

EG950A SeriesHardware Design

LTE Standard Module Series

Version: 1.0

Date: 2023-08-09

Status: Released

At Quectel, our aim is to provide timely and comprehensive services to our customers. If you require any assistance, please contact our headquarters:

Quectel Wireless Solutions Co., Ltd.

Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai 200233, China

Tel: +86 21 5108 6236 Email: <u>info@quectel.com</u>

Or our local offices. For more information, please visit:

http://www.quectel.com/support/sales.htm.

For technical support, or to report documentation errors, please visit:

http://www.quectel.com/support/technical.htm.

Or email us at: support@quectel.com.

Legal Notices

We offer information as a service to you. The provided information is based on your requirements and we make every effort to ensure its quality. You agree that you are responsible for using independent analysis and evaluation in designing intended products, and we provide reference designs for illustrative purposes only. Before using any hardware, software or service guided by this document, please read this notice carefully. Even though we employ commercially reasonable efforts to provide the best possible experience, you hereby acknowledge and agree that this document and related services hereunder are provided to you on an "as available" basis. We may revise or restate this document from time to time at our sole discretion without any prior notice to you.

Use and Disclosure Restrictions

License Agreements

Documents and information provided by us shall be kept confidential, unless specific permission is granted. They shall not be accessed or used for any purpose except as expressly provided herein.

Copyright

Our and third-party products hereunder may contain copyrighted material. Such copyrighted material shall not be copied, reproduced, distributed, merged, published, translated, or modified without prior written consent. We and the third party have exclusive rights over copyrighted material. No license shall be granted or conveyed under any patents, copyrights, trademarks, or service mark rights. To avoid ambiguities, purchasing in any form cannot be deemed as granting a license other than the normal non-exclusive, royalty-free license to use the material. We reserve the right to take legal action for noncompliance with abovementioned requirements, unauthorized use, or other illegal or malicious use of the material.

Trademarks

Except as otherwise set forth herein, nothing in this document shall be construed as conferring any rights to use any trademark, trade name or name, abbreviation, or counterfeit product thereof owned by Quectel or any third party in advertising, publicity, or other aspects.

Third-Party Rights

This document may refer to hardware, software and/or documentation owned by one or more third parties ("third-party materials"). Use of such third-party materials shall be governed by all restrictions and obligations applicable thereto.

We make no warranty or representation, either express or implied, regarding the third-party materials, including but not limited to any implied or statutory, warranties of merchantability or fitness for a particular purpose, quiet enjoyment, system integration, information accuracy, and non-infringement of any third-party intellectual property rights with regard to the licensed technology or use thereof. Nothing herein constitutes a representation or warranty by us to either develop, enhance, modify, distribute, market, sell, offer for sale, or otherwise maintain production of any our products or any other hardware, software, device, tool, information, or product. We moreover disclaim any and all warranties arising from the course of dealing or usage of trade.

Privacy Policy

To implement module functionality, certain device data are uploaded to Quectel's or third-party's servers, including carriers, chipset suppliers or customer-designated servers. Quectel, strictly abiding by the relevant laws and regulations, shall retain, use, disclose or otherwise process relevant data for the purpose of performing the service only or as permitted by applicable laws. Before data interaction with third parties, please be informed of their privacy and data security policy.

Disclaimer

- a) We acknowledge no liability for any injury or damage arising from the reliance upon the information.
- b) We shall bear no liability resulting from any inaccuracies or omissions, or from the use of the information contained herein.
- c) While we have made every effort to ensure that the functions and features under development are free from errors, it is possible that they could contain errors, inaccuracies, and omissions. Unless otherwise provided by valid agreement, we make no warranties of any kind, either implied or express, and exclude all liability for any loss or damage suffered in connection with the use of features and functions under development, to the maximum extent permitted by law, regardless of whether such loss or damage may have been foreseeable.
- d) We are not responsible for the accessibility, safety, accuracy, availability, legality, or completeness of information, advertising, commercial offers, products, services, and materials on third-party websites and third-party resources.

Copyright © Quectel Wireless Solutions Co., Ltd. 2023. All rights reserved.

Safety Information

The following safety precautions must be observed during all phases of operation, such as usage, service or repair of any terminal or mobile incorporating the module. Manufacturers of the terminal should notify users and operating personnel of the following safety information by incorporating these guidelines into all manuals of the product. Quectel assumes no liability for customers' failure to comply with these precautions.

Full attention must be paid to driving at all times in order to reduce the risk of an accident. Using a mobile while driving (even with a handsfree kit) causes distraction and can lead to an accident. Please comply with laws and regulations restricting the use of wireless devices while driving.

Switch off the terminal or mobile before boarding an aircraft. The operation of wireless appliances in an aircraft is forbidden to prevent interference with communication systems. If there is an Airplane Mode, it should be enabled prior to boarding an aircraft. Please consult the airline staff for more restrictions on the use of wireless devices on an aircraft.

Wireless devices may cause interference on sensitive medical equipment, so please be aware of the restrictions on the use of wireless devices when in hospitals, clinics or other healthcare facilities.

Terminals or mobiles operating over radio signal and cellular network cannot be guaranteed to connect in certain conditions, such as when the mobile bill is unpaid or the (U)SIM card is invalid. When emergency help is needed in such conditions, use emergency call if the device supports it. In order to make or receive a call, the terminal or mobile must be switched on in a service area with adequate cellular signal strength. In an emergency, the device with emergency call function cannot be used as the only contact method considering network connection cannot be guaranteed under all circumstances.

The terminal or mobile contains a transceiver. When it is ON, it receives and transmits radio frequency signals. RF interference can occur if it is used close to TV sets, radios, computers or other electric equipment.

In locations with explosive or potentially explosive atmospheres, obey all posted signs and turn off wireless devices such as mobile phone or other terminals. Areas with explosive or potentially explosive atmospheres include fuelling areas, below decks on boats, fuel or chemical transfer or storage facilities, and areas where the air contains chemicals or particles such as grain, dust or metal powders.

About the Document

Revision History

Version	Date	Author	Description
-	2022-12-15	Clark ZHANG/ Liking LIN/ Alessa TANG	Creation of the document
1.0	2023-08-09	Clark ZHANG/ Liking LIN/ Jerry LIN	First official release

Contents

Sa	fety Information	3
Ab	out the Document	4
Со	ontents	5
	ble Indexble	
Fig	gure Index	10
1	Introduction	12
•	1.1. Special Marks	
2	Product Overview	13
	2.1. Frequency Bands and Functions	14
	2.2. Key Features	14
	2.3. Functional Diagram	16
	2.4. Pin Assignment	18
	2.5. Pin Description	19
	2.6. EVB Kit	24
3	Operating Characteristics	
	3.1. Operating Modes	
	3.2. Sleep Mode	
	3.2.1. UART Application Scenario	
	3.2.2. USB Application Scenarios	27
	3.2.2.1. USB Application with USB Suspend/Resume and USB Remote	
	Function	
	3.2.2.2. USB Application with USB Suspend/Resume and MAIN_RI Function	
	3.2.2.3. USB Application without USB Suspend Function	
	3.3. Airplane Mode	
	3.4. Power Supply	30
	3.4.1. Power Supply Pins	30
	3.4.2. Reference Design for Power Supply	30
	3.4.3. Voltage Stability Requirements	31
	3.4.4. Power Supply Voltage Monitoring	32
	3.5. Turn On	32
	3.5.1. Turn On the Module with PWRKEY	32
	3.6. Turn Off	34
	3.6.1. Turn Off the Module with PWRKEY	34
	3.6.2. Turn Off with AT Command	35
	3.7. Reset	35
4	Application Interfaces	38
	4.1. USB Interface	
	4.2. USB_BOOT Interface	39
	4.3. (U)SIM Interface	41

	4.4.	SDI	O Interface	43
	4.5.	UAF	RT	45
	4.6.	PCI	M and I2C Interfaces	47
	4.7.	AD(C Interface	49
	4.8.	SPI	Interface	50
	4.9.	Cor	ntrol Signal	50
	4	.9.1.	W_DISABLE#	50
	4.10.	Indi	cation Signal	51
	4	.10.1.	Network Status Indication	51
	4	.10.2.	STATUS	52
	4	.10.3.	MAIN_RI	53
5	RF Sr	pecific	cations	55
	5.1.		lular Network	
	5	.1.1.	RF Antenna Interface & Frequency Bands	55
	5	.1.2.	Tx Power	
	5	.1.3.	Rx Sensitivity	57
	5	.1.4.	Reference Design	58
	5.2.	GN:	SS	59
	5	.2.1.	Antenna Interface & Frequency Bands	59
	5	.2.2.	GNSS Performance	60
	5.3.	RF	Routing Guidelines	60
	5.4.	Rec	quirements for Antenna Design	62
	5.5.	RF	Connector Recommendation	63
6	Electr	rical (Characteristics & Reliability	65
	6.1.		solute Maximum Ratings	
	6.2.		ver Supply Ratings	
	6.3.	Pov	ver Consumption	66
	6.4.	Digi	ital I/O Characteristics	69
	6.5.	ESI	D Protection	71
	6.6.	Орє	erating and Storage Temperatures	71
7	Mech	anica	I Information	72
	7.1.	Med	chanical Dimensions	72
	7.2.	Rec	commended Footprint	74
	7.3.		and Bottom Views	
8	Stora	ae. M	anufacturing & Packaging	76
	8.1.	_	rage Conditions	
	8.2.		nufacturing and Soldering	
	8.3.		ckaging Specification	
		.3.1.	Carrier Tape	
		.3.2.	Plastic Reel	
	_	.3.3.	Mounting Direction	
	8	.3.4.	Packaging Process	

9 Appendix References 82

Table Index

Table 1: Special Marks	
Table 2: Basic Information	13
Table 3: Frequency Bands of EG950A Series	14
Table 4: Key Features	14
Table 5: Parameter Definition	19
Table 6: Pin Description	19
Table 7: Operating Modes Overview	25
Table 8: VBAT and GND Pins	30
Table 9: Pin Definition of PWRKEY	32
Table 10: Pin Definition of RESET_N	35
Table 11: Pin Definition of USB Interface	38
Table 12: Pin Definition of USB_BOOT Interface	39
Table 13: Pin Definition of (U)SIM Interface	41
Table 14: Pin Definition of SDIO Interface	43
Table 15: UART Information	45
Table 16: Pin Definition of Main UART Interface	45
Table 17: Pin Definition of I2C Interface	48
Table 18: Pin Definition of PCM Interface	48
Table 19: Pin Definition of ADC Interface	49
Table 20: Characteristics of ADC Interface	49
Table 21: Pin Definition of SPI Interface	50
Table 22: Pin Definition of Control Signal	50
Table 23: W_DISABLE# AT Command Configuration Information	51
Table 24: Pin Definition of Indication Signal	51
Table 25: Network Status Indication Pin Level and Module Network Status	52
Table 26: MAIN_RI Level and Module Status	53
Table 27: Pin Description of RF Antenna Interface	55
Table 28: Operating Frequency of EG950A-EL (Unit: MHz)	55
Table 29: Operating Frequency of EG950A-LA (Unit: MHz)	
Table 30: RF Output Power of EG950A-EL	56
Table 31: RF Output Power of EG950A-LA	57
Table 32: Conducted RF Receiver Sensitivity of EG950A-EL (Unit: dBm)	57
Table 33: Conducted RF Receiver Sensitivity of EG950A-LA (Unit: dBm)	57
Table 34: Pin Definition of GNSS Antenna Interface	
Table 35: GNSS Frequency (Unit: MHz)	59
Table 36: GNSS Performance	60
Table 37: Requirements for Antenna Design	62
Table 38: Absolute Maximum Ratings	65
Table 39: Module's Power Supply Ratings	65
Table 40: EG950A-EL Current Consumption	66
Table 41: EG950A-LA Current Consumption	67
Table 42: 1.8 V I/O Characteristics (Unit: V)	69

able 43: SDIO Interface Low-voltage I/O Characteristics (Unit: V)	69
able 44: SDIO Interface High-voltage I/O Characteristics (Unit: V)	70
able 45: (U)SIM Interface Low-voltage I/O Characteristics (Unit: V)	70
able 46: (U)SIM Interface High-voltage I/O Characteristics (Unit: V)	70
able 47: ESD Characteristics (Temperature: 25–30 °C, Humidity: 40 ±5 %; Unit: kV)	71
able 48: Operating and Storage Temperatures (Unit: °C)	71
able 49: Recommended Thermal Profile Parameters	78
able 50: Carrier Tape Dimension Table (Unit: mm)	79
able 51: Plastic Reel Dimension Table (Unit: mm)	80
able 52: Related Documents	82
able 53: Terms and Abbreviations	82

Figure Index

Figure 1: Functional Diagram	. 17
Figure 2: Pin Assignment (Top View)	. 18
Figure 3: Module Power Consumption in Sleep Mode	. 26
Figure 4: Sleep Mode Application via UART	. 26
Figure 5: Block Diagram of Application with USB Remote Wakeup Function in Sleep Mode	. 27
Figure 6: Block Diagram of Application with NAIN_RI Function in Sleep Mode	. 28
Figure 7: Block Diagram of Application Without USB Suspend Function in Sleep Mode	. 29
Figure 8: Reference Design of Power Supply	. 30
Figure 9: Star Configuration of Power Supply	. 31
Figure 10: Reference Circuit of Turning On the Module Using Driving Circuit	. 32
Figure 11: Reference Circuit of Turning On the Module with Button	. 33
Figure 12: Power-up Timing	. 33
Figure 13: Power-down Timing	. 34
Figure 14: Reference Circuit of RESET_N with Driving Circuit	. 36
Figure 15: Reference Circuit of RESET_N with Button	. 36
Figure 16: Timing of Reset	. 36
Figure 17: Reference Design of USB 2.0 Interface	. 38
Figure 18: Reference Circuit of USB_BOOT Interface	. 40
Figure 19: Timing Sequence for Entering Emergency Download Mode	. 40
Figure 20: Reference Circuit of (U)SIM Interface with an 8-pin (U)SIM Card Connector	. 42
Figure 21: Reference Circuit of (U)SIM Interface with a 6-pin (U)SIM Card Connector	. 42
Figure 22: Reference Circuit of SD Card Interface	. 44
Figure 23: Reference Design of UART with Level-shifting Chip	. 46
Figure 24: Reference Design of UART with Transistor Level-shifting Circuit	. 46
Figure 25: Timing Sequence for Short Frame Mode	. 47
Figure 26: Reference Design of PCM and I2C Interfaces	. 48
Figure 27: Reference Design of Network Status Indication	. 52
Figure 28: Reference Design of STATUS	. 53
Figure 29: Reference Design of Main Antenna and Diversity Antenna	. 58
Figure 30: Microstrip Design on a 2-layer PCB	. 61
Figure 31: Coplanar Waveguide Design on a 2-layer PCB	. 61
Figure 32: Coplanar Waveguide Design on a 4-layer PCB (Layer 3 as Reference Ground)	. 61
Figure 33: Coplanar Waveguide Design on a 4-layer PCB (Layer 4 as Reference Ground)	. 62
Figure 34: Dimensions of the Receptacle (Unit: mm)	. 63
Figure 35: Specifications of Mated Plugs (Unit: mm)	. 64
Figure 36: Space Factor of the Mated Connectors (Unit: mm)	. 64
Figure 37: Top and Side Dimensions	. 72
Figure 38: Bottom Dimensions	. 73
Figure 39: Recommended Footprint (Top View)	. 74
Figure 40: Top & Bottom Views of the Module	. 75
Figure 41: Recommended Reflow Soldering Thermal Profile	. 77
Figure 42: Carrier Tape Dimension Drawing	. 79

Figure 43: Plastic Reel Dimension Drawing	80
Figure 44: Mounting Direction	80
Figure 45: Packaging Process	81

1 Introduction

This document introduces EG950A series module and its hardware interfaces and air interfaces connected to your application. It provides a quick insight into the module's information such as its interface characteristics, RF performance and electrical & mechanical specifications.

