

RF TEST REPORT

TA

Applicant	Quectel Wireless Solutions Co., Ltd.
FCC ID	XMR2023FC64EB
Product	Wi-Fi & Bluetooth Module
Brand	Quectel
Model	FC64E-B
Report No.	R2301A0040-R4V1
Issue Date	November 2, 2023

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **FCC CFR47 Part 15E (2022)**. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Prepared by: Xu Ying

Approved by: Xu Kai

TA Technology (Shanghai) Co., Ltd.

Building 3, No.145, Jintang Rd, Pudong Shanghai, P.R.China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000

TABLE OF CONTENT

1. Test Laboratory	. 5
1.1. Notes of the test report	5
1.2. Test facility	5
1.3. Testing Location	
2. General Description of Equipment under Test	. 6
2.1. Applicant and Manufacturer Information	6
2.2. General information	6
3. Applied Standards	. 8
4. Test Configuration	. 9
5. Test Case Results	12
5.1. Unwanted Emission 1	2
6. Main Test Instruments	23
ANNEX A: The EUT Appearance	24
ANNEX B: Test Setup Photos	25
ANNEX C: Product Change Description	26

🛟 eurofins

RF Test Report

Version	Revision Description	Issue Date	
Rev.0	Initial issue of report.	September 20, 2023	
Rev.1	Update information.	November 2, 2023	
Note: This revised report (Report No.: R2301A0040-R4V1) supersedes and replaces the			
previously issued report (Report No.: R2301A0040-R4). Please discard or destroy the previously			
issued report and dispose of it accordingly.			

TΔ

Summary of measurement results

Number	Test Case	Clause in FCC rules	Verdict	
1	Average output power	15.407(a)	Not Required ¹	
2	Occupied bandwidth	15.407(e)	Not Required ¹	
3	Frequency stability	15.407(g)	Not Required ¹	
4	Power spectral density	15.407(a)	Not Required ¹	
5	Unwanted Emissions	15.407(b)	Test 802.11n HT40 Channel 110 and PASS Others Not Required ¹	
6	Conducted Emissions 15.207		Not Required ¹	
	Date of Testing: September 1, 2023 ~ September 5, 2023			
Date of Sample Received: August 18, 2023 Note:				
 Not Required means after evaluation, test items are no need to recorded, the test results please refers to Original Report. All indications of Pass/Fail in this report are opinions expressed by TA Technology (Shanghai) 				
Co., Ltd. based on interpretations and/or observations of test results. Measurement				

Uncertainties were not taken into account and are published for informational purposes only.

FC64E-B (Report No.: R2301A0040-R4V1) is a variant model of FC64E (Report No.: FCC022022-06260RF2; Report Version: V1.0; FCC ID: XMR202208FC64E).

This report tests Unwanted Emissions (802.11n HT40 Channel 110) and also verifies Maximum output power, powers of new variant are varied due to measurement uncertainty, and sample tolerance of the acceptance range.

The detailed product change description please refers to the Difference Declaration Letter.

1. Test Laboratory

1.1. Notes of the test report

This report shall not be reproduced in full or partial, without the written approval of **TA Technology (Shanghai) Co., Ltd.** The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above.

1.2. Test facility

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA (Certificate Number: 3857.01)

TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

1.3. Testing Location

Company:	TA Technology (Shanghai) Co., Ltd.
Address:	Building 3, No.145, Jintang Rd, Pudong Shanghai, P.R.China
City:	Shanghai
Post code:	201201
Country:	P. R. China
Contact:	Xu Kai
Contact: Telephone:	Xu Kai +86-021-50791141/2/3
Telephone:	+86-021-50791141/2/3

2. General Description of Equipment under Test

2.1. Applicant and Manufacturer Information

Applicant	Quectel Wireless Solutions Co., Ltd.	
Applicant address	Building 5, Shanghai Business Park Phase III (Area B), No.1016	
Applicant address	Tianlin Road, Minhang District, Shanghai, China, 200233	
Manufacturer Quectel Wireless Solutions Co., Ltd.		
Manufacturer address	Building 5, Shanghai Business Park Phase III (Area B), No.1016	
Manufacturer address	Tianlin Road, Minhang District, Shanghai, China, 200233	

