

FCC Test Report

APPLICANT	:	Quectel Wireless Solutions Co., Ltd.
EQUIPMENT	:	NTN Satellite Communication Module
BRAND NAME	:	Quectel
MODEL NAME	:	CC660D-LS
FCC ID	:	XMR2023CC660DLS
STANDARD	:	47 CFR Part 15 Subpart B
CLASSIFICATION	:	Certification
TEST DATE(S)	:	Aug. 28, 2023 ~ Sep. 06, 2023

We, Sporton International Inc. (Kunshan), would like to declare that the tested sample has been evaluated in accordance with the test procedures given in ANSI C63.4-2014 and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. (Kunshan), the test report shall not be reproduced except in full.

JasonJia

Approved by: Jason Jia

Sporton International Inc. (Kunshan) No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China

TABLE OF CONTENTS

RE	VISION	N HISTORY	.3
SU	MMAR	Y OF TEST RESULT	.4
1.	GENE	RAL DESCRIPTION	.5
	1.1. 1.2.	Applicant Manufacturer	
	1.2. 1.3.	Product Feature of Equipment Under Test	
	1.4. 1.5.	Product Specification of Equipment Under Test	
	1.6.	Test Location	.6
	1.7. 1.8.	Test Software Applicable Standards	
2.	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	.7
	2.1. 2.2.	Test Mode Connection Diagram of Test System	
	2.3.	Support Unit used in test configuration and system	.8
_	2.4.	EUT Operation Test Setup	
3.	TEST	RESULT	
	3.1. 3.2.	Test of AC Conducted Emission Measurement1 Test of Radiated Emission Measurement1	
л	0	OF MEASURING EQUIPMENT	
4.			
5.	MEAS	SUREMENT UNCERTAINTY1	8

APPENDIX A. SETUP PHOTOGRAPHS

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FC380410	Rev. 01	Initial issue of report	Oct. 20, 2023

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
					Under limit
3.1	15.107	AC Conducted Emission	< 15.107 limits	PASS	11.02 dB at
					0.156 MHz
					Under limit
3.2	15.109	Radiated Emission	< 15.109 limits	PASS	7.07 dB at
					43.580 MHz

Conformity Assessment Condition:

The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account. Please refer to each test results in the section "Measurement Uncertainty".

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

1. General Description

1.1. Applicant

Quectel Wireless Solutions Co., Ltd.

Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai, China 200233

1.2. Manufacturer

Quectel Wireless Solutions Co., Ltd.

Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai, China 200233

1.3. Product Feature of Equipment Under Test

	Product Feature
Equipment	NTN Satellite Communication Module
Brand Name	Quectel
Model Name	CC660D-LS
FCC ID	XMR2023CC660DLS
EUT supports Radios application	MES
IMEI / S/N Code	Conduction: 860952060002657
INIEL / S/N Code	Radiation: E1Y23GP4W000012
HW Version	R1.0
SW Version	CC660DLSAAR01A02
EUT Stage	Identical Prototype

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4. Product Specification of Equipment Under Test

Standards-related Product Specification			
Tx Frequency	Band 23 : 2000 MHz ~ 2020 MHz		
1 ,	Band 255 : 1626.5 MHz ~ 1660.5 MHz		
Rx Frequency	Band 23 : 2180 MHz ~ 2200 MHz		
RATiequency	Band 255 : 1525 MHz ~1559 MHz		
Antenna Type MES: PCB Antenna			
Type of Modulation MES: BPSK/QPSK			

1.5. Modification of EUT

No modifications are made to the EUT during all test items.

1.6. Test Location

Sporton International Inc. (Kunshan) is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Test Firm	Sporton International Inc. (Kunshan)					
165111111	Sporton international inc.	(Runshan)				
	No. 1098, Pengxi North F	No. 1098, Pengxi North Road, Kunshan Economic Development Zone				
Test Site Location	iangsu Province 215300 People's Republic of China EL : +86-512-57900158					
Sporton Site No. FCC Designation No. FCC Test Registration						
Test Site No.	CO01-KS 03CH07-KS	CN1257	314309			

1.7. Test Software

lte	em	Site	Manufacturer	Name	Version
1	1.	03CH07-KS	AUDIX	E3	210616
	2.	CO01-KS	AUDIX	E3	6.2009-8-24

