

EG915N SeriesHardware Design

LTE Standard Module Series

Version: 1.1.0

Date: 2022-07-27

Status: Preliminary

At Quectel, our aim is to provide timely and comprehensive services to our customers. If you require any assistance, please contact our headquarters:

Quectel Wireless Solutions Co., Ltd.

Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai 200233, China

Tel: +86 21 5108 6236 Email: <u>info@quectel.com</u>

Or our local offices. For more information, please visit:

http://www.quectel.com/support/sales.htm.

For technical support, or to report documentation errors, please visit:

http://www.quectel.com/support/technical.htm.

Or email us at: support@quectel.com.

Legal Notices

We offer information as a service to you. The provided information is based on your requirements and we make every effort to ensure its quality. You agree that you are responsible for using independent analysis and evaluation in designing intended products, and we provide reference designs for illustrative purposes only. Before using any hardware, software or service guided by this document, please read this notice carefully. Even though we employ commercially reasonable efforts to provide the best possible experience, you hereby acknowledge and agree that this document and related services hereunder are provided to you on an "as available" basis. We may revise or restate this document from time to time at our sole discretion without any prior notice to you.

Copyright

Our and third-party products hereunder may contain copyrighted material. Such copyrighted material shall not be copied, reproduced, distributed, merged, published, translated, or modified without prior written consent. We and the third party have exclusive rights over copyrighted material. No license shall be granted or conveyed under any patents, copyrights, trademarks, or service mark rights. To avoid ambiguities, purchasing in any form cannot be deemed as granting a license other than the normal non-exclusive, royalty-free license to use the material. We reserve the right to take legal action for noncompliance with abovementioned requirements, unauthorized use, or other illegal or malicious use of the material.

Trademarks

Except as otherwise set forth herein, nothing in this document shall be construed as conferring any rights to use any trademark, trade name or name, abbreviation, or counterfeit product thereof owned by Quectel or any third party in advertising, publicity, or other aspects.

Third-Party Rights

This document may refer to hardware, software and/or documentation owned by one or more third parties ("third-party materials"). Use of such third-party materials shall be governed by all restrictions and obligations applicable thereto.

We make no warranty or representation, either express or implied, regarding the third-party materials, including but not limited to any implied or statutory, warranties of merchantability or fitness for a particular purpose, quiet enjoyment, system integration, information accuracy, and non-infringement of any third-party intellectual property rights with regard to the licensed technology or use thereof. Nothing herein constitutes a representation or warranty by us to either develop, enhance, modify, distribute, market, sell, offer for sale, or otherwise maintain production of any our products or any other hardware, software, device, tool, information, or product. We moreover disclaim any and all warranties arising from the course of dealing or usage of trade.

Privacy Policy

To implement module functionality, certain device data are uploaded to Quectel's or third-party's servers, including carriers, chipset suppliers or customer-designated servers. Quectel, strictly abiding by the relevant laws and regulations, shall retain, use, disclose or otherwise process relevant data for the purpose of performing the service only or as permitted by applicable laws. Before data interaction with third parties, please be informed of their privacy and data security policy.

Disclaimer

- a) We acknowledge no liability for any injury or damage arising from the reliance upon the information.
- b) We shall bear no liability resulting from any inaccuracies or omissions, or from the use of the information contained herein.
- c) While we have made every effort to ensure that the functions and features under development are free from errors, it is possible that they could contain errors, inaccuracies, and omissions. Unless otherwise provided by valid agreement, we make no warranties of any kind, either implied or express, and exclude all liability for any loss or damage suffered in connection with the use of features and functions under development, to the maximum extent permitted by law, regardless of whether such loss or damage may have been foreseeable.
- d) We are not responsible for the accessibility, safety, accuracy, availability, legality, or completeness of information, advertising, commercial offers, products, services, and materials on third-party websites and third-party resources.

Copyright © Quectel Wireless Solutions Co., Ltd. 2022. All rights reserved.

Safety Information

The following safety precautions must be observed during all phases of operation, such as usage, service or repair of any cellular terminal or mobile incorporating the module. Manufacturers of the cellular terminal should notify users and operating personnel of the following safety information by incorporating these guidelines into all manuals of the product. Otherwise, Quectel assumes no liability for customers' failure to comply with these precautions.

Full attention must be paid to driving at all times in order to reduce the risk of an accident. Using a mobile while driving (even with a handsfree kit) causes distraction and can lead to an accident. Please comply with laws and regulations restricting the use of wireless devices while driving.

Switch off the cellular terminal or mobile before boarding an aircraft. The operation of wireless appliances in an aircraft is forbidden to prevent interference with communication systems. If there is an Airplane Mode, it should be enabled prior to boarding an aircraft. Please consult the airline staff for more restrictions on the use of wireless devices on an aircraft.

Wireless devices may cause interference on sensitive medical equipment, so please be aware of the restrictions on the use of wireless devices when in hospitals, clinics or other healthcare facilities.

Cellular terminals or mobiles operating over radio signal and cellular network cannot be guaranteed to connect in certain conditions, such as when the mobile bill is unpaid or the (U)SIM card is invalid. When emergency help is needed in such conditions, use emergency call if the device supports it. In order to make or receive a call, the cellular terminal or mobile must be switched on in a service area with adequate cellular signal strength. In an emergency, the device with emergency call function cannot be used as the only contact method considering network connection cannot be guaranteed under all circumstances.

The cellular terminal or mobile contains a transceiver. When it is ON, it receives and transmits radio frequency signals. RF interference can occur if it is used close to TV sets, radios, computers or other electric equipment.

In locations with explosive or potentially explosive atmospheres, obey all posted signs and turn off wireless devices such as mobile phone or other cellular terminals. Areas with explosive or potentially explosive atmospheres include fuelling areas, below decks on boats, fuel or chemical transfer or storage facilities, and areas where the air contains chemicals or particles such as grain, dust or metal powders.

About the Document

Revision History

Version	Date	Author	Description
-	2021-11-19	Shihao HUANG/ Jeff SHEN	Creation of the document
1.0	2022-02-25	Shihao HUANG/ Jeff SHEN	First official release
1.1.0	2022-07-27	Shihao HUANG/ Evan ZOU	 Preliminary: Add information about EG915N-LA module. Updated USB serial drivers from Linux 2.6–5.15 to Linux 2.6–5.18. (Table 4) Updated weight from 3.2 g to 2.46 g. (Table 4) Updated frequency range of GNSS from 1559–1606 to 1559–1609. (Table 31)

Contents

Sa	fety Information	3
Ab	oout the Document	4
Со	ontents	5
Та	ıble Index	8
Fig	gure Index	10
1	Introduction	12
	1.1. Special Mark	14
2	Product Overview	15
	2.1. Frequency Bands and Functions	15
	2.2. Key Features	16
	2.3. EVB Kit	18
3	Application Interfaces	
	3.1. General Description	19
	3.2. Pin Assignment	
	3.3. Pin Description	
	3.4. Operating Modes	
	3.5. Power Saving	
	3.5.1. Sleep Mode	
	3.5.1.1. UART Application	
	3.5.1.2. USB Application with USB Remote Wakeup Function	
	3.5.1.3. USB Application with USB Suspend/Resume and RI Function	
	3.5.1.4. USB Application without USB Suspend Function	
	3.5.2. Airplane Mode	
	3.6. Power Supply	
	3.6.1. Power Supply Pins	
	3.6.2. Voltage Stability Requirements	
	3.6.3. Reference Design for Power Supply	
	3.7. Turn On and Turn Off	
	3.7.1. Turn On with PWRKEY	
	3.7.2. Turn Off	
	3.7.2.1. Turn off with AT Command	
	3.8. Reset	
	3.9. (U)SIM Interfaces	
	3.10. USB Interface	
	3.11. UART Interfaces	
	3.12. Analog Audio Interfaces	
	3.12.1. Audio Interfaces Design Considerations	
	5.72.1. /kddo intonacco Decigii Considerations	→∪

	3.12.2.	Microphone Interface Design	46
	3.12.3.	Earpiece and Loudspeaker Interface Design	46
	3.13. PCN	M and I2C Interfaces	47
	3.14. Netv	work Status Indication	49
	3.15. USE	3_BOOT	50
	3.16. STA	TUS	52
	3.17. ADC	C Interfaces	53
	3.18. MAI	N_RI	54
4	GNSS		55
	4.1. Gen	neral Description	55
		SS Performance	
	4.3. GNS	SS Antenna Routing Guidelines	56
5		terfaces	
	5.1. Mair	n Antenna Interface & Frequency Bands	
	5.1.1.	Pin Definition	
	5.1.2.	Operating Frequency	
	5.1.3.	Reference Design of Cellular Antenna Interface	
	5.1.4.	RF Routing Guidelines	59
	5.2. GNS	SS Antenna Interface & Frequency Bands	
	5.2.1.		
	5.2	2.1.1. Reference Circuit Design for GNSS Active Antenna	
		2.1.2. Reference Circuit Design for GNSS Passive Antenna	
		enna Installation	
	5.3.1.	Antenna Design Requirements	
	5.3.2.	RF Connector Recommendation	64
6	=	Radio and Electrical Characteristics	
		olute Maximum Ratings	
		ver Supply Ratings	
	J	tal I/O Characteristics	
		erating and Storage Temperatures	
		ver Consumption	
		Sensitivity	
	6.7. ESD) Protection	75
7		I Information	
		chanical Dimensions	
		commended Footprint	
		Power	
	7.4. Top	and Bottom Views	80
8		anufacturing and Packaging	
		rage Conditions	
		nufacturing and Soldering	
	8.3. Pac	kaging Specifications	84

9	Appendix R	deferences	87
	0.3.3.	rackaging riocess	00
	0 2 2	Packaging Process	06
	8.3.2.	Plastic Reel	85
	8.3.1.	Carrier Tape	84

Table Index

Table 1: Special Mark	14
Table 2: Frequency Bands of EG915N-EU	15
Table 3: Frequency Bands of EG915N-LA	15
Table 4: Key Features	16
Table 5: I/O Parameters Definition	21
Table 6: Pin Description	21
Table 7: Overview of Operating Modes	26
Table 8: Power Supply and GND Pins	31
Table 9: Pin Description of PWRKEY	33
Table 10: Pin Description of RESET_N	36
Table 11: Pin Definition of (U)SIM Interfaces	38
Table 12: Pin Description of USB Interface	40
Table 13: Pin Definition of Main UART Interface	42
Table 14: Pin Definition of Auxiliary UART Interface	42
Table 15: Pin Definition of Debug UART Interface	43
Table 16: Pin Definition of Audio Interfaces	44
Table 17: Pin Definition of PCM and I2C Interfaces	47
Table 18: Pin Definition of Network Connection Status/Activity Indication	50
Table 19: Working State of Network Activity Indicator	
Table 20: Pin Definition of USB_BOOT Interface	51
Table 21: Pin Definition of STATUS	52
Table 22: Pin Definition of ADC Interfaces	53
Table 23: Characteristics of ADC Interfaces	53
Table 24: Default Behaviors of the MAIN_RI	54
Table 25: GNSS Performance	55
Table 26: Pin Definition of Main Antenna	57
Table 27: EG915N-EU Operating Frequency	57
Table 28: EG915N-LA Operating Frequency	58
Table 29: GNSS Antenna Pin Definition	61
Table 30: GNSS Frequency	61
Table 31: Antenna Requirements	63
Table 32: Absolute Maximum Ratings	66
Table 33: Power Supply Ratings	66
Table 34: 1.8 V Digital I/O Requirements	67
Table 35: (U)SIM 1.8 V I/O Requirements	67
Table 36: (U)SIM 3.0 V I/O Requirements	68
Table 37: Operating and Storage Temperatures	68
Table 38: EG915N-EU Power Consumption	68
Table 39: EG915N-LA Power Consumption	70
Table 40: EG915N-EU Conducted RF Receiving Sensitivity	74
Table 41: EG915N-LA Conducted RF Receiving Sensitivity	74

Table 42: Electrostatics Discharge Characteristics (25 °C, 45 % Relative Humidity)	. 75
Table 43: EG915N-EU RF Output Power	. 79
Table 44: EG915N-LA RF Output Power	. 79
Table 45: Recommended Thermal Profile Parameters	. 83
Table 46: Carrier Tape Dimension Table (Unit: mm)	. 84
Table 47: Plastic Reel Dimension Table (Unit: mm)	. 85
Table 48: Related Documents	. 87
Table 49: Terms and Abbreviations	. 87