2.2. General information

EUT Description			
Model	FC64E-B		
SN	Conducted	E1N22KF12000063	
SN	Radiated	E1N22KF12000047	
Hardware Version	R1.0		
Software Version	NA		
Power Supply	External power supply		
Antenna Type	Dipole Antenna		
Antenna Gain	1.14 dBi		
Antenna Connector SMA Male (The antenna connector will be fixed use of the finished product and cannot be replac			
Operating Frequency Range(s)	U-NII-1: 5150MHz-5250MHz U-NII-2A: 5250MHz -5350MHz U-NII-2C: 5470MHz-5725MHz U-NII-3: 5725MHz -5850MHz		
Modulation Type	802.11a: OFDM 802.11n (HT20/HT40): OFDM 802.11ac (VHT20/VHT40/VHT80): OFDM 802.11ax (HE20/ HE40/ HE80): OFDMA		
Operating temperature range	-30 ° C to 75 ° C		
Operating voltage range	1.9 V to 2.4 V		
State DC voltage	2.2 V		
Note:			

Note:

1. The EUT is sent from the applicant to TA and the information of the EUT is declared by the applicant.

2. This device support automatically discontinue transmission, while the device is not transmitting any information, the device can automatically discontinue transmission and

TΔ

Report No.: R2301A0040-R4V1

become standby mode for power saving. The device can detect the controlling signal of ACK message transmitting from remote device and verify whether it shall resend or discontinue transmission.

3. (a) Manufacturers implements security features in any digitally modulated devices capable of operating in any of the U-NII bands, so that third parties are not able to reprogram the device to operate outside the parameters for which the device was certified. The software prevents the user from operating the transmitter with operating frequencies, output power, modulation types or other radio frequency parameters outside those that were approved for the device. Manufacturers uses means including, but not limited to the use of a private network that allows only authenticated users to download software, electronic signatures in software or coding in hardware that is decoded by software to verify that new software can be legally loaded into a device to meet these requirements and must describe the methods in their application for

equipment authorization.

(b) Manufacturers take steps to ensure that DFS functionality cannot be disabled by the operator of the U-NII device.

3. Applied Standards

TA

According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

Test standards:

FCC CFR47 Part 15E (2022) Unlicensed National Information Infrastructure Devices

ANSI C63.10-2013

Reference standard:

KDB 789033 D02 General UNII Test Procedures New Rules v02r01

KDB 662911 D01 Multiple Transmitter Output v02r01

4. Test Configuration

Test Mode

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The radiated emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in stand-up position (Z axis) and the worst case was recorded.

In order to find the worst case condition, Pre-tests are needed at the presence of different data rate. Preliminary tests have been done on all the configuration for confirming worst case. Data rate below means worst-case rate of each test item.

Worst-case data rates are shown as following table.

Mode	Data Rate
802.11n HT40	MCS0

Report No.: R2301A0040-R4V1

Wireless Technology and Frequency Range

Wireless	Technology	Bandwidth	Channel	Frequency
		36	5180MHz	
		20 MHz	40	5200MHz
			44	5220MHz
	U-NII-1		48	5240MHz
		40 MHz	38	5190MHz
			46	5230MHz
		80 MHz	42	5210MHz
-			52	5260MHz
		20 MU-	56	5280MHz
		20 MHz	60	5300MHz
	U-NII-2A		64	5320MHz
		40 MU-	54	5270MHz
		40 MHz	62	5310MHz
		80 MHz	58	5290MHz
-			100	5500MHz
			104	5520MHz
Wi-Fi			108	5540MHz
		20 MHz	112	5560MHz
			116	5580MHz
			120	5600MHz
			124	5620MHz
	U-NII-2C		128	5640MHz
			132	5660MHz
			136	5680MHz
			140	5700MHz
			102	5510MHz
		40 MHz	110	5550MHz
			118	5590MHz
			126	5630MHz
			134	5670MHz
	-		106	5530MHz
		80 MHz	122	5610MHz