1.1. Special Marks

Table 1: Special Marks

Mark	Definition
*	Unless otherwise specified, when an asterisk (*) is used after a function, feature, interface, pin name, AT command, or argument, it indicates that the function, feature, interface, pin, AT command, or argument is under development and currently not supported; and the asterisk (*) after a model indicates that the sample of such model is currently unavailable.
[]	Brackets ([]) used after a pin enclosing a range of numbers indicate all pins of the same type. For example, SDIO_DATA [0:3] refers to all four SDIO_DATA pins: SDIO_DATA0, SDIO_DATA1, SDIO_DATA2 and SDIO_DATA3.

2 Product Overview

The module is an SMD module with compact packaging, which is engineered to meet most of the demands of M2M applications, for instance:

- Automation field
- Smart metering
- Tracking system
- Security system
- Router
- Wireless POS
- Mobile computing device
- PDA phone
- Tablet computer

Table 2: Basic Information

EG950A Series	
Packaging type	LGA
Pin counts	102
Dimensions	(29.0 ±0.2) mm × (25.0 ±0.2) mm × (2.4 ±0.2) mm
Weight	Approx. 3.74 g
Variants	EG950A-EL, EG950A-LA

2.1. Frequency Bands and Functions

Table 3: Frequency Bands of EG950A Series

Mode and Function	EG950A-EL	EG950A-LA
LTE-FDD	B1/B3/B5/B7/B8/B20/B28	B1/B2/B3/B4/B5/B7/B8/B28/B66
WCDMA	B1/B5/B8	B1/B2/B4/B5/B8
GNSS	GPS, GLONASS, BDS, QZSS	-

NOTE

GNSS function is only supported by EG950A-EL module, and the function is optional. Only the module with built-in GNSS function has GNSS antenna interface.

2.2. Key Features

Table 4: Key Features

Features	Details
Power Supply	Supply voltage range: 3.4–4.5 V
Power Supply	 Typical supply voltage: 3.8 V
	Text and PDU modes
SMS	Point-to-point MO and MT
31/13	SMS cell broadcast
	SMS storage: ME by default
	 Complies with USB 2.0 specification (slave mode only)
	 Data transmission rates: up to 480 Mbps
USB Interface	 Used for AT command communication, data transmission, software
USD IIIIellace	debugging, firmware upgrade and GNSS NMEA sentence output
	• Supports USB serial drivers for Windows 7/8/8.1/10/11, Linux 2.6-6.5,
	Android 4.x–13.x
(U)SIM Interface	Supports (U)SIM cards: 1.8/3.0 V
SDIO Interface	Complies with SD 3.0 protocol

	Main UART:
	 Used for AT command communication and data transmission
	 Baud rate: 115200 bps by default, max. 921600 bps
UART	 Supports RTS and CTS hardware flow control
	Debug UART:
	Used for the output of partial logs
	 Baud rate: 115200 bps
	Supports one digital audio interface: PCM interface
Audio Features	 WCDMA: AMR and AMR-WB
Audio Features	LTE: AMR and AMR-WB
	 Supports echo cancellation and noise suppression
	Used for audio function with external codec
PCM Interface	Supports 16-bit linear encoding format
PCIVI Interface	Supports short frame mode
	 Supports slave mode* and master mode
	Supports one I2C interface
I2C Interface	 Complies with I2C bus protocol specifications (100/400 kHz)
	The multi-host mode is not supported
	Supports one SPI interface
SPI Interface	 Supports master mode only
	Clock frequency: up to 52 MHz
Network Indication	 NET_STATUS indicates network activity status
AT 0	• Complies with 3GPP TS 27.007, 3GPP TS 27.005
AT Commands	Complies with Quectel enhanced AT commands
	Main antenna interface (ANT_MAIN)
A	 Rx-diversity antenna interface (ANT_DRX)
Antenna Interfaces	 GNSS antenna interface (ANT_GNSS)
	50 Ω characteristic impedance
Troposittina Dower	LTE-FDD: Class 3 (23 dBm ±2 dB)
Transmitting Power	 WCDMA: Class 3 (23 dBm ±2 dB)
	Supports 3GPP Rel-9 non-CA Cat 4 FDD
	 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz and 20 MHz RF bandwidths
	 DL modulations: QPSK, 16QAM, 64QAM
LTC Castrona	 UL modulations: QPSK, 16QAM
LTE Features	DL MIMO
	LTE-FDD data transmission rates:
	 Max. 150 Mbps (DL)
	- Max. 50 Mbps (UL)
	Supports 3GPP Rel-7 HSPA+, HSDPA, HSUPA and WCDMA
	 Modulations: QPSK, 16QAM and 64QAM
UMTS Features	Max. data transmission rates:
	HSPA+: 21 Mbps (DL)
	HSUPA: 5.76 Mbps (UL)

	WCDMA: 384 kbps (DL)/384 kbps (UL)
	GPS, GLONASS, BDS and QZSS
GNSS Features 1	 Complies with NMEA 0183 protocol
	 Data update rate: 1 Hz by default, max. 5 Hz
Internet Protocol	• Complies with TCP, UDP, PPP, NTP, NITZ, FTP, HTTP, PING, CMUX,
Features	HTTPS, FTPS, SSL, FILE, MQTT, MMS, SMTP and SMTPS protocols
T eatures	 Supports PAP and CHAP for PPP connections
Tomporaturo	 Operating temperature range ²: -35 °C to +75 °C
Temperature	 Extended temperature range ³: -40 °C to +85 °C
Ranges	 Storage temperature range: -40 °C to +90 °C
Cirrouna I Ingreda	• USB 2.0
Firmware Upgrade	• DFOTA
RoHS	All hardware components are fully compliant with EU RoHS directive

2.3. Functional Diagram

The following figure shows a block diagram of the module and illustrates the major functional parts.

- Power management
- Baseband part
- Flash
- Radio frequency part
- Peripheral interfaces

¹ GNSS function is only supported by EG950A-EL module, and the function is optional. Only the module with built-in GNSS function has GNSS antenna interface.

² Within the operating temperature range, the module meets 3GPP specifications.

³ Within the extended temperature range, the module remains the ability to establish and maintain functions such as voice, SMS, data transmission, emergency call, etc., without any unrecoverable malfunction. Radio spectrum and radio network are not influenced, while one or more specifications, such as P_{out}, may exceed the specified tolerances of 3GPP. When the temperature returns to the operating temperature range, the module meets 3GPP specifications again.

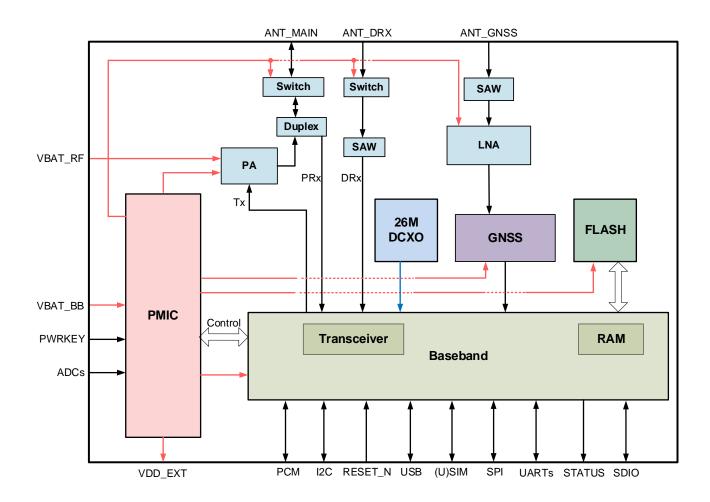


Figure 1: Functional Diagram

2.4. Pin Assignment

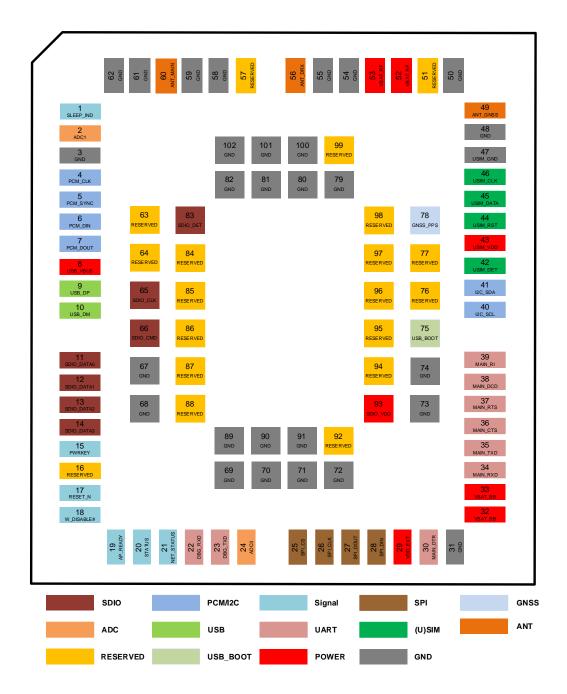


Figure 2: Pin Assignment (Top View)

NOTE

- 1. Keep all RESERVED pins and unused pins open and connect all GND pins to the ground network.
- 2. If the module is turned on normally, the USB_BOOT pin is prohibited to be pulled up to high level until the module is powered on successfully.

2.5. Pin Description

Table 5: Parameter Definition

Parameter	Description
Al	Analog Input
AIO	Analog Input/Output
DI	Digital Input
DIO	Digital Input/Output
DO	Digital Output
OD	Open Drain
PI	Power Input
PO	Power Output

DC characteristics include power domain and rated current.

Table 6: Pin Description

Power Supply					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
VBAT_BB	32, 33	PI	Power supply for the module's baseband part	Vmin = 3.4 V	It must be provided with sufficient current of at least 2.0 A.
VBAT_RF	52, 53	PI	Power supply for the module's RF part	Vnom = 3.8 VVmax = 4.5 V	It must be provided with sufficient current of at least 0.5 A.
VDD_EXT	29	PO	Provides 1.8 V for external circuit	$Vmin = 1.67 V$ $Vnom = 1.8 V$ $Vmax = 1.93 V$ $I_0max = 50 mA$	It can provide a pull-up power to the external GPIO. A test point is recommended to be reserved.
GND	3, 31, 4	8, 50, 5	54, 55, 58, 59, 61, 62, 67	7–74, 79–82, 89–91, 100–	102

Turn On/Off	Turn On/Off					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
PWRKEY	15	DI	Turn on/off the module	V _{IL} max = 0.5 V	VBAT power domain. Active low.	
RESET_N	17	DI	Reset the module	V _{IL} max = 0.5 V	1.8 V power domain. Active low after turn-on. A test point is recommended to reserved.	
Indication Inte	erface					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
STATUS	20	DO	Indicate the module's operation status		4.0.V navyar damain	
NET_STATU S	21	DO	network activity status		1.8 V power domain. If unused, keep them open.	
SLEEP_IND	1	DO	Indicate the module's sleep mode			
USB Interface						
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
USB_VBUS	8	Al	USB connection detect	Vmin = 3.0 V Vnom = 5.0 V Vmax = 5.25 V	Typ. 5.0 V. A test point must be reserved.	
USB_DP	9	AIO	USB 2.0 differential data (+)		90 Ω differential impedance.	
USB_DM	10	AIO	USB 2.0 differential data (-)		USB 2.0 compliant. Test points must be reserved.	
(U)SIM Interfac	се					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
USIM_VDD	43	PO	(U)SIM card power supply	Low-voltage: Vmin = 1.67 V Vnom = 1.8 V Vmax = 1.93 V High-voltage: Vmin = 2.7 V Vnom = 3.0 V	Either 1.8 V or 3.0 V (U)SIM card is supported and can be identified automatically by the module.	

				Vmax = 3.3 V	
USIM_DATA	45	DIO	(U)SIM card data		
USIM_CLK	46	DO	(U)SIM card clock	USIM_VDD	
USIM_RST	44	DO	(U)SIM card reset		
USIM_DET	42	DI	(U)SIM card hot-plug detect	VDD_EXT	1.8 V power domain. If unused, keep it open.
USIM_GND	47	-	Specified ground for (U)SIM card		Connect to the ground of (U)SIM card.
Main UART In	terface				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
MAIN_CTS	36	DO	Clear to send signal from the module		Connect to MCU's CTS. 1.8 V power domain. If unused, keep it open.
MAIN_RTS	37	DI	Request to send signal to the module	VDD_EXT	Connect to MCU's RTS. 1.8 V power domain. If unused, keep it open.
MAIN_RXD	34	DI	Main UART receive		1.8 V power domain. If unused, keep them
MAIN_TXD	35	DO	Main UART transmit		
MAIN_DCD	38	DO	Main UART data carrier detect		
MAIN_RI	39	DO	Main UART ring indication		open.
MAIN_DTR	30	DI	Main UART data terminal ready	Main UART data	
Debug UART	Interface	•			
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
DBG_RXD	22	DI	Debug UART receive	VDD EVI	1.8 V power domain.
DBG_TXD	23	DO	Debug UART transmit	VDD_EXT	Test points must be reserved.