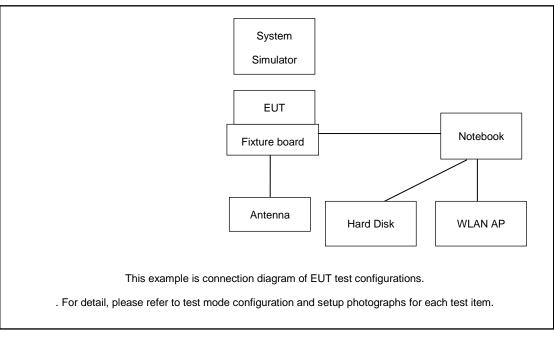
1.8. Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart B
- ANSI C63.4-2014

Remark: All test items were verified and recorded according to the standards and without any deviation during the test.

2. Test Configuration of Equipment Under Test


2.1. Test Mode

The EUT has been associated with peripherals pursuant to ANSI C63.4-2014 and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (30MHz to the 5th harmonic of the highest frequency or to 40 GHz, whichever is lower).

Test Items	Function Type			
AC Conducted Emission Mode 1: Band 23 Idle + Charging from Fixture board Mode 2: Band 255 Idle + Charging from Fixture board				
Radiated Emissions	Mode 1: Band 23 Idle + Charging from Fixture board Mode 2: Band 255 Idle + Charging from Fixture board			
Remark:				
1. The worst case of AC is mode 2; only the test data of this mode is reported.				

2. The worst case of RE is mode 1; only the test data of this mode is reported.

2.2.Connection Diagram of Test System

The EUT has been associated with peripherals pursuant to ANSI C63.4-2014 and configuration operated in a manner tended to maximize its emission characteristics in a typical application

2.3. Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	R&S	CMW500	Fcc DoC	N/A	Shielded, 1.5m
2.	WLAN AP	TP-Link	TL-WDR5600	N/A	N/A	Unshielded, 1.8 m
3.	WLAN AP	D-link	DIR-655	KA21R655B1	N/A	Unshielded,1.8m
4.	Notebook	Lenovo	V130-14IKB001	N/A	N/A	AC I/P: Unshielded, 1.8 m DC O/P: Shielded, 1.8 m
5.	Hard Disk	KINGSHARE	KSP6120G	N/A	N/A	Unshielded, 1.8 m
6.	Hard Disk	Lenovo	F310	DoC	Shielded, 1.2m	N/A
7.	Fixture board	N/A	N/A	N/A	N/A	N/A
8.	Antenna	N/A	N/A	N/A	N/A	N/A

2.4. EUT Operation Test Setup

The following programs installed in the EUT were programmed during the test.

1. MES band Idle with base-station.

3. Test Result

3.1. Test of AC Conducted Emission Measurement

3.1.1 Limits of AC Conducted Emission

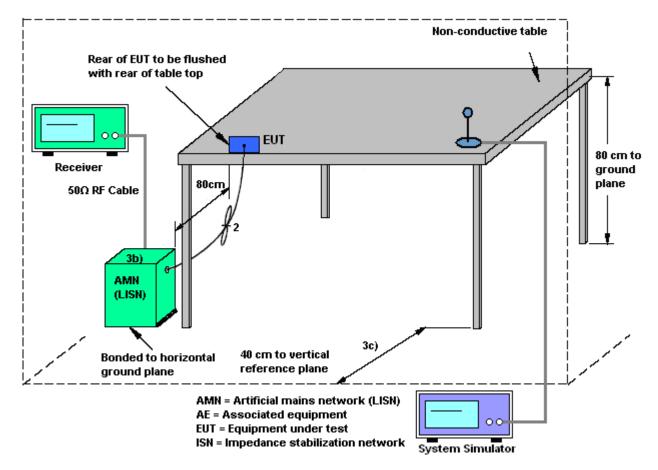
For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

