

RF TEST REPORT

Applicant	Quectel Wireless Solutions Co., Ltd
FCC ID	XMR202302AF31G
Product	Wi-Fi & Bluetooth Module
Brand	Quectel
Model	AF31G
Report No.	R2211A1014-R3V1
Issue Date	June 9, 2023

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **FCC CFR47 Part 15E (2022)**. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

In Ting

Prepared by: Xu Ying

Approved by: Xu Kai

TA Technology (Shanghai) Co., Ltd. Building 3, No.145, Jintang Rd, Pudong Shanghai, P.R.China

Building 3, No.145, Jintang Rd, Pudong Shanghai, P.R.Chint TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000

TABLE OF CONTENT

1. Tes	t Laboratory	5
1.1.	Notes of the test report	5
1.2.	Test facility	5
1.3.	Testing Location	5
2. Ger	eral Description of Equipment under Test	6
2.1.	Applicant and Manufacturer Information	6
2.2.	General information	6
3. App	lied Standards	8
4. Tes	t Configuration	9
5. Tes	t Case Results	12
5.1.	Occupied Bandwidth	
5.2.	Average Power Output	
5.3.	Frequency Stability	
5.4.	Power Spectral Density	
5.5.	Unwanted Emission	
5.6.	Conducted Emission	358
6. Mai	n Test Instruments	
ANNEX	A: The EUT Appearance	
ANNEX	B: Test Setup Photos	

Version	Revision description	Issue Date		
Rev.0	Initial issue of report.	April 28, 2023		
Rev.1	Update data.			
Note: This revised report (Report No.: R2211A1014-R3V1) supersedes and replaces the				
previously issued report (Report No.: R2211A1014-R3). Please discard or destroy the				
previously issued report and dispose of it accordingly.				

Number	Test Case	Clause in FCC rules	Verdict			
1	Average output power	15.407(a)	PASS			
2	Occupied bandwidth	15.407(e)	PASS			
3	Frequency stability	15.407(g)	PASS			
4	Power spectral density	15.407(a)	PASS			
5	Unwanted Emissions 15.407(b) PASS					
6	Conducted Emissions 15.207 PASS					
Date of Te	sting: February 22, 2023 ~ April 6, 2023 and	June 7, 2023 ~ June 9, 2023				
Date of Sample Received: February 15, 2023						
Note: PAS	Note: PASS: The EUT complies with the essential requirements in the standard.					
FAIL: The EUT does not comply with the essential requirements in the standard.						
All indications of Pass/Fail in this report are opinions expressed by TA Technology (Shanghai)						
Co., Ltd. based on interpretations and/or observations of test results. Measurement						
Uncertainties were not taken into account and are published for informational purposes only.						

Summary of measurement results

1. Test Laboratory

1.1. Notes of the test report

This report shall not be reproduced in full or partial, without the written approval of **TA Technology (Shanghai) Co., Ltd.** The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above.

1.2. Test facility

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA (Certificate Number: 3857.01)

TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

1.3. Testing Location

Company:	TA Technology (Shanghai) Co., Ltd.
Address:	Building 3, No.145, Jintang Rd, Pudong Shanghai, P.R.China
City:	Shanghai
Post code:	201201
Country:	P. R. China
Contact:	Xu Kai
Telephone:	+86-021-50791141/2/3
Fax:	+86-021-50791141/2/3-8000
Website:	http://www.ta-shanghai.com
E-mail:	xukai@ta-shanghai.com

2. General Description of Equipment under Test

ApplicantQuectel Wireless Solutions Co., Ltd.Applicant addressBuilding 5, Shanghai Business Park Phase III (Area B), No.1016
Tianlin Road, Minhang District, Shanghai, China, 200233ManufacturerQuectel Wireless Solutions Co., Ltd.Manufacturer addressBuilding 5, Shanghai Business Park Phase III (Area B), No.1016
Tianlin Road, Minhang District, Shanghai, China, 200233

2.1. Applicant and Manufacturer Information

TA

2.2. General information

EUT Description					
Model	AF31G				
SN	E1C22KA19000889				
Hardware Version	R1.0				
Software Version	NA				
Power Supply	External power supp	oly			
Antenna Type	External Antenna				
Antonna Connector	A permanently attac	hed antenna (meet with the standard			
	FCC Part 15.203 rec	quirement)			
Directional Gain	MIMO For Power: 5.	.40dBi			
	MIMO For PSD: 8.4	1dBi			
	U-NII-1: 5150MHz-5	5250MHz			
Operating Frequency Range(s)	U-NII-2A: 5250MHz-	-5350MHz			
	U-NII-2C: 5470MHz-5725MHz				
	U-NII-3: 5725MHz-5850MHz				
	802.11a/n (HT20/HT40): OFDM				
Modulation Type	802.11ac (VHT20/VHT40/VHT80): OFDM				
Max. Output Power	15.29 dBm				
Testing temperature range	-20 ° C to 50° C				
Operating temperature range	-40 ° C to 85 ° C				
Operating voltage range	3.14 V to 3.46 V				
State DC voltage	3.3 V				
	Auxiliary test equipr	ment			
	Manufacturer	FOXCONN			
Antonno	Model	ACE-Antenna			
Antenna		Antenna 1: 5.40 dBi;			
	Antenna Gain	Antenna 2: 5.10 dBi			
Note:		·			
1. The EUT is sent from the applic	1. The EUT is sent from the applicant to TA and the information of the EUT is declared by the				

applicant.

Report No.: R2211A1014-R3V1

2. This device support automatically discontinue transmission, while the device is not transmitting any information, the device can automatically discontinue transmission and become standby mode for power saving. The device can detect the controlling signal of ACK message transmitting from remote device and verify whether it shall resend or discontinue transmission.

3. (a) Manufacturers implements security features in any digitally modulated devices capable of operating in any of the U-NII bands, so that third parties are not able to reprogram the device to operate outside the parameters for which the device was certified. The software prevents the user from operating the transmitter with operating frequencies, output power, modulation types or other radio frequency parameters outside those that were approved for the device.

Manufacturers uses means including, but not limited to the use of a private network that allows only authenticated users to download software, electronic signatures in software or coding in hardware that is decoded by software to verify that new software can be legally loaded into a device to meet these requirements and must describe the methods in their application for equipment authorization.

(b) Manufacturers take steps to ensure that DFS functionality cannot be disabled by the operator of the U-NII device.

4. The antenna gain is provided by the manufacturer.

5. The antenna is for testing only and will not be sold with the equipment.

3. Applied Standards

According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

Test standards:

FCC CFR47 Part 15E (2022) Unlicensed National Information Infrastructure Devices

ANSI C63.10-2013

Reference standard:

KDB 789033 D02 General UNII Test Procedures New Rules v02r01

KDB 662911 D01 Multiple Transmitter Output v02r01

4. Test Configuration

Test Mode

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The radiated emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in stand-up position (Z axis) and the worst case was recorded.

In order to find the worst case condition, Pre-tests are needed at the presence of different data rate. Preliminary tests have been done on all the configuration for confirming worst case. Data rate below means worst-case rate of each test item.

Worst-case data rates are shown as following table.

Mada	Data Rate			
wode	Antenna 1	Antenna 2	CDD/MIMO	
802.11a	6 Mbps	6 Mbps	6 Mbps	
802.11n HT20	MCS0	MCS0	MCS8	
802.11n HT40	MCS0	MCS0	MCS8	
802.11ac VHT20	MCS0	MCS0	MCS0	
802.11ac VHT40	MCS0	MCS0	MCS0	
802.11ac VHT80	MCS0	MCS0	MCS0	

The worst case Antenna mode for each of the following tests for Wi-Fi:

Test Cases	Antenna 1	Antenna 2	CDD/MIMO		
Average conducted output power	0	0	0		
Occupied bandwidth			0		
Frequency stability			0		
Power Spectral Density	0	0	0		
Unwanted Emissions			0		
Conducted Emissions			802.11a		
Note: "O": test all bands					

According to RF Output power results in chapter 5.2, CDD/MIMO was selected as the worst antenna.

