

MRT Technology (Suzhou) Co., Ltd Phone: +86-512-66308358 Web: www.mrt-cert.com Report No.:2203RSU045-U5 Report Version: V01 Issue Date: 06-16-2022

RF SPOT CHECK REPORT

- FCC ID: XMR2022EM060KGL
- Application: Quectel Wireless Solutions Company Limited
- Product: LTE-A Cat 6 M.2 Module
- Model No.: EM060K-GL
- Brand Name: Quectel
- FCC Classification: PCS Licensed Transmitter (PCB)
- FCC Rule Part(s): Part 27 Subpart D
- Result: Complies
- **Test Date:** 2022-03-22 ~ 2022-04-23

Reviewed By:

Sunny Sun

Approved By:

Robin Wu

The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.26-2015. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

Revision History

Report No.	Version	Description	Issue Date	Note
2203RSU045-U5	Rev. 01	Initial Report	06-16-2022	Valid

Note: EM060K-GL and EM120K-GL support the same bands, use the same chips, share the same software and hardware design, and the differences are category and DL MIMO. This report is based on FCC ID "XMR2022EM120KGL" to spot check EIRP, Band Edge, Conducted Spurious Emission test items.

CONTENTS

Des	cription		Page
1.	Genne	ral Information	5
	1.1.	Applicant	5
	1.2.	Manufacturer	5
	1.3.	Testing Facility	5
	1.4.	Product Information	6
	1.5.	Product Specification under Test	6
	1.6.	Description of Available Antennas	7
	1.7.	Test Methodology	7
	1.8.	Configuration of Tested System	8
	1.9.	Test Environment Condition	8
2.	Test E	quipment Calibration Date	9
3.	Measu	rement Uncertainty	10
4.	Test R	esult	11
	4.1.	Summary	11
	4.2.	Equivalent Isotropically Radiated Power Measurement	12
	4.2.1.	Test Limit	12
	4.2.2.	Test Procedure	12
	4.2.3.	Test Setting	12
	4.2.4.	Test Setup	13
	4.2.5.	Test Result	13
	4.3.	Band Edge Measurement	14
	4.3.1.	Test Limit	14
	4.3.2.	Test Procedure	14
	4.3.3.	Test Setting	14
	4.3.4.	Test Setup	15
	4.3.5.	Test Result	15
	4.4.	Conducted Spurious Emissions Measurement	16
	4.4.1.	Test Limit	16
	4.4.2.	Test Procedure	16
	4.4.3.	Test Setting	16
	4.4.4.	Test Setup	17
	4.4.5.	Test Result	17
Арр	endix A	- Test Result	18
	A.1	Equivalent Isotropically Radiated Power Test Result	
	A.2	Band Edge Test Result	19

A.3	Conducted Spurious Emissions Test Result	22
Appendix B	- Test Setup Photograph	24
Appendix C	- EUT Photograph	25

1. Genneral Information

1.1. Applicant

Quectel Wireless Solutions Company Limited

Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai, China 200233

1.2. Manufacturer

Quectel Wireless Solutions Company Limited

Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai, China 200233

1.3. Testing Facility

\boxtimes	Test Site – MRT Suzhou Laboratory					
	Laboratory Location (Suzhou - Wuzhong) D8 Building, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China Laboratory Location (Suzhou - SIP)					
	4b Building, Liand	lo U Valley, No.200	Xingpu Rd., Shengp	u Town, Suzhou Indu	strial Park, China	
	Laboratory Accre	editations				
	A2LA: 3628.01		CNAS	S: L10551		
	FCC: CN1166		ISED	CN0001		
		□R-20025	□G-20034	C-20020	T-20020	
	VCCI:	□R-20141	□G-20134	C-20103	□T-20104	
	Test Site – MRT	Shenzhen Laborat	ory			
	Laboratory Loca	tion (Shenzhen)				
	1G, Building A, Ju	ınxiangda Building,	Zhongshanyuan Roa	ad West, Nanshan Di	strict, Shenzhen, China	
	Laboratory Accreditations					
	A2LA: 3628.02 CNAS: L10551					
	FCC: CN1284		ISED:	CN0105		
	Test Site – MRT Taiwan Laboratory					
	Laboratory Location (Taiwan)					
	No. 38, Fuxing 2nd Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.)					
	Laboratory Accreditations					
	TAF: L3261-1907	25				
	FCC: 291082, TW	/3261	ISED:	TW3261		

