<u>TEST REPORT</u>

Applicant:Quectel Wireless Solutions Co., Ltd.EUT Description:Wi-Fi ModuleModel:FC30RBrand:QuectelFCC ID:XMR2023FC30RStandards:FCC 47 CFR Part 15 Subpart CDate of Receipt:2023/12/14Date of Test:2023/12/14 to 2023/12/29Date of Issue:2023/12/29

TOWE. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

the results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. It is the manufacturer's responsibility to assure that additional production units of the model are manufactured with identical electrical and mechanical components. All sample tested were in good operating condition throughout the entire test program. Measurement Uncertainties are published for informational purposes only and were not taken into account unless noted otherwise. without written approval of TOWE, the test report shall not be reproduced except in full.

Huang Kun Approved By:

2 20

Chen Chengfu Reviewed By:

Revision History

Rev.	Issue Date	Description	Revised by
01	2023/12/29	Original	陈呈福

Summary of Test Results

Clause	FCC Part	Test Items	Result		
4.1	§15.203/15.247(b)	Antenna Requirement	PASS		
4.2	§15.207	AC Power Line Conducted Emission	PASS		
4.3	§15.247 (b)(3)	Output Power	PASS		
4.4	§15.247 (a)(2)	Occupied Bandwidth	Reporting purposes only		
4.5	§15.247 (e)	Power Spectral Density	PASS		
4.6	§15.247(d)	Band Edge for Conducted Emissions	PASS		
4.7	§15.247(d)	Spurious RF Conducted Emissions	PASS		
4.8	§15.205/15.209	Radiated Spurious emissions and Band Edge	PASS		
Test Method: ANSI C63.10-2013, KDB 558074 D01 15.247 Mesa Guidan08/01/2024ce v05r02.					

Remark:

Pass is EUT meets standard requirements.

N/A is EUT is a module, not applicable to this test items.

Table of Contents

4	Gond	aral Da	contribution	5
1	Gene		scription	
	1.1		Tasting Logation	
		1.1.1	Testing Location	5 -
	4.0	1.1.2	Test Facility / Accreditations	5 -
	1.2	CII	ent Information	5
		1.2.1	Applicant	5
		1.2.2	Manufacturer	5
	1.3	Pro	oduct Information	6
2	Test	Config	juration	7
	2.1	Te	st Channel	7
	2.2	Wo	orst-case configuration and Mode	7
	2.3	Te	st Duty Cycle	8
	2.4	Su	pport Unit used in test	8
	2.5	Te	st Environment	8
	2.6	Te	st RF Cable	8
	2.7	Ма	difications	8
	2.8	Te	st Setup Diagram	9
		2.8.1	Conducted Configuration	9
		2.8.2	Radiated Configuration	10
3	Equi	pment	and Measurement Uncertainty	11
	3.1	Te	st Equipment List	11
	3.2	Ме	asurement Uncertainty	12
4	Test	Result	S	13
	4.1	An	tenna Requirement	13
	4.2	AC	Power Line Conducted Emissions	14
	4.3	Ou	tput Power	17
	4.4	Oc	cupied Bandwidth	18
	4.5	Ро	wer Spectral Density	19
	4.6	Ва	nd Edge for Conducted Emissions	20
	4.7	Sp	urious RF Conducted Emissions	21
	4.8	Ra	diated Spurious Emissions and Band Edge	22
5	Test	Setun	Photos	24
-	Apn	endix		25
				-

1 General Description

1.1 Lab Information

1.1.1 Testing Location

These measurements tests were conducted at the Sushi TOWE Wireless Testing(Shenzhen) Co., Ltd. facility located at F401 and F101, Building E, Hongwei Industrial Zone, Liuxian 3rd Road, Bao'an District, Shenzhen, China. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014 Tel.: +86-755-27212361

Contact Email: info@towewireless.com

1.1.2 Test Facility / Accreditations

A2LA (Certificate Number: 7088.01)

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated April 2017).

FCC Designation No.: CN1353

Sushi TOWE Wireless Testing(Shenzhen) Co., Ltd. has been recognized as an accredited testing laboratory. Designation Number: CN1353.

ISED CAB identifier: CN0152

Sushi TOWE Wireless Testing(Shenzhen) Co., Ltd. has been recognized by ISED as an accredited testing laboratory. CAB identifier: CN0152

Company Number: 31000

1.2 Client Information

1.2.1 Applicant

Applicant:	Quectel Wireless Solutions Co., Ltd.
	Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang
Address:	District, Shanghai, 200233,China

1.2.2 Manufacturer

Manufacturer:	Quectel Wireless Solutions Co., Ltd.
Address:	Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai, 200233,China

1.3 Product Information

EUT Description:	Wi-Fi Module			
Model No.:	FC30R			
Brand:	Quectel			
Hardware Version:	R1.0			
Software Version:	N/A			
SN.:	MP823FC1900	1942		
Modulation Type:	802.11b:	02.11b: DSSS-DBPSK, DQPSK, CCK		
modulation Type.	802.11g&HT:	OFDM-BPSK, QPSK, 16QA	M, 64QAM	
	⊠SISO	802.11b/g/HT	/	
Smart System:		802.11g/HT/VHT/HE	()TX()RX	
		802.11b	()TX()RX	
Frequency Range:	2400 ~ 2483.5	MHz		
Channel Frequency:	20M bandwidth Channel: 2412 ~ 2462MHz 40M bandwidth Channel: 2422 ~ 2452MHz			
Channel Number	11:	802.11b/g/HT20		
Channel Number.	7:	802.11HT40		
Antenna Type:	External, Integrated			
Antenna Gain	-0.1dBi			
Remark: The above EUT's information was declared by applicant, please refer to the specifications or user's manual for more detailed description.				

2 Test Configuration

2.1 Test Channel

Frequency Channels							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		/

Remark:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Modulation Type	Test Channel	Test Frequency
	The Lowest channel (CH1)	2412MHz
802.11b/g/HT20	The Middle channel (CH6)	2437MHz
	The Highest channel (CH11)	2462MHz
Modulation Type	Test Channel	Test Frequency
802.11HT40	The Lowest channel (CH3)	2422MHz
	The Middle channel (CH6)	2437MHz
	The Highest channel (CH9)	2452MHz

2.2 Worst-case configuration and Mode

Modulation Type	SISO - Data Rate	MIMO - Data Rate		
802.11b	1 Mbps	/		
802.11g	6 Mbps	/		
802.11(HT20)	MCS0 (6.5 Mbps)	/		
802.11(HT40)	MCS0 (13.5 Mbps)	/		
Transmitting mode. Keep the EUT was programmed to be in continuously transmitting mode				

2.3 Test Duty Cycle

Test Type	T(ms)	T Period(ms)	Duty Cycle(%)	1/T	VBW Set
802.11b	12.42	12.65	98.18	0.080515298	10Hz
802.11g	2.06	2.25	91.56	0.485436893	1KHz
802.11N20	1.92	2.13	90.14	0.520833333	1KHz
802.11N40	0.94	1.11	84.68	1.063829787	3KHz

Note: If Duty Cycle>98% VBW is set to 10Hz.

2.4 Support Unit used in test

Description	Manufacturer	Model	Serial Number	
Laptop	DELL	Latitude 5520	C196418CAB1C	
Adapter*	JINGSAI	JS-05020	/	
Test Stand 1*	Quectel	FC30R-TE-A	/	
Test Stand 2*	Quectel	LTE OPEN-EVB_V1.1	/	
Remark: *the information is provided by applicant.				

2.5 Test Environment

Temperature:	15℃ ~ 35℃		
Humidity:	30-75 %		
Voltage:	DC 5V AC 120V/60Hz for Conducted Emissions		
Remark: The testing environment is within the scope of the EUT user manual and meets the requirements of the standard testing environment.			

2.6 Test RF Cable

For all conducted test items: The offset level is set spectrum analyzer to compensate the RF cable loss and attenuator factor between RF conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level will be exactly the RF output level.

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

2.7 Modifications

No modifications were made during testing.

2.8 Test Setup Diagram

2.8.1 Conducted Configuration

2.8.2 Radiated Configuration

3 Equipment and Measurement Uncertainty

All test and measuring equipment utilized to perform the tests documented in this report are calibrated on a regular basis, whichever is less, and where applicable is traceable to recognized national standards.

3.1 Test Equipment List

RF-03							
Description	Manufacturer	Model	SN	Last Due	Cal Due		
Signal Analyzer	N9020A	N9020A	US46470429	2023/04/08	2024/04/07		
Signal Generator	SMR20	SMR20	101027	2023/04/08	2024/04/07		
Wireless Communication Tester	R&S	CMW270	102840	2023/06/27	2024/06/26		
UP/Down-Converter	R&S	CMW-Z800A	100572	2023/06/27	2024/06/26		
Hygrometer	BingYu	HTC-1	N/A	2023/06/01	2024/05/31		
Vector Signal Generator	R&S	SMM100A	549353	2023/06/27	2024/06/26		
RF Control Unit	Tonscend	JS0806-2	23C80620671	2023/06/27	2024/06/26		
Power Sensor	Anritsu	MA24408A	12520	2023/07/28	2024/07/27		
Shielding Room 13	Taihemaorui	4*3*3	N/A	2023/04/01	2026/03/31		
Measurement Software	Tonscend	JS1120-3	10659	N/A	N/A		

Radiated Emission							
Description	Manufacturer	Model	S.N.	Last Due	Cal Due		
Biconic Logarithmic Periodic Antennas	Schwarzbeck	VULB9163	1643	06/25/2023	06/24/2025		
Double-Ridged Horn Antennas	Schwarzbeck	BBHA 9120D	2809	06/25/2023	06/24/2025		
Broad-Band Horn Antenna	Schwarzbeck	BBHA 9170	1290	06/25/2023	06/24/2025		
Signal Analyzer	Keysight	N9020A	MY49100252	04/08/2023	04/07/2024		
EMI Tester Receiver	Rohde & Schwarz	ESR7	102719	08/17/2023	08/16/2024		
Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	150645	04/08/2023	04/07/2024		
Low Noise Amplifier	Tonscend	TAP9K3G40	AP23A8060273	04/08/2023	04/07/2025		
Low Noise Amplifier	Tonscend	TAP01018050	AP22G806258	04/08/2023	04/07/2025		
Band Reject Filter Group	Townshend	JS0806-F	23A806F0652	N/A	N/A		
Test Software	Tonscend	TS+	Version: 5.0.0	N/A	N/A		