I2C Interface	I2C Interface					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
I2C_SCL	40	OD	I2C serial clock		1.8 V pull-up resistor is needed.	
I2C_SDA	41	OD	I2C serial data		If unused, keep them open.	
PCM Interface						
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
PCM_SYNC	5	DIO	PCM data frame sync	_	1.8 V power domain. When the module is used as a master	
PCM_CLK	4	DIO	PCM clock VDD_EXT PCM data input		device, the pins are in output state; When the module is used as a slave device*, the pins are in input state. If unused, keep them open.	
PCM_DIN	6	DI			If unused, keep them	
PCM_DOUT	7	DO	PCM data output		open.	
SDIO Interface						
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
SDIO_VDD	93	PO	SDIO power supply	Low-voltage: Vmin = 1.67 V Vnom = 1.8 V Vmax = 1.93 V High-voltage: Vmin = 2.7 V Vnom = 2.85 V Vmax = 3.05 V	1.8/2.85 V configurable output voltage.	
SDIO_DATA0	11	DIO	SDIO data bit 0		1.8/2.85 V power	
SDIO_DATA1	12	DIO	SDIO data bit 1	SDIO_VDD	domain. If unused, keep them	
SDIO_DATA2	13	DIO	SDIO data bit 2	_	open.	

SDIO_DATA3	14	DIO	SDIO data bit 3		
SDIO_CMD	66	DIO	SDIO command		
SDIO_CLK	65	DO	SDIO clock		
SDIO_DET*	83	DI	SD card hot-plug detect	1 SD card hot-plug detect VDD_EXT If	
RF Antenna In	terface				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
ANT_MAIN	60	AIO	Main antenna interface		50 Ω characteristic
ANT_DRX	56	Al	Diversity antenna interface		impedance.
ANT_GNSS	49	Al	GNSS antenna interface		
SPI Interface	SPI Interface				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
SPI_CLK	26	DO	SPI clock		Martanantanat
SPI_CS	25	DO	SPI chip select	VDD_EXT	Master mode only. 1.8 V power domain.
SPI_DIN	28	DI	SPI data input	VDD_EXT	If unused, keep them open.
SPI_DOUT	27	DO	SPI data output		
ADC Interface					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
ADC0	24	Al	General-purpose ADC	Voltage Range:	If unused, keep them
ADC1	2	Al	interface	0 V-VBAT_BB	open.
GNSS Interfac	е				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
GNSS_PPS*	78	DO	GNSS Pulse Per Second		
Other Interface	9				

Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
USB_BOOT	75	DI	Forces the module to enter emergency download mode		1.8 V power domain. Active high. A test point is recommended to be reserved.
W_DISABLE#	18	DI	Airplane mode control	VDD_EXT	1.8 V power domain. Pull-up by default. In low voltage level, the module can enter airplane mode. If unused, keep it open.
AP_READY*	19	DI	Application processor ready	_	1.8 V power domain. If unused, keep it open.
RESERVED Pins					
Pin Name	Pin No).			Comment
RESERVED	16, 51	, 57, 63,	64, 76, 77, 84–88, 92, 94	-99	Keep these pins open.

NOTE

If antenna tuning control is required, please contact Quectel Technical Support.

2.6. EVB Kit

To help you develop applications with the module, Quectel supplies an evaluation board (UMTS<E EVB) with accessories to develop or test the module. For more details, see *document* [1].

3 Operating Characteristics

3.1. Operating Modes

Table 7: Operating Modes Overview

Mode	Descriptions				
Full Functionality	Idle Software is active. The module is registered on the network but has no data interaction with the network.				
Mode	Voice/Data Network connection is ongoing. In this mode, the power consumption is decided by network setting and data transfer rate.				
Minimum	AT+CFUN=0 can set the module to a minimum functionality mode without				
Functionality	removing the power supply. In this case, both RF function and (U)SIM card will be				
Mode	invalid.				
Airplane Mode	AT+CFUN=4 or pulling down W_DISABLE# pin can set the module into airplane mode. In this case, RF function will be invalid.				
Sleep Mode	In this mode, current consumption of the module will be reduced to the minimal level. The module can still receive paging, SMS, voice call and TCP/UDP data from network.				
Power Down Mode	In this mode, the VBAT power supply is constantly turned on and the software stops working.				

NOTE

For more details about AT+CFUN, see document [2].

3.2. Sleep Mode

In sleep mode, the module can reduce power consumption to a very low level, the following section describes power saving procedures.

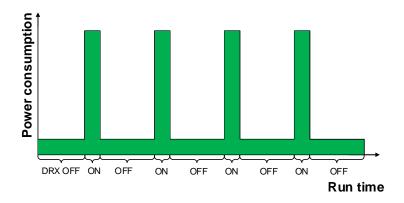


Figure 3: Module Power Consumption in Sleep Mode

NOTE

DRX cycle values are transmitted over the wireless network.

3.2.1. UART Application Scenario

If the module communicates with the MCU via main UART interface, the following preconditions should be met to set the module to sleep mode:

- Execute AT+QSCLK=1.
- Drive MAIN_DTR high or keep it open.
- Drive USB_VBUS low or keep it open.

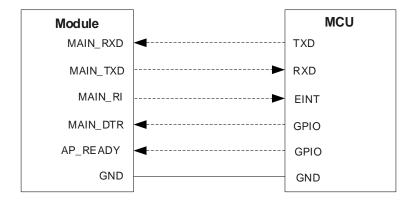


Figure 4: Sleep Mode Application via UART

Driving MAIN_DTR low by MCU will wake up the module.

When the module has a URC to report, MAIN_RI signal will wake up the MCU. Please refer to **Chapter 4.10.3** for details about MAIN RI behavior.

3.2.2. USB Application Scenarios

For the two situations "USB application with USB remote wakeup function" and "USB application with USB suspend/resume and MAIN_RI function" below, three preconditions must be met to set the module into sleep mode:

- Execute AT+QSCLK=1.
- Drive MAIN_DTR high or keep it open.
- Ensure that the host's USB bus, which is connected to the module's USB interface, enters suspend state.

3.2.2.1. USB Application with USB Suspend/Resume and USB Remote Wakeup Function

The host supports USB suspend/resume and remote wakeup function.

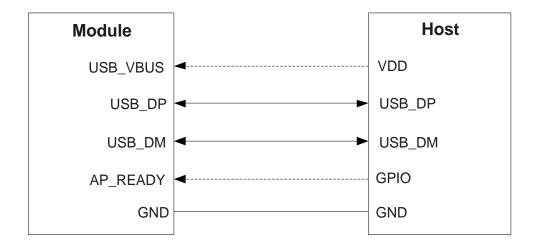


Figure 5: Block Diagram of Application with USB Remote Wakeup Function in Sleep Mode

- Sending data to the module through USB will wake up the module.
- When the module has a URC to report, the module will send remote wake-up signals through USB bus to wake up the host.

3.2.2.2. USB Application with USB Suspend/Resume and MAIN_RI Function

If the host supports USB suspend/resume but does not support remote wakeup function, the MAIN_RI signal is needed to wake up the host.

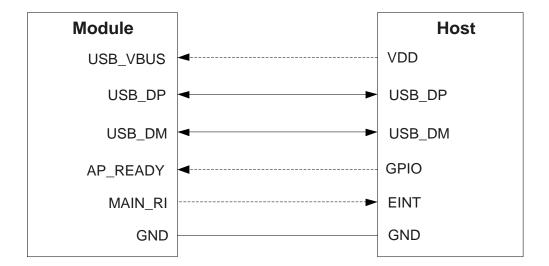


Figure 6: Block Diagram of Application with NAIN_RI Function in Sleep Mode

- Sending data to the module through USB will wake up the module.
- When the module has a URC to report, the module will wake up the host through MAIN_RI signal.

3.2.2.3. USB Application without USB Suspend Function

If the host does not support USB suspend function, the following three preconditions must be met to set the module to sleep mode:

- Execute AT+QSCLK=1.
- Drive MAIN DTR high or keep it open.
- Ensure that USB_VBUS is disconnected via the external control circuit.

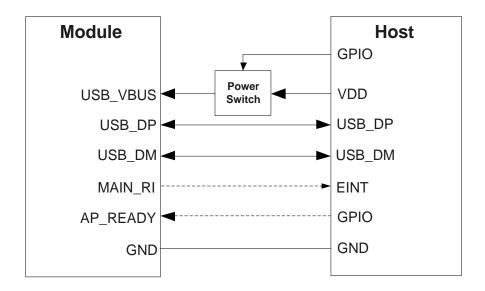


Figure 7: Block Diagram of Application Without USB Suspend Function in Sleep Mode

Restoring the power supply of USB_VBUS will wake up the module.

NOTE

Pay attention to the level matching shown in the dotted connection signal between the module and the MCU/host.

3.3. Airplane Mode

When the module enters airplane mode, the RF function will be disabled, and all AT commands related to it will be inaccessible. This mode can be set via the following ways.

Hardware:

The W_DISABLE# pin is pulled up by default. Its control function for airplane mode is disabled by default, and AT+QCFG="airplanecontrol",1 can be used to enable the function. Driving the pin low can make the module enter airplane mode.

Software:

AT+CFUN=<fun> provides choices of the functionality level through setting <fun> into 0, 1 or 4.

- AT+CFUN=0: Minimum functionality mode (Both (U)SIM and RF functions are disabled).
- AT+CFUN=1: Full functionality mode (by default).
- AT+CFUN=4: Airplane mode (RF function is disabled).

NOTE

For more details about AT command, see document [2].

3.4. Power Supply

3.4.1. Power Supply Pins

The module provides four VBAT pins dedicated to the connection with the external power supply.

Table 8: VBAT and GND Pins

Pin Name	Pin No.	I/O	Description	Comment	
VBAT_BB	32, 33	PI	Power supply for the module's baseband part	It must be provided with sufficient current of at least 2.0 A.	
VBAT_RF	52, 53	PI	Power supply for the module's RF part	It must be provided with sufficient current of at least 0.5 A.	
GND	3, 31, 48, 50, 54, 55, 58, 59, 61, 62, 67–74, 79–82, 89–91, 100–102				

3.4.2. Reference Design for Power Supply

Power design for the module is essential. The power supply of the module should be able to provide sufficient current of at least 2.5 A. If the voltage difference between input and output is small, it is suggested to use an LDO; If there is a big voltage difference, a buck converter is recommended to use.

The following figure shows a reference design for +5 V input power source.

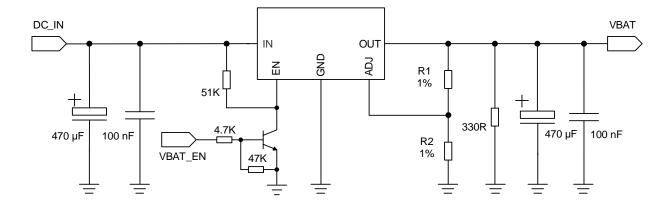


Figure 8: Reference Design of Power Supply

NOTE

To avoid corrupting the data in the internal flash, do not switch off the power supply when the module works normally. Only after shutting down the module with PWRKEY or AT command can you cut off the power supply. It is recommended to design a switch at the power supply.

3.4.3. Voltage Stability Requirements

The power supply range of the module is from 3.4 V to 4.5 V. Make sure the input voltage will never drop below 3.4 V.

To decrease voltage drop, a filter capacitor of about 100 μF with low ESR (ESR \leq 0.7 Ω) should be used, and a multi-layer ceramic chip (MLCC) capacitor array should also be reserved due to its ultra-low ESR. It is recommended to use three ceramic capacitors (100 nF, 33 pF, 10 pF) for composing the MLCC array, and place these capacitors close to the VBAT_BB and VBAT_RF pins. The main power supply from an external application has to be a single voltage source and can be expanded to two sub paths with star configuration routing. The width of VBAT_BB trace should be not less than 2 mm; and the width of VBAT_RF trace should be not less than 1 mm. In principle, the longer the VBAT trace is, the wider it should be.

In addition, in order to ensure the stability of power source, it is suggested that a TVS of which reverse stand-off voltage is 4.7 V and peak pulse power is up to 2550 W should be used.

The following figure shows the star configuration routing of the power supply.

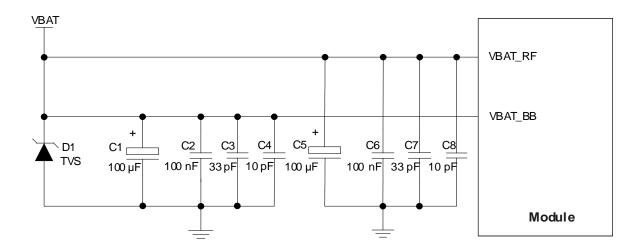


Figure 9: Star Configuration of Power Supply

3.4.4. Power Supply Voltage Monitoring

You can use AT+CBC to monitor and query the VBAT_BB voltage. For details, see document [2].

3.5. Turn On

3.5.1. Turn On the Module with PWRKEY

Table 9: Pin Definition of PWRKEY

Pin Name	Pin No.	I/O	Description	Comment
PWRKEY	15	DI	Turn on/off the module	VBAT power domain. Active low.

When the module is in power-off mode, it can be turned on to normal mode by driving the PWRKEY pin low for at least 500 ms. It is recommended to use an open drain/collector driver to control the PWRKEY. A simple reference circuit is illustrated in the following figure.

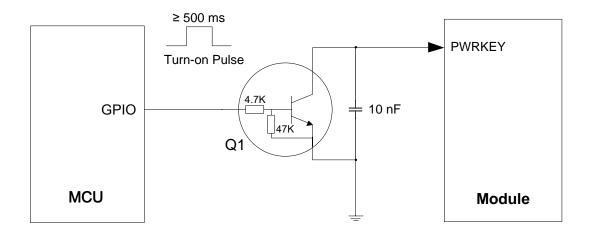


Figure 10: Reference Circuit of Turning On the Module Using Driving Circuit

The other way to control the PWRKEY is using a button directly. When pressing the button, electrostatic strike may be generated from finger. Therefore, an ESD device should be placed near the button for electrostatic protection. The reference circuit is as follows.

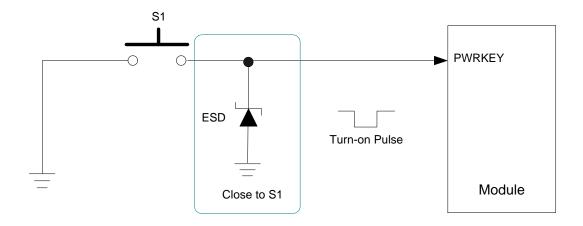


Figure 11: Reference Circuit of Turning On the Module with Button

The power-up scenario is illustrated in the following figure.