1.4. Product Information

LTE-A Cat 6 M.2 Module		
EM060K-GL		
Quectel		
867228050008597		
Band 2, 4, 5		
FDD Band: 2, 4, 5, 7, 12, 13, 14, 17, 25, 26, 30, 66, 71		
TDD Band: 38, 41, 46		
GPS, GLONASS, Bei Dou, Galileo		
3.135 ~ 4.4Vdc, typical 3.7Vdc		
-25 ~ 75 °C		
Remark: The information of EUT was provided by the manufacturer, and the accuracy of the information shall		
be the responsibility of the manufacturer.		

1.5. Product Specification under Test

E-UTRA Specification		
Single Band	FDD Band: 30	
Modulation	UL up to 64QAM, DL up to 256QAM	
FDD T _x Frequency Range	Band 30: 2305 ~ 2315 MHz	
FDD Rx Frequency Range	Band 30: 2350 ~ 2360 MHz	

Technology	Frequency Range (MHz)	Antenna Type	MaxPeak Gain (dBi)
LTE Band 2	1850 ~ 1910		0.25
LTE Band 4	1710 ~ 1755		1.47
LTE Band 5	824 ~ 849		2.68
LTE Band 7	2500 ~ 2570		0.55
LTE Band 12	699 ~ 716		-0.20
LTE Band 13	777 ~ 787		1.54
LTE Band 14	788 ~ 798		2.42
LTE Band 17	704~ 716	Dipole	-0.20
LTE Band 25	1850 ~ 1915		0.25
LTE Band 26	814~849		2.87
LTE Band 30	2305 ~ 2315		-3.06
LTE Band 38	2570 ~ 2620		-0.23
LTE Band 41	2496 ~ 2690		0.78
LTE Band 66	1710 ~ 1780		1.47
LTE Band 71	663 ~ 698		1.22

1.6. Description of Available Antennas

Note: All antenna information (Antenna type and Peak Gain) is provided by the manufacturer.

1.7. Test Methodology

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- ANSI C63.26:2015
- FCC CFR 47 Part 27
- FCC KDB 971168 D01 v03r01: Power Meas License Digital Systems
- FCC KDB 971168 D02 v02r01: Misc Rev Approv License Devices
- FCC KDB 412172 D01 v01r01: Determining ERP and EIRP

Г

1.8. Configuration of Tested System

	EL	JT	Remote Site
Produ	ct	Manufacturer	Model No.
1	Wideband Radio Communication Tester	R&S	CMW 500

1.9. Test Environment Condition

Ambient Temperature	15 ~ 35°C
Relative Humidity	20% ~ 75%RH

2. Test Equipment Calibration Date

Instrument	Manufacturer	Model No.	Asset No.	Last Cali. Date	Cali. Due Date	Test Site
Thermohygrometer	testo	608-H1	MRTSUE06362	1 year	2023/2/15	WZ-SR6
Shielding Room	HUAMING	WZ-SR6	MRTSUE06443	/	/	WZ-SR6
Signal Analyzer	Keysight	N9020B	MRTSUE06583	1 year	2022/10/10	WZ-SR6
Signal Generator	Keysight	N5173B	MRTSUE06606	1 year	2022/11/29	WZ-SR6
Radio Communication Analyzer	Anritsu	MT8821C	MRTSUE06960	1 year	2022/7/1	WZ-SR6
Radio Communication Test Station	Anritsu	MT8000A	MRTSUE06961	1 year	2022/7/1	WZ-SR6
Signal Analyzer	Keysight	N9010B	MRTSUE07028	1 year	2022/12/9	SIP-SR1
Attenuator	SHX	SMA10-3dB-18G	MRTSUE06695	1 year	2023-03-02	WZ
Directional Coupler	narda	4226-20	MRTSUE06065	1 year	2023-03-17	WZ
Directional Coupler	Agilent	87301D	MRTSUE06082	1 year	2023-03-07	wz