Conducted Emission						
Description Manufacturer Model S.N. Last Due Cal Due						
EMI Tester Receiver	Rohde & Schwarz	ESR3	103108	07/28/2023	07/27/2024	
LISN	Rohde & Schwarz	ENV 216	102836	04/08/2023	04/07/2024	
Test software	Rohde & Schwarz	ELEKTRA v4.61	N/A	N/A	N/A	

3.2 Measurement Uncertainty

Parameter	U _{lab}
Frequency Error	679.98Hz
Output Power	0.76dB
Conducted Spurious Emissions	2.22dB
Conducted Emissions(150KHz~30MHz)	2.43dB
Radiated Emissions(30MHz~1000MHz)	4.66dB
Radiated Emissions(1GHz~18GHHz)	5.42dB
Radiated Emissions(18GHz~40GHHz)	5.46dB

Uncertainty figures are valid to a confidence level of 95%

4 Test Results

4.1 Antenna Requirement

Standard Applicable:

47 CFR Part 15C Section 15.203 /247(b)

15.203 requirement: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna o of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement: The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna gain and type as provided by the manufacturer are as follows:

The antenna Type is External. With maximum gain is -0.1dBi.

Antenna Anti-Replacement Construction: An embedded-in antenna design is used.

4.2 AC Power Line Conducted Emissions

<u>Limits</u>

	Limit (dBuV)				
Frequency range (IVITZ)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			
* Decreases with the logarithm of the frequency.					

Test Procedure

ANSI C63.10-2013, Section 6.2.

Test Settings

- The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50µH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 2. The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane.
- 3. The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 4. Set the test-receiver system to Peak detect function and specified bandwidth (if bandwidth =9kHz) with maximum hod mode. Then measurement is also conducted by average detector and Quasi-Peak detector function respectively.
- 5. Both sides of AC line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Test Setup

Measuring Instruments

The measuring equipment is listed in the section 3.1 of this test report.

Sushi TOWE Wireless Testing(Shenzhen) Co., Ltd. Email: info@towewireless.com Tel.: +86-755-27212361 TOWE-QP-15-F05 Rev.1.0 All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from TOWE.

Test Result:

1

1

1

1

1

Note:

0.213

0.303

0.879

1.482

2.022

41.66

34.15

33.84

34.59

33.74

3. Margin= Limit[dBµV] - Level[dBµV]

63.09

60.16

56.00

56.00

56.00

21.42

26.01

22.16

21.41

22.26

Level =Reading[dBµV] + Correction(LISN factor[dB] + Cable loss[dB]).

37.26

32.90

30.84

29.53

25.11

1. The following Quasi-Peak and Average measurements were performed on the EUT:

53.09

50.16

46.00

46.00

46.00

15.83

17.26

15.16

16.47

20.89

10.66

10.87

10.75

10.58

10.49

L1

L1

L1

L1

L1

Trace + Overview

Sushi TOWE Wireless Testing(Shenzhen) Co., Ltd.	Email: info@towewireless.com
Tel.: +86-755-27212361	TOWE-QP-15-F05 Rev.1.0
All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part,	form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from TOWE.	

1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. Level =Reading[dBµV] + Correction(LISN factor[dB] + Cable loss[dB]).

3. Margin= Limit[dBµV] - Level[dBµV]

4.3 Output Power

<u>Limits</u>

If with directional antenna gains less than 6 dBi, the limit is 30dBm.

Test Procedure

ANSI C63.10:2013 Section 11.9.1.3(PKPM1) or 11.9.2.3.2(AVGPM-G)

Test Settings

- 1. Set to the maximum power setting and enable the EUT transmit continuously.
- 2. The power output was measured on the EUT antenna port using RF Cable with attenuator connected to
- a power meter via wideband power sensor. Peak output power was read directly from power meter.
- 3. Measure and record the results in the test report.

Test Setup

Refer to section 2.8.1 Setup 1 for details.

Measuring Instruments

The measuring equipment is listed in the section 3.1 of this test report.

<u>Test Result</u>

4.4 Occupied Bandwidth

<u>Limits</u>

DTSBW: The minimum 6 dB bandwidth shall be at least 500 kHz. 99%BW: None, for reporting purposes only.

Test Procedure

ANSI C63.10:2013 Section 11.8.2 and 6.9.3

Test Settings

- 1. Set to the maximum power setting and enable the EUT transmit continuously.
- 2. The transmitter output is connected to a spectrum analyzer:
- 3. RBW = 100 kHz(DTS)
- 4. RBW = 1% 5%(99%BW)
- 5. VBW \geq 3 times the RBW
- 6. Sweep = Auto
- 7. Detector = Peak
- 8. Trace = Max hold
- 9. The trace was allowed to stabilize
- 10. Measure and record the results in the test report.

Test Notes

DTS: The signal analyzers' automatic bandwidth measurement capability of the spectrum analyzer was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X= 6. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.

Test Setup

Refer to section 2.8.1 Setup 2 for details.

Measuring Instruments

The measuring equipment is listed in the section 3.1 of this test report.

Test Result

4.5 Power Spectral Density

<u>Limits</u>

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure

ANSI C63.10:2013 Section 11.10.2(PKPSD)

Test Settings

- 1. Set to the maximum power setting and enable the EUT transmit continuously
- 2. The transmitter output is connected to a spectrum analyzer
- 3kHz ≤ RBW ≤ 100 kHz (If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.)
 VBW ≥ 3 times the RBW
- 5. Span = 1.5 times the DTS bandwidth
- 6. Sweep = Auto
- 7. Detector = Peak
- 8. Trace = Max hold
- 9. The trace was allowed to stabilize
- 10. Measure and record the results in the test report.

Test Setup

Refer to section 2.8.1 Setup 2 for details.

Measuring Instruments

The measuring equipment is listed in the section 3.1 of this test report.

<u>Test Result</u>

4.6 Band Edge for Conducted Emissions

<u>Limits</u>

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated. intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph 15.247(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Procedure

ANSI C63.10:2013 Section 11.11.3

Test Settings

- 1. Set to the maximum power setting and enable the EUT transmit continuously
- 2. The transmitter output is connected to a spectrum analyzer
- 3. RBW = 100kHz
- 4. VBW = 300kHz
- 5. Point \geq 2 x span/RBW
- 6. Sweep = Auto
- 7. Detector = Peak
- 8. Trace = Max hold
- 9. The trace was allowed to stabilize
- 10. Measure and record the results in the test report

Test Setup

Refer to section 2.8.1 Setup 2 for details.

Measuring Instruments

The measuring equipment is listed in the section 3.1 of this test report.

<u>Test Result</u>

4.7 Spurious RF Conducted Emissions

<u>Limits</u>

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated. intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph 15.247(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Procedure

ANSI C63.10:2013 Section 11.11.3

Test Settings

- 1. Set to the maximum power setting and enable the EUT transmit continuously.
- 2. Activate frequency hopping function if necessary.
- 3. The transmitter output is connected to a spectrum analyzer
- 4. The spectrum from 30MHz 26.5GHz
- 5. RBW = 100kHz
- 6. VBW = 300kHz
- 7. Sweep = Auto
- 8. Detector = Peak
- 9. Trace = Max hold
- 10. The trace was allowed to stabilize
- 11. Measure and record the results in the test report

Test Setup

Refer to section 2.8.1 Setup 2 for details.

Measuring Instruments

The measuring equipment is listed in the section 3.1 of this test report.

Test Result

4.8 Radiated Spurious Emissions and Band Edge

<u>Limits</u>

Spurious emissions are permitted in an of the frequency bands:

MHz	MHz	MHz	MHz	GHz	GHz
0.090 - 0.110	12.29 - 12.293	149.9 - 150.05	1660 - 1710	4.5 - 5.15	14.47 - 14.5
0.495 - 0.505	12.51975 - 1252025	156.52475 - 156.52525	1718.8 - 1722.2	5.35 - 5.46	15.35 - 16.2
2.1735 - 2.1905	12.5767 - 12.57725	156.7 - 156.9	2200 - 2300	7.25 - 7.75	17.7 - 21.4
4.125 - 128	13.36 - 13.41	162.0125 - 167.17	2310 - 2390	8.025 - 8.5	22.01 - 23.12
4.17725 - 4.17775	16.42 - 16.423	167.72 - 173.2	2483.5 - 2500	9.0 - 9.2	23.6 - 24.0
4.20725 - 4.20775	16.69475 - 16.69525	240 - 285	2655 - 2900	9.3 - 9.5	31.2 - 31.8
6.215 - 6.218	1680425 - 1680475	322 - 335.4	3260 - 3267	10.6 - 12.7	36.43 - 36.5
6.26775 - 6.26825	25.5 - 25.67	399.9 - 410	3332 - 3339	13.25 - 13.4	
6.31175 - 6.31225	37.5 - 38.25	608 - 614	3345.8 - 3358		
8.291 - 8.294	73 - 74.6	960 - 1240	3600 - 4400		
8.362 - 8.366	74.8 - 75.2	1300 - 1427			
8.37625 - 8.38675	108 - 121.94	1435 - 1626.5			
8.41425 - 8.41475	123 - 138	1645.5 - 1646.5			

Radiated disturbance of an intentional radiator:

Frequency	Field strength (µV/m)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
1.705MHz-30MHz	30	-	-	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
	500	74.0	Peak	C
	500	54.0	Average	3