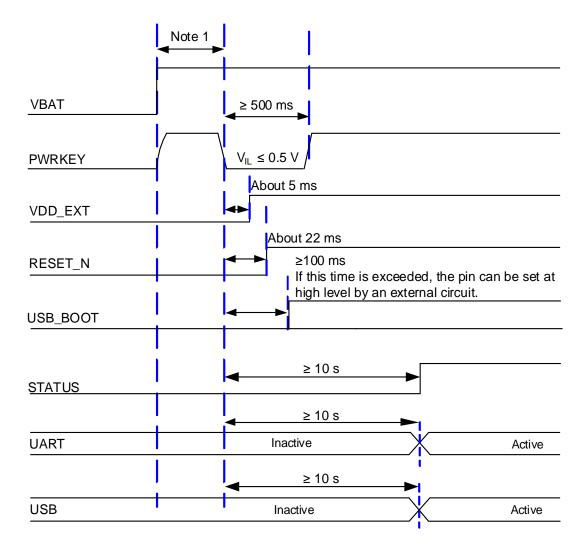


Figure 12: Power-up Timing

NOTE

- 1. Make sure that VBAT is stable before pulling down PWRKEY pin. It is recommended that the time difference between powering up VBAT and pulling down PWRKEY pin is not less than 450 ms.
- 2. PWRKEY can be pulled down directly to GND with a recommended 4.7 k Ω resistor if module needs to be powered on automatically and shutdown is not needed.

3.6. Turn Off

The module can be normally turned off in the following ways:

- Control the PWRKEY pin.
- Send the AT+QPOWD. For details of the AT+QPOWD, see document [2].

3.6.1. Turn Off the Module with PWRKEY

Driving the PWRKEY low for at least 650 ms, and then the module will execute power-down procedure after the PWRKEY is released. The timing of power-down is illustrated in the following figure.

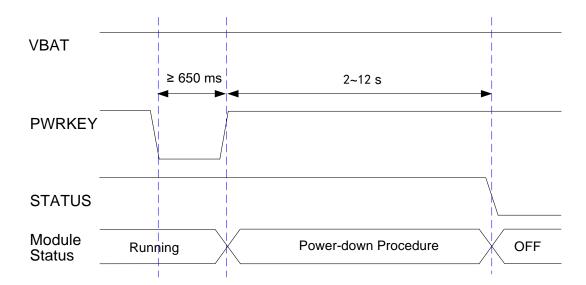


Figure 13: Power-down Timing

During the turn-off process, the module needs to log out from network. The logout time is related to the current network state, and it is measured to take about 2 to 12 s. Therefore, it is recommended to power off or restart the module after 12 s to ensure that the important software data is saved before the module is completely shut down.

3.6.2. Turn Off with AT Command

Execute **AT+QPOWD** to turn off the module, which has similar timing and effect as turning off the module through driving PWRKEY low.

NOTE

- 1. To avoid corrupting the data in the internal flash, do not switch off the power supply to turn off the module when the module works normally. Only after turning off the module with PWRKEY or AT command can you cut off the power supply.
- When turning off the module with the AT command, keep PWRKEY at high level after the execution of the command. Otherwise, the module will be turned on automatically again after successful turn-off.

3.7. Reset

The module can be reset by driving RESET_N low for at least 300 ms and then releasing it. The RESET_N signal is sensitive to interference, so it is recommended to route the trace as short as possible and surround it with ground.

Table 10: Pin Definition of RESET N

Pin Name	Pin No.	I/O	Description	Comment
RESET_N	17	DI	Reset the module	1.8 V power domain. Active low after turn-on. A test point is recommended to be reserved.

The recommended circuit is equal to the PWRKEY control circuit. An open drain/collector driver or button can be used to control the RESET_N.

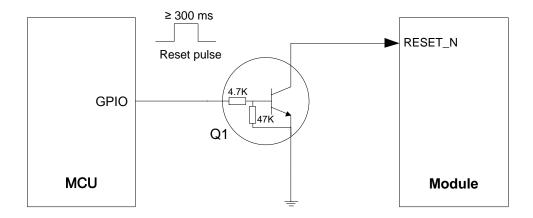


Figure 14: Reference Circuit of RESET_N with Driving Circuit

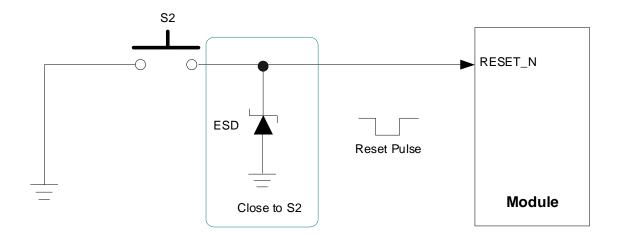


Figure 15: Reference Circuit of RESET_N with Button

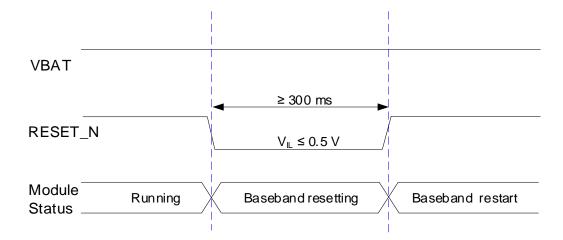


Figure 16: Timing of Reset

- 1. RESET_N only resets the internal baseband chip of the module and does not reset the power management chip.
- 2. Ensure that the capacitance on PWRKEY and RESET_N does not exceed 10 nF.

4 Application Interfaces

4.1. USB Interface

The module provides one USB interface which complies with the USB 2.0 specifications and supports high-speed (480 Mbps) and full-speed (12 Mbps) modes. The USB interface only supports USB slave mode and it can be used for AT command communication, data transmission, GNSS NMEA sentence output, software debugging and firmware upgrade.

Table 11: Pin Definition of USB Interface

Pin Name	Pin No.	I/O	Description	Comment
USB_VBUS	8	AI	USB connection detect	Typ. 5.0 V. A test point must be reserved.
USB_DP	9	AIO	USB 2.0 differential data (+)	90 Ω differential impedance.
USB_DM	10	AIO	USB 2.0 differential data (-)	 USB 2.0 compliant. Test points must be reserved.

Test points must be reserved for debugging and firmware upgrading in your designs.

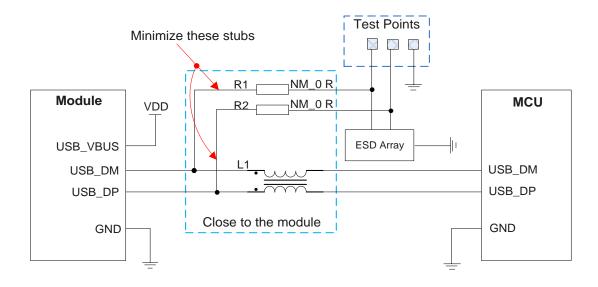


Figure 17: Reference Design of USB 2.0 Interface

It is recommended to add a common-mode choke L1 in series between MCU and the module to suppress EMI spurious transmission. Meanwhile, it is also suggested to add R1 and R2 in series between the module and the test points for debugging. These resistors are not mounted by default. To ensure the signal integrity of USB 2.0 data transmission, you should place L1, R1 and R2 close to the module, and keep the resistors close to each other. Moreover, keep extra stubs of trace as short as possible.

To ensure performance, you should follow the following principles when designing USB interface:

- ullet Route USB signal traces as differential pairs with surrounded ground. The impedance of USB differential trace is 90 Ω .
- For USB 2.0 signal traces, length matching of differential data pair (USB_DP/USB_DM) should not exceed 1 mm.
- Route USB differential traces at the inner-layer of the PCB, and surround the traces with ground on the same layer and with ground planes above and below. For signal traces, provide clearance from power supply traces, crystal-oscillators, magnetic devices, sensitive signals like RF signals, analog signals, and noise signals generated by clock, DC-DC, etc.
- Pay attention to the impact caused by stray capacitance of the ESD protection component on USB data traces. Typically, the stray capacitance should not exceed 2 pF for USB 2.0.
- If possible, reserve one 0 Ω resistor on USB_DP and USB_DM traces respectively.

For more details about the USB specifications, visit http://www.usb.org/home.

4.2. USB_BOOT Interface

USB_BOOT is for emergency download. You can pull up USB_BOOT to VDD_EXT or a 1.8 V external power before powering on the module, thus the module will enter emergency download mode when powered on. In this mode, the module supports firmware upgrade over USB 2.0 interface.

Table 12: Pin Definition of USB BOOT Interface

Pin Name	Pin No.	I/O	Description	Comment
USB_BOOT	75	DI	Forces the module to enter emergency download mode	1.8 V power domain. Active high.A test point is recommended to be reserved.

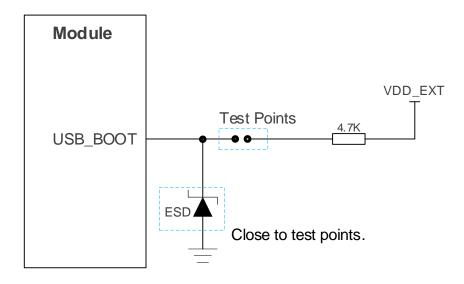


Figure 18: Reference Circuit of USB_BOOT Interface

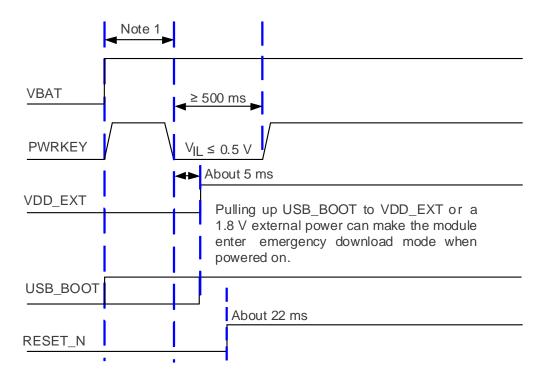


Figure 19: Timing Sequence for Entering Emergency Download Mode

- 1. Make sure that VBAT is stable before pulling down PWRKEY pin. It is recommended that the time between powering up VBAT and pulling down PWRKEY pin is not less than 450 ms.
- When using MCU to control module to enter the emergency download mode, please follow the above timing sequence. Directly connect the test points as shown in *Figure 18* can manually force the module into download mode.
- 3. If the module is turned on normally, the USB_BOOT pin is prohibited to be pulled up to high level until the module is powered on successfully.

4.3. (U)SIM Interface

The (U)SIM interface circuitry meets ETSI and IMT-2000 requirements. Both 1.8 V and 3.0 V (U)SIM cards are supported.

Table 13: Pin Definition of (U)SIM Interface

Pin Name	Pin No.	I/O	Description	Comment
USIM_VDD	43	РО	(U)SIM card power supply	− Either 1.8 V or 3.0 V (U)SIM
USIM_DATA	45	DIO	(U)SIM card data	card is supported and can be
USIM_CLK	46	DO	(U)SIM card clock	identified automatically by the module.
USIM_RST	44	DO	(U)SIM card reset	
USIM_DET	42	DI	(U)SIM card hot-plug detect	1.8 V power domain. If unused, keep it open.
USIM_GND	47	-	Specified ground for (U)SIM card	Connect to GND of the (U)SIM card

The module supports (U)SIM card hot-plug via the USIM_DET pin, and both low and high level detections are supported. By default, the function is disabled, and it can be configured via **AT+QSIMDET**. Please see **document [2]** for details about the command.

The reference circuit of the 8-pin (U)SIM interface is as follows.

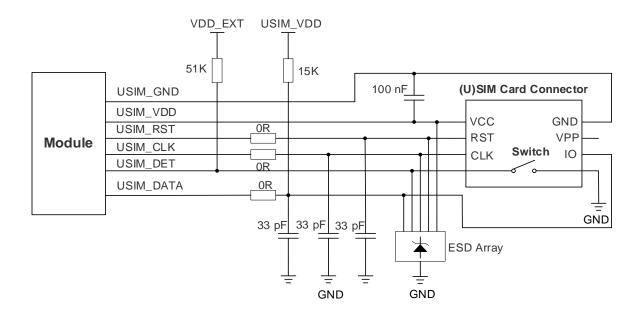


Figure 20: Reference Circuit of (U)SIM Interface with an 8-pin (U)SIM Card Connector

If (U)SIM card detection function is not needed, keep USIM_DET unconnected.

A reference circuit for (U)SIM interface with a 6-pin (U)SIM card connector is illustrated in the following figure.

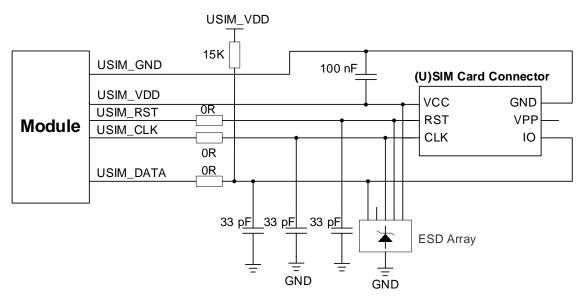


Figure 21: Reference Circuit of (U)SIM Interface with a 6-pin (U)SIM Card Connector

To enhance the reliability and availability of the (U)SIM card in applications, please follow the criteria below in (U)SIM circuit design.

 Place the (U)SIM card connector close to the module. Keep the trace length less than 200 mm if possible.

- Route (U)SIM card differential traces at the inner-layer of the PCB, and surround the traces with ground on that layer and ground planes above and below. For signal traces, provide clearance from power supply traces, crystal-oscillators, magnetic devices, sensitive signals like RF signals, analog signals, and noise signals generated by clock, DC-DC, etc.
- Ensure that the bypass capacitor between USIM_VDD and GND does not exceed 1 μF.
- Ensure the tracing between ground of the (U)SIM card connector and USIM_GND is short and wide.
 Keep the trace width of USIM_GND and USIM_VDD at least 0.5 mm to maintain the same electric potential.
- To avoid cross-talk between USIM_DATA and USIM_CLK, keep the traces away from each other and shield them with ground surrounded.
- The (U)SIM peripheral circuit should be close to the (U)SIM card connector. In order to offer good ESD protection, it is recommended to add an ESD protection component whose parasitic capacitance should not exceed 15 pF. The 0 Ω resistors should be added in series between the module and the (U)SIM card to facilitate debugging. The 33 pF capacitors on the USIM_DATA, USIM_CLK and USIM_RST traces are used for filtering interference.
- The pull-up resistor on USIM_DATA can improve anti-jamming capability of the (U)SIM card. If the (U)SIM card traces are too long, or the interference source is relatively close, it is recommended to add a 15 kΩ pull-up resistor near the (U)SIM card connector.

4.4. SDIO Interface

The module provides one SDIO interface which supports SD 3.0 protocol.

Table 14: Pin Definition of SDIO Interface

Pin Name	Pin No.	I/O	Description	Comment
SDIO_VDD	93	РО	SDIO power supply	1.8/2.85 V configurable output voltage.
SDIO_DATA0	11	DIO	SDIO data bit 0	
SDIO_DATA1	12	DIO	SDIO data bit 1	_
SDIO_DATA2	13	DIO	SDIO data bit 2	1.8/2.85 V power domain.
SDIO_DATA3	14	DIO	SDIO data bit 3	If unused, keep them open.
SDIO_CMD	66	DIO	SDIO command	_
SDIO_CLK	65	DO	SDIO clock	
SDIO_DET*	83	DI	SD card hot-plug detect	1.8 V power domain. If unused, keep it open.

