

MPE TEST REPORT

Applicant Quectel Wireless Solutions Co., Ltd.

FCC ID XMR2022BG952AGL

Product LTE Cat M1 & Cat NB1 Module

Brand Quectel

Model BG952A-GL

Report No. R2301A0030-M1

Issue Date July 17, 2023

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **FCC 47 CFR Part 1 1.1310.** The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Prepared by: Wei Fangying

mei Jang ying

Approved by: Fan Guangchang

TA Technology (Shanghai) Co., Ltd.

Building 3, No.145, Jintang Rd, Pudong Shanghai, P.R.China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000

Table of Contents

3
3
3
3
3
4
6
7
11
12
13

1 Test Laboratory

1.1 Notes of the Test Report

This report shall not be reproduced in full or partial, without the written approval of **TA Technology** (Shanghai) Co., Ltd. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein .Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above.

1.2 Test Facility

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform measurements.

1.3 Testing Location

Company: TA Technology (Shanghai) Co., Ltd.

Address: Building 3, No.145, Jintang Rd, Pudong Shanghai, P.R.China

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Fan Guangchang

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000

Website: http://www.ta-shanghai.com

E-mail: fanguangchang@ta-shanghai.com

1.4 Laboratory Environment

Temperature	Min. = 18°C, Max. = 25 °C			
Relative humidity	Min. = 30%, Max. = 70%			
Ground system resistance	< 0.5 Ω			
Ambient noise is checked and found very low and in compliance with requirement of standards.				

Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards.

2 Description of Equipment Under Test

Client Information

Applicant	Quectel Wireless Solutions Co., Ltd.				
Applicant address	Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai, China, 200233				
Manufacturer	Quectel Wireless Solutions Co., Ltd.				
Manufacturer address	Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai, China, 200233				

General Technologies

Model	BG952A-GL			
IMEI	Original	869410050002659		
Hardware Version	R1.5			
Software Version	BG952AGLAAR02	A01		

Note:

- 1. The EUT is sent from the applicant to TA and the information of the EUT is declared by the applicant.
- 2. All indications of Pass/Fail in this report are opinions expressed by TA Technology (Shanghai) Co., Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only.

BG952A-GL (Report No.: R2301A0030-M1) is a variant model (Variant 2) of BG952A-GL (Report No.: R2206A0479-M1).

BG952A-GL supports from Cat NB1 (3GPP R13) to Cat NB2 (3GPP R14) only by FW updating, the hardware remains the same.

The detailed product change description please refers to following table:

Module	BG952A-GL (Cat NB1)	BG952A-GL (Cat NB2)		
Category	Cat M1 & NB1	Cat M1 & NB2		
	Cat M1	Cat M1		
Eroguenov Bondo	Band 2/4/5/12/13/25/26/66	Band 2/4/5/12/13/25/26/66		
Frequency Bands	Cat NB1	Cat NB2		
	Band 2/4/5/12/13/17/25/66	Band 2/4/5/12/13/17/25/66		
Software Version	BG952AGLAAR01A03 BG952AGLAAR02A01			
Product Name	LTE Cat M1 & Cat NB1 Module LTE Cat M1 & Cat NB2 Modul			
Others	The same			

Test values all duplicated from Original for variant. There is no test for variant in this report. The detailed product change description please refers to the *Difference Declaration Letter* (*Variant 2*).

IPE Test Report No.: R2301A0030-M1

BG952A-GL (Report No.: R2206A0479-M1) is a variant model (Variant 1) of BG950A-GL (Report No.: R2107A0607-M1). Test values partial duplicated from Original for variant. There is no test for variant in this report.

The detailed product change description please refers to following table:

Module	BG950A-GL	BG952A-GL		
QuecOpen®	N/A	Supported		
Hardware Version	R1.3	R1.5		
Software Version	BG950AGLAAR01A01	BG952AGLAAR01A03		
Product Name	LTE Module	LTE Cat M1 & Cat NB1 Module		
Others	The same			

The detailed product change description please refers to the *Difference Declaration Letter* (Variant 1).