RF Test Report			Repo	ort No.: R2301A0040-R4V1
		20 MHz	149	5745MHz
			153	5765MHz
			157	5785MHz
			161	5805MHz
	J-NII-3		165	5825MHz
		40 MHz	151	5755MHz
			159	5795MHz
		80 MHz	155	5775MHz
Does this device support TPC Function? ⊠Yes □No				
Does this device support TDWR Band? ⊠Yes □No				

5. Test Case Results

5.1. Unwanted Emission

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

The test set-up was made in accordance to the general provisions of ANSI C63.10. The Equipment Under Test (EUT) was set up on a non-conductive table in the semi-anechoic chamber. The test was performed at the distance of 3 m between the EUT and the receiving antenna. The radiated emissions measurements were made in a typical installation configuration.

Sweep the whole frequency band range from 9kHz to the 10th harmonic of the carrier, and the emissions less than 20 dB below the permissible value are reported.

During the test, the height of receive antenna shall be moved from 1 to 4 meters, and the antenna shall be performed under horizontal and vertical polarization. The turntable shall be rotated from 0 to 360 degrees for detecting the maximum of radiated spurious signal level. The measurements shall be repeated with orthogonal polarization of the test antenna. The data of cable loss and antenna factor has been calibrated in full testing frequency range before the testing.

Set the spectrum analyzer in the following:

9kHz~150 kHz

RBW=200Hz, VBW=1kHz/ Sweep=AUTO

150 kHz~30MHz

RBW=9KHz, VBW=30KHz,/ Sweep=AUTO

Below 1GHz

RBW=100kHz / VBW=300kHz / Sweep=AUTO

a) Peak emission levels are measured by setting the instrument as follows:

Above 1GHz

PEAK: RBW=1MHz VBW=3MHz/ Sweep=AUTO

b) Average emission levels are measured by setting the instrument as follows:

Above 1GHz

AVERAGE: RBW=1MHz / VBW=3MHz / Sweep=AUTO

c) Detector: The measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

d) Averaging type = power (i.e., rms) (As an alternative, the detector and averaging type may be set for linear voltage averaging. Some instruments require linear display mode to use linear voltage averaging. Log or dB averaging shall not be used.)

e) Sweep time = auto.

f) Perform a trace average of at least 100 traces if the transmission is continuous. If the transmission

Report No.: R2301A0040-R4V1

is not continuous, then the number of traces shall be increased by a factor of 1 / D, where D is the duty cycle. For example, with 50% duty cycle, at least 200 traces shall be averaged. (If a specific emission is demonstrated to be continuous—i.e., 100% duty cycle—then rather than turning ON and OFF with the transmit cycle, at least 100 traces shall be averaged.)

g) If tests are performed with the EUT transmitting at a duty cycle less than 98%, then a correction factor shall be added to the measurement results prior to comparing with the emission limit, to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows:

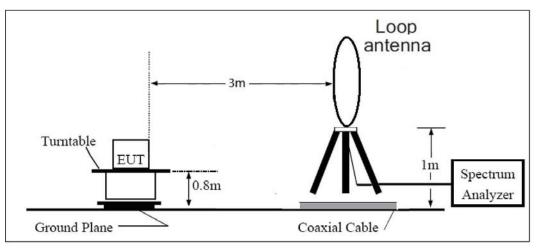
1) If power averaging (rms) mode was used in the preceding step e), then the correction factor is [10 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 3 dB shall be added to the measured emission levels.

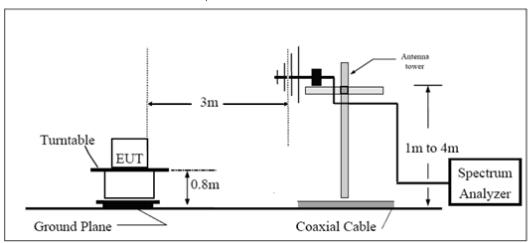
2) If linear voltage averaging mode was used in the preceding step e), then the correction factor is [20 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 6 dB shall be added to the measured emission levels.

3) If a specific emission is demonstrated to be continuous (100% duty cycle) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission.