Test Procedure

ANSI C63.10:2013 Section 6.4 & 6.5 & 6.6

Test Settings

- 1. For radiated emissions measurements performed at frequencies less than or equal to 1GHz, the EUT shall be placed on a RF-transparent table or support at a nominal height of 80cm above the reference ground plane.
- 2. For radiated emissions measurements performed at frequencies above 1GHz, the EUT shall be placed on a RF-transparent table or support at a nominal height of 150cm above the ground plane.
- 3. Radiated measurements shall be made with the measurement antenna positioned in both horizontal and vertical polarization. The measurement antenna shall be varied from 1m to 4m in height above the reference ground in a search for the relative positioning that produces the maximum radiated signal level (i.e, field strength or received power), when orienting the measurement antenna in vertical polarization, the minimum height of the lowest element of the antenna shall clear the site reference ground plane by at least 25cm.
- 4. For each suspected emission, the EUT was ranged its worst case and then tune the antenna tower(from 1~4m) and turntable(from 0~360°) find the maximum reading. Preamplifier and a high pass filter are used for the test in order get better signal level comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. The emission limits shown in the above table are based on measurements employing a CISPR quasipeak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.
- spectrum analyzer setting: Measurements 30MHz ~ 1000MHz: RBW = 120 kHz; VBW ≥ 300 kHz; Detector = Peak

Measurements Above 1000MHz: RBW = 1 MHz; VBW ≥ 3 MHz; Detector = Peak Average Measurements Above 1000MHz:

- RBW = 1 MHz, VBW \geq 1/T, with peak detector for average measurements.
- 8. The field strength is calculated by adding the Antenna Factor, Cable Factor. The basic equation with a sample calculation is as follows:

Level = Reading($dB\mu V$) + AF(dB/m) + Factor(dB):

AF = Antenna Factor(dB/m)

Factor = Cable Factor(dB) - Preamplifier gain(dB)

Margin = Limit(dBµV/m) – Level(dBµV/m)

- 9. Repeat above procedures until all frequencies measured was complete.
- 10. Measure and record the results in the test report.

Test Notes

- 1. Emissions below 18GHz were measured at a 3-meter test distance while emissions above 18GHz were measured at a 1-meter test distance with the application of a distance correction factor.
- 2. Radiated spurious emissions were investigated from 9kHz to 30MHz, 30MHz-1GHz and above 1GHz. the disturbance between 9KHz to 30MHz and 18GHz to 40GHz was very low. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be recorded, so only the harmonics had been displayed.
- 3. The "-" shown in the following RSE tables are used to denote a noise floor measurement.

Test Setup

Refer to section 2.8.2 for details.

Measuring Instruments

The measuring equipment is listed in the section 3.1 of this test report.

Test Result

5 Test Setup Photos

The detailed test data see: Test Setup Photos

Appendix

DTS Bandwidth

Test Result

TestMode	Antenna	Frequency[MHz]	DTS BW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
11B	Ant1	2412	10.000	2407.000	2417.000	0.5	PASS
11B	Ant1	2437	9.520	2432.000	2441.520	0.5	PASS
11B	Ant1	2462	9.960	2457.000	2466.960	0.5	PASS
11G	Ant1	2412	16.320	2403.840	2420.160	0.5	PASS
11G	Ant1	2437	16.360	2428.800	2445.160	0.5	PASS
11G	Ant1	2462	16.400	2453.800	2470.200	0.5	PASS
11N20SISO	Ant1	2412	17.600	2403.200	2420.800	0.5	PASS
11N20SISO	Ant1	2437	17.600	2428.160	2445.760	0.5	PASS
11N20SISO	Ant1	2462	17.600	2453.200	2470.800	0.5	PASS
11N40SISO	Ant1	2422	35.040	2404.480	2439.520	0.5	PASS
11N40SISO	Ant1	2437	35.520	2419.080	2454.600	0.5	PASS
11N40SISO	Ant1	2452	36.080	2434.080	2470.160	0.5	PASS

Test Graphs

Page 27 / 96 Report No.: TCWA23120004801

Page 28 / 96 Report No.: TCWA23120004801

Occupied Channel Bandwidth

Test Result

TestMode	Antenna	Channel Frequency[MHz]	OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
11B	Ant1	2412	15.597	2404.3144	2419.9114		
11B	Ant1	2437	15.669	2429.0668	2444.7358		
11B	Ant1	2462	15.495	2454.3128	2469.8078		
11G	Ant1	2412	17.167	2403.4224	2420.5894		
11G	Ant1	2437	17.264	2428.2461	2445.5101		
11G	Ant1	2462	17.199	2453.3738	2470.5728		
11N20SISO	Ant1	2412	18.281	2402.9348	2421.2158		
11N20SISO	Ant1	2437	18.241	2427.8593	2446.1003		
11N20SISO	Ant1	2462	18.147	2452.9610	2471.1080		
11N40SISO	Ant1	2422	36.180	2404.0006	2440.1806		
11N40SISO	Ant1	2437	36.251	2418.9010	2455.1520		
11N40SISO	Ant1	2452	36.387	2433.8520	2470.2390		

Test Graphs

Page 31 / 96 Report No.: TCWA23120004801

Page 32 / 96 Report No.: TCWA23120004801

Maximum conducted output power

Test Result Peak

TestMode	Antenna	Frequency[MHz]	Peak Power[dBm]	Conducted Limit[dBm]	Verdict
		2412	18.82	≤30.00	PASS
11B	Ant1	2437	18.57	≤30.00	PASS
		2462	18.43	≤30.00	PASS
	Ant1	2412	23.62	≤30.00	PASS
11G		2437	23.42	≤30.00	PASS
		2462	23.72	≤30.00	PASS
	Ant1	2412	23.45	≤30.00	PASS
11N20SISO		2437	23.11	≤30.00	PASS
		2462	23.52	≤30.00	PASS
11N40SISO		2422	23.72	≤30.00	PASS
	Ant1	2437	23.75	≤30.00	PASS
		2452	23.44	≤30.00	PASS

Test Result Average

TestMode	Antenna	Frequency[MHz]	Average power [dBm]
		2412	15.78
11B	Ant1	2437	15.70
		2462	15.82
		2412	15.49
11G	Ant1	2437	15.58
		2462	15.78
		2412	14.34
11N20SISO	Ant1	2437	14.54
		2462	14.77
11N40SISO		2422	13.88
	Ant1	2437	13.98
		2452	13.64

Maximum power spectral density

Test Result

TestMode	Antenna	Frequency[MHz]	Result[dBm/3-100kHz]	Limit[dBm/3kHz]	Verdict
11B	Ant1	2412	-6.04	≤8.00	PASS
11B	Ant1	2437	-5.42	≤8.00	PASS
11B	Ant1	2462	-6.01	≤8.00	PASS
11G	Ant1	2412	-8.49	≤8.00	PASS
11G	Ant1	2437	-8.99	≤8.00	PASS
11G	Ant1	2462	-8.64	≤8.00	PASS
11N20SISO	Ant1	2412	-11.28	≤8.00	PASS
11N20SISO	Ant1	2437	-10.68	≤8.00	PASS
11N20SISO	Ant1	2462	-9.56	≤8.00	PASS
11N40SISO	Ant1	2422	-14.27	≤8.00	PASS
11N40SISO	Ant1	2437	-13.91	≤8.00	PASS
11N40SISO	Ant1	2452	-14 41	≤8.00	PASS

Test Graphs

Band edge measurements

Test Result

TestMode	Antenna	ChName	Frequency[MHz]	RefLevel[dBm]	Result[dBm]	Limit[dBm]	Verdict
11B	Ant1	Low	2412	7.29	-40.56	≤-12.71	PASS
11B	Ant1	High	2462	7.49	-45.39	≤-12.51	PASS
11G	Ant1	Low	2412	4.54	-29.1	≤-15.46	PASS
11G	Ant1	High	2462	3.04	-37.71	≤-16.96	PASS
11N20SISO	Ant1	Low	2412	3.32	-33.69	≤-16.68	PASS
11N20SISO	Ant1	High	2462	3.79	-36.54	≤-16.21	PASS
11N40SISO	Ant1	Low	2422	1.08	-35.79	≤-18.92	PASS
11N40SISO	Ant1	High	2452	0.54	-37.04	≤-19.46	PASS