<Class B Limit>

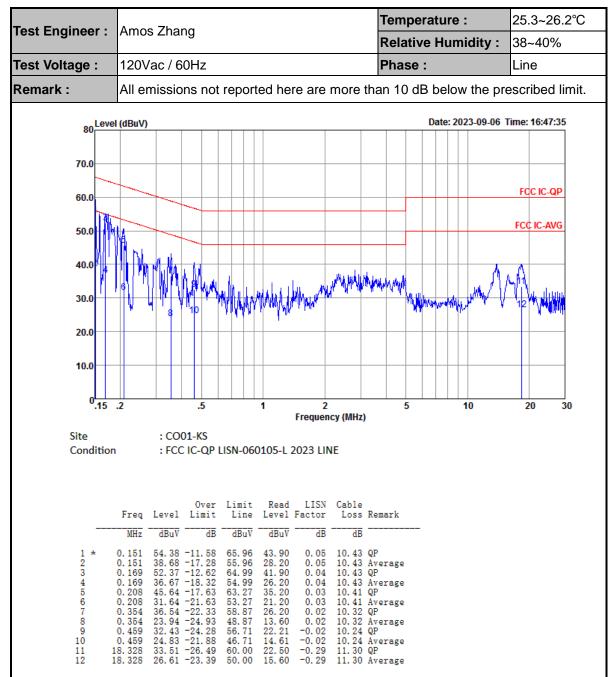
Frequency of emission	Conducted	limit (dBuV)
(MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

*Decreases with the logarithm of the frequency.

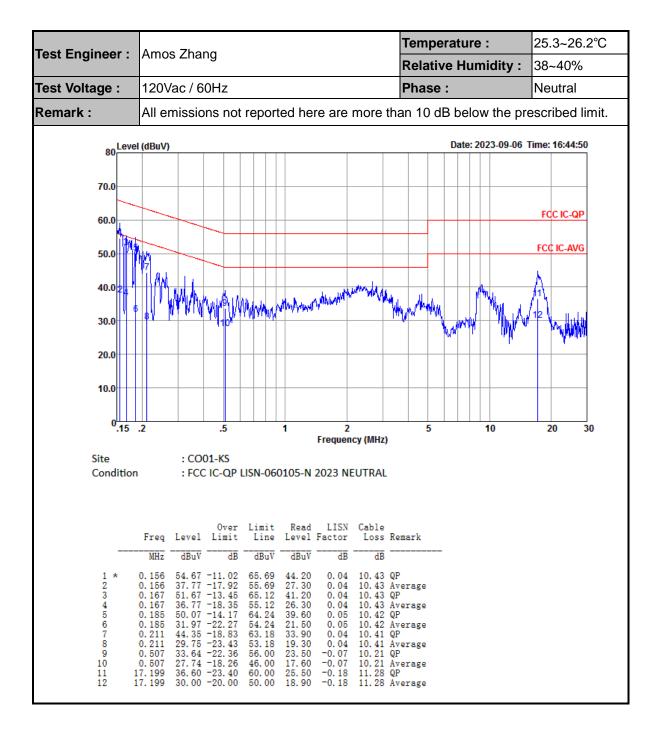
3.1.2 Measuring Instruments


The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedure


- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.1.4 Test Setup



3.1.5 Test Result of AC Conducted Emission

Note:

- 1. Level(dBµV) = Read Level(dBµV) + LISN Factor(dB) + Cable Loss(dB)
- 2. Over Limit(dB) = Level(dB μ V) Limit Line(dB μ V)

3.2. Test of Radiated Emission Measurement

3.2.1. Limit of Radiated Emission

The emissions from an unintentional radiator shall not exceed the field strength levels specified in the following table:

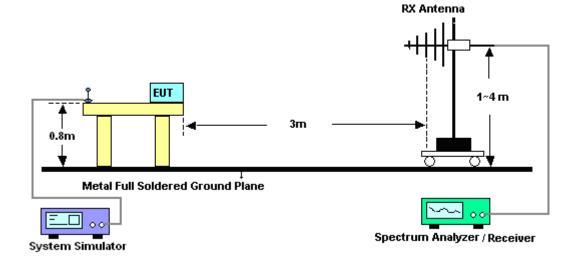
<Class B Limit>

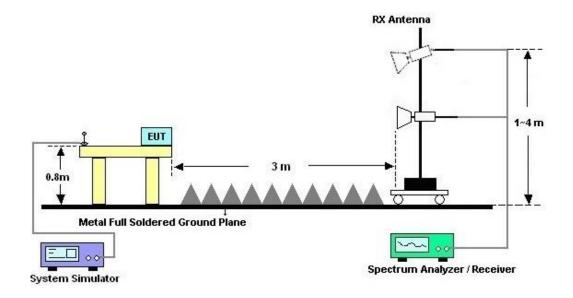
Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

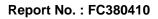
3.2.2. Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.2.3. Test Procedures