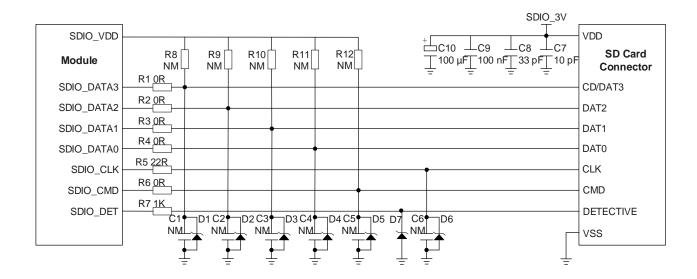


Figure 22: Reference Circuit of SD Card Interface

To ensure communication performance, the following conditions should be taken into considerations when designing SDIO interface:

- The voltage range of SDIO_3V is 2.7–3.6 V and it should be provided 200–800 mA current by an
 external power supply SDIO_VDD provides up to 50 mA current and can only be used for pull-up
 resistor of SDIO bus.
- To avoid the impact of jitter, pull up SDIO_CMD and SDIO_DATA[0:3] to SDIO_VDD with R8–R12. Resistance of these resistors can be 10–100 k Ω and the recommended value is 100 k Ω .
- In order to adjust the signal quality, it is recommended to add resistors R1–R7 in series between the module and the SDIO device. The recommended resistance of R5 and R7 is 22 Ω and 1 kΩ respectively, and the others is 0 Ω. The bypass capacitors C1–C6 are reserved and not mounted by default. The resistor R5 must be placed close to the module.
- Add an ESD protection component with capacitance value of not more than 8 pF near the SD card connector for better ESD protection.
- It is important to route SDIO signal traces at the inner-layer of the PCB and surround the traces with ground on that layer and ground planes above and below. The impedance of SDIO signal trace is $50 \Omega \pm 10 \%$.
- Keep SDIO signal traces far away from power supply traces, crystal-oscillators, magnetic devices, sensitive signals like RF signals and analog signals, as well as noise signals generated by clock, DC-DC, etc.
- It is recommended to keep the traces of SDIO_CLK and SDIO_DATA [0:3]/SDIO_CMD equal in length (the difference among them should be less than 1 mm).
- Keep the adjacent trace clearance twice the trace width and the load capacitance of SDIO bus less than 15 pF.

4.5. **UART**

The module provides two UART interfaces: the main UART interface and the debug UART interface. The following shows their features.

Table 15: UART Information

Interface	Supported Baud Rate (bps)	Default Baud Rate (bps)	Function
Main UART	4800, 9600, 19200, 38400, 57600, 115200, 230400, 460800, 921600	115200	Used for data transmission and AT command communication. Supports RTS and CTS hardware flow control.
Debug UART	115200	115200	Used for the output of partial logs

Table 16: Pin Definition of Main UART Interface

Pin Name	Pin No.	I/O	Description	Comment
MAIN_CTS	36	DO	Clear to send signal from the module	Connect to MCU's CTS. 1.8 V power domain. If unused, keep it open.
MAIN_RTS	37	DI	Request to send signal to the module	Connect to MCU's RTS. 1.8 V power domain. If unused, keep it open.
MAIN_RXD	34	DI	Main UART receive	
MAIN_TXD	35	DO	Main UART transmit	
MAIN_DCD	38	DO	Main UART data carrier detect	1.8 V power domain. If unused, keep them open.
MAIN_RI	39	DO	Main UART ring indication	
MAIN_DTR	30	DI	Main UART data terminal ready	-
DBG_RXD	22	DI	Debug UART receive	1.8 V power domain.
DBG_TXD	23	DO	Debug UART transmit	Test points must be reserved.

The module provides a 1.8 V UART interface. A voltage-level translator should be used if the application is equipped with a 3.3 V UART interface. The voltage-level translator TXS0108EPWR provided by Texas Instruments is recommended. The following figure shows a reference design.

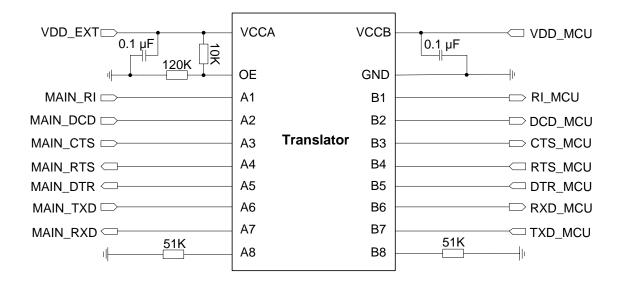


Figure 23: Reference Design of UART with Level-shifting Chip

Please visit http://www.ti.com for more information.

Another example with transistor circuit is shown as below. For the design of circuits shown in dotted lines, please refer to that shown in solid lines, but pay attention to the direction of connection.

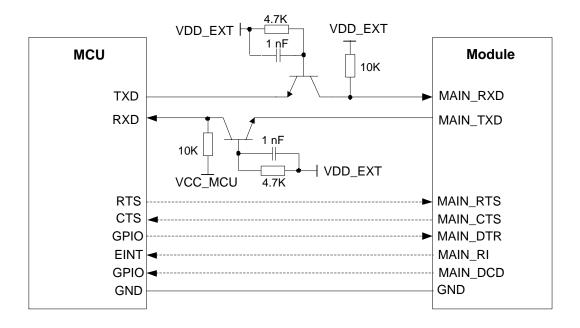


Figure 24: Reference Design of UART with Transistor Level-shifting Circuit

- 1. Transistor level-shifting circuit above is not suitable for applications with baud rates exceeding 460 kbps.
- 2. Note that the module's CTS is connected to the MCU's CTS, and the module's RTS is connected to the MCU's RTS.

4.6. PCM and I2C Interfaces

The module provides one I2C interface and one Pulse Code Modulation (PCM) digital interface.

I2C interface complies with the I2C bus protocol specification (100/400 kHz). In applications related to the interface, the module can only be used as master device and does not support multi-host mode.

PCM interface supports short frame mode. In the applications related to the interface, the module can be used as both slave device* and master device.

In short frame mode, the data is sampled on the falling edge of the PCM_CLK and transmitted on the rising edge. The PCM_SYNC falling edge represents the MSB. In this mode, the PCM interface supports 256 kHz, 512 kHz, 1024 kHz and 2048 kHz PCM_CLK at 8 kHz PCM_SYNC, and also supports 4069 kHz PCM_CLK at 16 kHz PCM_SYNC.

The module supports a 16-bit linear encoding format. The following figure shows the sequence diagram of short frame mode (PCM_SYNC = 8 kHz, PCM_CLK = 2048 kHz).

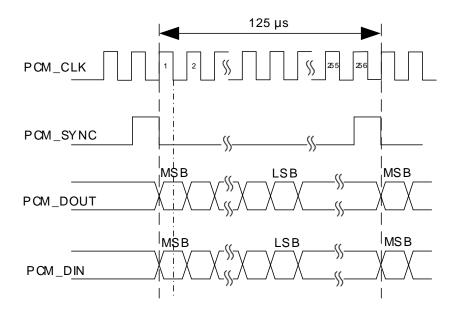


Figure 25: Timing Sequence for Short Frame Mode

Table 17: Pin Definition of I2C Interface

Pin Name	Pin No.	I/O	Description	Comment
I2C_SCL	40	OD	I2C serial clock	An external 1.8 V pull-up
I2C_SDA	41	OD	I2C serial data	resistor is needed. If unused, keep them open.

Table 18: Pin Definition of PCM Interface

Pin Name	Pin No.	I/O	Description	Comment	
PCM_SYNC	5	DIO	PCM data frame sync	1.8 V power domain. When the module is used as the	
PCM_CLK	4	DIO	PCM clock	master device, the pins are in output state; When the module is used as a slave device*, the pins are in input state. If unused, keep them open.	
PCM_DIN	6	DI	PCM data input	If unused keep them aren	
PCM_DOUT	7	DO	PCM data output	 If unused, keep them open. 	

The clock and mode of PCM can be configured by software, and the default configuration is short frame mode (PCM_CLK = 2048 kHz, PCM_SYNC = 8 kHz). For more details, see **AT+QDAI** in **document [3]**.

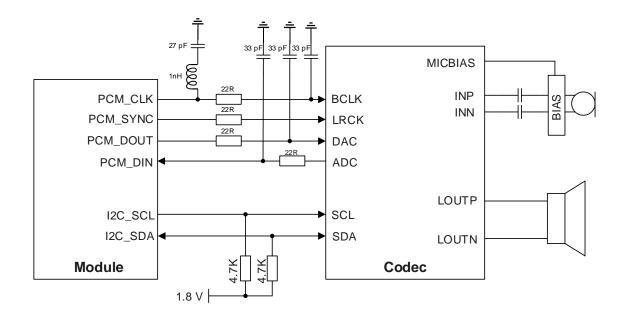


Figure 26: Reference Design of PCM and I2C Interfaces

- 1. It is recommended to reserve the RC (R = 22Ω , C = 33 pF) circuit on the PCM signal trace and the capacitor should be placed close to the module.
- 2. It is recommended to add a notch filter circuit near the module pin for PCM_CLK signal.

4.7. ADC Interface

The module provides two ADC interfaces. To improve the accuracy of ADC, the trace of ADC interface should be surrounded by ground.

Table 19: Pin Definition of ADC Interface

Pin Name	Pin No.	I/O	Description	Comment
ADC0	24	AI	General-purpose ADC	If unused keep them open
ADC1	2	Al	interfaces	If unused, keep them open.

With **AT+QADC=<port>**, you can:

- AT+QADC=0: read the voltage value on ADC0
- AT+QADC=1: read the voltage value on ADC1

For more details about the AT command, see document [2].

Table 20: Characteristics of ADC Interface

Parameters	Min.	Тур.	Max.	Units
ADC0 voltage range	0	-	VBAT_BB	V
ADC1 voltage range	0	-	VBAT_BB	V
ADC resolution	-	12	-	bits

NOTE

- 1. The input voltage of every ADC interface should not exceed its corresponding voltage range.
- 2. It is prohibited to directly supply any voltage to ADC interface when the module is not powered by

the VBAT.

3. If the ADC pin uses a voltage divider circuit input, the voltage divider resistance should not exceed $100 \text{ k}\Omega$, otherwise the measurement accuracy of ADC would be significantly reduced.

4.8. SPI Interface

The module provides one SPI interface that supports master mode with a maximum clock frequency of 52 MHz.

Table 21: Pin Definition of SPI Interface

Pin Name	Pin No.	I/O	Description	Comment
SPI_CLK	26	DO	SPI clock	
SPI_CS	25	DO	SPI chip select	Master mode only.1.8 V power domain.
SPI_DIN	27	DI	SPI data input	If unused, keep them open.
SPI_DOUT	28	DO	SPI data output	— орон.

4.9. Control Signal

Table 22: Pin Definition of Control Signal

Pin Name	Pin No.	I/O	Description	Comment
				1.8 V power domain.
				Pull-up by default.
W_DISABLE#	18	DI	Airplane mode control	In low voltage level, the module
				can enter airplane mode.
				If unused, keep it open.

4.9.1. W_DISABLE#

The module provides W_DISABLE# to enable or disable RF function. W_DISABLE# is pulled up by default. When W_DISABLE# is at high voltage level, you can send **AT+CFUN=<fun>** to set module's operating mode. Driving W_DISABLE# low will set the module into airplane mode.

Table 23: W_DISABLE# AT Command Configuration Information

W_DISABLE# Level Status	AT Commands	RF Function Status	Module Operating Modes
	AT+CFUN=1	Enabled	Full functionality mode
High	AT+CFUN=0	Disabled	Minimum functionality mode
	AT+CFUN=4	Disabled	Airplane mode
	AT+CFUN=0		
Low	AT+CFUN=1	Disabled	Airplane mode
	AT+CFUN=4		

- 1. The execution of AT+CFUN does not affect GNSS function.
- 2. W_DISABLE# is a control function for airplane mode, which is disabled by default in software and can be enabled through AT+QCFG="airplanecontrol",1.

4.10. Indication Signal

Table 24: Pin Definition of Indication Signal

Pin Name	Pin No.	I/O	Description	Comment
STATUS	20	DO	Indicate the module's operation status	
NET_STATUS	21	DO	Indicate the module's network activity status 1.8 V power doma If unused, keep the	
SLEEP_IND	1	DO	Indicate the module's sleep mode	-

4.10.1. Network Status Indication

NET_STATUS pin can be used for indicating module's the network activity status.

Table 25: Network Status Indication Pin Level and Module Network Status

Pin Name	NET_STATUS Level Status	Module Network Status
	Flicker slowly (200 ms high/1800 ms low)	Network searching
NET_STATUS	Flicker slowly (1800 ms high/200 ms low)	Idle
	Flicker quickly (125 ms high/125 ms low)	Data transmission is ongoing
	Always high	Voice calling

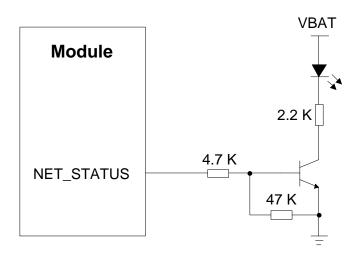


Figure 27: Reference Design of Network Status Indication

4.10.2. STATUS

The STATUS is used for indicating module's operation status. It will output high level when the module is turned on normally.

A reference circuit is shown as below:

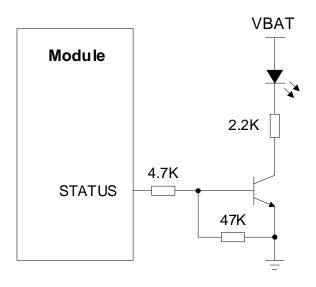


Figure 28: Reference Design of STATUS

When the module is not powered by VBAT, STATUS cannot be used as a shutdown status indicator.

4.10.3. MAIN_RI

AT+QCFG="risignaltype","physical" can be used to configure the indication behavior for MAIN_RI. No matter on which port (main UART, USB AT port or USB modem port) a URC information is presented, the URC information will trigger the behavior of the MAIN_RI. For more details, see **document [2]**.

NOTE

The AT+QURCCFG allows you to set the main UART, USB AT port or USB modem port as the URC information output port. The USB AT port is the URC output port by default. For more details, see **document [2]**.

You can configure MAIN_RI behaviors flexibly. The default behaviors of the MAIN_RI is shown as below:

Table 26: MAIN RI Level and Module Status

Module Status	MAIN_RI Level Status
Idle	High
When a new URC returns	MAIN_RI outputs at least 120 ms low level. After the module outputs the data, the level status will then become high.