3. Measurement Uncertainty

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

Conducted Spurious Emissions

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

0.78dB

Output Power

Measuring Uncertainty for a Level of Confidence of 95% (U=2Uc(y)):

1.13dB

4. Test Result

4.1. Summary

FCC Part Section(s)	Test Description	Test Condition	Verdict
27.50(a)(3)	Equivalent Isotropic Radiated Power Density		Pass
2.1051, 27.53(a)(4)	Band Edge	Conducted	Pass
2.1051, 27.53(a)(4)	Spurious Emission		Pass

Notes:

- The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- All supported modulation types were evaluated. The worst-case emission of modulation was selected. Therefore, the Channel Band Edge, Conducted Spurious Emission were presented worst-case in the test report.

4.2. Equivalent Isotropically Radiated Power Measurement

4.2.1. Test Limit

For mobile and portable stations transmitting in the 2305-2315 MHz band or the 2350-2360 MHz band, the average EIRP must not exceed 50milliwatts within any 1 megahertz of authorized bandwidth, except that for mobile and portable stations compliant with 3GPP L TE standards or another advanced mobile broadband protocol that avoids concentrating energy at the edge of the operating band the average EIRP must not exceed 250 milliwatts within any 5 megahertz of authorized bandwidth but may exceed 50 milliwatts within any 1 megahertz of authorized bandwidth but may exceed 50 milliwatts within any 1 megahertz of authorized bandwidth but may exceed 50 milliwatts within any 1 megahertz of authorized bandwidth

4.2.2. Test Procedure

ANSI C63.26-2015 - Section 5.2.4.4.2 &5.2.5.5

4.2.3. Test Setting

When the fundamental condition for average power measurements cannot be realized (i.e., the EUT can not be configured to transmit at full-power on a continuous basis (i.e., duty cycle < 98%) and the instrumentation cannot be configured to measure only during active full-power transmissions), then the following procedure can be used if the EUT duty cycle is constant (i.e., duty cycle variations are less thanor equal to $\pm 2\%$).

a) Set span to $2 \times to 3 \times the OBW$.

b) Set RBW = 1% to 5% of the OBW.

c) Set VBW \geq 3 × RBW.

d) Set number of measurement points in sweep $\ge 2 \times \text{span} / \text{RBW}$.

e) Sweep time:

1) Set = auto-couple, or

2) Set \geq [10 × (number of points in sweep) × (transmission symbol period)] for single sweep

(automation-compatible) measurement.

f) Detector = power averaging (rms).

g) Set sweep trigger to "free run."

h) Trace average at least 100 traces in power averaging (rms) mode if sweep is set to auto-couple. To accurately determine the average power over the on and off time of the transmitter, it can be necessary to increase the number of traces to be averaged above 100, or if using a manually configured sweep time, increase the sweep time.

i) Using the marker function to identify the maximum PSD.

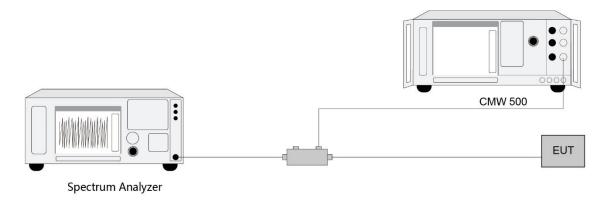
(1)

j) Add 10 log (1/duty cycle) to the measured power level to compute the average power during continuous transmission. For example, add $[10 \log (1/0.25)] = 6 \text{ dB}$ if the duty cycle is a constant 25%.

The relevant equation for determining the maximum ERP or EIRP from the measured RF output power is given in Equation (1) as follows:

where

ERP or EIRP effective radiated power or equivalent isotropically radiated power, respectively (expressed in the


same units as P_{Meas}, e.g., dBm or dBW)

P_{Meas} measured transmitter output power or PSD, in dBm or dBW

G⊤ gain of the transmitting antenna, in dBd (ERP) or dBi (EIRP)

For devices utilizing multiple antennas, see 6.4 for guidance with respect to determining the effective array transmit antenna gain term to be used in the above equation.