3 Maximum Tune up and Antenna Gain

The numeric gain (G) of the antenna with a gain specified in dB is determined by Numeric gain (G)=10^(antenna gain/10)

Band	Maximur	m Tune up
	(dBm)	(mW)
LTE-M Band 2	25.70	371.535
LTE-M Band 4	25.70	371.535
LTE-M Band 5	25.70	371.535
LTE-M Band 12	25.70	371.535
LTE-M Band 13	25.70	371.535
LTE-M Band 25	25.70	371.535
LTE-M Band 26	25.70	371.535
LTE-M Band 66	25.70	371.535
NB-IoT Band 2	25.70	371.535
NB-IoT Band 4	25.70	371.535
NB-IoT Band 5	25.70	371.535
NB-loT Band 12	25.70	371.535
NB-loT Band 13	25.70	371.535
NB-IoT Band 17	25.70	371.535
NB-loT Band 25	25.70	371.535
NB-IoT Band 66	25.70	371.535

4 Test Result

According to section 1.1310 of FCC 47 CFR Part 1, limits for maximum permissible exposure (MPE) are as following.

TABLE 1 – LIMITS FOR MAXIMUN PERMISSIBLE EXPOSURE (MPE)

Frequency Range	Electric Field	Magnetic Field	Power Density	Averaging Time
(MHz)	Strength	Strength		127 120
0.00	(V/m)	(A/m) (mW/cm2)		(minutes)
	(A) Limits for Occu	upational/Controlle	d Exposures	
0.3-3.0	614	1.63	*(100)	6
3-30	1842/f	4.89/f	*(900/f2)	6
30-300	61.4	0.163	1.0	6
300-1500			f/300	6
1500-100,000			5	6
(B)	Limits for General	Population/Uncont	rolled Exposure	
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	*(180/f2)	30
30-300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-100,000			1.0	30

f = frequency in MHz

Note1. Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational / controlled limits apply provided he or she is made aware of the potential for exposure.

Note2: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

^{* =} Plane-wave equivalent power density

MPE Test Report No.: R2301A0030-M1

The maximum permissible exposure for 300~1500 MHz is f/1500, for 1500~100,000MHz is 1.0. So

Band	The Maximum Permissible Exposure (mW/cm²)
LTE-M Band 2	1.000
LTE-M Band 4	1.000
LTE-M Band 5	0.566
LTE-M Band 12	0.477
LTE-M Band 13	0.525
LTE-M Band 25	1.000
LTE-M Band 26	0.566
LTE-M Band 66	1.000
NB-IoT Band 2	1.000
NB-IoT Band 4	1.000
NB-IoT Band 5	0.566
NB-loT Band 12	0.477
NB-IoT Band 13	0.525
NB-loT Band 17	0.469
NB-IoT Band 25	1.000
NB-IoT Band 66	1.000

MPE Test Report No.: R2301A0030-M1

RF Exposure Calculations:

The following information provides the minimum separation distance for the highest gain antenna provided. This calculation is based on the conducted power, considering maximum power and antenna gain. The formula shown in KDB 447498 D01 is used in the calculation. Equation from KDB 447498 D01 General RF Exposure Guidance v06 (10/23/2015) is:

$$S = PG / 4\pi R^2$$

Where: S = power density (in appropriate units, e.g. mW/cm²)

P = Time-average maximum tune up procedure (in appropriate units, e.g., mW)

G = the numeric gain of the antenna

R = distance to the center of radiation of the antenna (20 cm = limit for MPE)