Report No.: R2211A1014-R3V1

Wireless Technology and Frequency Range

Wireless	Technology	Bandwidth	Channel	Frequency
			36	5180MHz
			40	5200MHz
		20 MHZ	44	5220MHz
	U-NII-1		48	5240MHz
			38	5190MHz
		40 MHZ	46	5230MHz
		80 MHz	42	5210MHz
			52	5260MHz
		20 MH-	56	5280MHz
			60	5300MHz
	U-NII-2A		64	5320MHz
			54	5270MHz
		40 MHZ	62	5310MHz
		80 MHz	58	5290MHz
			100	5500MHz
			104	5520MHz
VVI-F1		20 MHz	108	5540MHz
			112	5560MHz
			116	5580MHz
			120	5600MHz
			124	5620MHz
			128	5640MHz
			132	5660MHz
	0-111-20		136	5680MHz
			140	5700MHz
			144	5720MHz
			102	5510MHz
			110	5550MHz
		/∩ MH ≠	118	5590MHz
			126	5630MHz
			134	5670MHz
			142	5710MHz

F Test Report No.: R2211A1014-R3				
			106	5530MHz
		80 MHz	122	5610MHz
			138	5690MHz
			149	5745MHz
			153	5765MHz
	U-NII-3	20 MHz	157	5785MHz
			161	5805MHz
			165	5825MHz
		40 MHz	151	5755MHz
			159	5795MHz
		80 MHz	155	5775MHz
Does this	device suppo	ort TPC Function? $ imes$ Yes \Box	No	
Does this	Does this device support TDWR Band? $oxtimes$ Yes \Box No			

5. Test Case Results

5.1. Occupied Bandwidth

Ambient condition

Temperature	Relative humidity	
20°C ~25°C	45%~50%	

Method of Measurement

The EUT was connected to the spectrum analyzer through an external attenuator (20dB) and a known loss cable.

For U-NII-1/U-NII-2A/U-NII-2C, set RBW \approx 1% OCB kHz, VBW \geq 3 × RBW, measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 26 dB relative to the maximum level measured in the fundamental emission.

For U-NII-3, Set RBW = 100 kHz, VBW \ge 3 × RBW, measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Note: The automatic bandwidth measurement capability of a spectrum analyzer or EMI receiver may be employed if it implements the functionality described above.

Use the 99 % power bandwidth function of the instrument

Test Setup

Limits

Rule FCC Part §15.407(e)

Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 936 Hz.

TA

Test Results:

U-NII-1

Mode	Carrier frequency (MHz)	99% bandwidth (MHz)	Minimum 26 dB bandwidth (MHz)	Conclusion
	5180	16.319	19.34	PASS
802.11a	5200	16.315	19.16	PASS
	5240	16.321	19.51	PASS
	5180	17.435	20.50	PASS
802.11n HT20	5200	17.431	20.18	PASS
	5240	17.449	19.99	PASS
802.11n HT40	5190	35.909	41.66	PASS
	5230	35.929	40.63	PASS
	5180	17.453	20.18	PASS
802.11ac VHT20	5200	17.434	20.13	PASS
	5240	17.476	20.57	PASS
802.11ac VHT40	5190	35.948	44.92	PASS
	5230	35.924	41.57	PASS
802.11ac VHT80	5210	75.108	83.56	PASS

U-NII-2A

Mode	Carrier frequency	99% bandwidth	Minimum 26 dB bandwidth	Conclusion
	(MHz)	(MHz)	(MHz)	
802.11a	5260	16.328	19.68	PASS
	5300	16.299	19.93	PASS
	5320	16.327	19.39	PASS
802.11n HT20	5260	17.445	20.15	PASS
	5300	17.467	19.93	PASS
	5320	17.447	19.86	PASS
802.11n HT40	5270	35.930	41.07	PASS
	5310	35.942	41.19	PASS
802.11ac VHT20	5260	17.456	20.10	PASS
	5300	17.462	20.18	PASS
	5320	17.461	20.00	PASS
802.11ac VHT40	5270	35.922	40.43	PASS
	5310	35.955	40.48	PASS
802.11ac VHT80	5290	75.198	85.53	PASS

U-NII-2C

	Carrier	99%	Minimum 26 dB	
Mode	frequency	bandwidth	bandwidth	Conclusion
	(MHz)	(MHz)	(MHz)	
	5500	16.336	19.36	PASS
	5520	16.305	19.30	PASS
902 110	5600	16.347	19.12	PASS
802.11a	5680	16.302	19.25	PASS
	5700	16.335	19.50	PASS
	5720	16.305	19.17	PASS
	5500	17.460	20.26	PASS
	5600	17.434	20.43	PASS
802.11n HT20	5680	17.461	20.33	PASS
	5700	17.448	20.15	PASS
	5720	17.437	19.80	PASS
	5510	35.911	41.26	PASS
	5550	35.924	41.09	PASS
802.11n HT40	5590	35.941	41.23	PASS
	5670	35.939	42.77	PASS
	5710	35.981	41.77	PASS
802.11ac VHT20	5500	17.445	20.37	PASS
	5600	17.464	20.05	PASS
	5700	17.454	20.22	PASS
	5720	17.439	20.10	PASS
802.11ac VHT40	5510	35.959	41.07	PASS
	5590	35.960	42.21	PASS
	5670	35.938	44.41	PASS
	5710	35.980	41.57	PASS
802.11ac VHT80	5530	75.027	82.50	PASS
	5610	75.129	81.80	PASS
	5690	75.216	81.68	PASS

U-NII-3

Mode	Carrier frequency	99% bandwidth	Minimum 6 dB bandwidth	Limit (kHz)	Conclusion
	(MHz)	(MHz)	(MHz)		
802.11a	5720	16.305	15.85	500	PASS
	5745	16.337	15.29	500	PASS
	5785	16.324	15.04	500	PASS
	5825	16.321	15.29	500	PASS
802.11n HT20	5720	17.437	14.36	500	PASS
	5745	17.455	15.07	500	PASS
	5785	17.447	15.10	500	PASS
	5825	17.456	13.53	500	PASS
802.11n HT40	5710	35.981	31.93	500	PASS
	5755	35.950	32.58	500	PASS
	5795	35.959	35.13	500	PASS
802.11ac VHT20	5720	17.439	14.87	500	PASS
	5745	17.461	13.78	500	PASS
	5785	17.491	15.42	500	PASS
	5825	17.466	15.10	500	PASS
802.11ac VHT40	5710	35.980	32.81	500	PASS
	5755	35.967	31.33	500	PASS
	5795	35.968	30.72	500	PASS
802.11ac VHT80	5690	75.216	75.09	500	PASS
	5775	75.245	73.80	500	PASS