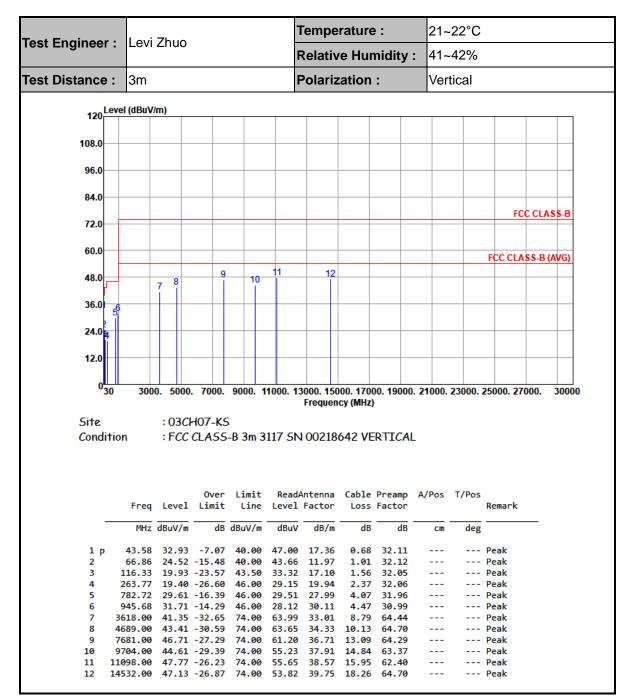

- 1. The EUT was placed on a turntable with 0.8 meter above ground.
- 2. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3. The table was rotated 360 degrees to determine the position of the highest radiation.
- 4. The antenna is a Bi-Log antenna and its height is adjusted between one to four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
- 5. For each suspected emission, the EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
- Set the test-receiver system to Peak Detect Function and specified bandwidth with Maximum Hold Mode (RBW=120kHz/VBW=300kHz for frequency below 1GHz; RBW=1MHz VBW=3MHz (Peak), RBW=1MHz/VBW=10Hz (Average) for frequency above 1GHz).
- 7. If the emission level of the EUT in peak mode was 3 dB lower than the limit specified, peak values of EUT will be reported. Otherwise, the emission will be repeated by using the quasi-peak method and reported.
- 8. Emission level $(dB\mu V/m) = 20 \log Emission level (\mu V/m)$
- 9. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level


10. Exploratory radiated emissions testing of handheld and/or body-worn devices shall include rotation of the EUT through three orthogonal axes (X/Y/Z Plane) to determine the orientation (attitude) that maximizes the emissions.


