

MPE TEST REPORT

Applicant Quectel Wireless Solutions Co., Ltd.

FCC ID XMR2023BG773AGL

Product LTE Module

Brand Quectel

Model BG773A-GL

Report No. R2211A1099-M1

Issue Date March 21, 2023

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **FCC 47 CFR Part 1 1.1310**. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Prepared by: Wei Fangying

Wei Fungying

Approved by: Fan Guangchang

Fan Guangchang

TA Technology (Shanghai) Co., Ltd.

Building 3, No.145, Jintang Rd, Pudong Shanghai, P.R.China TEL: +86-021-50791141/2/3

FAX: +86-021-50791141/2/3-8000

Report No.: R2211A1099-M1

1	Tes	t Laboratory	3
1	.1	Notes of the Test Report	3
1	.2.	Test facility	3
1	.3	Testing Location	3
1	.4	Laboratory Environment	4
2	Des	scription of Equipment under Test	5
3	Max	ximum conducted output power (measured) and antenna Gain	7
4	Tes	t Result	8
ΑN	NEX	A: The EUT Appearance	12
ΑN	NEX	B: Product Change Description (Variant 1)	13
ΑN	NEX	C: Product Change Description (Variant 2)	14

Table of Contents

Test Laboratory

1.1 **Notes of the Test Report**

This report shall not be reproduced in full or partial, without the written approval of TA technology

(shanghai) co., Ltd. The results documented in this report apply only to the tested sample, under the

conditions and modes of operation as described herein .Measurement Uncertainties were not taken

into account and are published for informational purposes only. This report is written to support

regulatory compliance of the applicable standards stated above.

1.2. Test facility

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform measurements.

Testing Location

Company:

TA Technology (Shanghai) Co., Ltd.

Address:

Building 3, No.145, Jintang Rd, Pudong Shanghai, P.R.China

City:

Shanghai

Post code:

201201

Country:

P. R. China

Contact:

Fan Guangchang

Telephone:

+86-021-50791141/2/3

Fax:

+86-021-50791141/2/3-8000

Website:

http://www.ta-shanghai.com

E-mail:

fanguangchang@ta-shanghai.com

MPE Test Report No.: R2211A1099-M1

1.4 Laboratory Environment

Temperature	Min. = 18°C, Max. = 25 °C		
Relative humidity	Min. = 30%, Max. = 70%		
Ground system resistance	< 0.5 Ω		
Ambient noise is checked and found very lo	w and in compliance with requirement of standards.		

Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards.

2 Description of Equipment under Test

Client Information

Applicant	Quectel Wireless Solutions Co., Ltd		
Applicant address	Building 5, Shanghai Business Park Phase III (Area B), No.1016		
Applicant address	Tianlin Road, Minhang District, Shanghai, 200233 China		
Manufacturer	Quectel Wireless Solutions Co., Ltd		
Manufacturer address	Building 5, Shanghai Business Park Phase III (Area B), No.1016		
Manufacturer address	Tianlin Road, Minhang District, Shanghai, 200233 China		

General Technologies

Model	BG773A-GL		
IMEI	Original: 863593050006733		
Hardware Version	R1.1		
Software Version	BG773AGLAAR02A01		
Date of Testing:	May 19, 2021		
Date of Sample	April 16, 2021		
Received:	April 16, 2021		

Note: 1. The EUT is sent from the applicant to TA and the information of the EUT is declared by the applicant.

2. All indications of Pass/Fail in this report are opinions expressed by TA Technology (Shanghai) Co., Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only.

BG773A-GL (Report No.: R2211A1099-M1) is a variant model (Variant 2) of BG770A-GL (Report No.: R2207A0656-M1V1). Test values all duplicated from Original for variant. There is no test for variant in this report.

The detailed product change description please refers to following table:

Module	BG770A-GL	BG773A-GL		
BB Chip	ALT1250	ALT1250		
Category	Cat M1 /NB2/GNSS	Cat M1 /NB2/GNSS		
	Cat M1	Cat M1		
	LTE-HD-FDD: B2/B4/B5	LTE-HD-FDD: B2/B4/B5		
Eroguenov	/B12/B13/B25/B26/B66	/B12/B13/B25/B26/B66		
Frequency				
Bands	Cat NB2	Cat NB2		
	LTE-HD-FDD:	LTE-HD-FDD: B2/B4/B5/B12/B13/B17/		
	B2/B4/B5/B12/B13/B17/ B25/B66	B25/B66		
GNSS	GPS, GLONASS	GPS, GLONASS		
iSIM	N/A	Supported		

The detailed product change description please refers to the *Difference Declaration Letter* (Variant 2).