TA

Report No.: R2211A1014-R3V1

RF Test Report 99% bandwidth U-NII-1

OBW 802.11a 5180MHz

OBW 802.11a 5200MHz

OBW 802.11a 5240MHz

OBW 802.11ac(VHT20) 5180MHz

OBW 802.11ac (VHT20) 5200MHz

OBW 802.11ac (VHT20) 5240MHz

OBW 802.11ac (VHT40) 5190MHz

OBW 802.11ac (VHT40) 5230MHz

OBW 802.11ac (VHT80) 5210MHz

OBW 802.11n (HT20) 5180MHz

OBW 802.11n (HT20) 5200MHz

OBW 802.11n (HT20) 5240MHz

OBW 802.11n (HT40) 5190MHz

OBW 802.11n (HT40) 5230MHz

U-NII-2A

OBW 802.11a 5260MHz

OBW 802.11a 5300MHz

OBW 802.11a 5320MHz

OBW 802.11ac (VHT20) 5260MHz

OBW 802.11ac (VHT20) 5300MHz

OBW 802.11ac (VHT20) 5320MHz

OBW 802.11ac (VHT40) 5270MHz

OBW 802.11ac (VHT40) 5310MHz

OBW 802.11ac (VHT80) 5290MHz

OBW 802.11n (HT20) 5260MHz

OBW 802.11n (HT20) 5300MHz

OBW 802.11n (HT20) 5320MHz

OBW 802.11n (HT40) 5270MHz

OBW 802.11n (HT40) 5310MHz

TA

U-NII-2C

OBW 802.11a 5500MHz

OBW 802.11a 5520MHz

OBW 802.11a 5600MHz

OBW 802.11a 5680MHz

OBW 802.11a 5700MHz

OBW 802.11a 5720MHz

OBW 802.11ac (VHT20) 5500MHz

OBW 802.11ac (VHT20) 5700MHz

OBW 802.11ac (VHT20) 5720MHz

OBW 802.11ac (VHT40) 5510MHz

OBW 802.11ac (VHT40) 5590MHz

OBW 802.11ac (VHT40) 5670MHz

OBW 802.11ac (VHT40) 5710MHz

OBW 802.11ac (VHT80) 5530MHz

OBW 802.11ac (VHT80) 5690MHz

OBW 802.11n (HT20) 5500MHz

OBW 802.11n (HT20) 5600MHz

OBW 802.11n (HT20) 5680MHz

OBW 802.11n (HT20) 5700MHz

OBW 802.11n (HT20) 5720MHz

OBW 802.11n (HT40) 5510MHz

OBW 802.11n (HT40) 5550MHz

OBW 802.11n (HT40) 5590MHz

OBW 802.11n (HT40) 5670MHz

OBW 802.11n (HT40) 5710MHz

TA

RF Test Report

U-NII-3

OBW 802.11a 5720MHz

OBW 802.11a 5745MHz

RF Test Report

Report No.: R2211A1014-R3V1

OBW 802.11a 5785MHz

OBW 802.11a 5825MHz

OBW 802.11ac (VHT20) 5720MHz

OBW 802.11ac (VHT20) 5745MHz

OBW 802.11ac (VHT20) 5785MHz

OBW 802.11ac (VHT20) 5825MHz

OBW 802.11ac (VHT40) 5710MHz

OBW 802.11ac (VHT40) 5755MHz

OBW 802.11ac (VHT40) 5795MHz

OBW 802.11ac (VHT80) 5690MHz

OBW 802.11ac (VHT80) 5775MHz

OBW 802.11n (HT20) 5720MHz

OBW 802.11n (HT20) 5745MHz

OBW 802.11n (HT20) 5785MHz

OBW 802.11n (HT20) 5825MHz

OBW 802.11n (HT40) 5710MHz

OBW 802.11n (HT40) 5755MHz

OBW 802.11n (HT40) 5795MHz

RF Test Report

Report No.: R2211A1014-R3V1

Minimum 6 dB bandwidth U-NII-3

Keysight Spectrum A	nalyzer - Occupied	BW		1	1				
Center Freq 5	.72000000	0 GHz	SI	Center Fre Center Fre	q: 5.72000000 Run	0 GHz AvalHold:	100/100	05:01:2 Radio Std: I	9 PM Feb 23, 2023 None
		#1	FGain:Low	#Atten: 40	dB			Radio Devic	e: BTS
R 10 dB/div R	ef Offset 10.98 ef 30.98 dB	3 dB Sm						Mkr3 5.727 -9.5	7907 GHz i560 dBm
21.0									
11.0									
.980			1				2		
-9.02			Lawrenda	without work	www.	where we wanted	`		
-19.0				•			1		
-29.0		and the second					hyper		
-39.0 atus tetation	www.	und and and					Whend	Made and the state of the part of the state	annand and the perform
-49.0									
-59.0									
Center 572 C	<u> </u>								an 40 MHz
#Res BW 100	kHz			#VE	W 300 kH	z		Si	weep 4 ms
Occupied	Bandwid	lth		Total P	ower	14.8 d	Bm		
	1	6.280	MHz						
Transmit F	req Error	-17.9	63 kHz	% of O	3W Powe	r 99.0	0 %		
x dB Bandy	vidth	15.8	85 MHz	x dB		-6.00	dB		
MSG						STATUS			

-6dB Bandwidth 802.11a 5720MHz

-6dB Bandwidth 802.11a 5745MHz

-6dB Bandwidth 802.11a 5785MHz

-6dB Bandwidth 802.11a 5825MHz

-6dB Bandwidth 802.11ac (VHT20) 5720MHz

-6dB Bandwidth 802.11ac (VHT20) 5785MHz

-6dB Bandwidth 802.11ac (VHT40) 5710MHz

-6dB Bandwidth 802.11ac (VHT40) 5795MHz

-6dB Bandwidth 802.11ac (VHT80) 5775MHz

-6dB Bandwidth 802.11n (HT20) 5745MHz

-6dB Bandwidth 802.11n (HT20) 5825MHz

-6dB Bandwidth 802.11n (HT40) 5755MHz

5.2. Average Power Output

Ambient condition

Temperature	Relative humidity
20°C ~25°C	45%~50%

Methods of Measurement

During the process of the testing, The EUT was connected to the average power meter through an external attenuator and a known loss cable. The EUT is max power transmission with proper modulation. We use Maximum average Conducted Output Power Level Method in KDB789033 for this test

The conducted Power is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically.

Test Setup

Limits

Rule FCC Part 15.407(a)(1)(2)(3)

(1) For the band 5.15-5.25 GHz.

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the

maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral

RF Test Report

Report No.: R2211A1014-R3V1

density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(iv) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. (3)For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum conducted output shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 0.44 dB.

RF Test Report

Test Results

Mode	Duty cycle	Duty cycle correction Factor(dB)				
802.11a	0.971	0.13				
802.11n HT20	0.974	0.11				
802.11n HT40	0.954	0.20				
802.11ac VHT20	0.979	0.09				
802.11ac VHT40	0.948	0.23				
802.11ac VHT80	0.903	0.45				
Note: when Duty cycle ≥0.98, Duty cycle correction Factor not required.						

Antenna 1

	Power Index								
Channel	802.11a	802.11n HT20	802.11ac VHT20	Channel	802.11n HT40	802.11ac VHT40	Channel	802.11ac VHT80	
CH36	13	14	13	CH38	10	12	CH42	6	
CH40	13	14	13	CH46	13	12	/	/	
CH48	13	14	13	/	/	/	/	/	
CH52	13	14	13	CH54	13	12	CH58	10	
CH60	13	14	13	CH62	13	12	/	/	
CH64	13	14	13	/	/	/	/	/	
CH100	12	14	13	CH102	10	12	CH106	10	
CH104	13	/	/	CH110	13	/	1	/	
CH120	13	14	13	CH118	13	12	CH122	12	
CH136	13	14	/	/	/	/	1	/	
CH140	11	11	13	CH134	13	12	CH138	12	
CH144	13	14	13	CH142	13	12	/	/	
CH149	13	14	13	CH151	13	12	CH155	12	
CH157	13	14	13	CH159	13	12	/	/	
CH165	13	14	13	/	/	1	/	/	

Antenna 2

RF Test Report

Report No.: R2211A1014-R3V1

	Power Index							
Channel	802.11a	802.11n HT20	802.11ac VHT20	Channel	802.11n HT40	802.11ac VHT40	Channel	802.11ac VHT80
CH36	13	14	13	CH38	10	12	CH42	6
CH40	13	14	13	CH46	13	12	/	/
CH48	13	14	13	/	/	/	/	/
CH52	13	14	13	CH54	13	12	CH58	10
CH60	13	14	13	CH62	13	12	/	/
CH64	13	14	13	/	/	/	/	/
CH100	12	14	13	CH102	10	12	CH106	10
CH104	13	/	/	CH110	13	/	1	/
CH120	13	14	13	CH118	13	12	CH122	12
CH136	13	14	/	/	/	/	1	/
CH140	11	11	13	CH134	13	12	CH138	12
CH144	13	14	13	CH142	13	12	/	/
CH149	13	14	13	CH151	13	12	CH155	12
CH157	13	14	13	CH159	13	12	/	/
CH165	13	14	13	/	/	/	1	/