Figure Index

Figure 2: Pin Assignment (Top View)	20
Figure 3: Sleep Mode Application via UART	27
Figure 4: Sleep Mode Application with USB Remote Wakeup	28
Figure 5: Sleep Mode Application with MAIN_RI	29
Figure 6: Sleep Mode Application without Suspend Function	29
Figure 7: Power Supply Limits during Burst Transmission	31
Figure 8: Star Configuration of Power Supply	32
Figure 9: Reference Circuit of Power Supply	33
Figure 10: Reference Circuit of Turning on the Module with Driving Circuit	33
Figure 11: Reference Circuit of Turning on the Module with a Button	34
Figure 12: Power Up Timing	
Figure 13: Power Down Timing	35
Figure 14: Reference Circuit of RESET_N with Driving Circuit	36
Figure 15: Reference Circuit of RESET_N with a Button	
Figure 16: Reset Timing	37
Figure 17: Reference Circuit of (U)SIM Interface with an 8-pin (U)SIM Card Connector	39
Figure 18: Reference Circuit of (U)SIM Interface with a 6-pin (U)SIM Card Connector	39
Figure 19: Reference Circuit of USB Application	41
Figure 20: Reference Circuit with a Voltage-level Translator	
Figure 21: Reference Circuit with Transistor Circuit	44
Figure 22: Reference Design for Microphone Interface	
Figure 23: Reference Design for Earpiece Interface	46
Figure 24: Reference Circuit of External Audio Amplifier Output	47
Figure 25: Timing of Short Frame Mode	48
Figure 26: Timing of Long Frame Mode	48
Figure 27: Reference Circuit of PCM and I2C Application with Audio Codec	49
Figure 28: Reference Circuit of Network Status Indication	50
Figure 29: Reference Circuit of USB_BOOT Interface	51
Figure 30: Timing Sequence for Entering Emergency Download Mode	
Figure 31: Reference Circuits of STATUS	52
Figure 32: Reference Circuit Design for RF Antenna Interface	58
Figure 33: Microstrip Design on a 2-layer PCB	59
Figure 34: Coplanar Waveguide Design on a 2-layer PCB	59
Figure 35: Coplanar Waveguide Design on a 4-layer PCB (Layer 3 as Reference Ground)	60
Figure 36: Coplanar Waveguide Design on a 4-layer PCB (Layer 4 as Reference Ground)	60
Figure 37: GNSS Active Antenna Reference Circuit	62
Figure 38: GNSS Passive Antenna Reference Circuit	63
Figure 39: Dimensions of the Receptacle (Unit: mm)	64
Figure 40: Specifications of Mated Plugs	65
Figure 41: Space Factor of Mated Connectors (Unit: mm)	65
Figure 42: Top and Side Dimensions	76

Figure 43: Bottom Dimensions (Bottom View)	77
Figure 44: Recommended Footprint (Top View)	78
Figure 45: Top View and Bottom View of the Module	80
Figure 46: Recommended Reflow Soldering Thermal Profile	82
Figure 47: Carrier Tape Dimension Drawing	84
Figure 48: Plastic Reel Dimension Drawing	85
Figure 49: Packaging Process	86

1 Introduction

This document defines the EG915N series module and describes its air interface and hardware interfaces which are connected with your applications.

This document can help you quickly understand module interface specifications, electrical and mechanical details, as well as other related information of the module. Associated with application notes and user guides, you can use the module to design and set up wireless applications easily.

- 1. This module is limited to OEM installation ONLY.
- 2. This module is limited to installation in mobile or fixed applications, according to Part 2.1091(b).
- 3. The separate approval is required for all other operating configurations, including portable configurations with respect to Part 2.1093 and different antenna configurations
- 4. For FCC Part 15.31 (h) and (k): The host manufacturer is responsible for additional testing to verify compliance as a composite system. When testing the host device for compliance with Part 15 Subpart B, the host manufacturer is required to show compliance with Part 15 Subpart B while the transmitter module(s) are installed and operating. The modules should be transmitting and the evaluation should confirm that the module's intentional emissions are compliant (i.e. fundamental and out of band emissions). The host manufacturer must verify that there are no additional unintentional emissions other than what is permitted in Part 15 Subpart B or emissions are complaint with the transmitter(s) rule(s). The Grantee will provide guidance to the host manufacturer for Part 15 B requirements if needed.

End Product Labeling

When the module is installed in the host device, the FCC ID label must be visible through a window on the final device or it must be visible when an access panel, door or cover is easily re-moved. If not, a second label must be placed on the outside of the final device that contains the following text:

"Contains FCC ID: XMR202210EG915NLA"

The FCC ID can be used only when all FCC compliance requirements are met.

In the event that these conditions cannot be met (for example certain laptop configurations or co-location with another transmitter), then the FCC authorization is no longer considered valid and the FCC ID cannot be used on the final product. In these circumstances, the OEM integrator will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate FCC authorization.

Manual Information to the EndUser

The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module in the user's manual of the end product which integrates this module. The end user manual shall include all required regulatory information/warning as show in this manual.

Federal Communication Commission Interference Statement

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate this equipment. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

To comply with FCC regulations limiting both maximum RF output power and human exposure to RF radiation, maximum antenna gain (including cable loss) must not exceed:

GSM850/LTE Band 5/: ≤ 9dBi GSM1900/LTE Band 2&7: ≤ 8dBi LTE Band 4&66: ≤ 5dBi

Radiation Exposure Statement

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20 cm between the radiator & your body

1.1. Special Mark

Table 1: Special Mark

Mark	Definition
*	Unless otherwise specified, when an asterisk (*) is used after a function, feature, interface, pin name, AT command, or argument, it indicates that the function, feature, interface, pin, AT command, or argument is under development and currently not supported; and the asterisk (*) after a model indicates that the sample of the model is currently unavailable.

2 Product Overview

2.1. Frequency Bands and Functions

EG915N series module is an LTE-FDD and GSM wireless communication module, which provides data connectivity on LTE-FDD, EDGE and GPRS networks. It also provides voice functionality for your specific applications. The module also provides a type of model with built-in GNSS function. You can choose a dedicated type based on the region or operator. The following table shows the frequency bands of the module.

Table 2: Frequency Bands of EG915N-EU

Mode	Frequency Bands
LTE-FDD	B1/B3/B7/B8/B20
GSM	EGSM900/DCS1800
GNSS (Optional)	GPS/GLONASS/Galileo/BDS/QZSS/SBAS

Table 3: Frequency Bands of EG915N-LA

Mode	Frequency Bands
LTE-FDD	B2/B3/B4/B5/B7/B8/B28/B66
GSM	GSM850/EGSM900/DCS1800/PCS1900
GNSS (Optional)	GPS/GLONASS/Galileo/BDS/QZSS/SBAS

EG915N series module is an SMD type module with 126 LGA pins. With a compact profile of 23.6 mm × 19.9 mm × 2.4 mm, The module can meet most of the requirements for M2M applications such as automation, metering, tracking system, security, router, wireless POS, mobile computing device, PDA phone, tablet PC, etc.

2.2. Key Features

The following table describes the detailed features of the module.

Table 4: Key Features

Features	Details
Power Supply	Supply voltage: 3.4–4.5 V
т ожет оцрргу	Typical supply voltage: 3.8 V
	 Class 4 (33 dBm ±2 dB) for GSM850
	 Class 4 (33 dBm ±2 dB) for EGSM900
	 Class 1 (30 dBm ±2 dB) for DCS1800
	 Class 1 (30 dBm ±2 dB) for PCS1900
Transmitting Power	 Class E2 (27 dBm ±3 dB) for GSM850 8-PSK
	 Class E2 (27 dBm ±3 dB) for EGSM900 8-PSK
	 Class E2 (26 dBm ±3 dB) for DCS1800 8-PSK
	 Class E2 (26 dBm ±3 dB) for PCS1900 8-PSK
	 Class 3 (23 dBm ±2 dB) for LTE-FDD bands
	 Supports up to Cat 1 FDD
LTE Features	 Supports 1.4/3/5/10/15/20 MHz RF bandwidth
	 LTE-FDD: Max. 10 Mbps (DL), Max. 5 Mbps (UL)
	GPRS:
	 Supports GPRS multi-slot class 12
	 Coding scheme: CS 1–4
	 Max. 85.6 kbps (DL), Max. 85.6 kbps (UL)
GSM Features	EDGE:
OSIVIT Editites	 Supports EDGE multi-slot class 12
	 Supports GMSK and 8-PSK for different MCS
	 Downlink coding schemes: MCS 1–9
	 Uplink coding schemes: MCS 1–9
	 Max. 236.8 kbps (DL), Max. 236.8 kbps (UL)
Internet Protocol	 Supports TCP/UDP/PPP/FTP/HTTP/NTP/PING/NITZ/CMUX/HTTPS/
Features	SMTP/MMS/FTPS/SMTPS/SSL/FILE/MQTT protocols
Teatures	 Supports PAP and CHAP for PPP connections
	 Text and PDU modes
SMS	 Point-to-point MO and MT
SIVIS	SMS cell broadcast
	 SMS storage: (U)SIM card and ME, ME by default
(II)CIM Interferen	Supports (U)SIM card: 1.8/3.0 V
(U)SIM Interfaces	 Supports Dual SIM Single Standby
Audio Features	Supports one digital audio interface: PCM interface

	 Supports one analog audio input and one analog audio output 			
	 GSM: HR/FR/EFR/AMR/AMR-WB 			
	Supports echo cancellation and noise suppression			
	 Used for audio function with an external codec 			
PCM Interface	 Short frame mode: module can be used as the slave device* and master 			
r Givi interiace	device			
	 Long frame mode*: module can only be used as the master device 			
	 Compliant with USB 2.0 specification (slave only), with data 			
	transmission rate up to 480 Mbps			
LICD Interface	 Used for AT command communication, data transmission, software 			
USB Interface	debugging and firmware upgrade			
	 Supports USB serial drivers for: Windows 7/8/8.1/10/11, Linux 2.6–5.18, 			
	Android 4.x–12.x, etc.			
	Main UART:			
	 Used for AT command communication and data transmission 			
	Baud rate: 115200 bps by default			
	 Supports RTS and CTS hardware flow control 			
UART Interfaces	Auxiliary UART*:			
	 Supports RTS and CTS hardware flow control 			
	Debug UART:			
	 Used for the output of partial logs 			
	Baud rate:115200 bps			
AT 0	Compliant with 3GPP TS 27.007, 3GPP TS 27.005 and Quectel enhanced			
AT Commands	AT commands			
Network Indication	NET_STATUS to indicate the network connectivity status			
	Main antenna interface (ANT_MAIN)			
Antenna Interfaces	GNSS antenna interface (ANT_GNSS) ¹			
	50 Ω impedance			
	Supports Wi-Fi Scan and shares the main antenna			
Position Fixing	Supports GNSS positioning ¹			
	 Size: (23.6 ±0.2) mm × (19.9 ±0.2) mm × (2.4 ±0.2) mm 			
Physical Characteristics	 Weight: approx. 2.46 g 			
	Operating temperature range: -35 °C to +75 °C ²			
Operating Temperature	• Extended temperature range: -40 °C to +85 °C ³			
Operating remperature	Storage temperature range: -40 °C to +90 °C Storage temperature range: -40 °C to +90 °C			
Firmware Upgrade	Via USB interface or DFOTA			

¹ GNSS function is optional for EG915N series module. Only the module with built-in GNSS function can support GNSS positioning technology.

² Within operating temperature range, the module is 3GPP compliant.

³ Within extended temperature range, the module remains the ability to establish and maintain functions such as voice, SMS, data transmission, emergency call, etc, without any unrecoverable malfunction. Radio spectrum and radio network are not influenced, while one or more specifications, such as Pout, may exceed the specified tolerances of 3GPP. When the temperature returns to the operating temperature range, the module meets 3GPP specifications again.

RoHS

All hardware components are fully compliant with EU RoHS directive

2.3. EVB Kit

To help you develop applications with the module, Quectel provides an evaluation board (UMTS & LTE EVB), USB to RS-232 converter cable, earphone, antenna and other peripherals to control or test the module. For more details, see *document* [1].