Page 40 / 96 Report No.: TCWA23120004801

Conducted Spurious Emission

Test Result

TestMode	Antenna	Frequency[MHz]	FreqRange	RefLevel	Result	Limit	Verdict
			[Mhz]	[dBm]	[dBm]	[dBm]	Voraiot
11B	Ant1	2412	0~Reference	7.16	7.16		PASS
11B	Ant1	2412	30~1000	7.16	-58.15	≤-12.84	PASS
11B	Ant1	2412	1000~26500	7.16	-44.56	≤-12.84	PASS
11B	Ant1	2437	0~Reference	6.43	6.43		PASS
11B	Ant1	2437	30~1000	6.43	-57.39	≤-13.57	PASS
11B	Ant1	2437	1000~26500	6.43	-44.46	≤-13.57	PASS
11B	Ant1	2462	0~Reference	7.17	7.17		PASS
11B	Ant1	2462	30~1000	7.17	-57.93	≤-12.83	PASS
11B	Ant1	2462	1000~26500	7.17	-43.49	≤-12.83	PASS
11G	Ant1	2412	0~Reference	4.44	4.44		PASS
11G	Ant1	2412	30~1000	4.44	-58.23	≤-15.56	PASS
11G	Ant1	2412	1000~26500	4.44	-44	≤-15.56	PASS
11G	Ant1	2437	0~Reference	5.08	5.08		PASS
11G	Ant1	2437	30~1000	5.08	-58.05	≤-14.92	PASS
11G	Ant1	2437	1000~26500	5.08	-44.07	≤-14.92	PASS
11G	Ant1	2462	0~Reference	5.42	5.42		PASS
11G	Ant1	2462	30~1000	5.42	-57.68	≤-14.58	PASS
11G	Ant1	2462	1000~26500	5.42	-44	≤-14.58	PASS
11N20SISO	Ant1	2412	0~Reference	3.09	3.09		PASS
11N20SISO	Ant1	2412	30~1000	3.09	-58.7	≤-16.91	PASS
11N20SISO	Ant1	2412	1000~26500	3.09	-43.99	≤-16.91	PASS
11N20SISO	Ant1	2437	0~Reference	3.07	3.07		PASS
11N20SISO	Ant1	2437	30~1000	3.07	-57.22	≤-16.93	PASS
11N20SISO	Ant1	2437	1000~26500	3.07	-44.72	≤-16.93	PASS
11N20SISO	Ant1	2462	0~Reference	3.83	3.83		PASS
11N20SISO	Ant1	2462	30~1000	3.83	-57.59	≤-16.17	PASS
11N20SISO	Ant1	2462	1000~26500	3.83	-43.8	≤-16.17	PASS
11N40SISO	Ant1	2422	0~Reference	0.88	0.88		PASS
11N40SISO	Ant1	2422	30~1000	0.88	-58.55	≤-19.12	PASS
11N40SISO	Ant1	2422	1000~26500	0.88	-43.85	≤-19.12	PASS
11N40SISO	Ant1	2437	0~Reference	0.13	0.13		PASS
11N40SISO	Ant1	2437	30~1000	0.13	-58.3	≤-19.87	PASS
11N40SISO	Ant1	2437	1000~26500	0.13	-43.81	≤-19.87	PASS
11N40SISO	Ant1	2452	0~Reference	0.57	0.57		PASS
11N40SISO	Ant1	2452	30~1000	0.57	-58.04	≤-19.43	PASS
11N40SISO	Ant1	2452	1000~26500	0.57	-44.11	≤-19.43	PASS

Page 43 / 96 Report No.: TCWA23120004801

Page 46 / 96 Report No.: TCWA23120004801

τύψε

Page 49 / 96 Report No.: TCWA23120004801

Duty Cycle

Test Result

TestMode	Antenna	Frequency[MHz]	Transmission Duration [ms]	Transmission Period [ms]	Duty Cycle	Factor
11B	Ant1	2412	12.42	12.60	98.57	0.06
11B	Ant1	2437	12.42	12.48	99.52	0.02
11B	Ant1	2462	12.42	12.65	98.18	0.08
11G	Ant1	2412	2.06	2.23	92.38	0.34
11G	Ant1	2437	2.06	2.18	94.50	0.25
11G	Ant1	2462	2.06	2.25	91.56	0.38
11N20SISO	Ant1	2412	1.92	2.07	92.75	0.33
11N20SISO	Ant1	2437	1.91	2.10	90.95	0.41
11N20SISO	Ant1	2462	1.92	2.13	90.14	0.45
11N40SISO	Ant1	2422	0.94	1.06	88.68	0.52
11N40SISO	Ant1	2437	0.95	1.12	84.82	0.72
11N40SISO	Ant1	2452	0.94	1.11	84.68	0.72

	ent Spectrum Analyzer - Swept SA			Agilerit Spectrum Analyzer - Swept SA
	RL RF 500 AC SB8	EINT AUSVAUTO 06:57/43PMDar 10, 2023	Frequency	The Part of the Pa
Image: March & B Partial March & B	PN0: Fast +++ Trig: Video	D TYPE		PNC: Fast Trig: Video Drie
DF CHORE 119 all AMM 15 12 80 mm AMM 15 12	IFGain:Lew #Atten: 40	dB (F) Marada	1	IFGain:Low #Atten: 40 dB
No. Mail 200 </td <td>Ref Offset 11 09 dB</td> <td>ΔMkr3 12.60 ms</td> <td>AutoTune</td> <td>Ref Offset 11 19 dB AMkr3 12.48 ms</td>	Ref Offset 11 09 dB	ΔMkr3 12.60 ms	AutoTune	Ref Offset 11 19 dB AMkr3 12.48 ms
Center Freq 2.41200000 DPL 2.4120000 DPL 2.412000 DPL 2.4120000 DPL 2.412000 DPL 2.412000 DPL 2.412000 DPL 2.412000 DPL 2.4120000 DPL 2.412000 DPL 2.412000 DPL 2.412000 DPL 2.412000 DP	div Ref 30.00 dBm	41.97 dB		10 dBidiy Ref 30.00 dBm 0.07 dB
Center Freq 2-1000000 CPC 2-100000 CPC 2-10000 CPC 2-100000 CPC 2-10000 CPC		(∕//3∆1		Log (1301
2.21000000 CPC 2.2000000 CPC 2.2000000 CPC 2.2000000 CPC 3.000 CPC <t< td=""><td></td><td></td><td>Center Freq</td><td>200 Cen</td></t<>			Center Freq	200 Cen
Statistics Statis Statistics Statistics		T100 LV-L	2.412000000 GHz	10.9 TRC.U.C. 2.43700
2400000 OH: Figure 5 Mint So Mint September 12/Mint So Min				103
Artonomo der Artonomo der Ar		المساحد المساحد المساحد		.100
241500000 GHz 241500000 GHz 241500			Start Freq	State
2 J 1520000 GHZ 2 J 15200000 GHZ 2 J 15200000 GHZ 2 J 15200000 GHZ 2 J 15200000 GHZ 2			2.412000000 GHz	2,43700
Stop Freq V Hate <td></td> <td></td> <td></td> <td>300</td>				300
221200000 CH2 ADDI SUNCE Second Fill CF Second Fill Second Fill </td <td></td> <td></td> <td>2220.022.025</td> <td>-40.0</td>			2220.022.025	-40.0
2 400000 OH2 2 4000 S MHz 2 40000 OH2 2 4000 OH2 2 40000 OH2 2 40000 OH2 2 40000 OH2 2 40000 OH2 2 40			StopFreq	-500
12.12/200000 G/C #COM KO M/L: Span 0 Hz CF Sergel Max Com Ko M/L: Span 0 Hz Span 0 Hz <t< td=""><td></td><td></td><td>2.412000000 GHz</td><td>500 2.43700</td></t<>			2.412000000 GHz	500 2.43700
2 4 420000 GHz SUB HIZ SUBJECT FOR SUBJEC			1	
W MAR AVQN 50 MIR: Sweep 12/3 to 12/00 100 pt Monoconstraints Res 201 80 MIR: Sweep 23/0 mt (201 pt) Monoconstraints 1	r 2.412000000 GHz	Span 0 Hz	CF Step	Center 2.437000000 GHz Span 0 Hz
No. 1 No. 1 <th< td=""><td>W 8 MHz #VBW 8.0 MHz</td><td>Sweep 17.07 ms (2001 pts)</td><td>8.000000 MHz</td><td>Res BW 8 MHz #VBW 8.0 MHz Sweep 25.07 ms (2001 pts) 8.000</td></th<>	W 8 MHz #VBW 8.0 MHz	Sweep 17.07 ms (2001 pts)	8.000000 MHz	Res BW 8 MHz #VBW 8.0 MHz Sweep 25.07 ms (2001 pts) 8.000
Image: Section of the sectio	DE TRC SOL X Y	FUNCTION FUNCTION WIDTH FUNCTION VALUE	<u>Auto</u> Man	MUS NODE THE SOL X Y FUNCTION FUNCTION WOTH FUNCTION WILLS A
Preq Offset Offset Preq Offset Offset <thpreq offset<="" th=""> Preq Offset Offse</thpreq>				
Image: State I		الكحيدة كحدد المحدة	Freq Offset	3 State Free
Image: Section Image:			0 Hz	
Image: Section Image: Sectio				
Image: Second methods <th< td=""><td></td><td></td><td></td><td></td></th<>				
Image: Section in the section of t				
Image: Section of the sectio		المحد عدد المحالة		10
Image: Control Contro		×		
NTNV-11B-Ant1-2412 NTNV-11B-Ant1-2412 NTNV-11B-Ant1-2437 Add Ture Freq 245500000 CH2 Ref 900 48 100 48		LASTUTIS.		NO LASTIN
• 00 • 00 • 00 • 00 • 00 • 00 • 00 • 0	ipestrum Analyzer – Swept SA	11B-Ant1-2412		NTNV-TTB-ANTT-2437 Agilest Spectrum Analyzer - Swept SA
PF Freq 2.422000000 GHz The set of the set	RF 500 K SBB	E-NT RUSYAUTO 07.01.05PMDat 10, 2023	Frequency	The Part of the Pa
IF Grant for Autor 10 dBm Allor Ture IF Grant for Autor 10 dBm Autor 10 dBm Aut	PN0: Fast +++ Trig: Video	b DIFE WHY I THE AND THE		CONCIL Freq 2/41/2000000 GFZ Trig Video
Ref Offset 11:21 dB AMkr3 12:65 ms Allo 10 0// -0.24 dB	IFGain:Low #Atten: 40	4B (ET all all all all all all all all all al		IFGein:Low #Atten: 40 dB
aver. Kerl 30.00 dBm -7.71 dB (1) -7.71 dB (2)	Ref Offset 11.21 dB	ΔMkr3 12.65 ms	AutoTune	Ref Offset 11.09 dB AMkr3 2.230 ms
01 1	div Ref 30.00 dBm	-0.24 dB		10 dB/div Ref 30.00 dBm -7.71 dB
Start Freq 2.45200000 GHz Start Freq 3.00 Start Freq	Q1	3∆1		
2.45000000 GHz Span 0 Hz Stop Freq 2.45000000 GHz Stop Freq 3.00000 MHz Stop Freq 3.00000 MHz </td <td></td> <td></td> <td>Center Freq</td> <td>- material states and a state of the state o</td>			Center Freq	- material states and a state of the state o
Start Freq 2.45000000 GHz r2.452000000 GHz X BAHz X BANKZ X BANKZ X BACIDA FORCIDA FORCIDA FORCIDA FORCIDA FORCE X BANKZ X FORCIDA FORCIDA FORCIDA FORCE X BANKZ X FORCIDA FORCIDA FORCIDA FORCE X BANKZ X FORCIDA FORCIDA FORCE X FOR		786 LVL	2.462000000 GHz	10.0
Start Freq 2.45200000 GHz r 2.45200000 GHz stop Freq 2.45200000 GHz stop Freq 2.45200000 GHz stop Freq 2.45200000 GHz stop Freq 0.42 stop Fre		والمراجعين والمحراجي		
Additive equation of the second of the se		وسيروح والمسير	OtartEron	.10.0
2452000000 CHz Stop Freq 25 INC SQ X Y PRCICK PRCICK PRCICK PRCICK 1 Interview PRCICK PRCICK PRCICK 1 Interview PRCICK PRCICK PRCICK PRCICK PRCICK 1 Interview Interview PRCICK PRCIC			D (COODDOOD CU)	
Stop Freq 2.45200000 CHz r2.45200000 CHz W 8 MHz #VBW 8.0 MHz Sweep 20.00 ms (2001 pts) E RC SQL X Freq Offset CF Step 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			2.40200000 GHZ	241200
Stop Freq 2.452000000 GHz Stop Freq 2.45200000 GHz Stop Freq 2.45200000 GHz Stop Freq 2.45200000 GHz Stop Freq 2.45200000 GHz Stop F		المراجع ومراجع ومراجع	e	
2.462000000 GHz \$245200000 GHz \$245200000 GHz \$2400000 GHz \$2400000 GHz \$241200000 GHz \$20000 Hz \$20000 Hz <td></td> <td></td> <td>Stop Freg</td> <td>St</td>			Stop Freg	St
2.462000000 GHz \$\$ Span 0 Hz \$\$ Span 0 Hz CF Step \$\$ 00000 WHz \$\$ Span 0 Hz \$\$ \$\$ 00000 WHz \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$			2.462000000 GHz	-500 2,41200
2.45/2000000 CH2 % 8 MHz #VBW 8.0 MHz Sweep 20.00 ms (2001 pts) 1 1 1 1 1 1 1 1 1 1				£3.0
2.492/00000 CH2 SVeep 20.00 ms (201) ps 800000 UH2 SVeep 7.067 ms (201) ps 80000 UH2 SVeep 7.067 ms (201) ps 8000 UH2 SVeep 7.067	2 152000000 CHz	Crop 0 Hz		Conter 2 112000000 CHr
	2.462000000 GH2 #VRW 2.0 MH7 #VRW 2.0 MH7	Sween 20.00 ms (2001 nts)	CF Step	Res BW & MHz #VBW & 0 MHz Sween 7 067 ms (2001 nts)
E RC SQ X Y ENCION RECTON WOTH ENCION W		encop zorecino (zeer pro)	Auto Man	Auto
	ETRC SOL X Y	FUNCTION FUNCTION WOTH FUNCTION VALUE		MICE NODE TRC: SOL X Y FUNCTION FUNCTION WIDTH FUNCTION WILLE
1 FreqOffset 3 1 FreqOffset 4 0Hz 0Hz 5 5 5 6 7		المستعمل المستعدان المستعدان		
			FreqOffset	Fre
			0 Hz	
				9
C C C C C C C C C C C C C C C C C C C				
Certaine esci		3	·	\$\$
		STATUS		USG 🚺