CDD/MIMO

	Power Index								
Channel	802.11a	802.11n HT20	802.11ac VHT20	Channel	802.11n HT40	802.11ac VHT40	Channel	802.11ac VHT80	
CH36	13	14	13	CH38	10	12	CH42	6	
CH40	13	14	13	CH46	13	12	/	/	
CH48	13	14	13	/	/	/	/	/	
CH52	13	14	13	CH54	13	12	CH58	10	
CH60	13	14	13	CH62	13	12	/	/	
CH64	13	14	13	/	/	/	/	/	
CH100	12	14	13	CH102	10	12	CH106	10	
CH104	13	/	/	CH110	13	/	1	/	
CH120	13	14	13	CH118	13	12	CH122	12	
CH136	13	14	/	/	/	/	1	/	
CH140	11	11	13	CH134	13	12	CH138	12	
CH144	13	14	13	CH142	13	12	/	/	
CH149	13	14	13	CH151	13	12	CH155	12	
CH157	13	14	13	CH159	13	12	/	/	
CH165	13	14	13	/	/	/	/	/	

RF Test Report

Te	est Mode	Channel/Frequency (MHz)	B=26 dB bandwidth (MHz)	Limit 11 dBm + 10 log B (dBm)	Final Limit (dBm)
		52/5260	19.68	23.94<24	23.94
	802.11a	60/5300	19.93	23.99<24	23.99
		64/5320	19.39	23.88<24	23.88
		52/5260	20.15	24.04>24	24.00
	802.11n HT20	60/5300	19.93	24.00>24	24.00
	11120	64/5320	19.86	23.98<24	23.98
	802.11n	54/5270	41.07	27.14>24	24.00
U-MII-ZA	HT40	62/5310	41.19	27.15>24	24.00
		52/5260	20.10	24.03>24	24.00
	802.11ac VHT20	60/5300	20.18	24.05>24	24.00
	VIII20	64/5320	20.00	24.01>24	24.00
	802.11ac	54/5270	40.43	27.07>24	24.00
	VHT40	62/5310	40.48	27.07>24	24.00
	802.11ac VHT80	58/5290	85.53	30.32>24	24.00
		100/5500	19.36	23.87<24	23.87
	802.11a	104/5520	19.30	23.85<24	23.85
		120/5600	19.12	23.81<24	23.81
		136/5680	19.25	23.84<24	23.84
		140/5700	19.50	23.90<24	23.90
		144/5720	19.17	23.83<24	23.83
		100/5500	20.26	24.07>24	24.00
		120/5600	20.43	24.10>24	24.00
U-NII-2C	802.11n HT20	136/5680	20.33	24.08>24	24.00
	11120	140/5700	20.15	24.04>24	24.00
		144/5720	19.80	23.97<24	23.97
		102/5510	41.26	27.15>24	24.00
		110/5550	41.09	27.14>24	24.00
	802.11n HT40	118/5590	41.23	27.15>24	24.00
		134/5670	42.77	27.31>24	24.00
		142/5710	41.77	27.21>24	24.00
	802.11ac	100/5500	20.37	24.09>24	24.00

RF Test F	Report		Report No.: R2211A1014-R3V1				
	VHT20	120/5600	20.05	24.02>24	24.00		
		140/5700	20.22	24.06>24	24.00		
		144/5720	20.10	24.03>24	24.00		
		102/5510	41.07	27.14>24	24.00		
	802.11ac	118/5590	42.21	27.25>24	24.00		
	VHT40	134/5670	44.41	27.47>24	24.00		
		142/5710	41.57	27.19>24	24.00		
		106/5530	82.50	30.16>24	24.00		
80	02.11ac VHT80	122/5610	81.80	30.13>24	24.00		
		138/5690	81.68	30.12>24	24.00		
Note: 250mW	lote: 250mW=24dBm						

. .

TA

RF Test Report

Test Mode	Channel/ Frequency (MHz)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Limit (dBm)	Conclusion
	36/5180	11.20	11.33	30	PASS
802.11a	40/5200	11.04	11.17	30	PASS
	48/5240	10.98	11.11	30	PASS
	36/5180	11.80	11.91	30	PASS
802.11n HT20	40/5200	11.87	11.98	30	PASS
	48/5240	11.74	11.85	30	PASS
902 11p UT40	38/5190	8.23	8.43	30	PASS
002.11111140	46/5230	11.19	11.39	30	PASS
	36/5180	10.81	10.90	30	PASS
802.11ac VHT20	40/5200	10.80	10.89	30	PASS
	48/5240	10.77	10.86	30	PASS
902 11co \/UT40	38/5190	10.28	10.51	30	PASS
602.11ac VH140	46/5230	10.29	10.52	30	PASS
802.11ac VHT80	42/5210	3.40	3.85	30	PASS
Note: Average Power	with duty factor = F	verage Power M	easured +Duty c	ycle correct	tion factor

Antenna 2

Test Mode	Channel/ Frequency (MHz)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Limit (dBm)	Conclusion
	36/5180	11.50	11.63	30	PASS
802.11a	40/5200	11.69	11.82	30	PASS
	48/5240	11.43	11.56	30	PASS
	36/5180	12.21	12.32	30	PASS
802.11n HT20	40/5200	12.46	12.57	30	PASS
	48/5240	12.12	12.23	30	PASS
902 11n UT40	38/5190	8.81	9.01	30	PASS
002.11111140	46/5230	11.61	11.81	30	PASS
	36/5180	11.24	11.33	30	PASS
802.11ac VHT20	40/5200	11.44	11.53	30	PASS
	48/5240	11.17	11.26	30	PASS
902 11cc \/UT40	38/5190	10.70	10.93	30	PASS
602.11aC VH140	46/5230	10.65	10.88	30	PASS
802.11ac VHT80	42/5210	4.28	4.73	30	PASS
Note: Average Power	with duty factor = A	verage Power M	easured +Duty c	ycle correct	ion factor

TA

RF Test Report

U-NII-2A

Report No.:	R2211A1014-R3	V1

Test Mode	Channel/ Frequency (MHz)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Limit (dBm)	Conclusion		
802.11a	52/5260	10.92	11.05	23.94	PASS		
	60/5300	10.88	11.01	23.99	PASS		
	64/5320	10.79	10.92	23.88	PASS		
802.11n HT20	52/5260	11.73	11.84	24.00	PASS		
	60/5300	11.62	11.73	24.00	PASS		
	64/5320	11.56	11.67	23.98	PASS		
802.11n HT40	54/5270	11.09	11.29	24.00	PASS		
	62/5310	11.06	11.26	24.00	PASS		
802.11ac VHT20	52/5260	10.66	10.75	24.00	PASS		
	60/5300	10.59	10.68	24.00	PASS		
	64/5320	10.58	10.67	24.00	PASS		
802.11ac VHT40	54/5270	10.11	10.34	24.00	PASS		
	62/5310	10.09	10.32	24.00	PASS		
802.11ac VHT80	58/5290	7.63	8.08	24.00	PASS		
Note: Average Power with duty factor = Average Power Measured +Duty cycle correction factor							

Antenna 2

Test Mode	Channel/ Frequency (MHz)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Limit (dBm)	Conclusion		
802.11a	52/5260	11.25	11.38	23.94	PASS		
	60/5300	11.01	11.14	23.99	PASS		
	64/5320	10.81	10.94	23.88	PASS		
802.11n HT20	52/5260	12.06	12.17	24.00	PASS		
	60/5300	11.84	11.95	24.00	PASS		
	64/5320	11.59	11.70	23.98	PASS		
802.11n HT40	54/5270	11.45	11.65	24.00	PASS		
	62/5310	11.24	11.44	24.00	PASS		
802.11ac VHT20	52/5260	11.13	11.22	24.00	PASS		
	60/5300	10.79	10.88	24.00	PASS		
	64/5320	10.61	10.70	24.00	PASS		
802.11ac VHT40	54/5270	10.42	10.65	24.00	PASS		
	62/5310	10.23	10.46	24.00	PASS		
802.11ac VHT80	58/5290	7.91	8.36	24.00	PASS		
Note: Average Power with duty factor = Average Power Measured +Duty cycle correction factor							