4.2.4. Test Setup

4.2.5. Test Result

Refer to Appendix A.3.

4.3. Band Edge Measurement

4.3.1. Test Limit

For mobile and portable stations operating in the 2305-2315 MHz and 2350-2360MHz bands:

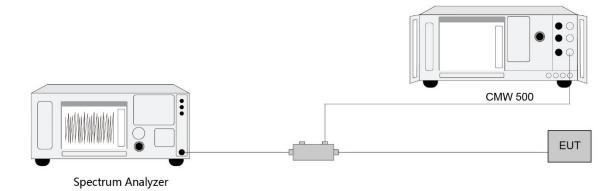
(1) By a factor of not less than: 43 + 10 log (P) dB on all frequencies between 2305 and2320 MHz and on all frequencies between 2345 and 2360 MHz that are outside the licensed band(s) of operation, not less than 55 + 10 log (P) dB on all frequencies between 2320 and 2324 MHz and on all frequencies between 2341 and 2345 MHz, not less than 61 + 10 log (P) dB on all frequencies between 2324 and 2328 MHz and on all frequencies between 2337 and 2341 MHz, and not less than 67 + 10 log (P) dB on all frequencies between 2328 and 2337 MHz;

(2) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2300 and 2305 MHz, 55 + 10 log (P) dB on all frequencies between 2296 and 2300 MHz, 61 + 10 log (P) dB on all frequencies between 2292 and 2296 MHz, 67 + 10 log (P) dB on all frequencies between 2288 and 2292 MHz, and 70 + 10 log (P) dB below 2288 MHz;

(3) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2360 and 2365 MHz, and not less than 70 + 10 log (P) dB above 2365 MHz.

4.3.2. Test Procedure

ANSI C63.26-2015 - Section5.7


4.3.3. Test Setting

- 1. Set the analyzer frequency to low or high channel
- 2. RBW ≥ The nominal RBW shall be in the range of 1% of the anticipated OBW (in the 1MHz band immediately outside and adjacent to the band edge). For improvement of the accuracy in the measurement of the average power of a noise-like emission, a RBW narrower than the specified reference bandwidth can be used (generally limited to no less than 1% of the OBW), provided that a subsequent integration is performed over the full required measurement bandwidth. This integration should be performed using the spectrum analyzer's band power functions.
- 3. VBW ≥ 3*RBW
- 4. Sweep time = auto
- 5. Detector = power averaging (rms)
- 6. Set sweep trigger to "free run."
- 7. User gate triggered such that the analyzer only sweeps when the device is transmitting at full power

8. Trace average at least 100 traces in power averaging (rms) mode if sweep is set to auto-couple. To accurately determine the average power over the on and off time of the transmitter, it can be necessary to increase the number of traces to be averaged above 100, or if using a manually configured sweep time, increase the sweep time.

4.3.4. Test Setup

4.3.5. Test Result

Refer to Appendix A.4.

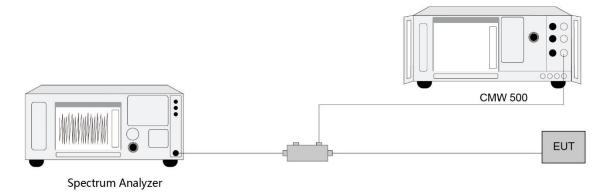
4.4. Conducted Spurious Emissions Measurement

4.4.1. Test Limit

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10thharmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst-case configuration. All modes of operation were investigated and the worst-case configuration results are reported in this section.

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least 70 + 10 log (P) dB.

4.4.2. Test Procedure


ANSI C63.26-2015 - Section 5.7

4.4.3. Test Setting

- 1. Set the analyzer frequency to low, mid, high channel.
- 2. RBW = 1MHz
- 3. VBW ≥ 3*RBW
- 4. Sweep time = auto
- 5. Detector = power averaging (rms)
- 6. Set sweep trigger to "free run."
- 7. User gate triggered such that the analyzer only sweeps when the device is transmitting at full power.
- 8. Trace average at least 100 traces in power averaging (rms) mode if sweep is set to auto-couple. To accurately determine the average power over the on and off time of the transmitter, it can be necessary to increase the number of traces to be averaged above 100, or if using a manually configured sweep time, increase the sweep time.