Page 53 / 96 Report No.: TCWA23120004801

Page 54 / 96 Report No.: TCWA23120004801

Radiated Spurious Emissions

Test Result (Below 1GHz) Worst-case

Project Information									
Mode:	802.11 b	Voltage:	120V 60HZ						
SN:	MP823FC19001942	Engineer:	欧树炎						
Remark: /									
Test Standard: FCC	PART 15C								

Data	Jata List											
NO.	Freq. [MHz]	Reading [dBuV]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Trace	Polarity	Verdict	
1	52.504	39.98	-22.32	17.66	40.00	22.34	141	111	PK	Horizontal	PASS	
2	119.046	45.37	-25.17	20.20	43.50	23.30	214	105	PK	Horizontal	PASS	
3	249.802	51.51	-22.08	29.43	46.00	16.57	124	141	PK	Horizontal	PASS	
4	345.638	50.44	-19.02	31.42	46.00	14.58	254	357	PK	Horizontal	PASS	
5	349.712	47.57	-18.91	28.66	46.00	17.34	131	209	PK	Horizontal	PASS	
6	849.747	42.05	-9.12	32.93	46.00	13.07	160	360	PK	Horizontal	PASS	

Project Information									
Mode:	802.11 b	Voltage:	120V 60HZ						
SN:	MP823FC19001942	Engineer:	欧树炎						
Remark:	Remark: /								
Test Standard: FCC	PART 15C								

Data	Data List											
NO.	Freq. [MHz]	Reading [dBuV]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Trace	Polarity	Verdict	
1	33.686	48.00	-25.13	22.87	40.00	17.13	185	177	PK	Vertical	PASS	
2	61.428	46.02	-23.27	22.75	40.00	17.25	127	81	PK	Vertical	PASS	
3	120.016	55.58	-24.55	31.03	43.50	12.47	267	96	PK	Vertical	PASS	
4	139.998	54.90	-25.79	29.11	43.50	14.39	233	13	PK	Vertical	PASS	
5	249.996	42.98	-21.36	21.62	46.00	24.38	249	314	PK	Vertical	PASS	
6	849.941	40.52	-9.08	31.44	46.00	14.56	149	18	PK	Vertical	PASS	

Test Result (Above 1GHz)

Project Information									
Mode:	802.11 b	Band:	/						
Bandwidth	20MHZ	Channel	1						
SN:	MP823FC19001942	Engineer:	欧树炎						
Remark:		/							
Toot Standard: ECC I									

Test Standard: FCC PART 15 C

Data I	List								
NO.	Freq. [MHz]	Reading [dBµV]	Factor [Db]	Level [dBµV/m]	Limit [dBµV/m]	Margin [Db]	Height [cm]	Angle [°]	Polarity
1	12800	41.26	5.93	47.19	74.00	26.81	170	178	Horizontal
2	15245.5	39.66	9.24	48.90	74.00	25.10	117	312	Horizontal
3	17975.5	38.28	13.12	51.40	74.00	22.60	175	77	Horizontal
4	13820.5	32.73	8.26	40.99	54.00	13.01	121	190	Horizontal
5	15079	32.00	8.99	40.99	54.00	13.01	214	65	Horizontal
6	17802.5	31.52	12.73	44.25	54.00	9.75	158	245	Horizontal

Project Information									
Mode:	802.11 b	Band:	/						
Bandwidth	20MHZ	Channel	1						
SN:	MP823FC19001942	Engineer:	欧树炎						
Remark:		/							
Test Standard: ECC									

Data I	Data List											
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity			
1	13823.5	40.27	8.31	48.58	74.00	25.42	233	179	Vertical			
2	14677.5	39.23	9.16	48.39	74.00	25.61	155	267	Vertical			
3	17998.5	38.67	13.43	52.10	74.00	21.90	189	168	Vertical			
4	13838.5	31.98	8.55	40.53	54.00	13.47	121	0	Vertical			
5	14667.5	32.09	9.44	41.53	54.00	12.47	147	46	Vertical			
6	17975.5	31.29	13.12	44.41	54.00	9.59	289	134	Vertical			

Project Information							
Mode:	802.11 b	Band:	/				
Bandwidth	20MHZ	Channel	6				
SN:	MP823FC19001942	Engineer:	欧树炎				
Remark:		/					
Test Standard: ECC							

Data I	Jata List									
NO.	Freq. [MHz]	Reading [dBµV]	Factor [Db]	Level [dBµV/m]	Limit [dBµV/m]	Margin [Db]	Height [cm]	Angle [°]	Polarity	
1	13663	41.13	7.40	48.53	74.00	25.47	141	145	Horizontal	
2	15120.5	40.25	8.77	49.02	74.00	24.98	214	223	Horizontal	
3	17802	39.21	12.72	51.93	74.00	22.07	124	2	Horizontal	
4	13426.5	33.88	7.01	40.89	54.00	13.11	254	268	Horizontal	
5	15080.5	32.80	8.99	41.79	54.00	12.21	131	112	Horizontal	
6	17992	30.95	13.34	44.29	54.00	9.71	160	156	Horizontal	

Project Information							
Mode:	802.11 b	Band:	/				
Bandwidth	20MHZ	Channel	6				
SN:	MP823FC19001942	Engineer:	欧树炎				
Remark:		/					
Test Standard: ECC							

Data I	lata List									
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity	
1	13451	41.98	6.92	48.90	74.00	25.10	158	168	Vertical	
2	14457	41.45	7.61	49.06	74.00	24.94	106	345	Vertical	
3	17991	38.37	13.33	51.70	74.00	22.30	218	67	Vertical	
4	14375	32.24	8.82	41.06	54.00	12.94	189	122	Vertical	
5	15172	32.92	8.27	41.19	54.00	12.81	272	67	Vertical	
6	17967.5	31.36	13.01	44.37	54.00	9.63	250	78	Vertical	

Project Information								
Mode:	802.11 b	Band:	/					
Bandwidth	20MHZ	Channel	11					
SN:	MP823FC19001942	Engineer:	欧树炎					
Remark:		/						
Toot Standard: ECC								

Data I	lata List									
NO.	Freq. [MHz]	Reading [dBµV]	Factor [Db]	Level [dBµV/m]	Limit [dBµV/m]	Margin [Db]	Height [cm]	Angle [°]	Polarity	
1	14086	41.35	8.08	49.43	74.00	24.57	159	158	Horizontal	
2	15062	41.41	8.93	50.34	74.00	23.66	223	258	Horizontal	
3	17345	40.03	12.64	52.67	74.00	21.33	246	301	Horizontal	
4	13709.5	34.55	7.64	42.19	54.00	11.81	243	58	Horizontal	
5	15178	34.21	8.26	42.47	54.00	11.53	149	191	Horizontal	
6	17342.5	32.45	12.51	44.96	54.00	9.04	186	280	Horizontal	