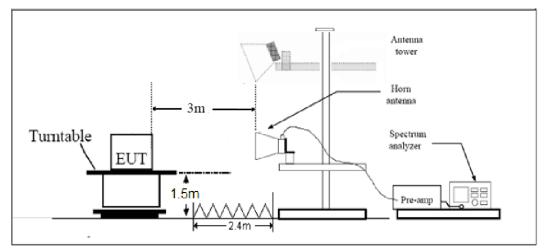
Reduce the video bandwidth until no significant variations in the displayed signal are observed in subsequent traces, provided the video bandwidth is no less than 1 Hz. For regulatory requirements that specify averaging only over the transmit duration (e.g., digital transmission system [DTS] and Unlicensed National Information Infrastructure [U-NII]), the video bandwidth shall be greater than [1 / (minimum transmitter on time)] and no less than 1 Hz.

The field strength of spurious emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in stand-up position (Z axis) and the loop antenna is vertical, others antenna are vertical and horizontal.


The test is in transmitting mode.


TA

Test setup


9KHz~ 30MHz

30MHz~ 1GHz

Above 1GHz

Note: Area side:2.4mX3.6m

💦 eurofins

Limits

- (1) For transmitters operating in the 5725-5850 MHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.
- (2) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz(68.2dBµV/m).
- (3) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz(68.2dBµV/m).
- (4) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz(68.2dBµV/m).

Note: the following formula is used to convert the EIRP to field strength

 $1 = EIRP[dBm] - 20 \log(d[meters]) + 104.77$, where E = field strength and

d = distance at which field strength limit is specified in the rules;

 $2 \le E[dB\mu V/m] = EIRP[dBm] + 95.2$, for d = 3 meters

(5) Unwanted spurious emissions fallen in restricted bands per FCC Part15.205 shall comply with the general field strength limits set forth in § 15.209 as below table.

Frequency of emission (MHz)	Field strength(μV/m)	Field strength(dBµV/m)
0.009–0.490	2400/F(kHz)	1
0.490–1.705	24000/F(kHz)	1
1.705–30.0	30	1
30-88	100	40
88-216	150	43.5
216-960	200	46
Above960	500	54

RF Test Report

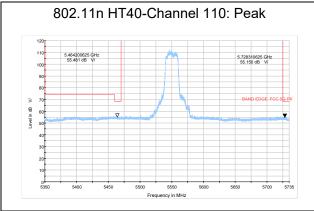
Report No.: R2301A0040-R4V1

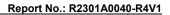
MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)
13.36 - 13.41			

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96.

Frequency	Uncertainty		
9KHz-30MHz	3.55 dB		
30MHz-200MHz	4.17 dB		
200MHz-1GHz	4.84 dB		
1-18GHz	4.35 dB		
18-26.5GHz	5.90 dB		
26.5GHz~40GHz	5.92 dB		




RF Test Report Test Results:

A symbol (dB V/) in the test plot below means ($^{dB}\mu$ V/m)

The signal beyond the limit is carrier.

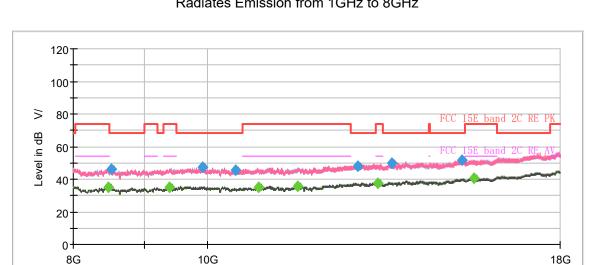
U-NII-2C

RF Test Report

Result of RE

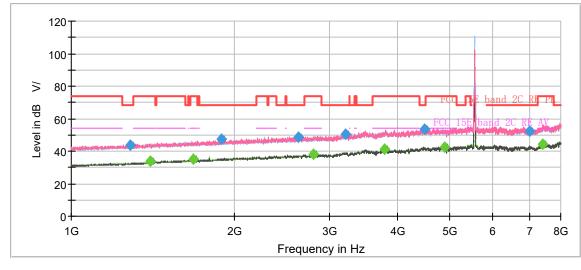
Test result

A symbol (dB $^{V\prime})$ in the test plot below means (dBµV/m)