4.4.4. Test Setup

4.4.5. Test Result

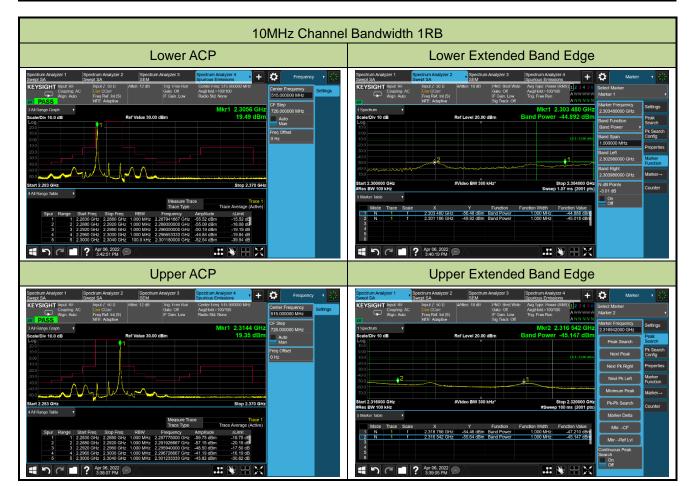
Refer to Appendix A.5.

Appendix A - Test Result

A.1 Equivalent Isotropically Radiated Power Test Result

Test Site	WZ-SR6	Test Engineer	Caitlin Chen
Test Date	2022/03/21 ~ 2022/04/16	Test Band	Band 30

Frequency (MHz)	Channel Bandwidth	RB Size	RB Offset	Power Density (dBm/5MHz)	EIRP Density (dBm/5MHz)	Limit (dBm
QPSK	(MHz)					/5MHz)
2307.5		1	0	22.91	19.85	< 23.98
2310.0	5			23.05	19.99	< 23.98
2312.5				22.94	19.88	< 23.98
2307.5				23.01	19.95	< 23.98
2310.0	5	1	12	23.09	20.03	< 23.98
2312.5				22.90	19.84	< 23.98
2307.5				22.95	19.89	< 23.98
2310.0	5	1	24	22.88	19.82	< 23.98
2312.5				22.72	19.66	< 23.98
2307.5				22.08	19.02	< 23.98
2310.0	5	25	0	22.09	19.03	< 23.98
2312.5				21.89	18.83	< 23.98
2310.0		1	0	23.02	19.96	< 23.98
	10	1	24	23.10	20.04	< 23.98
		1	49	22.93	19.87	< 23.98
		50	0	19.63	16.57	< 23.98
Note: The EIRP	Density (dBm/5	MHz) = Powe	er Density (dB	m/5MHz) + Antenn	a Gain (dBi)	



A.2 Band Edge Test Result

Test Site	WZ-SR6	Test Engineer	Caitlin Chen
Test Date	2022/04/06	Test Band	Band 30

A.3 Conducted Spurious Emissions Test Result

Test Site	WZ-SR6	Test Engineer	Caitlin Chen
Test Date	2022/04/01	Test Band	Band 30

Frequency	Channel	Frequency Range	Max Spurious	Limit	Result
(MHz)	Bandwidth (MHz)	(MHz)	Emissions (dBm)	(dBm)	
QPSK					
2307.5	5	30 ~ 25000	-50.44	≤ -40.00	Pass
2310.0	5	30 ~ 25000	-50.06	≤ -40.00	Pass
2312.5	5	30 ~ 25000	-50.36	≤ -40.00	Pass
2310.0	10	30 ~ 25000	-50.67	≤ -40.00	Pass

10MHz Channel Bandwidth			
Middle Channel			
EEVSIGHT Input He Papul 2: 90 0 Altern 10 dB Ing Fise Nam Cale of the res 2 310000000 GHz Cale of the res 2 310000000 GHz Altern Audo Description Gala of the res 2 and	Frequency Prequency		

Appendix B - Test Setup Photograph

Refer to "2203RSU045-UT" file.

Appendix C - EUT Photograph

Refer to "2203RSU045-UE" file.

The End