Project Information								
Mode:	802.11 b	Band:	/					
Bandwidth	20MHZ	Channel	11					
SN:	MP823FC19001942	Engineer:	欧树炎					
Remark:		/						
Test Standard, FCC								

Data I	List								
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	13710	41.68	7.63	49.31	74.00	24.69	160	225	Vertical
2	14807	41.77	9.22	50.99	74.00	23.01	254	281	Vertical
3	17882	39.17	13.04	52.21	74.00	21.79	174	92	Vertical
4	13823	33.19	8.30	41.49	54.00	12.51	132	0	Vertical
5	15058.5	33.35	8.92	42.27	54.00	11.73	144	225	Vertical
6	17365	32.57	12.28	44.85	54.00	9.15	204	169	Vertical

Project Information								
Mode:	802.11 g	Band:	/					
Bandwidth	20MHZ	Channel	1					
SN:	MP823FC19001942	Engineer:	欧树炎					
Remark:		/						
Test Standard: ECC								

Data I	ata List									
NO.	Freq. [MHz]	Reading [dBµV]	Factor [Db]	Level [dBµV/m]	Limit [dBµV/m]	Margin [Db]	Height [cm]	Angle [°]	Polarity	
1	12756	41.23	5.78	47.01	74.00	26.99	184	46	Horizontal	
2	14632.5	39.62	9.51	49.13	74.00	24.87	277	146	Horizontal	
3	17982	39.27	13.21	52.48	74.00	21.52	130	256	Horizontal	
4	13820	32.53	8.25	40.78	54.00	13.22	195	80	Horizontal	
5	15122.5	32.78	8.74	41.52	54.00	12.48	116	124	Horizontal	
6	17814	31.18	12.90	44.08	54.00	9.92	208	312	Horizontal	

Project Information								
Mode:	802.11 g	Band:	/					
Bandwidth	20MHZ	Channel	1					
SN:	MP823FC19001942	Engineer:	欧树炎					
Remark:		/						
Test Standard: ECC								

Data I	List								
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	13419	41.40	7.04	48.44	74.00	25.56	175	360	Vertical
2	15069.5	40.57	8.96	49.53	74.00	24.47	121	200	Vertical
3	17841	38.84	13.29	52.13	74.00	21.87	214	345	Vertical
4	13402.5	34.09	7.10	41.19	54.00	12.81	158	360	Vertical
5	14360.5	32.72	9.13	41.85	54.00	12.15	106	345	Vertical
6	17895	31.32	12.89	44.21	54.00	9.79	218	335	Vertical

Project Information							
Mode:	802.11 g	Band:	/				
Bandwidth	20MHZ	Channel	6				
SN:	MP823FC19001942	Engineer:	欧树炎				
Remark:		/					
Test Standard, FCC							

Data I	List								
NO.	Freq. [MHz]	Reading [dBµV]	Factor [Db]	Level [dBµV/m]	Limit [dBµV/m]	Margin [Db]	Height [cm]	Angle [°]	Polarity
1	12815	42.12	5.92	48.04	74.00	25.96	217	36	Horizontal
2	14621.5	39.75	9.25	49.00	74.00	25.00	134	92	Horizontal
3	17801	39.51	12.70	52.21	74.00	21.79	188	47	Horizontal
4	13505	33.61	6.83	40.44	54.00	13.56	182	234	Horizontal
5	15244	32.04	9.21	41.25	54.00	12.75	156	136	Horizontal
6	17339.5	31.81	12.38	44.19	54.00	9.81	246	179	Horizontal

Project Information							
Mode:	802.11 g	Band:	/				
Bandwidth	20MHZ	Channel	6				
SN:	MP823FC19001942	Engineer:	欧树炎				
Remark:		/					
Toot Standard, ECC I							

Data I	List								
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	13846	39.86	8.67	48.53	74.00	25.47	261	103	Vertical
2	15244.5	40.37	9.22	49.59	74.00	24.41	116	136	Vertical
3	17994.5	39.02	13.38	52.40	74.00	21.60	259	302	Vertical
4	13822	32.82	8.28	41.10	54.00	12.90	257	147	Vertical
5	14356	32.36	9.22	41.58	54.00	12.42	168	169	Vertical
6	17847.5	30.74	13.39	44.13	54.00	9.87	237	302	Vertical

Project Information								
Mode:	802.11 g	Band:	/					
Bandwidth	20MHZ	Channel	11					
SN:	MP823FC19001942	Engineer:	欧树炎					
Remark:		/						
Toot Standard, FCC								

Data I	List								
NO.	Freq. [MHz]	Reading [dBµV]	Factor [Db]	Level [dBµV/m]	Limit [dBµV/m]	Margin [Db]	Height [cm]	Angle [°]	Polarity
1	13802	40.42	7.96	48.38	74.00	25.62	173	14	Horizontal
2	15222.5	40.12	8.70	48.82	74.00	25.18	265	315	Horizontal
3	17967	39.11	13.01	52.12	74.00	21.88	133	270	Horizontal
4	13686	32.86	7.66	40.52	54.00	13.48	260	315	Horizontal
5	14368	32.83	8.97	41.80	54.00	12.20	240	281	Horizontal
6	17350	31.38	12.86	44.24	54.00	9.76	151	24	Horizontal

Project Information								
Mode:	802.11 g	Band:	/					
Bandwidth	20MHZ	Channel	11					
SN:	MP823FC19001942	Engineer:	欧树炎					
Remark:		/						
Test Standard: ECC								

Data I	List								
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	13489.5	40.71	6.86	47.57	74.00	26.43	168	36	Vertical
2	14351.5	39.60	9.32	48.92	74.00	25.08	148	224	Vertical
3	17371	39.88	12.04	51.92	74.00	22.08	203	136	Vertical
4	13819.5	33.01	8.24	41.25	54.00	12.75	134	14	Vertical
5	15071.5	33.11	8.96	42.07	54.00	11.93	186	202	Vertical
6	17806.5	31.58	12.78	44.36	54.00	9.64	161	246	Vertical

Project Information								
Mode:	802.11 n20	Band:	/					
Bandwidth	20MHZ	Channel	1					
SN:	MP823FC19001942	Engineer:	欧树炎					
Remark:		/						
Test Standard, ECC								

Data I	List								
NO.	Freq. [MHz]	Reading [dBµV]	Factor [Db]	Level [dBµV/m]	Limit [dBµV/m]	Margin [Db]	Height [cm]	Angle [°]	Polarity
1	13841	39.73	8.59	48.32	74.00	25.68	234	169	Horizontal
2	15233.5	39.66	8.96	48.62	74.00	25.38	137	14	Horizontal
3	17349	39.07	12.82	51.89	74.00	22.11	271	135	Horizontal
4	13814.5	32.80	8.16	40.96	54.00	13.04	197	92	Horizontal
5	15065.5	32.62	8.94	41.56	54.00	12.44	129	279	Horizontal
6	17343	31.73	12.54	44.27	54.00	9.73	148	169	Horizontal

Project Information								
Mode:	802.11 n20	Band:	/					
Bandwidth	20MHZ	Channel	1					
SN:	MP823FC19001942	Engineer:	欧树炎					
Remark:		/						
Test Standard, ECC								

Data I	List								
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	13666.5	40.73	7.44	48.17	74.00	25.83	198	25	Vertical
2	14352.5	39.64	9.30	48.94	74.00	25.06	272	334	Vertical
3	17985	38.74	13.25	51.99	74.00	22.01	172	180	Vertical
4	13847	32.39	8.68	41.07	54.00	12.93	200	102	Vertical
5	15076.5	32.16	8.98	41.14	54.00	12.86	212	124	Vertical
6	17857.5	30.81	13.34	44.15	54.00	9.85	153	80	Vertical

Project Information						
Mode:	802.11 n20	Band:	1			
Bandwidth	20MHZ	Channel	6			
SN:	MP823FC19001942	Engineer:	欧树炎			
Remark:		/				

Data List									
NO.	Freq. [MHz]	Reading [dBµV]	Factor [Db]	Level [dBµV/m]	Limit [dBµV/m]	Margin [Db]	Height [cm]	Angle [°]	Polarity
1	13676	40.06	7.55	47.61	74.00	26.39	184	90	Horizontal
2	15243.5	39.93	9.20	49.13	74.00	24.87	277	333	Horizontal
3	17857	38.62	13.33	51.95	74.00	22.05	151	25	Horizontal
4	13584	33.80	6.96	40.76	54.00	13.24	252	90	Horizontal
5	15246	32.26	9.25	41.51	54.00	12.49	178	256	Horizontal
6	17352	31.29	12.78	44.07	54.00	9.93	138	25	Horizontal

Project Information						
Mode:	802.11 n20	Band:	/			
Bandwidth	20MHZ	Channel	6			
SN:	MP823FC19001942	Engineer:	欧树炎			
Remark:		/				
Test Standard: ECC DADT 15 C						

Data List									
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	13700	40.23	7.82	48.05	74.00	25.95	252	279	Vertical
2	14356.5	39.91	9.21	49.12	74.00	24.88	126	47	Vertical
3	17869	39.11	13.20	52.31	74.00	21.69	175	190	Vertical
4	13817.5	32.56	8.21	40.77	54.00	13.23	217	70	Vertical
5	15082	32.29	9.00	41.29	54.00	12.71	245	360	Vertical
6	17797.5	31.43	12.62	44.05	54.00	9.95	253	124	Vertical

	Project Information							
Mode:	802.11 n20	Band:	/					
Bandwidth	20MHZ	Channel	11					
SN:	MP823FC19001942	Engineer:	欧树炎					
Remark:		/						
Test Standard, FCC								