3 Application Interfaces

3.1. General Description

The module is equipped with 126 LGA pins that can be connected to cellular application platform. The subsequent chapters will provide detailed descriptions of the following interfaces.

- Power supply
- (U)SIM interfaces
- USB interface
- UART interfaces
- Analog audio interfaces
- PCM and I2C interfaces
- Network status indication
- USB_BOOT interface
- STATUS
- ADC interfaces

3.2. Pin Assignment

The following figure shows the pin assignment of the module.

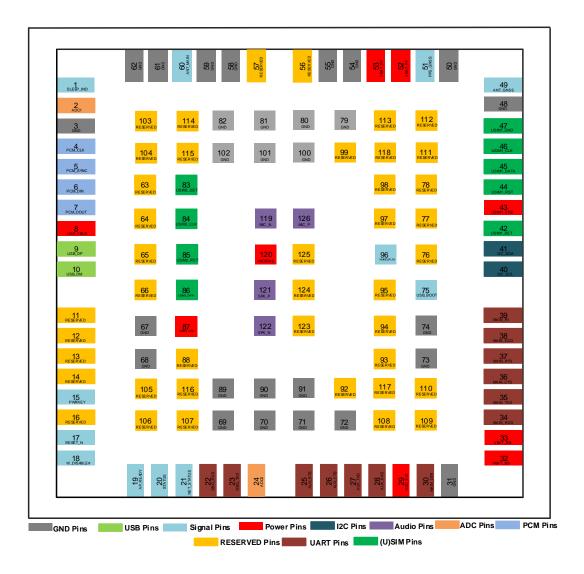


Figure 1: Pin Assignment (Top View)

NOTE

- 1. Only EG915N-EU has ADC function, pin 2 and pin 24 of EG915N-LA are RESERVED pins.
- 2. All GND pins should be connected to ground, and keep unused and RESERVED pins unconnected.
- 3. USB_BOOT cannot be pulled up to high level before the module is successfully startup.
- 4. ANT_GNSS and PPS_GNSS are the GNSS pins for the module with built-in GNSS function.
- 5. Ensure that there is a complete reference ground plane below the module, and the ground plane is as close to the module layer as possible. At least a 4-layer board design is recommended.

3.3. Pin Description

The following tables show the pin definition and description of the module.

Table 5: I/O Parameters Definition

Туре	Description
AI	Analog Input
AIO	Analog Input/Output
AO	Analog Output
DI	Digital Input
DO	Digital Input/Output
DIO	Digital Output
OD	Open Drain
PI	Power Input
РО	Power Output

Table 6: Pin Description

Power Supply Input						
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
VBAT_BB	32, 33	PI	Power supply for the module's baseband part	Vmax = 4.5 V - Vmin = 3.4 V	up to 0.8 A.	
VBAT_RF	52, 53	PI	Power supply for the module's RF part	Vnom = 3.8 V	It must be provided with sufficient current up to 2.2 A.	
GND	3, 31, 4	8, 50, 5	4, 55, 58, 59, 61, 62, 67-	-74, 79–82, 89–91, 100	-102	
Power Supply Output						
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	

VDD_EXT	29	PO	Provide 1.8 V for Vnom = 1.8 V external circuit Iomax = 50 mA		Power supply for external GPIO's pull-up circuits. If unused, keep it open.	
Turn On/Off						
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
PWRKEY	15	DI	Turn on/off the module		VBAT power domain.	
RESET_N	17	DI	Reset the module	V _{IL} max = 0.5 V	Active low. 1.8 V power domain. If unused, keep it open.	
Status Indication	on					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
SLEEP_IND	1	DO	Indicate the module's sleep mode			
STATUS	20	DO	Indicate the module's operation status	1.8 V	If unused, keep them open.	
NET_STATUS	21	DO	Indicate the module's network activity status			
USB Interface						
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
USB_VBUS	8	AI	USB connection detect	Vmax = 5.25 V Vmin = 3.0 V Vnom = 5.0 V	If unused, keep it open.	
USB_DP	9	AIO	USB differential data (+)		Requires differential impedance of 90 Ω .	
USB_DM	10	AIO	USB differential data (-)		USB 2.0 compliant. If unused, keep them open.	
(U)SIM Interfac	es					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
USIM1_DET	42	DI	(U)SIM1 card hot-plug detect	1.8 V	If unused, keep it open.	
USIM1_VDD	43	РО	(U)SIM1 card power	I _O max = 50 mA	Either 1.8 V or 3.0 V	

			supply	1.8/3.0 V	(U)SIM card is supported and can be identified automatically by the module.
USIM1_RST	44	DO	(U)SIM1 card reset	_	
USIM1_DATA	45	DIO	(U)SIM1 card data	USIM1_VDD _ 1.8/3.0 V	
USIM1_CLK	46	DO	(U)SIM1 card clock		
USIM1_GND	47		Specified ground for (U)SIM1		Connect to main GND of PCB.
USIM2_DET	83	DI	(U)SIM2 card hot-plug detect	1.8 V	If unused, keep it open.
USIM2_CLK	84	DO	(U)SIM2 card clock		
USIM2_RST	85	DO	(U)SIM2 card reset	(U)SIM2 card reset USIM2_VDD 1.8/3.0 V	
USIM2_DATA	86	DIO	(U)SIM2 card data		
USIM2_VDD	87	PO	(U)SIM2 card power I _o max = 50 mA supply 1.8/3.0 V		Either 1.8 V or 3.0 V (U)SIM card is supported and can be identified automatically by the module.
Main UART Inte	erface				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
MAIN_DTR	30	DI	Main UART data terminal ready	_	16
MAIN_RXD	34	DI	Main UART receive		If unused, keep them open.
MAIN_TXD	35	DO	Main UART transmit		
MAIN_CTS	36	DO	DTE clear to send signal from DCE	1.8 V	Connect to DTE's CTS. If unused, keep it open.
MAIN_RTS	37	DI	DTE request to send	-	Connect to DTE's RTS. If unused, keep it

MAIN_DCD	38	DO	Main UART data carrier detect		If unused, keep them	
MAIN_RI	39	DO	Main UART ring indication		open.	
Auxiliary UART	Interfac	e*				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
AUX_RTS	25	DI	DTE request to send signal to DCE		Connect to DTE's RTS. If unused, keep it open.	
AUX_CTS	26	DO	DTE clear to send signal from DCE	1.8 V	Connect to DTE's CTS. If unused, keep it open.	
AUX_TXD	27	DO	Auxiliary UART transmit	-	If unused, keep them	
AUX_RXD	28	DI			open.	
Debug UART In	terface					
	D: .					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
Pin Name DBG_RXD		I/O DI	Description Debug UART receive		Comment If unused, keep them	
	No.		•	DC Characteristics 1.8 V		
DBG_RXD	No. 22 23	DI	Debug UART receive		If unused, keep them	
DBG_RXD DBG_TXD	No. 22 23	DI	Debug UART receive		If unused, keep them	
DBG_RXD DBG_TXD ADC Interfaces	No. 22 23 Pin	DI DO	Debug UART receive Debug UART transmit	DC Characteristics	If unused, keep them open.	
DBG_RXD DBG_TXD ADC Interfaces Pin Name	No. 22 23 Pin No.	DI DO	Debug UART receive Debug UART transmit Description General-purpose ADC	- 1.8 V	If unused, keep them open. Comment If unused, keep them	
DBG_RXD DBG_TXD ADC Interfaces Pin Name ADC0	No. 22 23 Pin No. 24	DI DO I/O	Debug UART receive Debug UART transmit Description General-purpose ADC interface General-purpose ADC	DC Characteristics Voltage range:	If unused, keep them open. Comment If unused, keep them open. EG915N-LA does not support ADC	
DBG_RXD DBG_TXD ADC Interfaces Pin Name ADC0 ADC1	No. 22 23 Pin No. 24	DI DO I/O	Debug UART receive Debug UART transmit Description General-purpose ADC interface General-purpose ADC	DC Characteristics Voltage range:	If unused, keep them open. Comment If unused, keep them open. EG915N-LA does not support ADC	
DBG_RXD DBG_TXD ADC Interfaces Pin Name ADC0 ADC1 PCM & I2C Interfaces	No. 22 23 Pin No. 24 2 rfaces Pin	DI DO I/O AI	Debug UART receive Debug UART transmit Description General-purpose ADC interface General-purpose ADC interface	DC Characteristics Voltage range: 0 V to VBAT_BB DC Characteristics	If unused, keep them open. Comment If unused, keep them open. EG915N-LA does not support ADC function.	
DBG_RXD DBG_TXD ADC Interfaces Pin Name ADC0 ADC1 PCM & I2C Interpretation	No. 22 23 Pin No. 24 2 rfaces Pin No.	DI DO I/O AI I/O	Debug UART receive Debug UART transmit Description General-purpose ADC interface General-purpose ADC interface Description	DC Characteristics Voltage range: 0 V to VBAT_BB	If unused, keep them open. Comment If unused, keep them open. EG915N-LA does not support ADC function. Comment	

PCM_DIN	6	DI	PCM data input		
PCM_DOUT	7	DO	PCM data output	-	
I2C_SCL	40	OD	I2C serial clock		An external 1.8 V pull-up resistor is
I2C_SDA	41	OD	I2C serial data	-	required. If unused, keep them open.
Analog Audio	Interface	s			
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
MICBIAS	120	РО	Bias voltage output for microphone		
MIC_N	119	Al	Microphone analog input (-)		If unused, keep them open.
MIC_P	126	Al	Microphone analog input (+)	Microphone analog	
SPK_P	121	AO	Analog audio differential output (+)		
SPK_N	122	АО	Analog audio differential output (-)	Analog audio	
RF Interfaces					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
ANT_MAIN	60	AIO	Main antenna interface		50 Ω impedance.
ANT_GNSS	49	AI	GNSS antenna interface	GNSS antenna	
Other Interface	es				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
WAKEUP_IN	96	DI	Wake up the module	1.8 V	If unused, keep them

AP_READY 19 DI Application processor ready Pull-up by default. In low voltage level, module can enter airplane mode. If unused, keep it open. USB_BOOT 75 DI Force the module into emergency download mode PUSB_BOOT PPS_GNSS 51 DO PPS output RESERVED Pin Name Pin Name Pin Name PI 11—14, 16, 56, 57, 63—66, 76—78, 88, 92—95, 97—99, 103—118, 123—125 Application processor popen. Pull-up by default. In low voltage level, module can enter airplane mode. If unused, keep it open. Active high. It is recommended to reserve test points. Cannot pull it down when GNSS function is active. Comment Keep them open.					
W_DISABLE# 18 DI Airplane mode control Force the module into Active high. It is recommended to reserve test points. Cannot pull it down when GNSS function is active. RESERVED Pins Pin Name Pin No. Comment Keep them open.	AP_READY	19	DI	• •	open.
USB_BOOT 75 DI emergency download mode It is recommended to reserve test points. Cannot pull it down when GNSS function is active. Pin Name Pin No. Comment RESERVED 11–14, 16, 56, 57, 63–66, 76–78, 88, 92–95, 97–99, 103–118, Keep them open.	W_DISABLE#	18	DI	Airplane mode control	In low voltage level, module can enter airplane mode. If unused, keep it
PPS_GNSS 51 DO PPS output when GNSS function is active. RESERVED Pins Pin Name Pin No. Comment RESERVED 11–14, 16, 56, 57, 63–66, 76–78, 88, 92–95, 97–99, 103–118, Keep them open. Keep them open.	USB_BOOT	75	DI	emergency download	It is recommended to
Pin Name Pin No. Comment RESERVED 11–14, 16, 56, 57, 63–66, 76–78, 88, 92–95, 97–99, 103–118, Keep them open. Keep them open.	PPS_GNSS	51	DO	PPS output	when GNSS function
11–14, 16, 56, 57, 63–66, 76–78, 88, 92–95, 97–99, 103–118, Keep them open.	RESERVED Pir	าร			
RESERVED Keep them open.	Pin Name	Pin No	ο.		Comment
	RESERVED			57, 63–66, 76–78, 88, 92–95, 97–99, 103–118,	Keep them open.