Indication behavior for MAIN_RI can be configured via **AT+QCFG="urc/ri/ring"**. See **document [2]** for details.

5 RF Specifications

Appropriate antenna type and design should be used with matched antenna parameters according to specific application. It is required to perform a comprehensive functional test for the RF design before mass production of terminal products. The entire content of this chapter is provided for illustration only. Analysis, evaluation and determination are still necessary when designing target products.

5.1. Cellular Network

5.1.1. RF Antenna Interface & Frequency Bands

Table 27: Pin Description of RF Antenna Interface

Pin Name	Pin No.	I/O	Description	Comment	
ANT_MAIN	60	AIO	Main antenna interface	50 Ω characteristic	
ANT_DRX	56	Al	Diversity antenna interface	impedance.	

Table 28: Operating Frequency of EG950A-EL (Unit: MHz)

Operating Frequency	Transmit	Receive
WCDMA B1	1922–1978	2112–2168
WCDMA B5	826–847	871–892
WCDMA B8	882–913	927–958
LTE-FDD B1	1920–1980	2110–2170
LTE-FDD B3	1710–1785	1805–1880
LTE-FDD B5	824–849	869–894
LTE-FDD B7	2500–2570	2620–2690
LTE-FDD B8	880–915	925–960

LTE-FDD B20	832–862	791–821
LTE-FDD B28	703–748	758–803

Table 29: Operating Frequency of EG950A-LA (Unit: MHz)

Operating Frequency	Transmit	Receive
WCDMA B1	1922–1978	2112–2168
WCDMA B2	1852–1908	1932–1988
WCDMA B4	1712–1753	2112–2153
WCDMA B5	826–847	871–892
WCDMA B8	882–913	927–958
LTE-FDD B1	1920–1980	2110–2170
LTE FDD B2	1850–1910	1930–1990
LTE-FDD B3	1710–1785	1805–1880
LTE FDD B4	1710–1755	2110–2155
LTE-FDD B5	824–849	869–894
LTE-FDD B7	2500–2570	2620–2690
LTE-FDD B8	880–915	925–960
LTE-FDD B28	703–748	758–803
LTE-FDD B66	1710–1780	2110–2180

5.1.2. Tx Power

Table 30: RF Output Power of EG950A-EL

Mode	Frequency Bands	Max. RF Output Power	Min. RF Output Power
WCDMA	B1/B5/B8	23 dBm ±2dB	< -49 dBm
LTE-FDD	B1/B3/B5/B7/B8/B20/B28	23 dBm ±2dB	< -39 dBm

Table 31: RF Output Power of EG950A-LA

Mode	Frequency Bands	Max. RF Output Power	Min. RF Output Power
WCDMA	B1/B2/B4/B5/B8	23 dBm ±2dB	< -49 dBm
LTE-FDD	B1/B2/B3/B4/B5/B7/B8/B28/B66	23 dBm ±2dB	< -39 dBm

5.1.3. Rx Sensitivity

Table 32: Conducted RF Receiver Sensitivity of EG950A-EL (Unit: dBm)

Francis	Re	Receiver Sensitivity (Typ.)		
Frequency	Primary	Diversity	SIMO	3GPP (SIMO)
WCDMA B1	-110.3	-	-	-106.7
WCDMA B5	-111.5	-	-	-104.7
WCDMA B8	-110.9	-	-	-103.7
LTE-FDD B1	-98.3	-98.8	-101.3	-96.3
LTE-FDD B3	-97.7	-97.0	-100.5	-93.3
LTE-FDD B5	-98.9	-99.6	-102.6	-94.3
LTE-FDD B7	-96.9	-97.7	-100.4	-94.3
LTE-FDD B8	-98.9	-99.3	-101.8	-93.3
LTE-FDD B20	-98.9	-99.2	-101.8	-93.3
LTE-FDD B28	-98.9	-97.9	-101.5	-94.8

Table 33: Conducted RF Receiver Sensitivity of EG950A-LA (Unit: dBm)

Fraguency		Receiver Sensitivit	2CDD (SIMO)	
Frequency	Primary	Diversity	SIMO	3GPP (SIMO)
WCDMA B1	-109.5	-	-	-106.7 dBm
WCDMA B2	-108.8	-	-	-104.7 dBm
WCDMA B4	-109.5	-	-	-106.7 dBm

WCDMA B5	-112.2	-	-	-104.7 dBm
WCDMA B8	-111.4	-	-	-103.7 dBm
LTE-FDD B1	-98.22	-97.62	-100.22	-96.3 dBm
LTE FDD B2	-97.52	-96.32	-99.62	-94.3 dBm
LTE-FDD B3	-97.42	-96.32	-100.12	-93.3 dBm
LTE FDD B4	-97.42	-97.02	-100.02	-96.3 dBm
LTE-FDD B5	-98.22	-99.32	-101.82	-94.3 dBm
LTE-FDD B7	-96.92	-97.12	-99.82	-94.3 dBm
LTE-FDD B8	-98.12	-98.72	-101.72	-93.3 dBm
LTE-FDD B28	-98.62	-98.22	-101.52	-94.8 dBm
LTE-FDD B66	-96.82	-96.62	-99.62	-96.5 dBm

5.1.4. Reference Design

The module provides two RF antenna interfaces for antenna connection. It is recommended to reserve a π -type matching circuit for better RF performance, and the π -type matching components (C1, R1, C2 and C3, R2, C4) should be placed as close to the antenna as possible. The capacitors are not mounted by default.

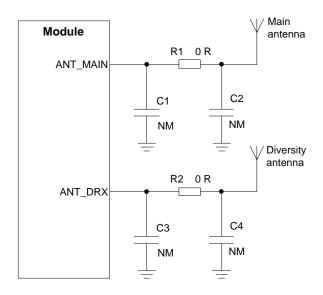


Figure 29: Reference Design of Main Antenna and Diversity Antenna

5.2. GNSS

GNSS information of the module is as follows:

- Supports GPS, GLONASS, BDS, QZSS positioning system.
- Supports NMEA 0183 protocol and outputs NMEA sentences via USB interface (data update rate for positioning: 1–5 Hz; 1 Hz by default).
- The module's GNSS function is OFF by default. It must be ON via AT+QGPS. For more details, see document [4].

5.2.1. Antenna Interface & Frequency Bands

Table 34: Pin Definition of GNSS Antenna Interface

Pin Name	Pin No.	I/O	Description	Comment
ANT_GNSS	49	AI	GNSS antenna interface	$50~\Omega$ characteristic impedance. If unused, keep it open.

Table 35: GNSS Frequency (Unit: MHz)

Antenna Types	Frequency
GPS	1575.42 ±1.023 (L1)
GLONASS	1597.5–1605.8 (L1)
BDS	1561.098 ±2.046 (B1I)
QZSS	1575.42 ±1.023 (L1)

NOTE

- 1. GNSS function is only supported by EG950A-EL module, and the function is optional. Only the module with built-in GNSS function has GNSS antenna interface.
- 2. An external LDO can be selected to supply power according to the active antenna requirements. If the module is designed with an active antenna, then VDD circuit is needed.

5.2.2. GNSS Performance

Table 36: GNSS Performance

Parameters	Modes	Conditions	Тур.	Units
Sensitivity	Acquisition		-144	
	Reacquisition	Autonomous	-157	dBm
	Tracking		-161	
TTFF	Cold start @ open sky		35.47	
	Warm start @ open sky	Autonomous	31.53	S
	Hot start @ open sky	_	0.15	_
Accuracy	CEP-50	Autonomous @ open sky	1.69	m

NOTE

- 1. Tracking sensitivity: the minimum GNSS signal power at which the module can maintain lock (keep positioning for at least 3 minutes continuously).
- 2. Reacquisition sensitivity: the minimum GNSS signal power required for the module to maintain lock within 3 minutes after loss of lock.
- 3. Acquisition sensitivity: the minimum GNSS signal power at which the module can fix position successfully within 3 minutes after executing cold start command.

5.3. RF Routing Guidelines

For user's PCB, the characteristic impedance of all RF traces should be controlled to 50 Ω . The impedance of the RF traces is usually determined by the trace width (W), the materials' dielectric constant, the height from the reference ground to the signal layer (H), and the spacing between RF traces and grounds (S). Microstrip or coplanar waveguide is typically used in RF layout to control characteristic impedance. The following are reference designs of microstrip or coplanar waveguide with different PCB structures.

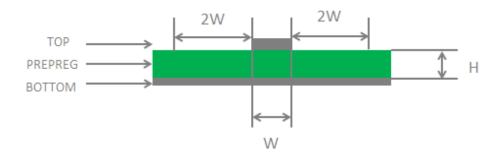


Figure 30: Microstrip Design on a 2-layer PCB

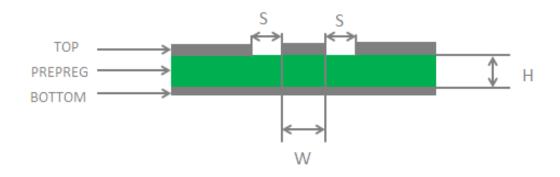


Figure 31: Coplanar Waveguide Design on a 2-layer PCB

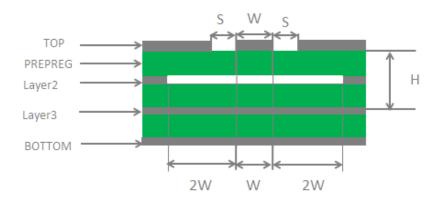


Figure 32: Coplanar Waveguide Design on a 4-layer PCB (Layer 3 as Reference Ground)

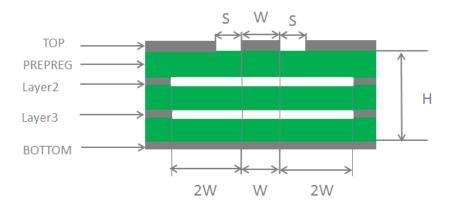


Figure 33: Coplanar Waveguide Design on a 4-layer PCB (Layer 4 as Reference Ground)

To ensure better RF performance and reliability, the following conditions should be complied with in RF layout design:

- Use an impedance simulation tool to accurately control the characteristic impedance of RF traces to 50Ω .
- GND pins adjacent to RF pins should not be designed as thermal relief pads, and should be fully connected to ground.
- The distance between the RF pins and the RF connector should be as short as possible and all the right-angle traces should be changed to curved ones. The recommended trace angle is 135°.
- There should be clearance under the signal pin of the antenna connector or solder joint.
- The reference ground of RF traces should be complete. Meanwhile, adding some ground vias around RF traces and the reference ground could help to improve RF performance. The distance between the ground vias and RF traces should be not less than twice the width of RF signal traces (2 x W).
- Keep RF traces away from interference sources, and avoid intersection and paralleling between any traces on adjacent layers.

For more details about RF layout, see **document [5]**.

5.4. Requirements for Antenna Design

Table 37: Requirements for Antenna Design

Antenna Types	Requirements		
	• Frequency range: L1 (1559–1609 MHz)		
	RHCP or linear polarization		
GNSS	VSWR: ≤ 2		
	For passive antenna application:		
	Passive antenna gain: > 0 dBi		

	For active antenna application:
	Active antenna noise coefficient: < 1.5 dB
	Active antenna gain: > 0 dBi
	Active antenna embedded LNA gain: < 17 dB
	VSWR: ≤ 2
	• Efficiency: > 30 %
	Gain:
	WCDMA Band 2,LTE Band 2: 1.590 dBi
	WCDMA Band 4,LTE Band 4/66: 2.000 dBi
	WCDMA Band 5,LTE Band 5: 2.530dBi
INTO/LTE 4	LTE Band 7: 3.000dBi
UMTS/LTE ⁴	 Max input power: 50 W
	 Input impedance: 50 Ω
	 Vertical polarization
	Cable insertion loss:
	< 1 dB: LB (< 1 GHz)
	< 1.5 dB: MB (1–2.3 GHz)
	< 2 dB: HB (> 2.3 GHz)

5.5. RF Connector Recommendation

If RF connector is used for antenna connection, it is recommended to use U.FL-R-SMT receptacle provided by Hirose.

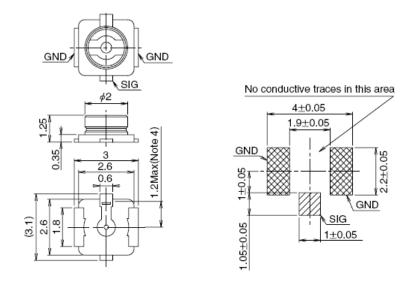


Figure 34: Dimensions of the Receptacle (Unit: mm)

⁴ The performance parameters are recommended by Quectel and you are advised to confirm these parameters with antenna suppliers and adjust them according to the actual products, test results and certification requirements to ensure the overall wireless performance for your terminals.

U.FL-LP series mated plugs listed in the following figure can be used to match the U.FL-R-SMT.

	U.FL-LP-040	U.FL-LP-066	U.FL-LP(V)-040	U.FL-LP-062	U.FL-LP-088
Part No.	3	383	3.4	82	5 2 3 2 3 3 3 3
Mated Height	2.5mm Max.	2.5mm Max.	2.0mm Max.	2.4mm Max.	2.4mm Max.
	(2.4mm Nom.)	(2.4mm Nom.)	(1.9mm Nom.)	(2.3mm Nom.)	(2.3mm Nom.)
Applicable cable	Dia. 0.81mm Coaxial cable	Dia. 1.13mm and Dia. 1.32mm Coaxial cable	Dia. 0.81mm Coaxial cable	Dia. 1mm Coaxial cable	Dia. 1.37mm Coaxial cable
Weight (mg)	53.7	59.1	34.8	45.5	71.7
RoHS			YES		

Figure 35: Specifications of Mated Plugs (Unit: mm)

The following figure describes the space factor of the mated connector.

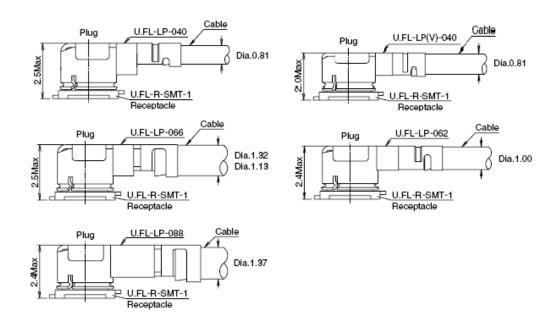


Figure 36: Space Factor of the Mated Connectors (Unit: mm)

For more details, visit http://www.hirose.com.

6 Electrical Characteristics & Reliability

6.1. Absolute Maximum Ratings

Absolute maximum ratings for power supply and voltage on digital and analog pins of the module are listed in the following table.