Data I	List								
NO.	Freq. [MHz]	Reading [dBµV]	Factor [Db]	Level [dBµV/m]	Limit [dBµV/m]	Margin [Db]	Height [cm]	Angle [°]	Polarity
1	13575.5	41.53	6.88	48.41	74.00	25.59	132	111	Horizontal
2	14629.5	40.52	9.44	49.96	74.00	24.04	155	331	Horizontal
3	17980.5	38.83	13.19	52.02	74.00	21.98	199	270	Horizontal
4	13562.5	33.71	6.75	40.46	54.00	13.54	120	355	Horizontal
5	14082	33.84	8.07	41.91	54.00	12.09	235	203	Horizontal
6	18000	30.56	13.45	44.01	54.00	9.99	170	212	Horizontal

Project Information							
Mode:	802.11 n20	Band:	/				
Bandwidth	20MHZ	Channel	11				
SN:	MP823FC19001942	Engineer:	欧树炎				
Remark:		/					
Test Standard: ECC							

Data I	List								
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	13429	40.68	7.00	47.68	74.00	26.32	202	13	Vertical
2	14362.5	39.66	9.09	48.75	74.00	25.25	192	202	Vertical
3	17857.5	38.97	13.34	52.31	74.00	21.69	173	354	Vertical
4	13814	32.67	8.15	40.82	54.00	13.18	134	25	Vertical
5	14522	33.39	7.76	41.15	54.00	12.85	257	125	Vertical
6	17356.5	31.79	12.61	44.40	54.00	9.60	177	179	Vertical

	Project Information								
Mode:	802.11 n40	Band:	/						
Bandwidth	40MHZ	Channel	3						
SN:	MP823FC19001942	Engineer:	欧树炎						
Remark:		/							
Toot Standard, FCC									

Data I	List								
NO.	Freq. [MHz]	Reading [dBµV]	Factor [Db]	Level [dBµV/m]	Limit [dBµV/m]	Margin [Db]	Height [cm]	Angle [°]	Polarity
1	12786	41.45	5.89	47.34	74.00	26.66	198	296	Horizontal
2	14355.5	39.61	9.23	48.84	74.00	25.16	241	108	Horizontal
3	17845	39.10	13.35	52.45	74.00	21.55	234	145	Horizontal
4	13473.5	33.47	6.89	40.36	54.00	13.64	183	249	Horizontal
5	14363.5	32.78	9.07	41.85	54.00	12.15	166	96	Horizontal
6	17352.5	31.08	12.76	43.84	54.00	10.16	247	3	Horizontal

Project Information								
Mode:	802.11 n40	Band:	/					
Bandwidth	40MHZ	Channel	3					
SN:	MP823FC19001942	Engineer:	欧树炎					
Remark:		/						
Test Standard, ECC								

Data I	List								
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	14012.5	41.26	7.38	48.64	74.00	25.36	216	25	Vertical
2	15116.5	40.05	8.83	48.88	74.00	25.12	145	124	Vertical
3	17862.5	38.89	13.28	52.17	74.00	21.83	200	290	Vertical
4	13588.5	33.00	7.01	40.01	54.00	13.99	241	102	Vertical
5	14350.5	32.65	9.34	41.99	54.00	12.01	198	256	Vertical
6	17345	31.56	12.64	44.20	54.00	9.80	141	224	Vertical

	Project Information							
Mode:	802.11 n40	Band:	/					
Bandwidth	40MHZ	Channel	6					
SN:	MP823FC19001942	Engineer:	欧树炎					
Remark:		/						
Test Standard, FCC								

Data I	List								
NO.	Freq. [MHz]	Reading [dBµV]	Factor [Db]	Level [dBµV/m]	Limit [dBµV/m]	Margin [Db]	Height [cm]	Angle [°]	Polarity
1	13873	41.02	8.33	49.35	74.00	24.65	129	314	Horizontal
2	15241	41.50	9.14	50.64	74.00	23.36	146	281	Horizontal
3	17864	40.16	13.26	53.42	74.00	20.58	189	0	Horizontal
4	13856.5	32.66	8.62	41.28	54.00	12.72	211	0	Horizontal
5	15245	33.58	9.24	42.82	54.00	11.18	214	314	Horizontal
6	17998.5	31.29	13.43	44.72	54.00	9.28	157	13	Horizontal

Project Information								
Mode:	802.11 n40	Band:	/					
Bandwidth	40MHZ	Channel	6					
SN:	MP823FC19001942	Engineer:	欧树炎					
Remark:		/						
Test Standard, FCC								

Data I	List								
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	13807.5	42.04	8.05	50.09	74.00	23.91	182	31	Vertical
2	15082.5	41.50	9.00	50.50	74.00	23.50	157	216	Vertical
3	17839.5	38.97	13.27	52.24	74.00	21.76	169	42	Vertical
4	13811	33.24	8.11	41.35	54.00	12.65	219	76	Vertical
5	14666	33.30	9.48	42.78	54.00	11.22	284	292	Vertical
6	17990.5	31.71	13.32	45.03	54.00	8.97	204	184	Vertical

Project Information								
Mode:	802.11 n40	Band:	/					
Bandwidth	40MHZ	Channel	9					
SN:	MP823FC19001942	Engineer:	欧树炎					
Remark:		/						
Test Standard, FCC								

Data I	List								
NO.	Freq. [MHz]	Reading [dBµV]	Factor [Db]	Level [dBµV/m]	Limit [dBµV/m]	Margin [Db]	Height [cm]	Angle [°]	Polarity
1	13243.5	41.49	7.06	48.55	74.00	25.45	129	62	Horizontal
2	14376	40.97	8.79	49.76	74.00	24.24	162	193	Horizontal
3	17346	39.82	12.68	52.50	74.00	21.50	216	225	Horizontal
4	13592	33.40	7.04	40.44	54.00	13.56	268	346	Horizontal
5	15255	33.28	9.27	42.55	54.00	11.45	122	215	Horizontal
6	17985	31.41	13.25	44.66	54.00	9.34	187	269	Horizontal

Project Information								
Mode:	802.11 n40	Band:	/					
Bandwidth	40MHZ	Channel	9					
SN:	MP823FC19001942	Engineer:	欧树炎					
Remark: /								
Toot Standard, ECC I								

Data I	List								
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	14063	41.27	7.97	49.24	74.00	24.76	158	148	Vertical
2	14669	40.98	9.40	50.38	74.00	23.62	277	48	Vertical
3	17827.5	39.10	13.10	52.20	74.00	21.80	172	5	Vertical
4	13811	33.36	8.11	41.47	54.00	12.53	262	104	Vertical
5	14667	32.93	9.45	42.38	54.00	11.62	158	324	Vertical
6	17828.5	32.12	13.11	45.23	54.00	8.77	243	93	Vertical

Radiated Band Edge

Test Result

N	lode:		802.11 b		Band:			/
Bar	ndwidth		20MHZ		Channe	I		1
	SN:	N: MP823FC19001942 Engineer:			欧树炎			
Remark: /								
st Star	ndard: FCC	Part15C						
st Gra	ıph							
	120			FCC Par	t15C			
	110							
	100							
	90							AND -
	80						1	FCC Part15C -PK Linut
[mi/vt	70							
VeldB	60						AM	FCC Part15C -AV Limit
G	50					5 6	and a start of the	
	30			Manine a Part Balling and a second	1	2.21		
	20							
	10							
	0							

the second	FIT CHINE
PK Detector	 RMS Detector

.

Suspe	Suspected Data List								
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	2380.322	28.19	3.36	31.55	54.00	22.45	142	2	Horizontal
2	2385.027	28.45	3.38	31.83	54.00	22.17	220	358	Horizontal
3	2389.658	28.76	3.40	32.16	54.00	21.84	162	359	Horizontal
4	2379.948	39.31	3.36	42.67	74.00	31.33	128	15	Horizontal
5	2385.139	38.46	3.38	41.84	74.00	32.16	206	215	Horizontal
6	2388.762	39.19	3.40	42.59	74.00	31.41	233	359	Horizontal

Project Information							
Mode:	802.11 b	Band:	/				
Bandwidth	20MHZ	Channel	1				
SN:	MP823FC19001942	Engineer:	欧树炎				
Remark: /							
Test Standard: FCC Part15C							

Suspected Data List									
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	2377.147	28.53	3.34	31.87	54.00	22.13	137	268	Vertical
2	2381.927	28.37	3.36	31.73	54.00	22.27	169	0	Vertical
3	2389.359	29.21	3.40	32.61	54.00	21.39	216	304	Vertical
4	2377.185	38.56	3.34	41.90	74.00	32.10	257	39	Vertical
5	2383.869	39.55	3.37	42.92	74.00	31.08	194	318	Vertical
6	2389.583	38.81	3.40	42.21	74.00	31.79	204	356	Vertical

Project Information								
Mode:	802.11 b	Band:	/					
Bandwidth	20MHZ	Channel	11					
SN:	MP823FC19001942	Engineer:	欧树炎					
Remark: /								
Test Standard: FCC Part15C								

Susp	Suspected Data List								
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	2483.599	30.20	4.25	34.45	54.00	19.55	214	156	Horizontal
2	2484.632	30.48	4.26	34.74	54.00	19.26	147	344	Horizontal
3	2485.808	30.64	4.26	34.90	54.00	19.10	198	344	Horizontal
4	2484.008	41.70	4.26	45.96	74.00	28.04	161	360	Horizontal
5	2485.016	40.31	4.26	44.57	74.00	29.43	231	216	Horizontal
6	2486.193	40.75	4.26	45.01	74.00	28.99	217	3	Horizontal

Project Information								
Mode:	802.11 b	Band:	1					
Bandwidth	20MHZ	Channel	11					
SN:	MP823FC19001942	Engineer:	欧树炎					
Remark: /								
Test Standard: FCC Part15C								

Susp	Suspected Data List								
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	2483.791	31.93	4.26	36.19	54.00	17.81	166	299	Vertical
2	2485.544	32.13	4.26	36.39	54.00	17.61	162	299	Vertical
3	2486.937	33.10	4.27	37.37	54.00	16.63	280	295	Vertical
4	2483.743	41.38	4.25	45.63	74.00	28.37	146	229	Vertical
5	2484.992	42.60	4.26	46.86	74.00	27.14	180	299	Vertical
6	2486.145	41.78	4.26	46.04	74.00	27.96	268	177	Vertical