NOTE

- 1. ANT_GNSS and PPS_GNSS are the GNSS pins for the module with built-in GNSS function. See *Chapter 5.2* for details about GNSS antenna interfaces.
- 2. Pin 2 and pin 24 of EG915N-LA are RESERVED pins.

3.4. Operating Modes

Table 7: Overview of Operating Modes

Modes	Details	
Full Functionality	Idle	Software is active. The module remains registered on the network, and it is ready to send and receive data.
Operation	Voice/Data	Network connection is ongoing. In this mode, the power consumption is decided by network setting and data transmission rate.
Minimum Functionality Mode		o can set the module into a minimum functionality mode without e power supply. In this case, both RF function and (U)SIM card will be

Airplane Mode	AT+CFUN=4 or W_DISABLE# pin can set the module to airplane mode. In this case, RF function will be invalid.
Sleep Mode	In this mode, the current consumption of the module is reduced to the minimal level. During this mode, the module can still receive paging message, SMS, voice call and TCP/UDP data from the network normally.
Power Down Mode	In this mode, the module's power supply is cut off by its power management IC. The software is inactive and the serial interfaces are not accessible, while the VBAT_RF and VBAT_BB pins are still powered.

For more information about the AT command, see document [2] for details.

3.5. Power Saving

3.5.1. Sleep Mode

The module is able to reduce its power consumption to a minimal level during sleep mode. The following section describes ways to let the module enter sleep mode.

3.5.1.1. UART Application

If the host communicates with module via UART interfaces, the following preconditions should be met at the same time to let the module enter sleep mode.

- Execute AT+QSCLK=1 to enable sleep mode.
- Drive MAIN_DTR high or keep it open.

The following figure shows the connection between the module and the host.

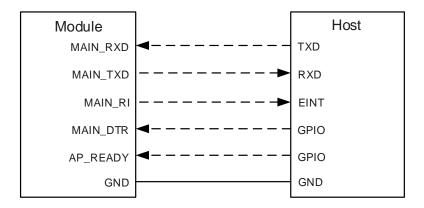


Figure 2: Sleep Mode Application via UART

- Drive MAIN_DTR low by host will wake up the module.
- When the module have a URC to report, the URC will trigger the behavior of MAIN_RI pin. See
 Chapter 3.18 for details about MAIN_RI behaviors.

3.5.1.2. USB Application with USB Remote Wakeup Function

If the host supports USB suspend/resume and remote wakeup functions, the following three preconditions must be met at the same time to let the module enter sleep mode.

- Execute AT+QSCLK=1 to enable the sleep mode.
- Ensure the MAIN_DTR is held at high level or keep it open.
- The host's USB bus, which is connected with the module's USB interface, enters suspend state.

The following figure shows the connection between the module and the host.

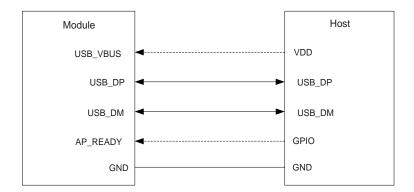


Figure 3: Sleep Mode Application with USB Remote Wakeup

- Sending data to the module through USB will wake up the module.
- When module have a URC to report, the module sends remote wake-up signals to wake up the host via USB bus.

3.5.1.3. USB Application with USB Suspend/Resume and RI Function

If the host supports USB suspend/resume, but does not support remote wakeup function, the MAIN_RI signal is needed to wake up the host. The following three preconditions must be met at the same time to let the module enter sleep mode.

- Execute AT+QSCLK=1 to enable the sleep mode.
- Ensure the MAIN_DTR is held at high level or keep it open.
- The host's USB bus, which is connected with the module's USB interface, enters suspend state.

The following figure shows the connection between the module and the host.

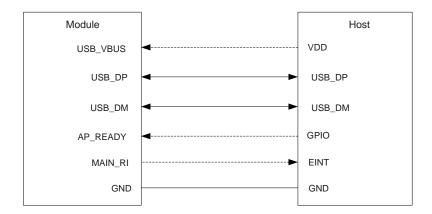


Figure 4: Sleep Mode Application with MAIN_RI

- Sending data to the module through USB will wake up the module.
- When the module has a URC to report, the URC will trigger the behavior of MAIN_RI pin. See
 Chapter 3.18 for details about MAIN_RI behavior.

3.5.1.4. USB Application without USB Suspend Function

If the host does not support USB Suspend function, disconnect USB_VBUS with an external control circuit to let the module enter sleep mode. The following three preconditions must be met at the same time to let the module enter sleep mode.

- Execute AT+QSCLK=1 to enable the sleep mode.
- Ensure the MAIN_DTR is held at high level or keep it open.
- Disconnect the USB_VBUS power supply.

The following figure shows the connection between the module and the host.

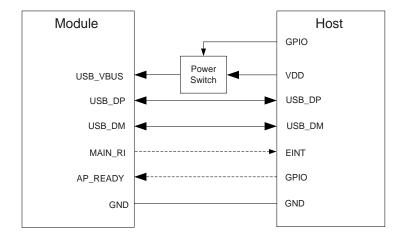


Figure 5: Sleep Mode Application without Suspend Function

You can wake up the module by turning on the power switch to supply power to USB_VBUS.

NOTE

- 1. Pay attention to the level match shown in dotted line between the module and the host in the circuit diagrams of *Chapter 3.5.1*.
- 2. For more information about the AT command, see document [2] for details.

3.5.2. Airplane Mode

When the module enters airplane mode, the RF function does not work and all AT commands related to the RF function are inaccessible. The following ways can be used to let the module enter airplane mode.

Hardware:

The W_DISABLE# pin is pulled up by default. Its control function for airplane mode is disabled by default, and AT+QCFG="airplanecontrol",1 can be used to enable the function. Driving the pin low after its control function for airplane mode is enabled by AT command, which can make the module enter the airplane mode.

Software:

AT+CFUN=<fun> provides the choice of the functionality level through setting <fun> into 0, 1 or 4.

- AT+CFUN=0: Minimum functionality mode (disable (U)SIM and RF functions).
- AT+CFUN=1: Full functionality mode (by default).
- AT+CFUN=4: Airplane mode (disable RF function).

3.6. Power Supply

3.6.1. Power Supply Pins

The module provides four VBAT pins dedicated to connecting with the external power supply. There are two separate voltage domains for VBAT.

- Two VBAT_RF pins for module's RF part
- Two VBAT_BB pins for module's baseband part

Table 8: Power Supply and GND Pins

Pin Name	Pin No.	Description	Min.	Тур.	Max.	Unit
VBAT_RF	52, 53	Power supply for the module's RF part	3.4	3.8	4.5	V
VBAT_BB	32, 33	Power supply for the module's baseband part	3.4	3.8	4.5	V
GND	3, 31, 48, 50, 54	, 55, 58, 59, 61, 62, 67–74, 79–82	2, 89–91,	100–102		

3.6.2. Voltage Stability Requirements

The power supply range of the module is from 3.4 V to 4.5 V. Please make sure that the input voltage never drops below 3.4 V. The following figure shows the voltage drop during burst transmission in 2G network. The voltage drop will be less in 4G networks.

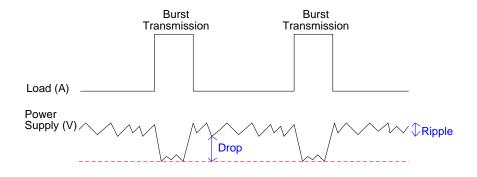


Figure 6: Power Supply Limits during Burst Transmission

To decrease voltage drop, a bypass capacitor of about 100 μ F with low ESR (ESR = 0.7 Ω) should be used. It is recommended to reserve three multi-layer ceramic chip (MLCC) capacitors (100 nF, 33 pF and 10 pF) with the best ESD performance, and place these capacitors close to the VBAT_BB and VBAT_RF pins. The main power supply from an external application has to be a single voltage source and can be

expanded to two sub paths with star configuration. The width of VBAT_BB trace should be no less than 1 mm; and the width of VBAT_RF trace should be no less than 2 mm. In principle, the longer the VBAT trace is, the wider it will be.

In addition, in order to ensure the stability of power source, it is suggested that a WS4.5D3HV TVS diode of which reverse stand-off voltage is 4.7 V and peak pulse power is up to 2550 W should be used. The following figure shows the star structure of the power supply.

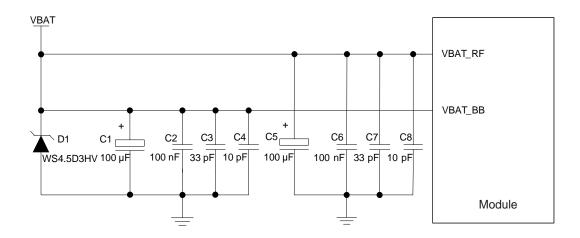


Figure 7: Star Configuration of Power Supply

3.6.3. Reference Design for Power Supply

Power design for the module is very important, as the performance of the module largely depends on the power source. The power supply should be able to provide sufficient current up to 3.0 A to the module. If the voltage drop between the input and output is not too high, it is suggested that an LDO should be used. If there is a big voltage difference between the input source and the desired output (VBAT), a buck converter is preferred to be used as the power supply.

The following figure shows a reference design for +5 V input power source. The circuit is designed using the LDO of Micrel's MIC29302WU. The typical output of the power supply is about 3.8 V and the maximum load current is 3.0 A.

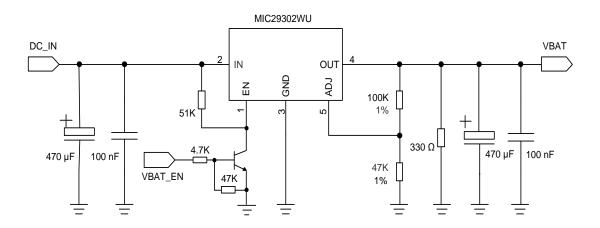


Figure 8: Reference Circuit of Power Supply

3.7. Turn On and Turn Off

3.7.1. Turn On with PWRKEY

Table 9: Pin Description of PWRKEY

Pin Name	Pin No.	I/O	Description	Comment
PWRKEY	15	DI	Turn on/off the module	VBAT power domain.

When the module is in power down mode, you can turn it on to normal mode by driving the PWRKEY pin low for at least 500 ms. It is recommended to use an open drain/collector driver to control the PWRKEY.

A simple reference circuit is illustrated in the following figure.

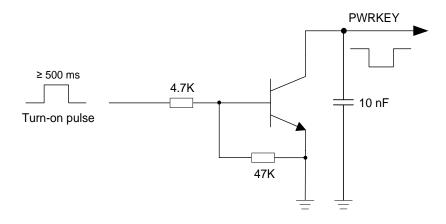


Figure 9: Reference Circuit of Turning on the Module with Driving Circuit

Another way to control the PWRKEY is using a button directly. a TVS component is indispensable to be placed nearby the button for ESD protection. A reference circuit is shown in the following figure.

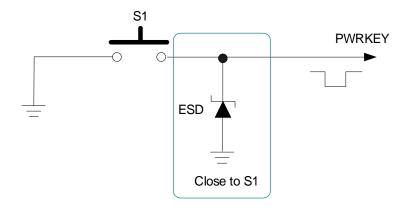


Figure 10: Reference Circuit of Turning on the Module with a Button

The timing of turning on the module is illustrated in the following figure.

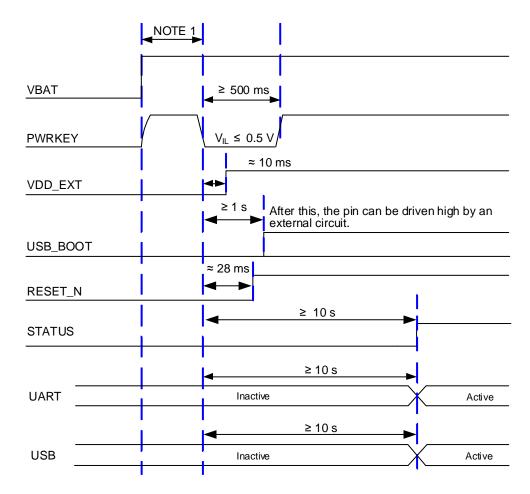
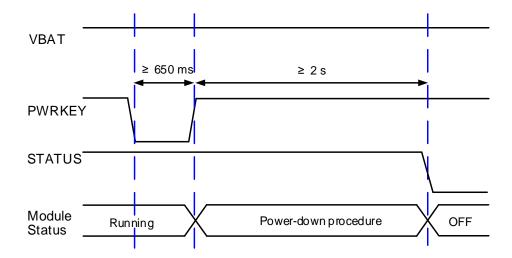


Figure 11: Power Up Timing

NOTE

- 1. Make sure that VBAT is stable before pulling down PWRKEY pin. It is recommended that the time difference between powering up VBAT and pulling down PWRKEY pin is no less than 30 ms.
- 2. PWRKEY can be pulled down directly to GND with a recommended 4.7 k Ω resistor if the module needs to be turned on automatically and shutdown is not needed.