TA

RF Test Report

U-NII-2C

Test Mode	Channel/ Frequency (MHz)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Limit (dBm)	Conclusion
	100/5500	9.50	9.63	23.87	PASS
	104/5520	10.38	10.51	23.85	PASS
000 11-	120/5600	10.42	10.55	23.81	PASS
802.11a	136/5680	10.60	10.73	23.84	PASS
	140/5700	8.51	8.64	23.90	PASS
	144/5720	9.71	9.84	23.83	PASS
	100/5500	11.39	11.50	24.00	PASS
	120/5600	11.08	11.19	24.00	PASS
802.11n HT20	136/5680	11.30	11.41	24.00	PASS
	140/5700	8.28	8.39	24.00	PASS
	144/5720	10.40	10.51	23.97	PASS
	102/5510	7.85	8.05	24.00	PASS
	110/5550	10.38	10.58	24.00	PASS
802.11n HT40	118/5590	10.57	10.77	24.00	PASS
	134/5670	10.80	11.00	24.00	PASS
	142/5710	10.45	10.65	24.00	PASS
	100/5500	10.43	10.52	24.00	PASS
	120/5600	10.13	10.22	24.00	PASS
802.11ac VH120	140/5700	10.33	10.42	24.00	PASS
	144/5720	9.38	9.47	24.00	PASS
	102/5510	9.96	10.19	24.00	PASS
	118/5590	9.59	9.82	24.00	PASS
802.11ac VH140	134/5670	9.86	10.09	24.00	PASS
	142/5710	9.46	9.69	24.00	PASS
	106/5530	7.33	7.78	24.00	PASS
802.11ac VHT80	122/5610	9.26	9.71	24.00	PASS
	138/5690	9.33	9.78	24.00	PASS
Note: Average Power	with duty factor = A	verage Power M	easured +Duty c	ycle correct	ion factor

TA

Antenna 2					
Test Mode	Channel/ Frequency (MHz)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Limit (dBm)	Conclusion
	100/5500	8.84	8.97	23.87	PASS
	104/5520	9.75	9.88	23.85	PASS
000 11-	120/5600	9.12	9.25	23.81	PASS
802.11a	136/5680	9.34	9.47	23.84	PASS
	140/5700	7.39	7.52	23.90	PASS
	144/5720	8.45	8.58	23.83	PASS
	100/5500	10.62	10.73	24.00	PASS
	120/5600	9.79	9.90	24.00	PASS
802.11n HT20	136/5680	10.09	10.20	24.00	PASS
	140/5700	7.14	7.25	24.00	PASS
	144/5720	9.15	9.26	23.97	PASS
	102/5510	7.09	7.29	24.00	PASS
	110/5550	9.41	9.61	24.00	PASS
802.11n HT40	118/5590	9.40	9.60	24.00	PASS
	134/5670	9.55	9.75	24.00	PASS
	142/5710	9.26	9.46	24.00	PASS
	100/5500	9.65	9.74	24.00	PASS
	120/5600	8.91	9.00	24.00	PASS
602.11aC VH120	140/5700	9.08	9.17	24.00	PASS
	144/5720	8.15	8.24	24.00	PASS
	102/5510	9.25	9.48	24.00	PASS
	118/5590	8.47	8.70	24.00	PASS
602.11aC VH140	134/5670	8.60	8.83	24.00	PASS
	142/5710	8.25	8.48	24.00	PASS
	106/5530	6.45	6.90	24.00	PASS
802.11ac VHT80	122/5610	7.95	8.40	24.00	PASS
	138/5690	8.01	8.46	24.00	PASS
Note: Average Power	with duty factor = A	Average Power M	leasured +Duty c	ycle correct	ion factor

TA

RF Test Report

U-NII-3

Test Mode	Channel/ Frequency (MHz)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Limit (dBm)	Conclusion
	144/5720	2.54	2.67	30	PASS
902 11-	149/5745	10.52	10.65	30	PASS
002.11a	157/5785	10.45	10.58	30	PASS
	165/5825	10.11	10.24	30	PASS
	144/5720	3.54	3.65	30	PASS
902 11m UT20	149/5745	11.27	11.38	30	PASS
0U2.1111H12U	157/5785	11.22	11.33	30	PASS
	165/5825	10.89	11.00	30	PASS
	142/5710	-1.84	-1.64	30	PASS
802.11n HT40	151/5755	10.79	10.99	30	PASS
	159/5795	10.61	10.81	30	PASS
	144/5720	2.63	2.72	30	PASS
802 11cc \// IT20	149/5745	10.40	10.49	30	PASS
602.11ac VH120	157/5785	10.17	10.26	30	PASS
	165/5825	9.87	9.96	30	PASS
	142/5710	-2.85	-2.62	30	PASS
802.11ac VHT40	151/5755	9.79	10.02	30	PASS
	159/5795	9.67	9.90	30	PASS
802 11cc \// IT80	138/5690	-7.75	-7.30	30	PASS
	155/5775	9.07	9.52	30	PASS
Note: Average Power	with duty factor = A	verage Power M	easured +Duty c	ycle correct	ion factor

Antenna 2

RF Test Report

Report No.: R2211A1014-R3V1

Test Mode	Channel/ Frequency (MHz)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Limit (dBm)	Conclusion
	144/5720	1.26	1.39	30	PASS
902 11-	149/5745	9.01	9.14	30	PASS
602.11a	157/5785	8.72	8.85	30	PASS
	165/5825	8.96	9.09	30	PASS
	144/5720	1.93	2.04	30	PASS
902 11n UT20	149/5745	9.52	9.63	30	PASS
002.11111120	157/5785	9.33	9.44	30	PASS
	165/5825	9.59	9.70	30	PASS
	142/5710	-3.09	-2.89	30	PASS
802.11n HT40	151/5755	9.14	9.34	30	PASS
	159/5795	8.99	9.19	30	PASS
	144/5720	1.33	1.42	30	PASS
	149/5745	8.81	8.90	30	PASS
602.11aC VH120	157/5785	8.71	8.80	30	PASS
	165/5825	8.59	8.68	30	PASS
	142/5710	-4.40	-4.17	30	PASS
802.11ac VHT40	151/5755	8.13	8.36	30	PASS
	159/5795	7.76	7.99	30	PASS
902 11cc \/UT90	138/5690	-9.16	-8.71	30	PASS
002.1180 10100	155/5775	7.55	8.00	30	PASS
Note: Average Power	with duty factor = A	verage Power M	easured +Duty c	ycle correct	ion factor

CDD/MIMO

U-NII-1

Report No ·	R2211A1014-R3V1
1000011100	

		Antei	nna 1	Anter	nna 2			
Test Mode	Channel/ Frequency (MHz)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Total Power (dBm)	Limit (dBm)	Conclusion
	36/5180	11.04	11.17	11.48	11.61	14.41	30.00	PASS
U-NII-1	40/5200	11.02	11.15	11.58	11.71	14.45	30.00	PASS
802.11a	48/5240	10.97	11.10	11.06	11.19	14.16	30.00	PASS
000 11m	36/5180	11.92	12.03	12.28	12.39	15.22	30.00	PASS
802.110 LIT20	40/5200	11.91	12.02	12.41	12.52	15.29	30.00	PASS
	48/5240	11.70	11.81	11.91	12.02	14.92	30.00	PASS
802.11n	38/5190	7.90	8.10	8.87	9.07	11.62	30.00	PASS
HT40	46/5230	11.20	11.40	11.36	11.56	14.49	30.00	PASS
902 11 00	36/5180	10.80	10.89	11.23	11.32	14.12	30.00	PASS
802.11au \/штэо	40/5200	10.76	10.85	11.34	11.43	14.16	30.00	PASS
VH120	48/5240	10.67	10.76	10.83	10.92	13.85	30.00	PASS
802.11ac	38/5190	10.27	10.50	10.65	10.88	13.71	30.00	PASS
VHT40	46/5230	10.21	10.44	10.37	10.60	13.53	30.00	PASS
802.11ac VHT80	42/5210	3.22	3.67	4.23	4.68	7.21	30.00	PASS

Note: 1. For Total Power, according to KDB 662911 D01 Multiple Transmitter Output v02r01 1),

The Total Power =10log(10^(Power antenna1 in dBm/10)+10^(Power antenna2 in dBm/10)).