Continuous TX mode:

Frequency (MHz)	Quasi-Peak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Polarization	Azimuth (deg)	Correct Factor (dB)
48.830000	18.01	40.00	21.99	110.0	V	47.0	20.6
57.841250	17.76	40.00	22.24	125.0	V	320.0	19.8
101.700000	17.97	43.50	25.53	115.0	V	9.0	18.8
143.847500	13.29	43.50	30.21	225.0	Н	98.0	14.8
296.912500	15.40	46.00	30.60	100.0	Н	252.0	20.3
500.005000	20.49	46.00	25.51	100.0	Н	283.0	24.8

Radiates Emission from 30MHz to 1GHz

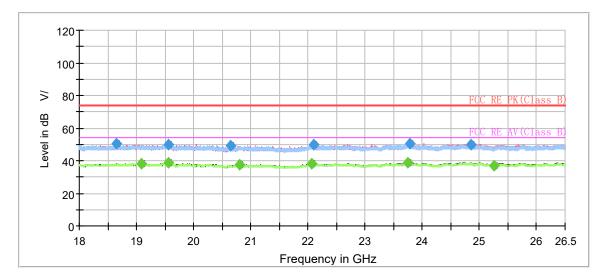

Remark: 1. Correction Factor = Antenna factor + Insertion loss (cable loss + amplifier gain) 2. Margin = Limit – Quasi-Peak Note: The signal beyond the limit is carrier. Radiates Emission from 1GHz to 8GHz

Frequency in Hz

Radiates Emission from 8GHz to 18GHz

RF Test Report 802.11n (HT40) CH110

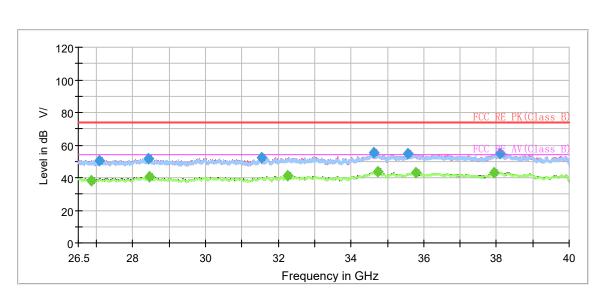
Frequency (MHz)	MaxPeak (dB μ V/m)	Average (dB μ V/m)	Limit (dB µ V/m)	Margin (dB)	Meas. Time (ms)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1283.500000	43.97		68.20	24.23	500.0	100.0	V	259.0	-6.6
1397.250000		33.67	54.00	20.33	500.0	100.0	V	1.0	-5.6
1679.000000		34.81	54.00	19.19	500.0	100.0	Н	93.0	-4.0
1895.125000	47.33		68.20	20.87	500.0	200.0	V	29.0	-3.1
2624.000000	48.55		68.20	19.65	500.0	100.0	Н	0.0	0.3
2799.875000		38.33	54.00	15.67	500.0	200.0	V	67.0	1.1
3205.000000	50.70		68.20	17.50	500.0	100.0	V	165.0	3.5
3781.625000		40.98	54.00	13.02	500.0	100.0	Н	250.0	6.2
4484.250000	53.70		68.20	14.50	500.0	100.0	Н	186.0	6.9
4882.375000		42.57	54.00	11.43	500.0	100.0	V	235.0	7.9
7002.500000	52.31		68.20	15.89	500.0	100.0	Н	308.0	10.0
7426.000000		44.37	54.00	9.63	500.0	100.0	V	282.0	11.5


Remark: 1. Correction Factor = Antenna factor + Insertion loss (cable loss + amplifier gain) 2. Margin = Limit –MAX Peak/ Average