3.7.2. Turn Off

The following procedures can be used to turn off the module normally:

- Use the PWRKEY pin.
- Execute AT+QPOWD.

3.7.2.1. Turn off with PWRKEY

Drive the PWRKEY pin low for at least 650 ms and then release it. After this, the module executes power-down procedure. The timing of turning off the module is illustrated in the following figure.

Figure 12: Power Down Timing

3.7.2.2. Turn off with AT Command

It is also a safe way to use **AT+QPOWD** to turn off the module, which is similar to the procedure of turning off the module via PWRKEY pin. See **document [2]** for details about **AT+QPOWD**.

NOTE

- To avoid corrupting the data in the internal flash, do not switch off the power supply when the module works normally. Only after the module is shut down with PWRKEY or AT command, the power supply can be cut off.
- 2. When turning off module with the AT command, keep PWRKEY at high level after the execution of the command. Otherwise, the module will turn on again after successful turn-off.

3.8. Reset

The RESET_N pin can be used to reset the module. You can reset the module by driving RESET_N low for at least 300 ms and then releasing it. The RESET_N signal is sensitive to interference, so it is recommended to route the trace as short as possible and surround it with ground.

Table 10: Pin Description of RESET_N

Pin Name	Pin No.	I/O	Description	Comment
DECET N	47	DI	Dood the module	Active low.
RESET_N	17	DI	Reset the module	 1.8 V power domain. If unused, keep it open.

The recommended circuit is similar to the PWRKEY control circuit. An open drain/collector driver or button can be used to control RESET_N.

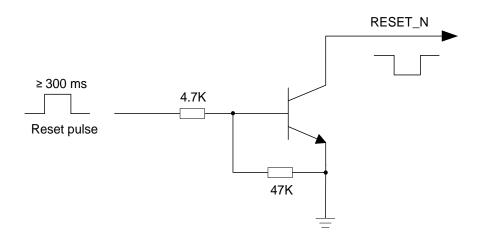


Figure 13: Reference Circuit of RESET_N with Driving Circuit

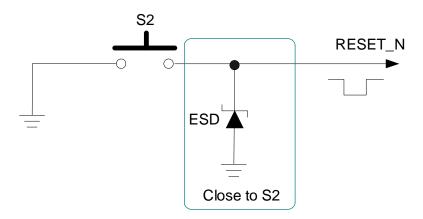
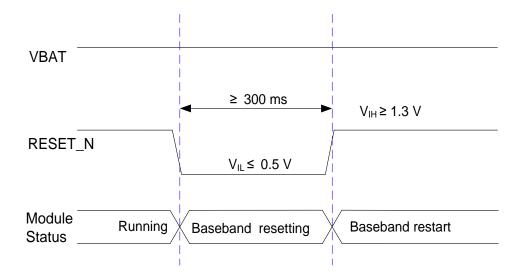



Figure 14: Reference Circuit of RESET_N with a Button

The reset scenario is illustrated in the following figure.

Figure 15: Reset Timing

NOTE

- 1. Ensure that the load capacitance does not exceed 10 nF on PWRKEY and RESET_N pins.
- RESET_N only resets the internal baseband chip of the module and does not reset the power management chip.
- 3. Use RESET_N only when you fail to turn off the module with the AT+QPOWD and PWRKEY.

3.9. (U)SIM Interfaces

The module provides two (U)SIM interfaces, which meet ETSI and IMT-2000 requirements. Either 1.8 V or 3.0 V (U)SIM card is supported. The module supports Dual SIM Single Standby.

Table 11: Pin Definition of (U)SIM Interfaces

Pin Name	Pin No.	I/O	Description	Comment
USIM1_DET	42	DI	(U)SIM1 card hot-plug detect	1.8 V power domain. If unused, keep it open.
USIM1_VDD	43	РО	(U)SIM1 card power supply	Either 1.8 V or 3.0 V (U)SIM card is supported and can be identified automatically by the module.
USIM1_RST	44	DO	(U)SIM1 card reset	
USIM1_DATA	45	DIO	(U)SIM1 card data	
USIM1_CLK	46	DO	(U)SIM1 card clock	
USIM1_GND	47		Specified ground for (U)SIM1	Connect to main GND of PCB.
USIM2_DET	83	DI	(U)SIM2 card hot-plug detect	1.8 V power domain. If unused, keep it open.
USIM2_CLK	84	DO	(U)SIM2 card clock	
USIM2_RST	85	DO	(U)SIM2 card reset	
USIM2_DATA	86	DIO	(U)SIM2 card data	
USIM2_VDD	87	РО	(U)SIM2 card power supply	Either 1.8 V or 3.0 V (U)SIM card is supported and can be identified automatically by the module.

The module supports (U)SIM card hot-plug via the USIM_DET pin, and both high and low level detection are supported. The function is disabled by default and can be configured via **AT+QSIMDET**. See **document [2]** for more details.

The following figure shows a reference design for (U)SIM card interface with an 8-pin (U)SIM card connector.

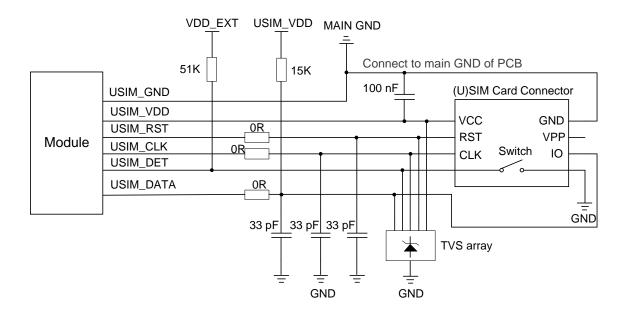


Figure 16: Reference Circuit of (U)SIM Interface with an 8-pin (U)SIM Card Connector

If the function of (U)SIM card hot-plug is not needed, please keep USIM_DET disconnected. A reference circuit for (U)SIM interface with a 6-pin (U)SIM card connector is illustrated in the following figure.

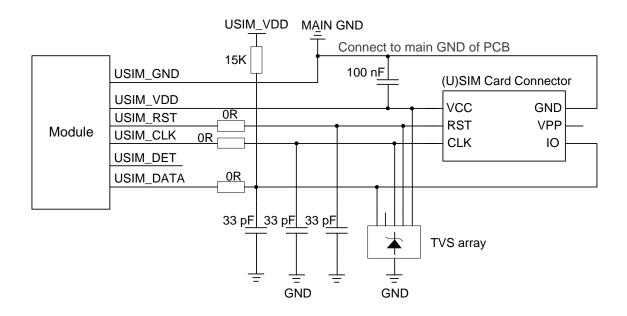


Figure 17: Reference Circuit of (U)SIM Interface with a 6-pin (U)SIM Card Connector

To enhance the reliability and availability of the (U)SIM card in your applications, please follow the criteria below in (U)SIM circuit design:

 Place the (U)SIM card connector as close to the module as possible. Keep the trace length as short as possible, at most 200 mm.

- Keep (U)SIM card signals away from RF and VBAT traces.
- Make sure the ground between the module and the (U)SIM card connector is short and wide. Keep
 the trace width of ground and USIM_VDD not less than 0.5 mm to maintain the same electric
 potential. If the ground is complete on your PCB, USIM_GND can be connected to PCB ground
 directly.
- To avoid cross-talk between USIM_DATA and USIM_CLK, keep them away from each other and shield them with surrounded ground.
- Make sure the bypass capacitor between USIM_VDD and GND less than 1 μF, and place it as close to the (U)SIM card connector as possible.
- To offer good ESD protection, it is recommended to add a TVS array whose parasitic capacitance should not be more than 15 pF. Add 0 Ω resistors in series between the module and the (U)SIM card to facilitate debugging. The 33 pF capacitors in parallel on USIM_DATA, USIM_CLK and USIM_RST lines are used for filtering interference of EGSM900. Note that the (U)SIM peripheral circuit should be close to the (U)SIM card connector.
- The pull-up resistor on USIM_DATA can improve anti-jamming capability of the (U)SIM card. If the (U)SIM card traces are too long, or the interference source is relatively close, it is recommended to add a pull-up resistor near the (U)SIM card connector.

3.10. USB Interface

The module provides one integrated Universal Serial Bus (USB) interface which complies with the USB 2.0 specification and supports full-speed (12 Mbps) and high-speed (480 Mbps) modes. The USB interface can only serve in the slave mode and is used for AT command communication, data transmission, software debugging and firmware upgrade. The following table shows the pin definition of USB interface.

Table 12: Pin Description of USB Interface

Pin Name	Pin No.	I/O	Description	Comment
USB_VBUS	8	AI	USB connection detect	Typical: 5.0 V If unused, keep it open.
USB_DP	9	AIO	USB differential data (+)	Requires differential impedance of 90 Ω .
USB_DM	10	AIO	USB differential data (-)	USB 2.0 compliant. If unused, keep them open.

For more details about the USB 2.0 specifications, please visit http://www.usb.org/home.

It is recommended to reserve test points for debugging and firmware upgrade in your designs. The following figure shows a reference circuit of USB interface.

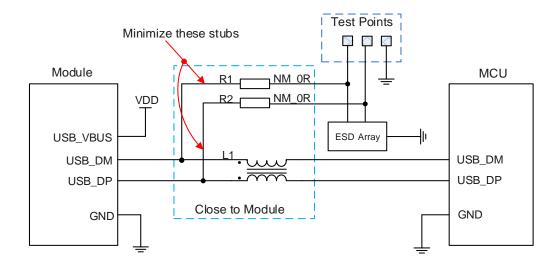


Figure 18: Reference Circuit of USB Application

A common mode choke L1 is recommended to be added in series between the module and MCU to suppress EMI spurious transmission. Meanwhile, the 0 Ω resistors (R1 and R2) should be added in series between the module and the test points to facilitate debugging, and the resistors are not mounted by default. To ensure the signal integrity of USB data lines, L1, R1 and R2 components must be placed close to the module, and resistors R1 and R2 should be placed close to each other. The extra stubs of trace must be as short as possible.

When designing the USB interface, you should follow the following principles to meet USB 2.0 specifications.

- Route the USB signal traces as a differential pair with ground surrounded. The impedance of USB differential trace is 90 Ω.
- Do not route signal traces under crystals, oscillators, magnetic devices and RF signal traces. Route
 the USB differential traces of equal length in inner-layer of the PCB, and surround the traces with
 ground on that layer and with ground planes above and below.
- Pay attention to the selection of the ESD protection component on the USB data line. Its parasitic capacitance should not exceed 2 pF and should be placed as close as possible to the USB interface.

3.11. UART Interfaces

The module provides three UART interfaces: one main UART interface, one auxiliary UART interface* and one debug UART interface. Their features are described below.

Main UART interface supports 4800 bps, 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115200 bps, 230400 bps, 460800 bps, 921600 bps and 1 Mbps baud rates, and the default baud rate is 115200 bps. This interface is used for data transmission and AT command communication. Also, it supports

RTS and CTS hardware flow control.

- Auxiliary UART* interface supports RTS and CTS hardware flow control.
- Debug UART interface supports 115200 bps baud rate. It is used for partial log output.