Band	Maximum Tune up (dBm)	EIRP Limit (dBm)	Margin 1 (dB)	Power Density Limit (mW/cm²)	PG (dBm)	Margin 2 (dB)	Final Margin (dB)	Gain (dBi)
LTE-M Band 2	25.70	33.000	7.300	1.000	37.013	11.313	7.300	7.300
LTE-M Band 4	25.70	30.000	4.300	1.000	37.013	11.313	4.300	4.300
LTE-M Band 5	25.70	40.600	14.900	0.566	34.541	8.841	8.841	8.841
LTE-M Band 12	25.70	36.920	11.150	0.477	33.798	8.098	8.098	8.098
LTE-M Band 13	25.70	36.920	11.150	0.525	34.214	8.514	8.514	8.514
LTE-M Band 25	25.70	33.000	7.300	1.000	37.013	11.313	7.300	7.300
LTE-M Band 26	25.70	40.600	14.900	0.566	34.541	8.841	8.841	8.841
LTE-M Band 66	25.70	30.000	4.300	1.000	37.013	11.313	4.300	4.300
NB-IoT Band 2	25.70	33.000	7.300	1.000	37.013	11.313	7.300	7.300
NB-IoT Band 4	25.70	30.000	4.300	1.000	37.013	11.313	4.300	4.300
NB-IoT Band 5	25.70	40.600	14.900	0.566	34.541	8.841	8.841	8.841
NB-IoT Band 12	25.70	36.920	11.150	0.477	33.798	8.098	8.098	8.098
NB-IoT Band 13	25.70	36.920	11.150	0.525	34.214	8.514	8.514	8.514
NB-IoT Band 17	25.70	36.920	11.150	0.469	33.724	8.024	8.024	8.024
NB-IoT Band 25	25.70	33.000	7.300	1.000	37.013	11.313	7.300	7.300
NB-IoT Band 66	25.70	30.000	4.300	1.000	37.013	11.313	4.300	4.300

Note: 1. The Maximum allowed antenna gain per Band should be less than or equal to the **Final Margin** which is the allowable maximum gain value to comply with limits for maximum permissible exposure (MPE).

2. The Final Margin is determined and selected to the worst-case of Margin 1 and Margin 2.

- 3. Margin 1=EIRP Limit (dBm)-Maximum Conducted Power (dBm). EIRP limit reference standard part 22/part 24 /part 27and part 90 for each band, EIRP = ERP + 2.15 (dB).
- 4. Margin 2= PG (dBm) Maximum Conducted Power (dBm).

PG (dBm): Based on the limit value of power density at 20cm.

MPE Test Report No.: R2301A0030-M1

IMPORTANT NOTE: To comply with the FCC RF exposure compliance requirements, the antenna(s) used for this transmitter must be installed to provide a separation distance of at least 20 cm from all persons and must not be co-located or operating in conjunction with any other antenna or transmitter. No change to the antenna or the device is permitted. Any change to the antenna or the device could result in the device exceeding the RF exposure requirements and void user's authority to operate the device.

Band	PG (mW)	Result (mW/cm ²)	Limit Value (mW/cm ²)	Conclusion
LTE-M Band 2	1995.262	0.397	1.000	Pass
LTE-M Band 4	1000.000	0.199	1.000	Pass
LTE-M Band 5	2845.116	0.566	0.566	Pass
LTE-M Band 12	2397.728	0.477	0.477	Pass
LTE-M Band 13	2638.761	0.525	0.525	Pass
LTE-M Band 25	1995.262	0.397	1.000	Pass
LTE-M Band 26	2845.116	0.566	0.566	Pass
LTE-M Band 66	1000.000	0.199	1.000	Pass
NB-IoT Band 2	1995.262	0.397	1.000	Pass
NB-IoT Band 4	1000.000	0.199	1.000	Pass
NB-IoT Band 5	2845.116	0.566	0.566	Pass
NB-IoT Band 12	2397.728	0.477	0.477	Pass
NB-IoT Band 13	2638.761	0.525	0.525	Pass
NB-IoT Band 17	2357.219	0.469	0.469	Pass
NB-IoT Band 25	1995.262	0.397	1.000	Pass
NB-IoT Band 66	1000.000	0.199	1.000	Pass
Note: R = 20cm				

Note: **R** = 20cm π = 3.1416

Note: For transmitters, minimum separation distance is 20cm, even if calculations indicate MPE distance is less.

ANNEX A: The EUT Appearance

The EUT Appearance are submitted separately.

ANNEX B: Product Change Description (Variant 1)

The Product Change Description are submitted separately.

ANNEX C: Product Change Description (Variant 2)

The Product Change Description are submitted separately.

******END OF REPORT ******