearly defines operating requirements and conditions that must be observed to ensure compliance with current FCC RF exposure guidelines.

For portable devices, in addition to the conditions 3 through 6 described above, a separate approval is required to satisfy the SAR requirements of FCC Part 2.1093

If the device is used for other equipment that separate approval is required for all other operating configurations, including portable configurations with respect to 2.1093 and different antenna configurations.

For this device, OEM integrators must be provided with labeling instructions of finished products. Please refer to KDB784748 D01 v07, section 8. Page 6/7 last two paragraphs:

A certified modular has the option to use a permanently affixed label, or an electronic label. For a permanently affixed label, the module must be labeled with an FCC ID - Section 2.926 (see 2.2 Certification (labeling requirements) above). The OEM manual must provide clear instructions explaining to the OEM the labeling requirements, options and OEM user manual instructions that are required (see next paragraph).

For a host using a certified modular with a standard fixed label, if (1) the module' s FCC ID is not visible when installed in the host, or (2) if the host is marketed so that end users do not have straightforward commonly used methods for access to remove the module so that the FCC ID of the module is visible; then an additional permanent label referring to the enclosed module: "Contains Transmitter Module FCC ID: XMR2023FC64EB." or "Contains FCC ID: XMR2023FC64EB." must be used. The host OEM user manual must also contain clear instructions on how end users can find and/or access the module and the FCC ID.

The final host / module combination may also need to be evaluated against the FCC Part 15B criteria for unintentional radiators in order to be properly authorized for operation as a Part 15 digital device.

The user's manual or instruction manual for an intentional or unintentional radiator shall caution the user

that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment. In cases where the manual is provided only in a form other than paper, such as on a computer disk or over the Internet, the information required by this section may be included in the manual in that alternative form, provided the user can reasonably be expected to have the capability to access information in that form.

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the manufacturer could void the user's authority to operate the equipment.

IC Certification Requirements.

This device contains licence-exempt transmitteris)/receivers) that comply with Innovation, Science and EconomicDevelopment Canada's licence-exempt RSS(s). Operation is subject to the following two conditions:

1. This device may not cause interference.

2. This device must accept any interference, including interference that may cause undesired operation of the device.

To comply with IC regulations limiting both maximum RF output power and human exposure to RF radiation, maximum antenna gain (including cable loss) must not exceed:

- □ Bluetooth/Bluetooth LE/Wi-Fi 2.4G:≤0.73 dBi
- ☐ Wi-Fi 5G:≤1.14 dBi

L'appareil contient un émetteur / récepteur exempté de licence conforme au CNR exempté de licence d'innovation, sciences et développement économique Canada. Les opérations sont soumises aux deux conditions suivantes:

1. Cet appareil peut ne pas causer d'interférence.

L'appareil doit accepter toute interférence, y compris celles qui peuvent entraîner un fonctionnement indé sirable de l'appareil.

This equipment complies with ISED radiation exposure limits set forth for an uncontrolled environment. To comply with RSS-102 RF Exposure compliance requirements, this grant is applicable to only Mobile Configurations. The antennas used for the transmitter must be installed to provide a separation distance of at least 20cm from all persons and must not be co-located or operating in conjunction with any other antenna or transmitter.

The user manual for LE-LAN devices shall contain instructions related to the restrictions mentioned in the abovesections, namely that:

i. the device for operation in the band 5150-5250 MHz is only for indoor use to reduce the potential for harmfulinterference to co-channel mobile satellite systems;

ii. for devices with detachable antenna(s), the maximum antenna gain permitted for devices in the bands 5250-5350 MHz and 5470-5725 MHz shall be such that the equipment still complies with the e.i.r.p. limit. iii. for devices with detachable antennals), the maximum antenna gain permitted for devices in the band5725-5850 MHz shall be such that the equipment still complies with the e.i.r.p. limits as appropriate; iv. where applicable, antenna type(s), antenna models(s), and worst-case tilt angle(s) necessary to remain compliantwith the e.iro. elevation mask reauirement set forth in section 6.2.2.3 shall be clearly indicated.

The host product shall be properly labelled to identify the modules within the host product.

The Innovation, Science and Economic Development Canada certification label of a module shall be clearly visible at all times when installed in the host product; otherwise, the host product must be labeled to display the Innovation, Science and Economic Development Canada certification number for the module, preceded by the word "Contains" or similar wording expressing the same meaning, as follows: "Contains IC: 10224A-2023FC64EB" or "where: 10224A-2023FC64EB is the module' s certification number".