Table 13: Pin Definition of Main UART Interface

Pin Name	Pin No.	I/O	Description	Comment
MAIN_DTR	30	DI	Main UART data terminal ready	
MAIN_RXD	34	DI	Main UART receive	1.8 V power domain. If unused, keep them open.
MAIN_TXD	35	DO	Main UART transmit	
MAIN_CTS	36	DO	DTE clear to send signal from DCE	Connect to DTE's CTS. 1.8 V power domain. If unused, keep it open.
MAIN_RTS	37	DI	DTE request to send signal to DCE	Connect to DTE's RTS. 1.8 V power domain. If unused, keep it open.
MAIN_DCD	38	DO	Main UART data carrier detect	1.8 V power domain. If unused, keep them open.
MAIN_RI	39	DO	Main UART ring indication	

Table 14: Pin Definition of Auxiliary UART Interface

Pin Name	Pin No.	I/O	Description	Comment
AUX_RTS*	25	DI	DTE request to send signal to DCE	Connect to DTE's RTS. 1.8 V power domain. If unused, keep it open.
AUX_CTS*	26	DO	DTE clear to send signal from DCE	Connect to DTE's CTS. 1.8 V power domain. If unused, keep it open.
AUX_TXD*	27	DO	Auxiliary UART transmit	1.8 V power domain.
AUX_RXD*	28	DI	Auxiliary UART receive	If unused, keep them open.

Table 15: Pin Definition of Debug UART Interface

Pin Name	Pin No.	I/O	Description	Comment
DBG_RXD	22	DI	Debug UART receive	1.8 V power domain.
DBG_TXD	23	DO	Debug UART transmit	If unused, keep them open.

The module provides a 1.8 V UART interface. Use a voltage-level translator if the application is equipped with a 3.3 V UART interface. A voltage-level translator TXS0108EPWR provided by Texas Instruments is recommended. The following figure shows a reference design.

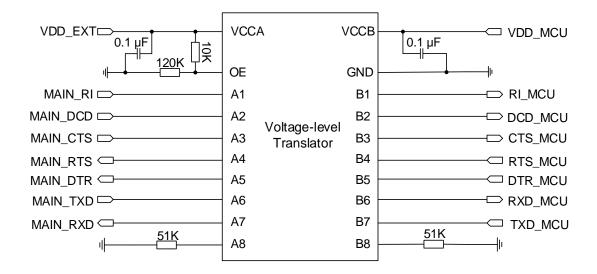


Figure 19: Reference Circuit with a Voltage-level Translator

Visit http://www.ti.com for more information.

Another example with transistor circuit is shown as below. For the design of circuits in dotted lines, see that shown in solid lines, but pay attention to the direction of connection.

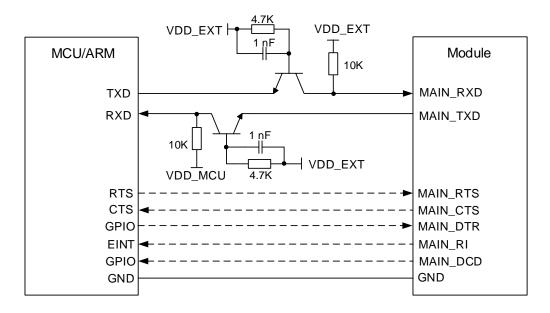


Figure 20: Reference Circuit with Transistor Circuit

NOTE

- 1. Transistor circuit solution is not suitable for applications with baud rates exceeding 460 kbps.
- 2. Note that the module CTS is connected to the host CTS, and the module RTS is connected to the host RTS.

3.12. Analog Audio Interfaces

The module provides one analog input channel and one analog output channel.

Table 16: Pin Definition of Audio Interfaces

Pin Name	Pin No.	I/O	Description	Comment	
MICBIAS	120	РО	Bias voltage output for microphone		
MIC_P	126	AI	Microphone analog input (+)	If unused, keep them open.	
MIC_N	119	AI	Microphone analog input (-)		
SPK_P	121	AO	Analog audio differential output (+)	The interface can drive 32 Ω earpiece with	
SPK_N	122	АО	Analog audio differential output (-)	power rate at 37 mW. It can also be used to	

drive external power amplifier devices if the output power rate cannot meet the demand.

If unused, keep them open.

- Al channels are differential input channels, which can be applied for input of microphone (usually an electret microphone is used).
- AO channels are differential output channels, which can be applied for output of earpiece.

You can use the **AT+QMIC** to adjust the input gain of the microphone, or **AT+CLVL** to adjust the volume gain output to the handset. The **AT+QSIDET** is used to set the side tone gain. For details, please see **document [3].**

3.12.1. Audio Interfaces Design Considerations

It is recommended to use the electret microphone with dual built-in capacitors (e.g. 10 pF and 33 pF) for filtering out RF interference, thus reducing TDD noise. The 33 pF capacitor is applied for filtering out RF interference when the module is transmitting at EGSM900. Without placing this capacitor, TDD noise could be heard. The 10 pF capacitor here is used for filtering out RF interference at DCS1800. Note that the resonant frequency point of a capacitor largely depends on the material and production technique. Therefore, you need to discuss with your capacitor vendors to choose the most suitable capacitor for filtering out high-frequency noises.

The severity degree of the RF interference in the voice channel during GSM transmitting largely depends on the application design. In some cases, EGSM900 TDD noise is more severe; while in other cases, DCS1800 TDD noise is more obvious. Therefore, a suitable capacitor can be selected based on the test results. The filter capacitor on the PCB should be placed as close as possible to the audio device or audio interface, and the wiring should be as short as possible. The filter capacitor should be passed before reaching other connection points.

To decrease radio or other signal interference, RF antennas should be placed away from audio interfaces and audio traces. Power traces cannot be parallel with and also should be far away from the audio traces.

The differential audio traces must be routed according to the differential signal layout rule.

3.12.2. Microphone Interface Design

The microphone channel reference circuit is shown in the following figure.

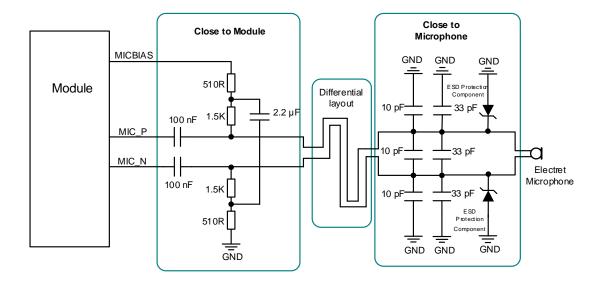


Figure 21: Reference Design for Microphone Interface

NOTE

MIC channel is sensitive to ESD, so it is not recommended to remove the ESD protection components used for protecting the MIC.

3.12.3. Earpiece and Loudspeaker Interface Design

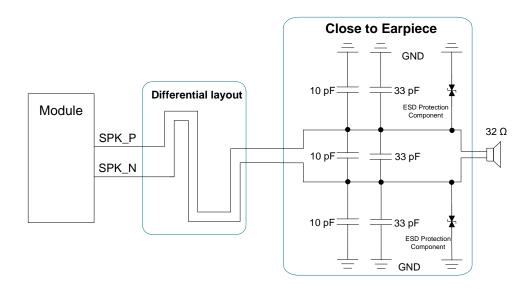


Figure 22: Reference Design for Earpiece Interface

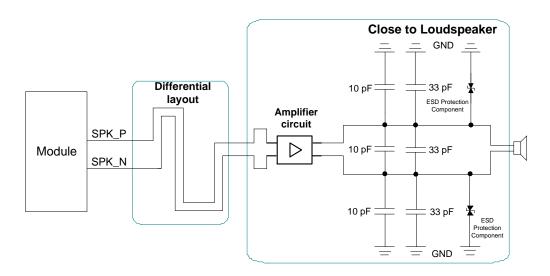


Figure 23: Reference Circuit of External Audio Amplifier Output

For differential input and output audio power amplifiers, please visit http://www.ti.com to obtain the required devices. There are also many audio power amplifiers with the same performance to choose from on the market.

3.13. PCM and I2C Interfaces

The module provides one Pulse Code Modulation (PCM) interface and one I2C interface.

Table 17: Pin Definition of PCM and I2C Interfaces

Pin Name	Pin No.	I/O	Description	Comment
PCM_CLK	4	DO	PCM clock	
PCM_SYNC	5	DO	PCM data frame sync	1.8 V power domain.
PCM_DIN	6	DI	PCM data input	If unused, keep them open.
PCM_DOUT	7	DO	PCM data output	
I2C_SCL	40	OD	I2C serial clock	An external 1.8 V pull-up resistor is
I2C_SDA	41	OD	I2C serial data	required.If unused, keep it open.

PCM interface supports the following two modes:

• Short frame mode: Module can be used as the slave device* and master device

Long frame mode*: Module can only be used as the master device

The module supports 16-bit linear encoding format. The following two figures are the short frame mode timing diagram (PCM_SYNC = 8 kHz, PCM_CLK = 2048 kHz) and the long frame mode timing diagram (PCM_SYNC = 8 kHz, PCM_CLK = 256 kHz).

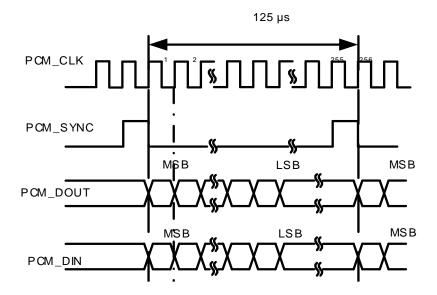


Figure 24: Timing of Short Frame Mode

In short frame mode, data is sampled on the falling edge of PCM_CLK, and sent on the rising edge. The falling edge of PCM_SYNC represents the high effective bit. In this mode, the PCM interface supports 256 kHz, 512 kHz, 1024 kHz, and 2048 kHz PCM_CLK at 8 kHz PCM_SYNC, and 4096 kHz PCM_CLK at 16 kHz PCM_SYNC.

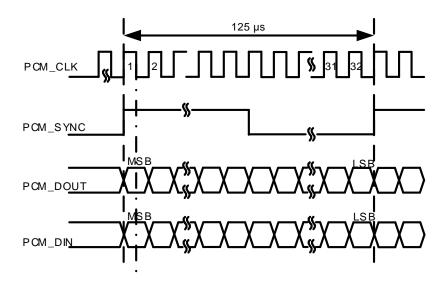


Figure 25: Timing of Long Frame Mode

In long frame mode, data is sampled on the falling edge of PCM_CLK, and sent on the rising edge. The rising edge of PCM_SYNC represents the high effective bit. In this mode, the PCM interface supports 256 kHz, 512 kHz, 1024 kHz and 2048 kHz PCM_CLK at 8 kHz, 50% duty cycle PCM_SYNC.

The clock and mode can be configured through AT commands, and the default configuration is short frame mode, PCM_CLK = 2048 kHz, PCM_SYNC =8 kHz. For details, please refer to the **AT+QDAI** command in *document* [3].

The following figure shows a reference design of PCM interface with an external codec IC.

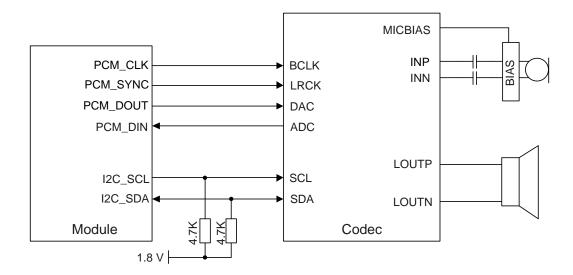


Figure 26: Reference Circuit of PCM and I2C Application with Audio Codec

NOTE

- 1. It is recommended to reserve an RC (R = 0 Ω , C = 33 pF) circuit on the PCM traces, especially for PCM_CLK.
- 2. The module can only be used as a master device in applications related to PCM and I2C interfaces.

3.14. Network Status Indication

The network indication pins can drive the network status indicators. The module provides a network status indication pin: NET_STATUS. The following tables describe pin definition and logic level changes in different network status.

Table 18: Pin Definition of Network Connection Status/Activity Indication

Pin Name	Pin No.	I/O	Description	Comment
NET_STATUS	21	DO	Indicate the module's network activity status	1.8 V power domain. If unused, keep it open.

Table 19: Working State of Network Activity Indicator

Pin Name	Logic Level Changes	Network Status
	Flicker slowly (200 ms high/1800 ms low)	Network searching
NET_STATUS	Flicker slowly (1800 ms high/200 ms low)	Idle
	Flicker quickly (125 ms high/125 ms low)	Data transmission is ongoing
	Always High (Always on)	Voice calling

A reference circuit is shown in the following figure.