2. The manufacturer declared the Nss=1.According to KDB 662911 D01 Multiple Transmitter Output v02r01 F)2)f)(ii): If antenna gains are not equal, the user may use either of the following methods to calculate directional gain, provided that each transmit antenna is driven by only one spatial stream: Directional gain may be calculated by using the formulas applicable to equal gain antennas with G_{ANT} set equal to the gain of the antenna having the highest gain. Directional gain = G_{ANT MAX} + Array Gain,

For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$;

Array Gain = 0 dB (i.e., no array gain) for channel widths \geq 40 MHz for any N_{ANT};

Array Gain = 5 log(N_{ANT}/N_{SS}) dB or 3 dB, whichever is less, for 20-MHz channel widths with $N_{ANT} \ge 5$.

So directional gain = $G_{ANT MAX}$ + Array Gain = 5.4 +0= 5.4 dBi<6dBi. So the power limit is 24dBm.

U	-NII-2A							
		Ante	nna 1	Ante	nna 2			
Test Mode	Frequency (MHz)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Total Power (dBm)	Limit (dBm)	Conclusion
LENIL 1	52/5260	10.79	10.92	10.77	10.90	13.92	23.94	PASS
0-INII-1 802 11a	60/5300	10.73	10.86	10.44	10.57	13.73	23.99	PASS
002.11a	64/5320	10.75	10.88	10.42	10.55	13.73	23.88	PASS
000.11-	52/5260	11.64	11.75	11.68	11.79	14.78	24.00	PASS
802.11n	60/5300	11.59	11.70	11.28	11.39	14.56	24.00	PASS
11120	64/5320	11.63	11.74	11.20	11.31	14.54	23.98	PASS
802.11n	54/5270	10.97	11.17	10.95	11.15	14.17	24.00	PASS
HT40	62/5310	10.96	11.16	10.78	10.98	14.08	24.00	PASS
000 11	52/5260	10.61	10.70	10.63	10.72	13.72	24.00	PASS
802.11ac	60/5300	10.57	10.66	10.25	10.34	13.51	24.00	PASS
VIIIZO	64/5320	10.50	10.59	10.26	10.35	13.48	24.00	PASS
802.11ac	54/5270	10.07	10.30	9.90	10.13	13.23	24.00	PASS
VHT40	62/5310	10.05	10.28	9.82	10.05	13.18	24.00	PASS
802.11ac VHT80	58/5290	7.06	7.51	7.80	8.25	10.91	24.00	PASS
Note: 1. Fo	or Total Powe	er, according to I ver =10log(10 ^{(Pov}	KDB 662911 D0 ⁻ ver antenna1 in dBm/10)	l Multiple Transr +10 ^{(Power antenna2 in}	nitter Output v02	2r01 1).		

U	-NII-2C							
		Ante	nna 1	Ante	nna 2			
Tast	Channel/	Average	Average	Average	Average	Total	Limit	
Mada	Frequency	Power	Power with	Power	Power with	Power	(dBm)	Conclusion
Mode	(MHz)	Measured	duty factor	Measured	duty factor	(dBm)	(ubiii)	
		(dBm)	(dBm)	(dBm)	(dBm)			
	100/5500	9.03	9.16	8.34	8.47	11.84	23.87	PASS
	104/5520	9.93	10.06	9.40	9.53	12.81	23.85	PASS
U-NII-1	120/5600	10.31	10.44	9.45	9.58	13.04	23.81	PASS
802.11a	136/5680	9.73	9.86	8.98	9.11	12.51	23.84	PASS
	140/5700	7.54	7.67	7.03	7.16	10.43	23.90	PASS
	144/5720	9.63	9.76	8.41	8.54	12.20	23.83	PASS
	100/5500	11.44	11.55	10.06	10.17	13.92	24.00	PASS
900 11n	120/5600	11.06	11.17	10.25	10.36	13.79	24.00	PASS
802.11n	136/5680	10.48	10.59	9.75	9.86	13.25	24.00	PASS
H120	140/5700	7.26	7.37	6.82	6.93	10.17	24.00	PASS
	144/5720	10.27	10.38	9.04	9.15	12.82	23.97	PASS
	102/5510	7.25	7.45	6.73	6.93	10.21	24.00	PASS
000 11n	110/5550	9.73	9.93	9.35	9.55	12.75	24.00	PASS
802.1111	118/5590	10.51	10.71	9.67	9.87	13.32	24.00	PASS
П140	134/5670	10.71	10.91	9.50	9.70	13.35	24.00	PASS
	142/5710	10.29	10.49	9.10	9.30	12.95	24.00	PASS
	100/5500	10.39	10.48	9.05	9.14	12.87	24.00	PASS
802.11ac	120/5600	10.00	10.09	9.20	9.29	12.72	24.00	PASS
VHT20	140/5700	10.23	10.32	8.97	9.06	12.75	24.00	PASS
	144/5720	9.30	9.39	8.09	8.18	11.84	24.00	PASS
	102/5510	9.84	10.07	8.71	8.94	12.55	24.00	PASS
802.11ac	118/5590	9.46	9.69	8.74	8.97	12.35	24.00	PASS
VHT40	134/5670	9.71	9.94	8.53	8.76	12.40	24.00	PASS
	142/5710	9.34	9.57	8.14	8.37	12.02	24.00	PASS
200 11	106/5530	6.76	7.21	6.59	7.04	10.14	24.00	PASS
802.11ac	122/5610	9.12	9.57	8.18	8.63	12.13	24.00	PASS
VHIOU	138/5690	9.28	9.73	7.91	8.36	12.11	24.00	PASS
Note: 1. F	or Total Powe	er, according to l	KDB 662911 D0 ²	1 Multiple Transr	nitter Output v02	2r01 1).		
Т	he Total Pow	/er =10log(10 ^{(Pov}	ver antenna1 in dBm/10)	+10 ^{(Power antenna2 in}	^{n dBm/10)}).			

U-NII-3

		Anter	nna 1	Ante	nna 2			
Test Mode	Channel/ Frequency (MHz)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Average Power Measured (dBm)	Average Power with duty factor (dBm)	Total Power (dBm)	Limit (dBm)	Conclusion
	144/5720	2.39	2.52	1.24	1.37	5.00	30.00	PASS
U-NII-1	149/5745	10.44	10.57	8.98	9.11	12.91	30.00	PASS
802.11a	157/5785	10.13	10.26	8.92	9.05	12.71	30.00	PASS
	165/5825	10.02	10.15	8.76	8.89	12.57	30.00	PASS
	144/5720	3.39	3.50	2.25	2.36	5.98	30.00	PASS
802.11n	149/5745	11.15	11.26	9.76	9.87	13.63	30.00	PASS
HT20	157/5785	11.09	11.20	9.70	9.81	13.57	30.00	PASS
	165/5825	10.82	10.93	9.52	9.63	13.34	30.00	PASS
000.44	142/5710	-1.92	-1.72	-3.16	-2.96	0.72	30.00	PASS
802.11n utao	151/5755	10.23	10.43	8.94	9.14	12.84	30.00	PASS
11140	159/5795	10.48	10.68	9.12	9.32	13.06	30.00	PASS
	144/5720	2.51	2.60	1.20	1.29	5.00	30.00	PASS
802.11ac	149/5745	9.99	10.08	8.80	8.89	12.53	30.00	PASS
VHT20	157/5785	10.11	10.20	8.64	8.73	12.54	30.00	PASS
	165/5825	9.85	9.94	8.57	8.66	12.36	30.00	PASS
000 11	142/5710	-3.01	-2.78	-4.05	-3.82	-0.26	30.00	PASS
802.11ac	151/5755	9.71	9.94	8.35	8.58	12.33	30.00	PASS
VIII40	159/5795	9.59	9.82	8.14	8.37	12.16	30.00	PASS
802.11ac	138/5690	-7.80	-7.35	-8.79	-8.34	-4.81	30.00	PASS
VHT80	155/5775	9.10	9.55	7.77	8.22	11.95	30.00	PASS

Note: 1. For Total Power, according to KDB 662911 D01 Multiple Transmitter Output v02r01 1), The Total Power =10log(10^(Power antenna1 in dBm/10)+10^(Power antenna2 in dBm/10)).