MPE Test Report Report Report No.: R2211A1099-M1

BG770A-GL (Report No.: R2207A0656-M1V1) is a variant model (Variant 1) of BG770A-GL (Report No.: R2104A0331-M1). Test values all duplicated from Original for variant. There is no test for variant in this report. BG770A-GL supports from Cat NB1 (3GPP R13) to Cat NB2 (3GPP R14) only by FW updating, the hardware remains the same.

The detailed product change description please refers to following table:

Module	BG770A-GL (Cat NB1)	BG770A-GL (Cat NB2)		
Category	Cat M1 & NB1	Cat M1 & NB2		
	Cat M1	Cat M1		
	LTE-HD-FDD: B2/B4/B5	LTE-HD-FDD: B2/B4/B5		
Frequency	/B12/B13/B25/B26/B66	/B12/B13/B25/B26/B66		
Bands	Cat NB1	Cat NB2		
	LTE-HD-FDD: B2/B4/B5/B12/B13/B17/	LTE-HD-FDD: B2/B4/B5/B12/B13/B17/		
	B25/B66	B25/B66		
Others	Others The same			

The detailed product change description please refers to the *Difference Declaration Letter* (*Variant 1*).

3 Maximum conducted output power (measured) and antenna Gain

The numeric gain (G) of the antenna with a gain specified in dB is determined by Numeric gain (G)=10^(antenna gain/10)

Band	Maximum Conducted Output Power (dBm)			
	(dBm)	(mW)		
LTE eMTC Band 2	25.70	371.535		
LTE eMTC Band 4	25.70	371.535		
LTE eMTC Band 5	25.70	371.535		
LTE eMTC Band 12	25.70	371.535		
LTE eMTC Band 13	25.70	371.535		
LTE eMTC Band 25	25.70	371.535		
LTE eMTC Band 26	25.70	371.535		
LTE eMTC Band 66	25.70	371.535		
NB-IoT Band 2	25.70	371.535		
NB-IoT Band 4	25.70	371.535		
NB-IoT Band 5	25.70	371.535		
NB-IoT Band 12	25.70	371.535		
NB-loT Band 13	25.70	371.535		
NB-loT Band 17	25.70	371.535		
NB-loT Band 25	25.70	371.535		
NB-IoT Band 66	25.70	371.535		

4 Test Result

According to section 1.1310 of FCC 47 CFR Part 1, limits for maximum permissible exposure (MPE) are as following

TABLE 1 – LIMITS FOR MAXIMUN PERMISSIBLE EXPOSURE (MPE)

Frequency Range	Electric Field	Magnetic Field	Power Density	Averaging Time
(MHz)	Strength	Strength		1.57
	(V/m)	(A/m)	(mW/cm2)	(minutes)
	(A) Limits for Occu	upational/Controlle	Exposures	8
0.3-3.0	614	1.63	*(100)	6
3-30	1842/f	4.89/f	*(900/f2)	6
30-300	61.4	0.163	1.0	6
300-1500			f/300	6
1500-100,000			5	6
(B)	Limits for General	Population/Uncont	rolled Exposure	
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	*(180/f2)	30
30-300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-100,000	l		1.0	30

f = frequency in MHz

Note1. Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational / controlled limits apply provided he or she is made aware of the potential for exposure.

Note2: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

^{* =} Plane-wave equivalent power density

MPE Test Report No.: R2211A1099-M1

The maximum permissible exposure for 300~1500 MHz is f/1500, for 1500~100,000MHz is 1.0.So

Band	The maximum permissible exposure (mW/cm²)
LTE eMTC Band 2	1.000
LTE eMTC Band 4	1.000
LTE eMTC Band 5	0.566
LTE eMTC Band 12	0.477
LTE eMTC Band 13	0.525
LTE eMTC Band 25	1.000
LTE eMTC Band 26	0.566
LTE eMTC Band 66	1.000
NB-IoT Band 2	1.000
NB-IoT Band 4	1.000
NB-IoT Band 5	0.566
NB-IoT Band 12	0.477
NB-IoT Band 13	0.525
NB-IoT Band 17	0.469
NB-IoT Band 25	1.000
NB-IoT Band 66	1.000

MPE Test Report

RF Exposure Calculations:

The following information provides the minimum separation distance for the highest gain antenna provided. This calculation is based on the conducted power, considering maximum power and antenna gain. The formula shown in KDB 447498 D01 is used in the calculation.