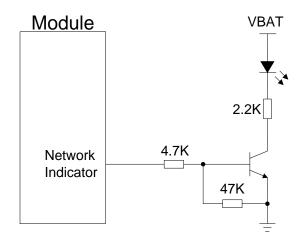


Figure 27: Reference Circuit of Network Status Indication

3.15. **USB_BOOT**

The module provides a USB_BOOT pin. Before the module is turned on, pull up USB_BOOT to 1.8 V, or short-circuit VDD_EXT and USB_BOOT, and the module will enter emergency download mode. In this mode, the module supports firmware upgrade over USB interface.

Table 20: Pin Definition of USB_BOOT Interface

Pin Name	Pin No.	I/O	Description	Comment
USB_BOOT	75	DI	Force the module into emergency download mode	1.8 V power domain.Active high.It is recommended to reserve test points.

The following figure shows a reference circuit and timing sequence for entering emergency download mode of USB_BOOT interface.

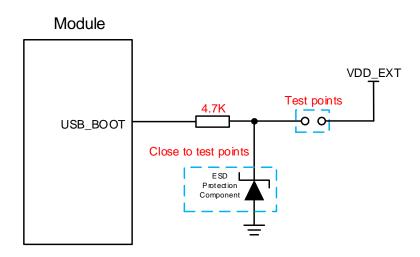


Figure 28: Reference Circuit of USB_BOOT Interface

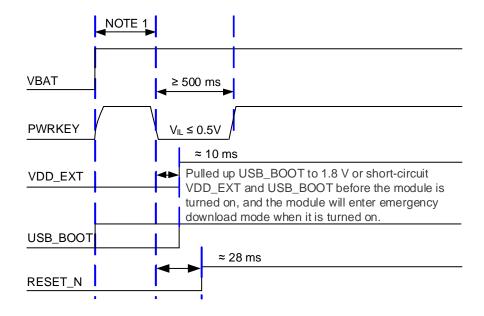


Figure 29: Timing Sequence for Entering Emergency Download Mode

NOTE

- 1. Make sure that VBAT is stable before pulling down PWRKEY pin. It is recommended that the time between powering up VBAT and pulling down PWRKEY pin is no less than 30 ms.
- When using MCU to control module to enter the emergency download mode, please follow the above timing sequence. It is not recommended to pull up USB_BOOT to 1.8 V before powering up VBAT. Directly connect the test points as shown in *Figure 28* can manually force the module to enter download mode.

3.16. STATUS

The STATUS pin is an output for module's operation status indication. When the module is turned on normally, the STATUS will output high level.

Table 21: Pin Definition of STATUS

Pin Name	Pin No.	I/O	Description	Comment
STATUS	20	DO	Indicate the module's operation status	1.8 V power domain.
	51A105 20 DO		'	If unused, keep it open.

The following figure shows a reference circuit of STATUS.

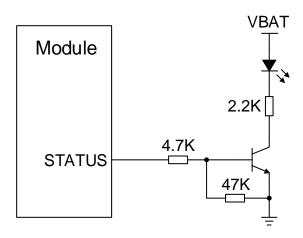


Figure 30: Reference Circuits of STATUS

3.17. ADC Interfaces

EG915N-EU provides two Analog-to-digital conversion interfaces. **AT+QADC=0** can be used to read the voltage value on ADC0. **AT+QADC=1** can be used to read the voltage value on ADC1. For more details about these AT commands, see **document [2]**.

EG915N-LA does not support ADC function.

To improve the accuracy of ADC, surround the trace of ADC with ground.

Table 22: Pin Definition of ADC Interfaces

Pin Name	Pin No.	I/O	Description	Comment	
ADC1	2	Al	General-purpose ADC interface	If unused, keep them open.	
ADC0	24	Al	General-purpose ADC interface		

Table 23: Characteristics of ADC Interfaces

Parameter	Min.	Тур.	Max.	Unit
ADC0 voltage range	0	-	VBAT_BB	V
ADC1 voltage range	0	-	VBAT_BB	V
ADC resolution	-	-	12	bits

NOTE

- 1. When the module is not powered by VBAT, the ADC interface cannot be directly connected to any input voltage.
- 2. If the collected voltage is greater than 4.5 V, it is recommended to use a resistor divider circuit input for the ADC pin. When designing, reserve a 1 nF capacitor at both ends of the grounding divider resistor, which is not mounted by default.

3.18. MAIN_RI

Send **AT+QCFG="risignaltype","physical"** so that no matter on which port a URC is presented, the URC will trigger the behaviors of MAIN_RI pin.

NOTE

AT+QURCCFG allows you to set the main UART, USB AT port or USB modem port as the URC output port. The USB AT port is the URC output port by default.

You can configure RI behaviors flexibly. The default behavior of the MAIN_RI is shown as below.

Table 24: Default Behaviors of the MAIN_RI

State	Response
Idle	MAIN_RI keeps at high level
URC	MAIN_RI outputs 120 ms low pulse when a new URC returns

The indication mode of MAIN_RI can be configured through multiple commands. For example, AT+QCFG="urc/ri/ring" can be used to configure the behavior of MAIN_RI during URC reporting. See document [2] for details.

4 GNSS

4.1. General Description

GNSS function is optional for the module. Only the module with built-in GNSS function integrates a multi-constellation GNSS receiver and supports GPS, GLONASS, Galileo, BDS, QZSS and SBAS positioning system. It also supports standard NMEA 0183 protocol and outputs NMEA sentences at 1 Hz data update rate via USB interface by default. The GNSS engine is turned off by default and can be turned on through AT commands. For more information about GNSS layout design, see *document* [4].

4.2. GNSS Performance

Table 25: GNSS Performance

Parameter	Description	Тур.	Unit
	Acquisition	-146	dBm
Sensitivity	Reacquisition	-160	dBm
	Tracking	-159	dBm
	Cold start @ open sky	28.01	S
TTFF	Warm start @ open sky	28.01	S
	Hot start @ open sky	4.05	S
Accuracy	CEP-50 @ open sky	1.72	m

NOTE

1. Tracking sensitivity: the minimum GNSS signal power at which the module can maintain lock (keep positioning for at least 3 minutes continuously).

- 2. Reacquisition sensitivity: the minimum GNSS signal power required for the module to maintain lock within 3 minutes after loss of lock.
- 3. Acquisition sensitivity: the minimum GNSS signal power at which the module can fix position successfully within 3 minutes after executing cold start command.

4.3. GNSS Antenna Routing Guidelines

In your application design, the following design principles should be followed:

- The distance between the GNSS antenna and the main antenna should be as large as possible.
- Digital signals such as (U)SIM card, USB interface, camera module, SD card and display interface etc. should be far away from the antenna.
- Sensitive analog signals should be far away from GNSS signal paths, and ground holes should be added for isolation and protection.
- ANT_GNSS trace maintains 50 Ω characteristic impedance.

For the reference design of GNSS antenna interface and antenna precautions, see *Chapter 5.2.*

5 Antenna Interfaces

The module includes one main antenna interface. The module with built-in GNSS function also has one GNSS antenna interface. The impedance of antenna port is 50Ω .

5.1. Main Antenna Interface & Frequency Bands

5.1.1. Pin Definition

Table 26: Pin Definition of Main Antenna

Pin Name	Pin No.	I/O	Description	Comment
ANT_MAIN	60	AIO	Main antenna interface	50 Ω impedance.

5.1.2. Operating Frequency

Table 27: EG915N-EU Operating Frequency

3GPP Band	Transmit	Receive	Unit
EGSM900	880–915	925–960	MHz
DCS1800	1710–1785	1805–1880	MHz
LTE-FDD B1	1920–1980	2110–2170	MHz
LTE-FDD B3	1710–1785	1805–1880	MHz
LTE-FDD B7	2500–2570	2620–2690	MHz
LTE-FDD B8	880–915	925–960	MHz
LTE-FDD B20	832–862	791–821	MHz

Table 28: EG915N-LA Operating Frequency

3GPP Band	Transmit	Receive	Unit
GSM850	824-849	869-894	MHz
EGSM900	880–915	925–960	MHz
DCS1800	1710–1785	1805–1880	MHz
PCS1900	1850-1910	1930-1990	MHz
LTE-FDD B2	1850-1910	1930-1990	MHz
LTE-FDD B3	1710–1785	1805–1880	MHz
LTE-FDD B4	1710-1755	2110-2155	MHz
LTE-FDD B5	824–849	869–894	MHz
LTE-FDD B7	2500–2570	2620–2690	MHz
LTE-FDD B8	880–915	925–960	MHz
LTE-FDD B28	703–748	758–803	MHz
LTE-FDD B66	1710–1780	2110–2180	MHz

5.1.3. Reference Design of Cellular Antenna Interface

A reference design of ANT_MAIN antenna is shown as below. A π -type matching circuit should be reserved for better RF performance. The capacitors are not mounted by default.

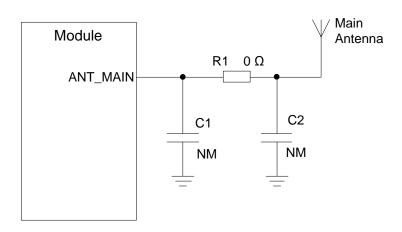


Figure 31: Reference Circuit Design for RF Antenna Interface

NOTE

Place the π-type matching components (R1, C1 and C2) as close to the antenna as possible.

5.1.4. RF Routing Guidelines

For user's PCB, the characteristic impedance of all RF traces should be controlled to 50 Ω . The impedance of the RF traces is usually determined by the trace width (W), the materials' dielectric constant, the height from the reference ground to the signal layer (H), and the spacing between RF traces and grounds (S). Microstrip or coplanar waveguide is typically used in RF layout to control characteristic impedance. The following are reference designs of microstrip or coplanar waveguide with different PCB structures.

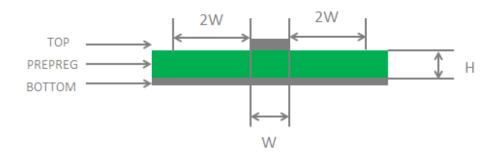


Figure 32: Microstrip Design on a 2-layer PCB

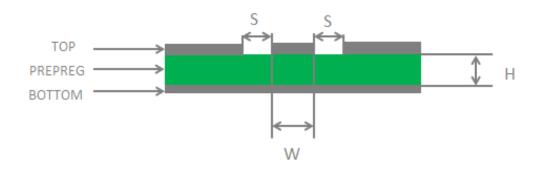


Figure 33: Coplanar Waveguide Design on a 2-layer PCB

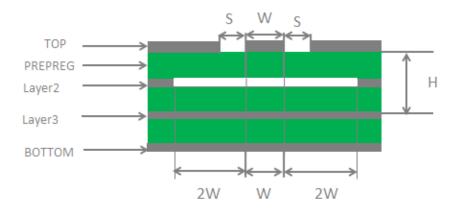


Figure 34: Coplanar Waveguide Design on a 4-layer PCB (Layer 3 as Reference Ground)

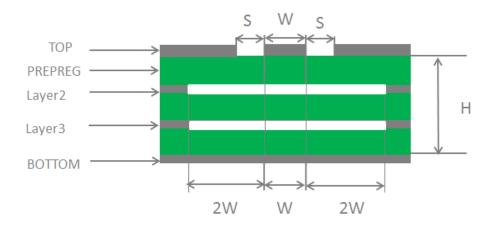


Figure 35: Coplanar Waveguide Design on a 4-layer PCB (Layer 4 as Reference Ground)

To ensure RF performance and reliability, follow the principles below in RF layout design:

- Use an impedance simulation tool to accurately control the characteristic impedance of RF traces to 50Ω .
- The GND pins adjacent to RF pins should not be designed as thermal relief pads, and should be fully connected to ground.
- The distance between the RF pins and the RF connector should be as short as possible and all the right-angle traces should be changed to curved ones. The recommended trace angle is 135°.
- There should be clearance under the signal pin of the antenna connector or solder joint.
- The reference ground of RF traces should be complete. Meanwhile, adding some ground vias around RF traces and the reference ground could help to improve RF performance. The distance between the ground vias and RF traces should be not less than twice the width of RF signal traces (2 x W).
- Keep RF traces away from interference sources, and avoid intersection and paralleling between traces on adjacent layers.