3.2.4. Test Setup of Radiated Emission

For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz



. <u></u> .		Levi Zhuo 3m				Temperature : Relative Humidity : Polarization :			21~	21~22°C 41~42% Horizontal		
est Engineer	: Levi								: 41~			
est Distance	: 3m								Hor			
120 ^L	evel (dBuV	//m)										
108.0												
96.0												
84.0												
											FCC	CLASS-B
72.0												
60.0											FCC CLAS	S-B (AVG)
48.0			9	10	11	12						
ſ		7	8 Ĭ	Ĩ								
36.0	6 5					+						
24.0	4											
12.0												
12.0												
03	0 300	0. 5000	. 7000.	9000. 1	1000. 13	3000. 150	000. 170	00. 19000	. 21000.	23000.	25000. 270	00. 3000
						Frequen	cy (MHz))				
Site	•:		H07-KS		117 ()	100240	120.110		TAL			
Condi	rion	FCC	CLASS	-B 3M 3	117 51	100240	138 HC	DRIZON	HAL			
			_					_				
	Freq	Level		Limit Line		Antenna Factor		Preamp Factor	A/Pos	T/Pos	Remark	
-		Level	Limit	Line		Factor					Remark	_
-	MHz	dBuV/m	Limit dB	Line dBuV/m	Level dBuV	Factor 	Loss dB	Factor dB	cm	deg		_
1	MHz 37.76	dBuV/m	Limit dB -16.08	Line dBuV/m 40.00	Level dBuV 34.77	Factor dB/m 20.70	Loss 	Factor dB 32.15		deg	Peak	_
1 2 3	MHz	dBuV/m 23.92 24.28	Limit dB -16.08 -15.72	Line dBuV/m 40.00	Level dBuV 34.77 43.42	Factor dB/m 20.70 11.97	Loss 	Factor dB	cm	deg 		_
2	MHz 37.76 66.86	dBuV/m 23.92 24.28 20.40	Limit dB -16.08 -15.72 -23.10	Line dBuV/m 40.00 40.00	Level dBuV 34.77 43.42 33.49	Factor dB/m 20.70 11.97 17.35	Loss dB 0.60 1.01 1.61	Factor dB 32.15 32.12		deg 	Peak Peak	_
2 3	MHz 37.76 66.86 124.09 496.57	dBuV/m 23.92 24.28 20.40 24.06	Limit dB -16.08 -15.72 -23.10 -21.94	Line dBuV/m 40.00 40.00 43.50	Level dBuV 34.77 43.42 33.49 29.40	Factor dB/m 20.70 11.97 17.35 23.65	Loss dB 0.60 1.01 1.61 3.25	Factor dB 32.15 32.12 32.05		deg 	Peak Peak Peak	_
2 3 4	MHz 37.76 66.86 124.09 496.57	dBuV/m 23.92 24.28 20.40 24.06 28.64	Limit dB -16.08 -15.72 -23.10 -21.94 -17.36	Line dBuV/m 40.00 40.00 43.50 46.00 46.00	Level dBuV 34.77 43.42 33.49 29.40 29.06	Factor dB/m 20.70 11.97 17.35 23.65	Loss dB 0.60 1.01 1.61 3.25 3.98	Factor dB 32.15 32.05 32.24	cm 	deg 	Peak Peak Peak Peak Peak	_
2 3 4 5 6 p 7	MHz 37.76 66.86 124.09 496.57 743.92 949.56 4247.00	dBuV/m 23.92 24.28 20.40 24.06 28.64 31.83 40.25	Limit dB -16.08 -15.72 -23.10 -21.94 -17.36 -14.17 -33.75	Line dBuV/m 40.00 40.00 43.50 46.00 46.00 46.00 74.00	Level dBuV 34.77 43.42 33.49 29.40 29.06 28.12 61.64	Factor dB/m 20.70 11.97 17.35 23.65 27.68 30.19 33.58	Loss dB 0.60 1.01 1.61 3.25 3.98 4.48 9.66	Factor dB 32.15 32.12 32.05 32.24 32.08 30.96 64.63	cm	deg 	Peak Peak Peak Peak Peak Peak Peak	_
2 3 4 5 7 7 8	MHz 37.76 66.86 124.09 496.57 743.92 949.56 4247.00 6015.00	dBuV/m 23.92 24.28 20.40 24.06 28.64 31.83 40.25 43.37	Limit dB -16.08 -15.72 -23.10 -21.94 -17.36 -14.17 -33.75 -30.63	Line dBuV/m 40.00 40.00 43.50 46.00 46.00 46.00 74.00 74.00	Level dBuV 34.77 43.42 33.49 29.40 29.06 28.12 61.64 61.19	Factor dB/m 20.70 11.97 17.35 23.65 27.68 30.19 33.58 35.11	Loss dB 0.60 1.01 1.61 3.25 3.98 4.48 9.66 11.53	Factor dB 32.15 32.12 32.05 32.24 32.08 30.96 64.63 64.46	cm	deg 	Peak Peak Peak Peak Peak Peak Peak Peak	_
2 3 4 5 6 p 7 8 9	MHz 37.76 66.86 124.09 496.57 743.92 949.56 4247.00 6015.00 7426.00	dBuV/m 23.92 24.28 20.40 24.06 28.64 31.83 40.25 43.37 46.13	Limit dB -16.08 -15.72 -23.10 -21.94 -17.36 -14.17 -33.75 -30.63 -27.87	Line dBuV/m 40.00 40.00 43.50 46.00 46.00 46.00 74.00 74.00 74.00	Level dBuV 34.77 43.42 33.49 29.40 29.06 28.12 61.64 61.19 62.00	Factor dB/m 20.70 11.97 17.35 23.65 27.68 30.19 33.58 35.11 35.60	Loss dB 0.60 1.01 1.61 3.25 3.98 4.48 9.66 11.53 12.86	Factor dB 32.15 32.12 32.05 32.24 32.08 30.96 64.63 64.63 64.46 64.33	 	deg 	Peak Peak Peak Peak Peak Peak Peak Peak	
2 3 4 5 6 p 7 8 9 10	MHz 37.76 66.86 124.09 496.57 743.92 949.56 4247.00 6015.00	dBuV/m 23.92 24.28 20.40 24.06 28.64 31.83 40.25 43.37 46.13 45.30	Limit dB -16.08 -15.72 -23.10 -21.94 -17.36 -14.17 -33.75 -30.63 -27.87 -28.70	Line dBuV/m 40.00 40.00 43.50 46.00 46.00 74.00 74.00 74.00 74.00	Level dBuV 34.77 43.42 33.49 29.40 29.40 28.12 61.64 61.19 62.00 56.57	Factor dB/m 20.70 11.97 17.35 23.65 27.68 30.19 33.58 35.11 35.60 36.89	Loss dB 0.60 1.01 1.61 3.25 3.98 4.48 9.66 11.53 12.86 15.14	Factor dB 32.15 32.12 32.05 32.24 32.08 30.96 64.63 64.46	cm	deg 	Peak Peak Peak Peak Peak Peak Peak Peak	_