2. The manufacturer declared N_{ss}=1. According to KDB 662911 D01 Multiple Transmitter Output v02r01 F)2)f)(ii): If antenna gains are not equal, the user may use either of the following methods to calculate directional gain, provided that each transmit antenna is driven by only one spatial stream: Directional gain may be calculated by using the formulas applicable to equal gain antennas with G_{ANT} set equal to the gain of the antenna having the highest gain.

Directional gain = G_{ANT MAX} + Array Gain,

For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$;

Array Gain = 0 dB (i.e., no array gain) for channel widths \geq 40 MHz for any N_{ANT};

Array Gain = 5 log(N_{ANT}/N_{SS}) dB or 3 dB, whichever is less, for 20-MHz channel widths with $N_{ANT} \ge 5$.

So directional gain = $G_{ANT MAX}$ + Array Gain = 5.4 +0= 5.4 dBi
<6dBi. So the power limit is 30dBm.

5.3. Frequency Stability

Ambient condition

Temperature	Relative humidity
20°C ~25°C	45%~50%

Method of Measurement

1. Frequency stability with respect to ambient temperature

a) Supply the EUT with a nominal ac voltage or install a new or fully charged battery in the EUT. If possible, a dummy load shall be connected to the EUT because an antenna near the metallic walls of an environmental test chamber could affect the output frequency of the EUT. If the EUT is equipped with a permanently attached, adjustable-length antenna, then the EUT shall be placed in the center of the chamber with the antenna adjusted to the shortest length possible. Turn ON the EUT and tune it to one of the number of frequencies shown in 5.6.

b) Couple the unlicensed wireless device output to the measuring instrument by connecting an antenna to the measuring instrument with a suitable length of coaxial cable and placing the measuring antenna near the EUT (e.g., 15 cm away), or by connecting a dummy load to the measuring instrument, through an attenuator if necessary.

c) Adjust the location of the measurement antenna and the controls on the measurement instrument to obtain a suitable signal level (i.e., a level that will not overload the measurement instrument but is strong enough to allow measurement of the operating or fundamental frequency of the EUT).

d) Turn the EUT OFF and place it inside the environmental temperature chamber. For devices that have oscillator heaters, energize only the heater circuit.

e) Set the temperature control on the chamber to the highest specified in the regulatory requirements for the type of device and allow the oscillator heater and the chamber temperature to stabilize.

f) While maintaining a constant temperature inside the environmental chamber, turn the EUT ON and record the operating frequency at startup, and at 2 minutes, 5 minutes, and 10 minutes after the EUT is energized. Four measurements in total are made.

g) Measure the frequency at each of frequencies specified in 5.6.

h) Switch OFF the EUT but do not switch OFF the oscillator heater.

i) Lower the chamber temperature by not more that 10°C, and allow the temperature inside the chamber to stabilize.

j) Repeat step f) through step i) down to the lowest specified temperature.

2. Frequency stability when varying supply voltage

Unless otherwise specified, these tests shall be made at ambient room temperature (+15°C to +25 °C). An antenna shall be connected to the antenna output terminals of the EUT if possible. If the EUT is equipped with or uses an adjustable-length antenna, then it shall be fully extended.

a) Supply the EUT with nominal voltage or install a new or fully charged battery in the EUT. Turn ON the EUT and couple its output to a frequency counter or other frequency-measuring instrument.

b) Tune the EUT to one of the number of frequencies required in 5.6. Adjust the location of the measurement antenna and the controls on the measurement instrument to obtain a suitable signal

Report No.: R2211A1014-R3V1

level (i.e., a level that will not overload the measurement instrument but is strong enough to allow measurement of the operating or fundamental frequency of the EUT).

c) Measure the frequency at each of the frequencies specified in 5.6.

d) Repeat the above procedure at 85% and 115% of the nominal supply voltage.

Limit

Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the users manual.

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U= 936Hz

TA

RF Test Report Test Results

	Tomporatura		U-NII-1 Te	est Results				
	remperature		5200MHz					
(V)	(C)	1min	2min	5min	10min			
3.3	-20	5200.000590	5199.994353	5199.987341	5199.979748			
3.3	-10	5199.997448	5199.984545	5199.977980	5199.970738			
3.3	0	5199.989172	5199.981294	5199.977684	5199.965812			
3.3	10	5199.980864	5199.975876	5199.971845	5199.961629			
3.3	20	5199.976184	5199.971965	5199.964278	5199.959694			
3.3	30	5199.969639	5199.971320	5199.956312	5199.954499			
3.3	40	5199.967211	5199.970309	5199.953190	5199.944977			
3.3	50	5199.959656	5199.969096	5199.951175	5199.944289			
3.14	20	5199.958261	5199.967622	5199.944697	5199.934619			
3.46	20	5199.949492	5199.965216	5199.944588	5199.926017			
Ма	x. ΔMHz	-0.050508	-0.034784	-0.055412	-0.073983			
	PPM	-9.713128	-6.689259	-10.656076	-14.227491			

	Temperature		U-NII-2A T	est Results			
			5300MHz				
(V)	(C)	1min	2min	5min	10min		
3.3	-20	5299.998591	5299.997984	5299.997410	5299.993286		
3.3	-10	5299.996260	5299.988576	5299.995528	5299.989602		
3.3	0	5299.993824	5299.986970	5299.991292	5299.982441		
3.3	10	5299.988861	5299.984212	5299.987362	5299.977456		
3.3	20	5299.983431	5299.974343	5299.980784	5299.972634		
3.3	30	5299.977407	5299.973422	5299.978482	5299.972324		
3.3	40	5299.974058	5299.969786	5299.977933	5299.964777		
3.3	50	5299.967218	5299.968081	5299.968267	5299.957636		
3.14	20	5299.958811	5299.966010	5299.965741	5299.950729		
3.46	20	5299.949808	5299.956556	5299.964268	5299.945616		
Ма	x. ΔMHz	-0.050192	-0.043444	-0.035732	-0.054384		
	PPM	-9.470265	-8.196963	-6.741898	-10.261121		

RF	Test	Re	port

🛟 eurofins

TA

	T	U-NII-2C Test Results					
		5580MHz					
(•)	(0)	1min	2min	5min	10min		
3.3	-20	5579.990704	5579.985351	5579.975456	5579.966589		
3.3	-10	5579.984304	5579.983197	5579.969931	5579.962332		
3.3	0	5579.974582	5579.981244	5579.964020	5579.958978		
3.3	10	5579.967869	5579.981105	5579.962795	5579.958477		
3.3	20	5579.966464	5579.977054	5579.953092	5579.956784		
3.3	30	5579.959049	5579.973909	5579.949263	5579.949415		
3.3	40	5579.955987	5579.969016	5579.940284	5579.945658		
3.3	50	5579.950271	5579.962796	5579.938820	5579.945421		
3.14	20	5579.942391	5579.962179	5579.930759	5579.942979		
3.46	20	5579.935389	5579.953516	5579.926428	5579.938981		
Ma	x. ΔMHz	-0.064611	-0.046484	-0.073572	-0.061019		
	PPM	-11.579106	-8.330473	-13.185009	-10.935369		

	T		U-NII-3 Test Results					
Voltage			5785MHz					
	1min	2min	5min	10min				
3.3	-20	5784.999717	5784.990998	5784.990830	5784.984902			
3.3	-10	5784.998967	5784.987776	5784.990149	5784.977195			
3.3	0	5784.991914	5784.985050	5784.980593	5784.977004			
3.3	10	5784.983640	5784.978338	5784.977411	5784.967346			
3.3	20	5784.978219	5784.970075	5784.974510	5784.961111			
3.3	30	5784.976584	5784.967087	5784.968405	5784.953582			
3.3	40	5784.972350	5784.959763	5784.963696	5784.949566			
3.3	50	5784.969919	5784.952856	5784.954386	5784.944220			
3.14	20	5784.960793	5784.948270	5784.949007	5784.940809			
3.46	20	5784.957445	5784.945467	5784.940831	5784.939111			
Ма	x. ΔMHz	-0.042555	-0.054533	-0.059169	-0.060889			
	PPM	-7.356176	-9.426694	-10.227920	-10.525323			

5.4. Power Spectral Density

Ambient condition

Temperature	Relative humidity	
20°C ~25°C	45%~50%	

Method of Measurement

The EUT was connected to the spectrum analyzer through an external attenuator (20dB) and a known loss cable.