Project Information								
Mode:	/							
Bandwidth	20MHZ	Channel	1					
SN:	MP823FC19001942	Engineer:	欧树炎					
Remark:	Remark: /							
Test Standard: FCC Part15C								

Susp	Suspected Data List								
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	2387.156	31.65	3.38	35.03	54.00	18.97	152	356	Horizontal
2	2389.023	37.09	3.40	40.49	54.00	13.51	212	356	Horizontal
3	2389.957	40.24	3.40	43.64	54.00	10.36	224	356	Horizontal
4	2386.521	44.91	3.38	48.29	74.00	25.71	241	0	Horizontal
5	2388.687	50.83	3.40	54.23	74.00	19.77	160	351	Horizontal
6	2389.845	53.75	3.40	57.15	74.00	16.85	256	0	Horizontal

Project Information								
Mode:	/							
Bandwidth	20MHZ	Channel	1					
SN:	MP823FC19001942	Engineer:	欧树炎					
Remark: /								
Test Standard: FCC Part15C								

Susp	Suspected Data List								
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	2386.857	30.30	3.38	33.68	54.00	20.32	130	317	Vertical
2	2388.388	34.51	3.39	37.90	54.00	16.10	198	313	Vertical
3	2389.733	38.63	3.40	42.03	54.00	11.97	211	322	Vertical
4	2386.372	45.28	3.38	48.66	74.00	25.34	189	317	Vertical
5	2388.127	48.11	3.39	51.50	74.00	22.50	114	317	Vertical
6	2389.919	54.23	3.40	57.63	74.00	16.37	217	317	Vertical

Project Information								
Mode:	802.11 g	Band:	/					
Bandwidth	20MHZ	Channel	11					
SN:	MP823FC19001942	Engineer:	欧树炎					
Remark:	Remark: /							
Test Standard: FCC Part15C								

Susp	Suspected Data List								
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	2483.647	39.29	4.25	43.54	54.00	10.46	164	344	Horizontal
2	2485.352	37.74	4.26	42.00	54.00	12.00	113	344	Horizontal
3	2486.625	36.64	4.27	40.91	54.00	13.09	200	344	Horizontal
4	2483.695	55.08	4.25	59.33	74.00	14.67	155	151	Horizontal
5	2485.352	52.24	4.26	56.50	74.00	17.50	120	344	Horizontal
6	2486.553	51.05	4.27	55.32	74.00	18.68	186	348	Horizontal

Project Information								
Mode:	802.11 g	Band:	/					
Bandwidth	20MHZ	Channel	11					
SN:	MP823FC19001942	Engineer:	欧树炎					
Remark:	Remark: /							
Test Standard: FCC Part15C								

Susp	Suspected Data List								
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	2483.575	42.48	4.25	46.73	54.00	7.27	197	298	Vertical
2	2484.608	41.22	4.26	45.48	54.00	8.52	160	298	Vertical
3	2485.832	39.60	4.26	43.86	54.00	10.14	235	298	Vertical
4	2483.935	58.60	4.26	62.86	74.00	11.14	187	152	Vertical
5	2484.296	57.30	4.26	61.56	74.00	12.44	225	108	Vertical
6	2485.472	55.94	4.26	60.20	74.00	13.80	243	298	Vertical

Project Information								
Mode:	802.11 n20	Band:	/					
Bandwidth	20MHZ	Channel	1					
SN:	MP823FC19001942	Engineer:	欧树炎					
Remark: /								
Test Standard: FCC Part15C								

Suspected Data List									
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	2387.529	31.52	3.39	34.91	54.00	19.09	163	356	Horizontal
2	2388.724	33.70	3.40	37.10	54.00	16.90	191	351	Horizontal
3	2389.807	37.33	3.40	40.73	54.00	13.27	205	356	Horizontal
4	2387.268	47.55	3.38	50.93	74.00	23.07	250	0	Horizontal
5	2388.239	50.57	3.39	53.96	74.00	20.04	219	356	Horizontal
6	2389.845	53.25	3.40	56.65	74.00	17.35	128	351	Horizontal

Project Information								
Mode:	802.11 n20	Band:	/					
Bandwidth	20MHZ	Channel	1					
SN:	MP823FC19001942	Engineer:	欧树炎					
Remark: /								
Test Standard: FCC Part15C								

Susp	Suspected Data List								
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	2387.940	31.79	3.39	35.18	54.00	18.82	170	296	Vertical
2	2389.061	34.59	3.40	37.99	54.00	16.01	156	175	Vertical
3	2389.658	37.27	3.40	40.67	54.00	13.33	135	296	Vertical
4	2387.268	45.75	3.38	49.13	74.00	24.87	209	310	Vertical
5	2388.090	49.73	3.39	53.12	74.00	20.88	258	301	Vertical
6	2389.807	52.70	3.40	56.10	74.00	17.90	235	301	Vertical

Project Information								
Mode:	802.11 n20	Band:	/					
Bandwidth	20MHZ	Channel	11					
SN:	MP823FC19001942	Engineer:	欧树炎					
Remark:	Remark: /							
Test Standard: FCC Part15C								

Susp	Suspected Data List								
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	2483.719	38.09	4.25	42.34	54.00	11.66	159	348	Horizontal
2	2485.712	35.68	4.26	39.94	54.00	14.06	133	343	Horizontal
3	2486.673	33.98	4.27	38.25	54.00	15.75	237	343	Horizontal
4	2483.623	55.82	4.25	60.07	74.00	13.93	137	343	Horizontal
5	2485.160	53.28	4.26	57.54	74.00	16.46	241	353	Horizontal
6	2487.585	51.28	4.27	55.55	74.00	18.45	143	348	Horizontal

Project Information								
Mode:	802.11 n20	Band:	1					
Bandwidth	20MHZ	Channel	11					
SN:	MP823FC19001942	Engineer:	欧树炎					
Remark:	Remark: /							
Test Standard: FCC Part15C								

Suspe	Suspected Data List								
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	2483.863	41.88	4.26	46.14	54.00	7.86	170	298	Vertical
2	2485.064	39.34	4.26	43.60	54.00	10.40	223	295	Vertical
3	2486.409	37.83	4.27	42.10	54.00	11.90	232	295	Vertical
4	2483.743	59.82	4.25	64.07	74.00	9.93	161	298	Vertical
5	2485.160	55.94	4.26	60.20	74.00	13.80	175	72	Vertical
6	2487.369	54.68	4.27	58.95	74.00	15.05	239	298	Vertical

Project Information								
Mode:	802.11 n40	Band:	/					
Bandwidth	40MHZ	Channel	3					
SN:	MP823FC19001942	Engineer:	欧树炎					
Remark: /								
Test Standard: FCC Part15C								

Susp	Suspected Data List								
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	2386.585	28.51	3.38	31.89	54.00	22.11	183	147	Horizontal
2	2388.038	31.20	3.39	34.59	54.00	19.41	136	147	Horizontal
3	2389.534	34.56	3.40	37.96	54.00	16.04	253	356	Horizontal
4	2386.101	39.88	3.38	43.26	74.00	30.74	141	351	Horizontal
5	2388.390	43.24	3.39	46.63	74.00	27.37	269	0	Horizontal
6	2389.798	45.68	3.40	49.08	74.00	24.92	247	0	Horizontal

Project Information								
Mode:	802.11 n40	Band:	/					
Bandwidth	40MHZ	Channel	3					
SN:	MP823FC19001942	Engineer:	欧树炎					
Remark: /								
Test Standard: FCC Part15C								

Susp	Suspected Data List								
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	2387.025	28.80	3.38	32.18	54.00	21.82	152	175	Vertical
2	2388.478	31.72	3.39	35.11	54.00	18.89	121	304	Vertical
3	2389.402	33.86	3.40	37.26	54.00	16.74	213	299	Vertical
4	2387.245	40.68	3.38	44.06	74.00	29.94	170	8	Vertical
5	2388.566	43.10	3.39	46.49	74.00	27.51	135	185	Vertical
6	2389.842	45.33	3.40	48.73	74.00	25.27	233	308	Vertical

Project Information								
Mode:	802.11 n40	Band:	/					
Bandwidth	40MHZ	Channel	9					
SN:	MP823FC19001942	Engineer:	欧树炎					
Remark:	Remark: /							
Test Standard: FCC Part15C								

Susp	Suspected Data List								
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	2483.739	36.36	4.25	40.61	54.00	13.39	191	345	Horizontal
2	2484.930	36.14	4.26	40.40	54.00	13.60	139	345	Horizontal
3	2486.869	34.96	4.27	39.23	54.00	14.77	129	345	Horizontal
4	2484.658	51.55	4.26	55.81	74.00	18.19	232	153	Horizontal
5	2486.631	50.47	4.27	54.74	74.00	19.26	271	345	Horizontal
6	2487.719	50.84	4.27	55.11	74.00	18.89	148	3	Horizontal

Project Information								
Mode:	802.11 n40	Band:	/					
Bandwidth	40MHZ	Channel	9					
SN:	MP823FC19001942	Engineer:	欧树炎					
Remark: /								
Test Standard: FCC Part15C								

Suspected Data List									
NO.	Freq. [MHz]	Reading [dBµV]	Factor [dB]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	2484.012	39.94	4.26	44.20	54.00	9.80	164	295	Vertical
2	2485.950	38.77	4.26	43.03	54.00	10.97	151	295	Vertical
3	2487.889	38.77	4.27	43.04	54.00	10.96	236	295	Vertical
4	2484.692	55.68	4.26	59.94	74.00	14.06	265	295	Vertical
5	2486.631	54.48	4.27	58.75	74.00	15.25	103	295	Vertical
6	2487.719	54.35	4.27	58.62	74.00	15.38	230	300	Vertical

~The End~