3.2.5. Test Result of Radiated Emission

Note:

- Level(dBµV/m) = Read Level(dBµV) + Antenna Factor(dB/m) + Cable Loss(dB) Preamp Factor(dB)
- 2. Over $Limit(dB) = Level(dB\mu V/m) Limit Line(dB\mu V/m)$

4. List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
EMI Receiver	R&S	ESCI7	100768	9kHz~7GHz;	May 16, 2023	Sep. 06, 2023	May 15, 2024	Conduction (CO01-KS)
AC LISN (for auxiliary equipment)	MessTec	AN3016	060103	9kHz~30MHz	Oct. 13, 2022	Sep. 06, 2023	Oct. 12, 2023	Conduction (CO01-KS)
AC LISN	MessTec	AN3016	060105	9kHz~30MHz	May 16, 2023	Sep. 06, 2023	May 15, 2024	Conduction (CO01-KS)
AC Power Source	Chroma	61602	ABP0000008 11	AC 0V~300V, 45Hz~1000Hz	Oct. 12, 2022	Sep. 06, 2023	Oct. 11, 2023	Conduction (CO01-KS)
EMI Test Receiver	R&S	ESR7	101403	9kHz~7GHz;Ma x 30dBm	Oct. 12, 2022	Aug. 28, 2023	Oct. 11, 2023	Radiation (03CH07-KS)
EXA Spectrum Analyzer	Keysight	N9010A	MY55370528	10Hz-44G,MAX 30dB	Oct. 12, 2022	Aug. 28, 2023	Oct. 11, 2023	Radiation (03CH07-KS)
Bilog Antenna	TeseQ	CBL6111D	59913	30MHz-1GHz	Aug. 12, 2023	Aug. 28, 2023	Aug. 11, 2024	Radiation (03CH07-KS)
Double Ridge Horn Antenna	ETS-Lindgren	3117	00218642	1GHz~18GHz	Apr. 06, 2023	Aug. 28, 2023	Apr. 05, 2024	Radiation (03CH07-KS)
SHF-EHF Horn	Com-power	AH-840	101115	18GHz~40GHz	Oct. 17, 2022	Aug. 28, 2023	Oct. 16, 2023	Radiation (03CH07-KS)
Amplifier	EM	EM18G40GGA	060851	18~40GHz	Jan. 05, 2023	Aug. 28, 2023	Jan. 04, 2024	Radiation (03CH07-KS)
Amplifier	SONOMA	310N	413741	9KHz-1GHz	Jan. 05, 2023	Aug. 28, 2023	Jan. 04, 2024	Radiation (03CH07-KS)
Amplifier	EM	EM01G18GA	060834	1Ghz-18Ghz	Oct. 12, 2022	Aug. 28, 2023	Oct. 11, 2023	Radiation (03CH07-KS)
AC Power Source	Chroma	61601	61601000247 3	N/A	NCR	Aug. 28, 2023	NCR	Radiation (03CH07-KS)
Turn Table	EM	EM 1000-T	N/A	0~360 degree	NCR	Aug. 28, 2023	NCR	Radiation (03CH07-KS)
Antenna Mast	EM	EM 1000-A	N/A	1 m~4 m	NCR	Aug. 28, 2023	NCR	Radiation (03CH07-KS)

NCR: No Calibration Required

5. Measurement Uncertainty

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.94dB
of 95% (U = 2Uc(y))	2.940B

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	6.20dB
--	--------

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	4.86dB
of 95% (U = 2Uc(y))	4.000B

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.24dB
of 95% (U = 2Uc(y))	5.240B