Set RBW = 1MHz, VBW =3MHz for the band 5.150-5.250GHz, 5.250-5.350GHz, 5.470-5.725GHz. Set RBW = 470kHz, VBW =1.5MHz for the band 5.725-5.850GHz

The conducted PSD is measured at each antenna port. The measured results at the various antenna ports are then summed mathematically.

Test setup

Limits

Rule FCC Part 15.407(a)(1)/ Part 15.407(a)(2) / Part 15.407(a)(3)

For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. For the band 5.725-5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500kHz band. If transmittingantennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Frequency Bands/MHz	Limits
5150-5250	17dBm/MHz
5.25-5.35 GHz and 5.47-5.725 GHz	11dBm/MHz
5725-5850	30dBm/500kHz

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 0.75dB.

Test Results:

Note: Power Spectral Density =Read Value+Duty cycle correction factor

U-NII-1

Antenna 1

Mode	Channel Number	Read Value (dBm /MHz)	Power Spectral Density (dBm /MHz)	Limit (dBm /MHz)	Conclusion
	36	1.11	1.24	17	PASS
802.11a	40	0.81	0.94	17	PASS
	48	0.88	1.01	17	PASS
	36	1.50	1.61	17	PASS
802.11n HT20	40	1.59	1.70	17	PASS
	48	1.53	1.64	17	PASS
902 11p UT40	38	-5.07	-4.87	17	PASS
002.1111 1140	46	-2.12	-1.92	17	PASS
	36	0.69	0.78	17	PASS
802.11ac VHT20	40	0.49	0.58	17	PASS
	48	0.39	0.48	17	PASS
802.11ac VHT40	38	-2.83	-2.60	17	PASS
	46	-3.11	-2.88	17	PASS
802.11ac VHT80	42	-13.21	-12.76	17	PASS

Mode	Channel Number	Read Value (dBm /MHz)	Power Spectral Density (dBm /MHz)	Limit (dBm /MHz)	Conclusion
	36	1.38	1.51	17	PASS
802.11a	40	1.88	2.01	17	PASS
	48	1.31	1.44	17	PASS
	36	1.89	2.00	17	PASS
802.11n HT20	40	2.24	2.35	17	PASS
	48	1.90	2.01	17	PASS
000 11p UT40	38	-4.63	-4.43	17	PASS
002.11111140	46	-1.55	-1.35	17	PASS
	36	0.96	1.05	17	PASS
802.11ac VHT20	40	1.48	1.57	17	PASS
	48	1.12	1.21	17	PASS
802.11ac VHT40	38	-2.62	-2.39	17	PASS
	46	-2.34	-2.11	17	PASS
802.11ac VHT80	42	-12.03	-11.58	17	PASS

TA

Report No.: R2211A1014-R3V1

U-NII-2A Antenna 1

F	۸n	τe	nr	ıa	1

Mode	Channel Number	Read Value (dBm /MHz)	Power Spectral Density (dBm /MHz)	Limit (dBm /MHz)	Conclusion
	52	0.71	0.84	11	PASS
802.11a	60	1.04	1.17	11	PASS
	64	0.94	1.07	11	PASS
	52	1.50	1.61	11	PASS
802.11n HT20	60	1.57	1.68	11	PASS
	64	1.27	1.38	11	PASS
902 11p UT40	54	-2.07	-1.87	11	PASS
002.1111 1140	62	-2.36	-2.16	11	PASS
	52	0.34	0.43	11	PASS
802.11ac VHT20	60	0.34	0.43	11	PASS
	64	0.74	0.83	11	PASS
802.11ac VHT40	54	-3.01	-2.78	11	PASS
	62	-3.12	-2.89	11	PASS
802.11ac VHT80	58	-8.68	-8.23	11	PASS

Mode	Channel Number	Read Value (dBm /MHz)	Power Spectral Density (dBm /MHz)	Limit (dBm /MHz)	Conclusion
	52	1.42	1.55	11	PASS
802.11a	60	1.00	1.13	11	PASS
	64	0.91	1.04	11	PASS
	52	1.95	2.06	11	PASS
802.11n HT20	60	1.66	1.77	11	PASS
	64	1.43	1.54	11	PASS
	54	-1.98	-1.78	11	PASS
802.11n H140	62	-1.94	-1.74	11	PASS
	52	1.35	1.44	11	PASS
802.11ac VHT20	60	0.58	0.67	11	PASS
	64	0.41	0.50	11	PASS
	54	-2.89	-2.66	11	PASS
002.11ac vm140	62	-2.72	-2.49	11	PASS
802.11ac VHT80	58	-8.29	-7.84	11	PASS

TA

Report No.: R2211A1014-R3V1

U-NII-2C

Mode	Channel Number	Read Value (dBm /MHz)	Power Spectral Density (dBm /MHz)	Limit (dBm /MHz)	Conclusion
	100	-0.40	-0.27	11	PASS
	104	0.44	0.57	11	PASS
802 110	120	0.40	0.53	11	PASS
002.11a	136	0.55	0.68	11	PASS
	140	-1.58	-1.45	11	PASS
	144	0.49	0.62	11	PASS
	100	1.30	1.41	11	PASS
000.44	120	0.88	0.99	11	PASS
802.11n HT20	136	1.21	1.32	11	PASS
	140	-1.78	-1.67	11	PASS
	144	0.99	1.10	11	PASS
	102	-5.55	-5.35	11	PASS
000.44	110	-2.98	-2.78	11	PASS
802.11n HT40	118	-2.95	-2.75	11	PASS
	134	-2.77	-2.57	11	PASS
	142	-2.62	-2.42	11	PASS
	100	0.23	0.32	11	PASS
802.11ac	120	-0.03	0.06	11	PASS
VHT20	140	0.29	0.38	11	PASS
	144	-0.03	0.06	11	PASS
	102	-2.89	-2.66	11	PASS
802.11ac	118	-3.74	-3.51	11	PASS
VHT40	134	-3.47	-3.24	11	PASS
	142	-3.43	-3.20	11	PASS
	106	-8.90	-8.45	11	PASS
802.11ac VHT80	122	-7.03	-6.58	11	PASS
	128	-7.05	-6.60	11	PASS

Mode	Channel Number	Read Value (dBm /MHz)	Power Spectral Density (dBm /MHz)	Limit (dBm /MHz)	Conclusion
	100	-1.19	-1.06	11	PASS
	104	-0.36	-0.23	11	PASS
802 115	120	-1.02	-0.89	11	PASS
002.11a	136	-0.40	-0.27	11	PASS
	140	-2.60	-2.47	11	PASS
	144	-0.92	-0.79	11	PASS
	100	0.34	0.45	11	PASS
000.44	120	-0.03	0.08	11	PASS
802.11n HT20	136	-0.02	0.09	11	PASS
11120	140	-2.79	-2.68	11	PASS
	144	-0.20	-0.09	11	PASS
	102	-6.20	-6.00	11	PASS
	110	-3.95	-3.75	11	PASS
802.11n HT40	118	-3.91	-3.71	11	PASS
11140	134	-3.62	-3.42	11	PASS
	142	-3.74	-3.54	11	PASS
	100	-0.76	-0.67	11	PASS
802.11ac	120	-1.32	-1.23	11	PASS
VHT20	140	-0.78	-0.69	11	PASS
	144	-1.09	-1.00	11	PASS
	102	-3.95	-3.72	11	PASS
802.11ac	118	-4.93	-4.70	11	PASS
VHT40	134	-4.82	-4.59	11	PASS
	142	-4.65	-4.42	11	PASS
	106	-9.68	-9.23	11	PASS
802.11ac VHT80	122	-8.11	-7.66	11	PASS
	128	-8.03	-7.58	11	PASS