RF Test Report

🛟 eurofins

RF Test Report



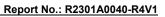
Radiates Emission from 18GHz to 26.5GHz

Frequency (MHz)	MaxPeak (dB	Average (dB μ V/m)	Limit (dB µ V/m)	Margin (dB)	Meas. Time (ms)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
18640.687500	50.17		74.00	23.83	500.0	200.0	Н	285.0	-5.6
19086.937500		38.20	54.00	15.80	500.0	200.0	V	187.0	-5.7
19559.750000	50.00		74.00	24.00	500.0	200.0	V	42.0	-5.3
19560.812500		38.72	54.00	15.28	500.0	100.0	Н	63.0	-5.3
20643.500000	49.31		74.00	24.69	500.0	100.0	Н	167.0	-5.1
20811.375000		37.80	54.00	16.20	500.0	200.0	Н	340.0	-5.1
22064.062500		38.04	54.00	15.96	500.0	100.0	V	180.0	-4.2
22094.875000	50.06		74.00	23.94	500.0	100.0	Н	38.0	-4.1
23744.937500		38.83	54.00	15.17	500.0	100.0	V	338.0	-2.4
23780.000000	50.33		74.00	23.67	500.0	100.0	Н	0.0	-2.4
24857.375000	49.88		74.00	24.12	500.0	200.0	V	275.0	-2.3
25261.125000		37.17	54.00	16.83	500.0	100.0	V	346.0	-2.7

Remark: 1. Correction Factor = Antenna factor + Insertion loss (cable loss + amplifier gain)

2. Margin = Limit –MAX Peak/ Average

Radiates Emission from 26.5GHz to 40GHz


Frequency (MHz)	MaxPeak (dB	Average (dB μ V/m)	Limit (dB µ V/m)	Margin (dB)	Meas. Time (ms)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
26862.812500		38.41	54.00	15.59	500.0	200.0	V	4.0	-1.0
27068.687500	50.40		74.00	23.60	500.0	100.0	Н	60.0	-1.1
28428.812500	51.84		74.00	22.16	500.0	100.0	V	174.0	0.1
28447.375000		40.49	54.00	13.51	500.0	200.0	V	33.0	0.1
31528.750000	52.28		74.00	21.72	500.0	200.0	V	0.0	-1.9
32267.875000		41.18	54.00	12.82	500.0	200.0	V	80.0	-1.2
34628.687500	55.52		74.00	18.48	500.0	100.0	V	334.0	2.9
34740.062500		43.44	54.00	10.56	500.0	200.0	V	211.0	3.0
35558.500000	54.52		74.00	19.48	500.0	100.0	Н	186.0	2.9
35788.000000		43.26	54.00	10.74	500.0	200.0	Н	209.0	3.2
37922.687500		43.24	54.00	10.76	500.0	200.0	V	40.0	3.5
38096.500000	54.93		74.00	19.07	500.0	200.0	V	240.0	3.8

Remark: 1. Correction Factor = Antenna factor + Insertion loss (cable loss + amplifier gain)

2. Margin = Limit-MAX Peak/ Average

RF Test Report

6. Main Test Instruments

Name of Equipment	Manufacturer	Type/Model	Serial	Calibration	Expiration				
••		51	Number	Date	Time				
Radiated Emission									
EMI Test Receiver	R&S	ESR	102389	2023-05-12	2024-05-11				
Signal Analyzer	R&S	FSV40	101186	2023-05-12	2024-05-11				
Loop Antenna	SCHWARZBECK	FMZB1519	1519-047	2023-04-16	2026-04-15				
TRILOG Broadband Antenna	SCHWARZBECK	VULB 9163	1023	2023-07-14	2026-07-13				
Horn Antenna	R&S	HF907	102723	2021-07-24	2024-07-23				
Horn Antenna	ETS-Lindgren	3160-09	00102643	2021-10-10	2024-10-09				
Horn Antenna	STEATITE	QSH-SL-26-40- K-15	16779	2023-01-17	2026-01-16				
Software	R&S	EMC32	9.26.01	/	/				

ANNEX A: The EUT Appearance

The EUT Appearance are submitted separately.

ANNEX B: Test Setup Photos

The Test Setup Photos are submitted separately.

ANNEX C: Product Change Description

The Product Change Description are submitted separately.

****** END OF REPORT ******