Table 38: Absolute Maximum Ratings

Parameters	Min.	Max.	Units
Voltage at VBAT_RF & VBAT_BB	-0.3	5.5	V
Voltage at USB_VBUS	-0.3	5.5	V
Voltage at digital pins	-0.3	2.3	V
Voltage at ADC0	0	VBAT_BB	V
Voltage at ADC1	0	VBAT_BB	V
Current at VBAT_BB	-	2.0	А
Current at VBAT_RF	-	0.5	А

6.2. Power Supply Ratings

Table 39: Module's Power Supply Ratings

Parameters	Descriptions	Conditions	Min.	Тур.	Max.	Units
VBAT	VBAT_BB & VBAT_RF	The actual input voltage must be within this range	3.4	3.8	4.5	V
USB_VBUS	USB connection detection		3.0	5.0	5.25	V

6.3. Power Consumption

Table 40: EG950A-EL Current Consumption

Power-off Power down AT+CFUN=0 (USB disconnected) WCDMA @ PF = 64 (USB disconnected) WCDMA @ PF = 64 (USB suspended)	9.65 1.13 2.95	μΑ	
WCDMA @ PF = 64 (USB disconnected)	2.95	_	
<u></u>			
WCDMA @ PF = 64 (USB suspended)			
	3.22		
WCDMA @ PF = 128 (USB disconnected)	2.42		
WCDMA @ PF = 256 (USB disconnected)	2.11		
Sleep State WCDMA @ PF = 512 (USB disconnected)	1.92	mA	
LTE-FDD @ PF = 32 (USB disconnected)	2.83	_	
LTE-FDD @ PF = 64 (USB disconnected)	2.10		
LTE-FDD @ PF = 64 (USB suspended)	2.40	-	
LTE-FDD @ PF = 128 (USB disconnected)	1.82	_	
LTE-FDD @ PF = 256 (USB disconnected)	1.74	-	
WCDMA @ PF = 64 (USB disconnected)	19.07		
WCDMA @ PF = 64 (USB connected)	33.33	Λ	
Idle State LTE-FDD @ PF = 64 (USB disconnected)	18.80	- mA	
LTE-FDD @ PF = 64 (USB connected)	33.35	-	
WCDMA B1 @ 23.04 dBm WCDMA Voice	577.00		
Communication WCDMA B5 @ 22.59 dBm	587.00	mA	
(GNSS OFF) WCDMA B8 @ 22.74 dBm	564.00	-	
WCDMA Data WCDMA B1 HSDPA @ 22.34 dBm	550.00	A	
Transfer (GNSS WCDMA B5 HSDPA @ 21.75 dBm	562.00	- mA	

	WCDMA B8 HSDPA @ 21.95 dBm	547.00	
	WCDMA B1 HSUPA @ 22.16 dBm	511.00	
	WCDMA B5 HSUPA @ 21.24 dBm	544.00	
	WCDMA B8 HSUPA @ 21.59 dBm	543.00	
	LTE-FDD B1 @ 23.92 dBm	631.00	_
	LTE-FDD B3 @ 23.36 dBm	655.00	_
LTE Data	LTE-FDD B5 @ 22.89 dBm	627.00	
	LTE-FDD B7 @ 23.81 dBm	825.00	mA
	LTE-FDD B8 @ 23.49 dBm	633.00	_
	LTE-FDD B20 @ 23.75 dBm	573.00	_
	LTE-FDD B28 @ 23.28 dBm	656.00	

Table 41: EG950A-LA Current Consumption

Description	Conditions	Тур.	Unit
Power-off	Power down	9.53	μΑ
	AT+CFUN=0 (USB disconnected)	1.12	
	WCDMA @ PF = 64 (USB disconnected)	3.11	
	WCDMA @ PF = 64 (USB suspended)	3.40	
	WCDMA @ PF = 128 (USB disconnected)	2.45	
Class State	WCDMA @ PF = 256 (USB disconnected)	2.17	A
Sleep State	WCDMA @ PF = 512 (USB disconnected)	1.92	— mA
	LTE-FDD @ PF = 32 (USB disconnected)	3.22	
	LTE-FDD @ PF = 64 (USB disconnected)	2.37	
	LTE-FDD @ PF = 64 (USB suspended)	2.63	
	LTE-FDD @ PF = 128 (USB disconnected)	2.14	

	LTE-FDD @ PF = 256 (USB disconnected)	1.90		
	WCDMA @ PF = 64 (USB disconnected)	18.89		
Idle State	WCDMA @ PF = 64 (USB connected)	33.65	mΛ	
idle State	LTE-FDD @ PF = 64 (USB disconnected)	18.45	— mA	
	LTE-FDD @ PF = 64 (USB connected)	33.22		
	WCDMA B1 @ 23.03 dBm	617.00		
WCDMA Voice	WCDMA B2 @ 23.10 dBm	577.00		
Communication	WCDMA B4 @ 22.75 dBm	495.00	mA	
	WCDMA B5 @ 22.68 dBm	591.00	_	
	WCDMA B8 @ 22.92 dBm	592.00		
	WCDMA B1 HSDPA @ 22.33 dBm	602.00		
	WCDMA B2 HSDPA @ 22.53 dBm	554.00		
	WCDMA B4 HSDPA @ 22.01 dBm	494.00		
	WCDMA B5 HSDPA @ 22.01 dBm	587.00		
WCDMA Data	WCDMA B8 HSDPA @ 22.18 dBm	588.00	— mA	
Transfer	WCDMA B1 HSUPA @ 21.67 dBm	563.00		
	WCDMA B2 HSUPA @ 21.73 dBm	523.00		
	WCDMA B4 HSUPA @ 20.98 dBm	458.00		
	WCDMA B5 HSUPA @ 21.20 dBm	545.00		
	WCDMA B8 HSUPA @ 20.61 dBm	539.00		
	LTE-FDD B1 @ 23.69 dBm	617.00		
	LTE-FDD B2 @ 23.03 dBm	550.00		
LTE Data Transfer	LTE-FDD B3 @ 23.82 dBm	667.00	mA	
	LTE-FDD B4 @ 23.60 dBm	560.00		
	LTE-FDD B5 @ 23.82 dBm	646.00		

LTE-FDD B7 @ 23.02 dBm	753.00
LTE-FDD B8 @ 23.84 dBm	635.00
LTE-FDD B28 @ 23.60 dBm	650.00
LTE-FDD B66 @ 23.83 dBm	578.00

6.4. Digital I/O Characteristics

Table 42: 1.8 V I/O Characteristics (Unit: V)

Parameters	Descriptions	Min.	Max.
VDD_EXT	I/O power supply	1.67	1.93
V _{IH}	High-level input voltage	0.7 × VDD_EXT	VDD_EXT + 0.2
V _{IL}	Low-level input voltage	-0.3	0.3 × VDD_EXT
VoH	High-level output voltage	VDD_EXT - 0.2	VDD_EXT
V _{OL}	Low-level output voltage	0	0.2

Table 43: SDIO Interface Low-voltage I/O Characteristics (Unit: V)

Parameters	Descriptions	Min.	Max.
SDIO_VDD	Power supply	1.67	1.93
V _{IH}	High-level input voltage	0.7 × SDIO_VDD	SDIO_VDD + 0.2
V _{IL}	Low-level input voltage	-0.3	0.3 × SDIO_VDD
V _{OH}	High-level output voltage	SDIO_VDD - 0.2	SDIO_VDD
V _{OL}	Low-level output voltage	0	0.2

Table 44: SDIO Interface High-voltage I/O Characteristics (Unit: V)

Parameters	Descriptions	Min.	Max.
SDIO_VDD	Power supply	2.7	3.05
V _{IH}	High-level input voltage	2.0	SDIO_VDD + 0.3
V _{IL}	Low-level input voltage	-0.3	0.8
V _{OH}	High-level output voltage	2.4	SDIO_VDD
V _{OL}	Low-level output voltage	0	0.4

Table 45: (U)SIM Interface Low-voltage I/O Characteristics (Unit: V)

Parameters	Descriptions	Min.	Max.
USIM_VDD	Power supply	1.67	1.93
V _{IH}	High-level input voltage	0.8 × USIM_VDD	USIM_VDD
V _{IL}	Low-level input voltage	-0.3	0.12 × USIM_VDD
V _{OH}	High-level output voltage	0.7 × USIM_VDD	USIM_VDD
VoL	Low-level output voltage	0	0.15 × USIM_VDD

Table 46: (U)SIM Interface High-voltage I/O Characteristics (Unit: V)

Parameters	Descriptions	Min.	Max.
USIM_VDD	Power supply	2.7	3.3
V _{IH}	High-level input voltage	0.8 × USIM_VDD	USIM_VDD
V _{IL}	Low-level input voltage	-0.3	0.12 × USIM_VDD
V _{OH}	High-level output voltage	0.7 × USIM_VDD	USIM_VDD
V _{OL}	Low-level output voltage	0	0.15 × USIM_VDD

6.5. ESD Protection

Static electricity occurs naturally and it may damage the module. Therefore, applying proper ESD countermeasures and handling methods is imperative. For example, wear anti-static gloves during the development, production, assembly and testing of the module; add ESD protection components to the ESD sensitive interfaces and points in the product design.

Table 47: ESD Characteristics (Temperature: 25–30 °C, Humidity: 40 ±5 %; Unit: kV)

Tested Interfaces	Contact Discharge	Air Discharge
VBAT, GND	±5	±10
All Antenna Interfaces	±5	±10
Other Interfaces	±0.5	±1

6.6. Operating and Storage Temperatures

Table 48: Operating and Storage Temperatures (Unit: °C)

Parameter	Min.	Тур.	Max.
Operating Temperature Range ⁵	-35	+25	+75
Extended Operation Range ⁶	-40	-	+85
Storage Temperature Range	-40	-	+90

operating temperature range, the module meets 3GPP specifications again.

-

⁵ Within this range, the module meets 3GPP specifications.

⁶ Within this range, the module remains the ability to establish and maintain functions such as voice, SMS, and data transmission, without any unrecoverable malfunction. Radio spectrum and radio network are not influenced, while one or more specifications, such as P_{out}, may exceed the specified tolerances of 3GPP. When the temperature returns to the

7 Mechanical Information

This chapter describes the mechanical dimensions of the module. All dimensions are measured in millimeter (mm), and the dimensional tolerances are ±0.2 mm unless otherwise specified.

7.1. Mechanical Dimensions

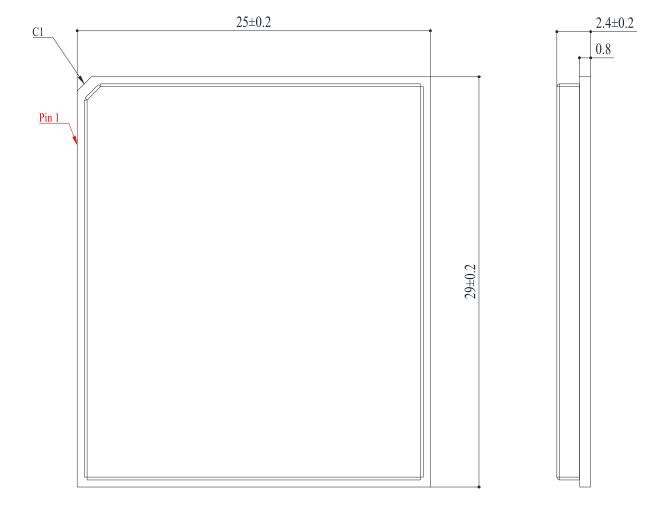


Figure 37: Top and Side Dimensions

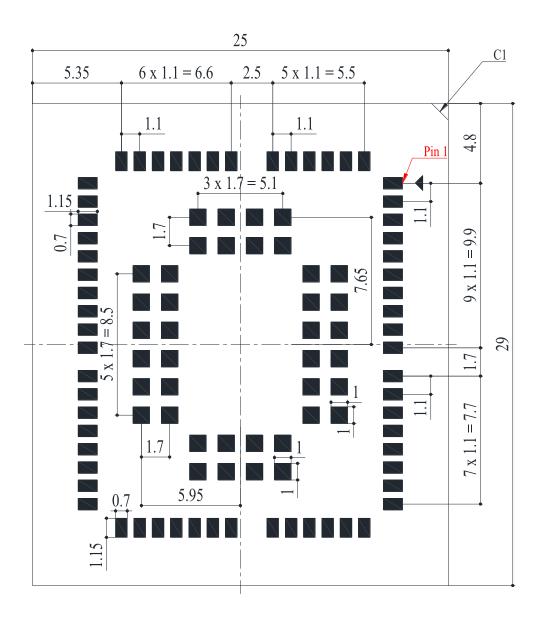


Figure 38: Bottom Dimensions

NOTE

The package warpage level of the module conforms to the *JEITA ED-7306* standard.

7.2. Recommended Footprint

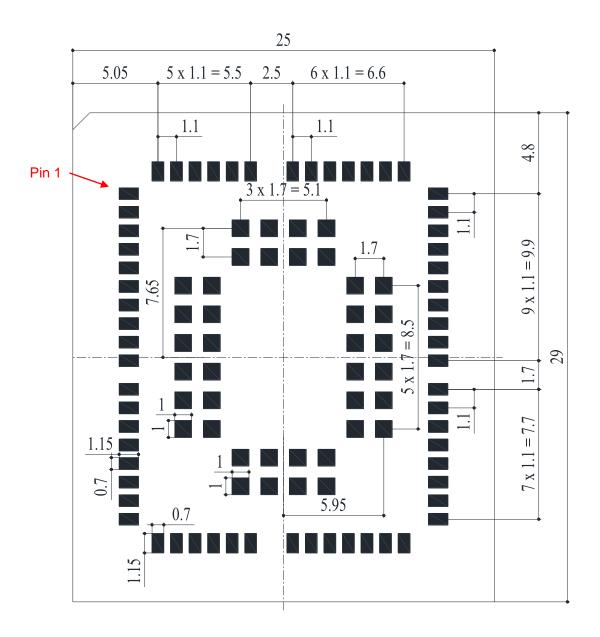


Figure 39: Recommended Footprint (Top View)

NOTE

Keep at least 3 mm between the module and other components on the motherboard to improve soldering quality and maintenance convenience.

7.3. Top and Bottom Views

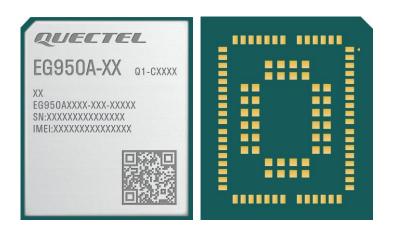


Figure 40: Top & Bottom Views of the Module

NOTE

Images above are for illustration purpose only and may differ from the actual module. For authentic appearance and label, please refer to the module received from Quectel.