Equation from KDB 447498 D01 General RF Exposure Guidance v06 (10/23/2015) is:

$S = PG / 4\pi R^2$

Where: S = power density (in appropriate units, e.g. mW/cm²)

P = Time-average maximum tune up procedure (in appropriate units, e.g., mW)

G = the numeric gain of the antenna

R = distance to the center of radiation of the antenna (20 cm = limit for MPE)

Bood		EIRP	Margin1	Power density Limit		Margin2	Final	Gain
Band	Output Power (dBm)	limit (dBm)	(dB)	(mW/cm²)	(dBm)	(dB)	Margin (dB)	(dBi)
LTE eMTC Band 2	25.70	33.000	7.300	1.000	37.013	11.313	7.300	7.300
LTE eMTC Band 4	25.70	30.000	4.300	1.000	37.013	11.313	4.300	4.300
LTE eMTC Band 5	25.70	38.450	12.750	0.566	34.541	8.841	8.841	8.841
LTE eMTC Band 12	25.70	34.770	9.070	0.477	33.798	8.098	8.098	8.098
LTE eMTC Band 13	25.70	34.770	9.070	0.525	34.214	8.514	8.514	8.514
LTE eMTC Band 25	25.70	33.000	7.300	1.000	37.013	11.313	7.300	7.300
LTE eMTC Band 26	25.70	38.450	12.750	0.566	34.541	8.841	8.841	8.841
LTE eMTC Band 66	25.70	30.000	4.300	1.000	37.013	11.313	4.300	4.300
NB-IoT Band 2	25.70	33.000	7.300	1.000	37.013	11.313	7.300	7.300
NB-IoT Band 4	25.70	30.000	4.300	1.000	37.013	11.313	4.300	4.300
NB-IoT Band 5	25.70	38.450	12.750	0.566	34.541	8.841	8.841	8.841
NB-IoT Band 12	25.70	34.770	9.070	0.477	33.798	8.098	8.098	8.098
NB-IoT Band 13	25.70	34.770	9.070	0.525	34.214	8.514	8.514	8.514
NB-IoT Band 17	25.70	34.770	9.070	0.469	33.724	8.024	8.024	8.024
NB-IoT Band 25	25.70	33.000	7.300	1.000	37.013	11.313	7.300	7.300
NB-IoT Band 66	25.70	30.000	4.300	1.000	37.013	11.313	4.300	4.300

Note: 1. The Maximum allowed antenna gain per Band should be less than or equal to the Final Margin which is the allowable maximum gain value to comply with limits for maximum permissible exposure (MPE).

- 2. The Final Margin is determined and selected to the worst-case of Margin1 and Margin2.
- 3. Margin1=EIRP Limit(dBm)-Maximum Conducted Power (dBm). EIRP limit reference standard part22/ part24/part27 for each band, EIRP = ERP + 2.15 (dB).
- 4. Margin2=Power density Limit(dBm)-Maximum Conducted Power (dBm). Power density Limit(dBm): The max. obtained by MPE with 20cm.

MPE Test Report Report Report No.: R2211A1099-M1

IMPORTANT NOTE: To comply with the FCC RF exposure compliance requirements, the antenna(s) used for this transmitter must be installed to provide a separation distance of at least 20 cm from all persons and must not be co-located or operating in conjunction with any other antenna or transmitter. No change to the antenna or the device is permitted. Any change to the antenna or the device could result in the device exceeding the RF exposure requirements and void user's authority to operate the device.

Band	PG (mW)	Test Result (mW/cm ²)	Limit Value (mW/cm²)	Conclusion			
LTE eMTC Band 2	1995.262	0.397	1.000	Pass			
LTE eMTC Band 4	1000.000	0.199	1.000	Pass			
LTE eMTC Band 5	2845.116	0.566	0.566	Pass			
LTE eMTC Band 12	2397.728	0.477	0.477	Pass			
LTE eMTC Band 13	2638.761	0.525	0.525	Pass			
LTE eMTC Band 25	1995.262	0.397	1.000	Pass			
LTE eMTC Band 26	2845.116	0.566	0.566	Pass			
LTE eMTC Band 66	1000.000	0.199	1.000	Pass			
NB-IoT Band 2	1995.262	0.397	1.000	Pass			
NB-IoT Band 4	1000.000	0.199	1.000	Pass			
NB-IoT Band 5	2845.116	0.566	0.566	Pass			
NB-IoT Band 12	2397.728	0.477	0.477	Pass			
NB-IoT Band 13	2638.761	0.525	0.525	Pass			
NB-IoT Band 17	2357.219	0.469	1.000	Pass			
NB-IoT Band 25	1995.262	0.397	1.000	Pass			
NB-IoT Band 66	1000.000	0.199	1.000	Pass			
Note: R = 20cm							

 π = 3.1416 Note: For transmitters, minimum separation distance is 20cm, even if calculations indicate MPE distance is less.

******END OF REPORT ******

ANNEX A: The EUT Appearance

The EUT Appearance are submitted separately.

ANNEX B: Product Change Description (Variant 1)

The Product Change Description are submitted separately.

ANNEX C: Product Change Description (Variant 2)

The Product Change Description are submitted separately.