8 Storage, Manufacturing & Packaging

8.1. Storage Conditions

The module is provided with vacuum-sealed packaging. MSL of the module is rated as 3. The storage requirements are shown below.

- 1. Recommended storage condition: the temperature should be 23 ±5 °C and the relative humidity should be 35–60 %.
- 2. Shelf life (in a vacuum-sealed packaging): 12 months in recommended storage condition.
- 3. Floor life: 168 hours ⁷ in a factory where the temperature is 23 ±5 °C and relative humidity is below 60 %. After the vacuum-sealed packaging is removed, the module must be processed in reflow soldering or other high-temperature operations within 168 hours. Otherwise, the module should be stored in an environment where the relative humidity is less than 10 % (e.g., a dry cabinet).
- 4. The module should be pre-baked to avoid blistering, cracks and inner-layer separation in PCB under the following circumstances:
 - The module is not stored in recommended storage condition;
 - Violation of the third requirement mentioned above;
 - Vacuum-sealed packaging is broken, or the packaging has been removed for over 24 hours;
 - Before module repairing.
- 5. If needed, the pre-baking should follow the requirements below:
 - The module should be baked for 8 hours at 120 ±5 °C;
 - The module must be soldered to PCB within 24 hours after the baking, otherwise it should be put in a dry environment such as in a dry cabinet.

⁷ This floor life is only applicable when the environment conforms to *IPC/JEDEC J-STD-033*. It is recommended to start the solder reflow process within 24 hours after the package is removed if the temperature and moisture do not conform to, or are not sure to conform to *IPC/JEDEC J-STD-033*. And do not unpack the modules in large quantities until they are ready for soldering.

NOTE

- 1. To avoid blistering, layer separation and other soldering issues, extended exposure of the module to the air is forbidden.
- 2. Take out the module from the package and put it on high-temperature-resistant fixtures before baking. If shorter baking time is desired, see *IPC/JEDEC J-STD-033* for the baking procedure.
- 3. Pay attention to ESD protection, such as wearing anti-static gloves, when touching the modules.

8.2. Manufacturing and Soldering

Push the squeegee to apply the solder paste on the surface of stencil, thus making the paste fill the stencil openings and then penetrate to the PCB. Apply proper force on the squeegee to produce a clean stencil surface on a single pass. To guarantee module soldering quality, the thickness of stencil for the module is recommended to be 0.13–0.15 mm. For more details, see **document [6]**.

The recommended peak reflow temperature should be 235–246 °C, with 246 °C as the absolute maximum reflow temperature. To avoid damage to the module caused by repeated heating, it is recommended that the module should be mounted only after reflow soldering for the other side of PCB has been completed. The recommended reflow soldering thermal profile (lead-free reflow soldering) and related parameters are shown below:

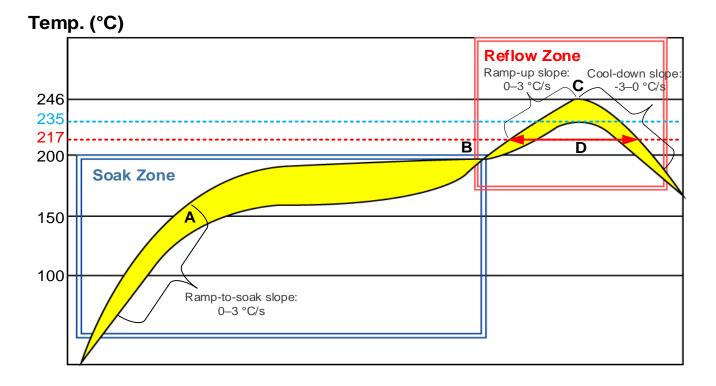


Figure 41: Recommended Reflow Soldering Thermal Profile

Table 49: Recommended Thermal Profile Parameters

Factor	Recommended Value
Soak Zone	
Ramp-to-soak slope	0–3 °C/s
Soak time (between A and B: 150 °C and 200 °C)	70–120 s
Reflow Zone	
Ramp-up slope	0–3 °C/s
Reflow time (D: over 217°C)	40–70 s
Max temperature	235–246 °C
Cool-down slope	-3-0 °C/s
Reflow Cycle	
Max reflow cycle	1

NOTE

- 1. The above profile parameter requirements are for the measured temperature of the solder joints. Both the hottest and coldest spots of solder joints on the PCB should meet the above requirements.
- 2. During manufacturing and soldering, or any other processes that may contact the module directly, never wipe the module's shielding can with organic solvents, such as acetone, ethyl alcohol, isopropyl alcohol, trichloroethylene, etc. Otherwise, the shielding may become rusted.
- 3. The shielding can for the module is made of Cupro-Nickel base material. It is tested that after 12 hours' Neutral Salt Spray test, the laser engraved label information on the shielding can is still clearly identifiable and the QR code is still readable, although white rust may be found.
- 4. If a conformal coating is necessary for the module, do not use any coating material that may chemically react with the PCB or shielding cover, and prevent the coating material from flowing into the module.
- 5. Avoid using ultrasonic technology for module cleaning since it can damage crystals inside the module.
- 6. Due to the complexity of the SMT process, please contact Quectel Technical Support in advance for any situation that you are not sure about, or any process (e.g. selective wave soldering, ultrasonic soldering) that is not mentioned in *document* [6].

8.3. Packaging Specification

This chapter describes only the key parameters and process of packaging. All figures below are for reference only. The appearance and structure of the packaging materials are subject to the actual delivery.

The module adopts carrier tape packaging and details are as follow:

8.3.1. Carrier Tape

Dimension details are as follow:

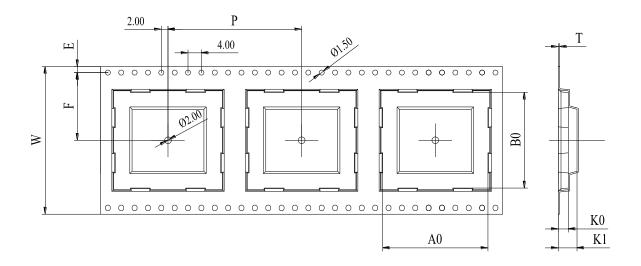


Figure 42: Carrier Tape Dimension Drawing

Table 50: Carrier Tape Dimension Table (Unit: mm)

W	Р	Т	A0	В0	K0	K1	F	E
44	32	0.35	25.5	29.5	3.2	5.8	20.2	1.75

8.3.2. Plastic Reel

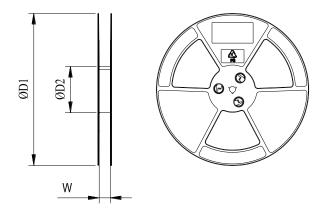
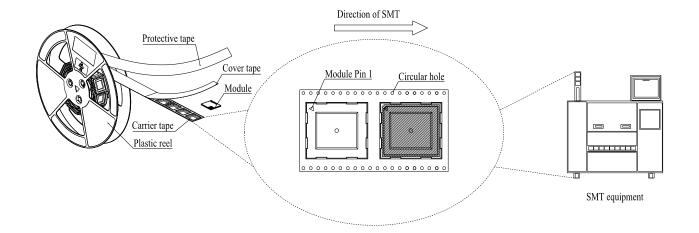



Figure 43: Plastic Reel Dimension Drawing

Table 51: Plastic Reel Dimension Table (Unit: mm)

øD1	øD2	W
330	100	44.5

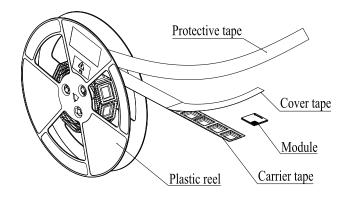
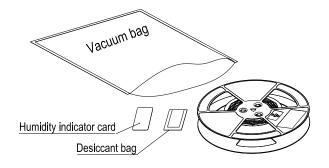
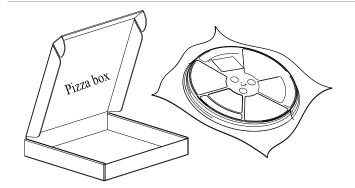

8.3.3. Mounting Direction

Figure 44: Mounting Direction




8.3.4. Packaging Process

Place the module into the carrier tape and use the cover tape to cover it; then wind the heat-sealed carrier tape to the plastic reel and use the protective tape for protection. 1 plastic reel can load 250 modules.

Place the packaged plastic reel, 1 humidity indicator card and 1 desiccant bag into a vacuum bag, vacuumize it.

Place the vacuum-packed plastic reel into the pizza box.

Put 4 packaged pizza boxes into 1 carton box and seal it. 1 carton box can pack 1000 modules.

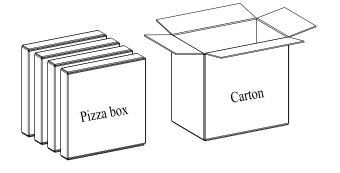


Figure 45: Packaging Process

9 Appendix References

Table 52: Related Documents

Document Name
[1] Quectel_UMTS<E_EVB_User_Guide
[2] Quectel_LTE_Standard(A)_Series_AT_Commands_Manual
[3] Quectel_EC200x&EG912Y&EG91xN&EG950A_Series_Audio_Application_Note
[4] Quectel_EG915N&EG950A_Series_GNSS_Application_Note
[5] Quectel_RF_Layout_Application_Note
[6] Quectel_Module_SMT_Application_Note

Table 53: Terms and Abbreviations

Abbreviation	Description
AMR	Adaptive Multi-Rate
bps	Bytes per second
CHAP	Challenge Handshake Authentication Protocol
CS	Coding Scheme
CTS	Clear To Send
DRX	Discontinuous Reception
EFR	Enhanced Full Rate
ESD	Electrostatic Discharge
EVB	Evaluation Board
FDD	Frequency Division Duplexing

FR	Full Rate
FTP	File Transfer Protocol
FTPS	FTP over SSL
GLONASS	Global Navigation Satellite System (Russia)
GND	Ground
GNSS	Global Navigation Satellite System
GPS	Global Positioning System
HR	Half Rate
HSDPA	High Speed Downlink Packet Access
HTTP	Hypertext Transfer Protocol
HTTPS	Hypertext Transfer Protocol Secure
LGA	Land Grid Array
LTE	Long Term Evolution
MCU	Microcontroller Unit/Microprogrammed Control Unit
MMS	Multimedia Messaging Service
MO	Mobile Origination
MSB	Most Significant Bit
NMEA	National Marine Electronics Association
NTP	Network Time Protocol
PAP	Password Authentication Protocol
PCB	Printed Circuit Board
PCM	Pulse Code Modulation
PDU	Protocol Data Unit
PING	Packet Internet Groper
PPP	Point-to-Point Protocol

QAM	Quadrature Amplitude Modulation
QPSK	Quadrature Phase Shift Keying
QZSS	Quasi-Zenith Satellite System
RF	Radio Frequency
RoHS	Restriction of Hazardous Substances
RTS	Request To Send
SDIO	Secure Digital Input/Output Card
SMS	Short Message Service
SMTP	Simple Mail Transfer Protocol
SMTPS	Simple Mail Transfer Protocol Secure
SPI	Serial Peripheral Interface
SSL	Secure Sockets Layer
TCP	Transmission Control Protocol
TDD	Time Division Duplexing
UART	Universal Asynchronous Receiver/Transmitter
UDP	User Datagram Protocol
UMTS	Universal Mobile Telecommunications System
URC	Unsolicited Result Code
USB	Universal Serial Bus
(U)SIM	(Universal) Subscriber Identity Module
Vmax	Maximum Voltage
Vnom	Nominal Voltage
Vmin	Minimum Voltage
V _{IL} max	Maximum Low-level Input Voltage
VSWR	Voltage Standing Wave Ratio

WCDMA	Wideband Code Division Multiple Access
WLAN	Wireless Local Area Network

FCC Certification Requirements.

According to the definition of mobile and fixed device is described in Part 2.1091(b), this device is a mobile device.

And the following conditions must be met:

- 1. This Modular Approval is limited to OEM installation for mobile and fixed applications only. The antenna installation and operating configurations of this transmitter, including any applicable source-based time-averaging duty factor, antenna gain and cable loss must satisfy MPE categorical Exclusion Requirements of 2.1091.
- 2. The EUT is a mobile device; maintain at least a 20 cm separation between the EUT and the user's body and must not transmit simultaneously with any other antenna or transmitter.
- 3.A label with the following statements must be attached to the host end product: This device contains FCC ID: XMR2023EG950ALA.
- 4.To comply with FCC regulations limiting both maximum RF output power and human exposure to RF radiation, maximum antenna gain (including cable loss) must not exceed:
- WCDMA Band 2,LTE Band 2:≤1.590 dBi
- □ WCDMA Band 4.LTE Band 4/66: ≤2.000 dBi
- ☐ WCDMA Band 5.LTE Band 5:≤2.530dBi
- ☐ LTE Band 7: ≤3.000dBi
- 5. This module must not transmit simultaneously with any other antenna or transmitter
- 6. The host end product must include a user manual that clearly defines operating requirements and conditions that must be observed to ensure compliance with current FCC RF exposure guidelines.

For portable devices, in addition to the conditions 3 through 6 described above, a separate approval is required to satisfy the SAR requirements of FCC Part 2.1093

If the device is used for other equipment that separate approval is required for all other operating configurations, including portable configurations with respect to 2.1093 and different antenna configurations.

For this device, OEM integrators must be provided with labeling instructions of finished products. Please refer to KDB784748 D01 v07, section 8. Page 6/7 last two paragraphs:

A certified modular has the option to use a permanently affixed label, or an electronic label. For a permanently affixed label, the module must be labeled with an FCC ID - Section 2.926 (see 2.2 Certification (labeling requirements) above). The OEM manual must provide clear instructions explaining to the OEM the labeling requirements, options and OEM user manual instructions that are required (see next paragraph).

For a host using a certified modular with a standard fixed label, if (1) the module's FCC ID is not visible when installed in the host, or (2) if the host is marketed so that end users do not have straightforward commonly used methods for access to remove the module so that the FCC ID of the module is visible; then an additional permanent label referring to the enclosed module: "Contains Transmitter Module FCC ID: XMR2023EG950ALA." or "Contains FCC ID: XMR2023EG950ALA." must be used. The host OEM user manual must also contain clear instructions on how end users can find and/or access the module and the FCC ID.

The final host / module combination may also need to be evaluated against the FCC Part 15B criteria for unintentional radiators in order to be properly authorized for operation as a Part 15 digital device.

The user's manual or instruction manual for an intentional or unintentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment. In cases where the manual is provided only in a form other than paper, such as on a computer disk or over the Internet, the information required by this section may be included in the manual in that alternative form, provided the user can reasonably be expected to have the capability to access information in that form.

Changes or modifications not expressly approved by the manufacturer could void the user's authority to operate the equipment.