For more details about RF layout, see document [4].

5.2. GNSS Antenna Interface & Frequency Bands

The following tables list the pin definition and frequency characteristics of the GNSS antenna interface.

Table 29: GNSS Antenna Pin Definition

Pin Name	Pin No.	I/O	Description	Comment
ANT_GNSS	49	Al	GNSS antenna interface	$50~\Omega$ impedance. If unused, keep it open.

Table 30: GNSS Frequency

Туре	Frequency	Unit
GPS	1575.42 ±1.023	MHz
GLONASS	1597.5–1605.8	MHz
Galileo	1575.42 ±2.046	MHz
BDS	1561.098 ±2.046	MHz
QZSS	1575.42	MHz
SBAS	1575.42	MHz

5.2.1. GNSS Antenna Reference Design

5.2.1.1. Reference Circuit Design for GNSS Active Antenna

GNSS active antenna connection reference circuit is shown in the figure below.

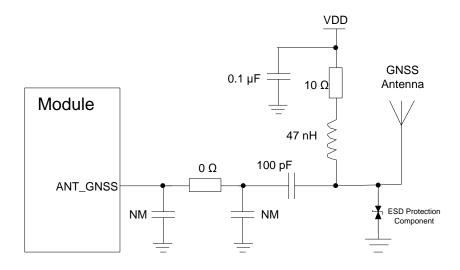


Figure 36: GNSS Active Antenna Reference Circuit

The power supply voltage range of the external active antenna is 2.8-4.3 V, and the typical value is 3.3 V.

NOTE

- 1. You can select an external LDO for power supply according to the active antenna requirements.
- 2. The junction capacitance of the antenna interface ESD protection component device is recommended to be less than 0.05 pF.

5.2.1.2. Reference Circuit Design for GNSS Passive Antenna

GNSS passive antenna connection reference circuit is shown in the figure below.

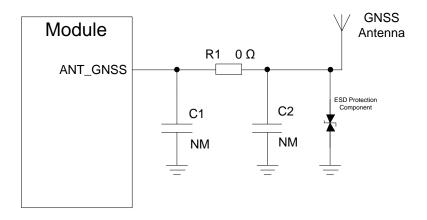


Figure 37: GNSS Passive Antenna Reference Circuit

C1, R1 and C2 form the matching circuit, which is recommended to be reserved for adjusting the antenna impedance. Among them, C1 and C2 are not mounted by default, and R1 is only mounted with 0 Ω resistor. The impedance of the RF trace should be controlled at about 50 Ω , and the trace should be as short as possible.

NOTE

- 1. If the module is designed with a passive antenna, then the VDD circuit is not needed.
- 2. The junction capacitance of the antenna interface ESD protection component device is recommended to be less than 0.05 pF.

5.3. Antenna Installation

5.3.1. Antenna Design Requirements

Table 31: Antenna Requirements

Туре	Requirements		
	VSWR: ≤ 2		
GSM/LTE	Efficiency: > 30 %		
G3IVI/LI E	Max input power: 50 W		
	Input impedance: 50 Ω		

	Cable insertion loss:
	< 1 dB: LB (< 1 GHz)
	< 1.5 dB: MB (1–2.3 GHz)
	< 2 dB: HB (> 2.3 GHz)
	Frequency range:
	L1:1559–1609 MHz
	 Polarization: RHCP or linear
	VSWR: < 2
GNSS	Passive antenna gain: > 0 dBi
	 Active antenna noise factor: < 1.5 dB
	Active antenna gain: > -2 dBi
	 Active antenna internal LNA gain: < 17 dB
	 Active antenna total gain: < 17 dBi

5.3.2. RF Connector Recommendation

If RF connector is used for antenna connection, it is recommended to use U.FL-R-SMT connector provided by Hirose.

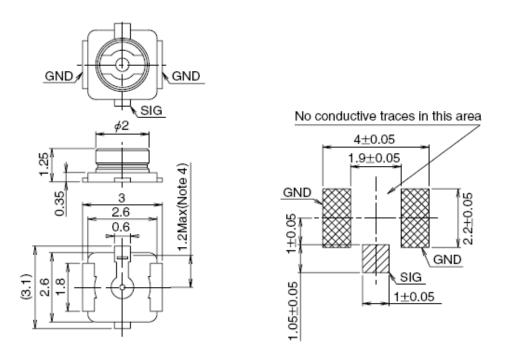


Figure 38: Dimensions of the Receptacle (Unit: mm)

U.FL-LP series connectors listed in the following figure can be used to match the U.FL-R-SMT.

	U.FL-LP-040	U.FL-LP-066	U.FL-LP(V)-040	U.FL-LP-062	U.FL-LP-088
Part No.	4	\$ \\ \frac{4}{5} \\ \frac{4}{5} \\ \frac{1}{5} \\ \	3.4	87	581 54 54 54 54 54 54 54 54 54 54 54 54 54
Mated Height	2.5mm Max. (2.4mm Nom.)	2.5mm Max. (2.4mm Nom.)	2.0mm Max. (1.9mm Nom.)	2.4mm Max. (2.3mm Nom.)	2.4mm Max. (2.3mm Nom.)
Applicable cable	Dia. 0.81mm Coaxial cable	Dia. 1.13mm and Dia. 1.32mm Coaxial cable	Dia. 0.81mm Coaxial cable	Dia. 1mm Coaxial cable	Dia. 1.37mm Coaxial cable
Weight (mg)	53.7	59.1	34.8	45.5	71.7
RoHS	YES				

Figure 39: Specifications of Mated Plugs

The following figure describes the space factor of mated connector.

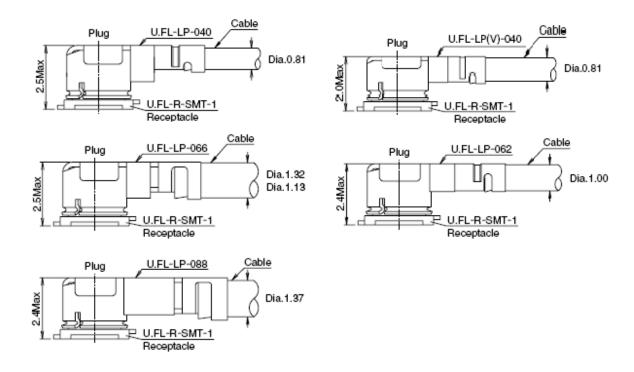


Figure 40: Space Factor of Mated Connectors (Unit: mm)

For more details, please visit http://hirose.com.

6 Reliability, Radio and Electrical Characteristics

6.1. Absolute Maximum Ratings

Absolute maximum ratings for power supply and voltage on digital and analog pins of the module are listed in the following table.

Table 32: Absolute Maximum Ratings

Min.	Max.	Unit
-0.3	6.0	V
-0.3	6.0	V
-0.3	5.5	V
-	0.8	A
-	2.2	A
-0.3	2.3	V
	-0.3 -0.3 -0.3	-0.3 6.0 -0.3 6.0 -0.3 5.5 - 0.8 - 2.2

6.2. Power Supply Ratings

Table 33: Power Supply Ratings

Parameter	Description	Conditions	Min.	Тур.	Max.	Unit
VBAT	VBAT_BB and VBAT_RF	The actual input voltages must be kept between the minimum and maximum	3.4	3.8	4.5	V

		values.				
	Voltage drop during burst transmission	Maximum power control level on EGSM900.	-	-	400	mV
I _{VBAT}	Peak supply current (during transmission slot)	Maximum power control level on EGSM900.	-	2.0	2.5	А
USB_VBUS	USB connection detect		3.0	5.0	5.25	V

6.3. Digital I/O Characteristics

Table 34: 1.8 V Digital I/O Requirements

Parameter	Description	Min.	Max.	Unit
V _{IH}	Input high voltage	1.2	2.0	V
VIL	Input low voltage	-0.3	0.6	V
Vон	Output high voltage	1.35	-	V
VoL	Output low voltage	-	0.45	V

Table 35: (U)SIM 1.8 V I/O Requirements

Parameter	Description	Min.	Max.	Unit
USIM_VDD	Power supply	1.7	1.9	V
VIH	Input high voltage	1.2	-	V
VIL	Input low voltage	-	0.6	V
Vон	Output high voltage	1.35	-	V
VoL	Output low voltage	-	0.45	V

Table 36: (U)SIM 3.0 V I/O Requirements

Parameter	Description	Min.	Max.	Unit
USIM_VDD	Power supply	2.7	3.05	V
VIH	Input high voltage	1.95	-	V
VIL	Input low voltage	-	1	V
Vон	Output high voltage	2.55	-	V
VoL	Output low voltage	-	0.45	V

6.4. Operating and Storage Temperatures

Table 37: Operating and Storage Temperatures

Parameter	Min.	Тур.	Max.	Unit
Operating Temperature Range ⁴	-35	+25	+75	°C
Extended Operation Range ⁵	-40	-	+85	°C
Storage Temperature Range	-40	-	+90	°C

6.5. Power Consumption

The power consumption of the module is shown in the table below.

Table 38: EG915N-EU Power Consumption

Description	Conditions	Тур.	Unit
OFF state	Power down	24	μΑ

⁴ Within operating temperature range, the module is 3GPP compliant.

⁵ Within extended temperature range, the module remains the ability to establish and maintain functions such as voice, SMS, data transmission, emergency call, etc, without any unrecoverable malfunction. Radio spectrum and radio network are not influenced, while one or more specifications, such as P_{out}, may exceed the specified tolerances of 3GPP. When the temperature returns to the operating temperature range, the module meets 3GPP specifications again.

	AT+CFUN=0 (USB disconnected)	1.33	mA
	EGSM900 @ DRX = 2 (USB disconnected)	2.35	mA
	EGSM900 @ DRX = 5 (USB disconnected)	1.53	mA
	EGSM900 @ DRX = 5 (USB suspend)	2.00	mA
	EGSM900 @ DRX = 9 (USB disconnected)	1.71	mA
	DCS1800 @ DRX = 2 (USB disconnected)	2.38	mA
	DCS1800 @ DRX = 5 (USB disconnected)	1.88	mA
Sleep state	DCS1800 @ DRX = 5 (USB suspend)	2.00	mA
	DCS1800 @ DRX = 9 (USB disconnected)	1.70	mA
	LTE-FDD @ PF = 32 (USB disconnected)	1.99	mA
	LTE-FDD @ PF = 64 (USB disconnected)	1.59	mA
	LTE-FDD @ PF = 64 (USB suspend)	1.76	mA
	LTE-FDD @ PF = 128 (USB disconnected)	1.40	mA
	LTE-FDD @ PF = 256 (USB disconnected)	1.31	mA
	EGSM900 @ DRX = 5 (USB disconnected)	20.65	mA
	EGSM900 @ DRX = 5 (USB connected)	30.00	mA
Idle state	LTE-FDD @ PF = 64 (USB disconnected)	20.97	mA
	LTE-FDD @ PF = 64 (USB connected)	30.17	mA
	EGSM900 4DL/1UL @ 32.15 dBm	220	mA
	EGSM900 3DL/2UL @ 31.99 dBm	377	mA
GPRS data transmission	EGSM900 2DL/3UL @ 31.08 dBm	486	mA
	EGSM900 1DL/4UL @ 28.86 dBm	503	mA
	DCS1800 4DL/1UL @ 29.03 dBm	163	mA
	DCS1800 3DL/2UL @ 28.90dBm	258	mA
	DCS1800 2DL/3UL @ 27.76 dBm	319	mA

	DCS1800 1DL/4UL @ 25.76 dBm	330	mA
	EGSM900 4DL/1UL @ 26.83 dBm	145	mA
	EGSM900 3DL/2UL @ 26.00 dBm	233	mA
EDGE data	EGSM900 2DL/3UL @ 24.96 dBm	284	mA
	EGSM900 1DL/4UL @ 23.26 dBm	320	mA
transmission	DCS1800 4DL/1UL @ 24.65 dBm	124	mA
	DCS1800 3DL/2UL @ 24.52 dBm	193	mA
	DCS1800 2DL/3UL @ 23.26 dBm	247	mA
	DCS1800 1DL/4UL @ 20.98 dBm	283	mA
	LTE-FDD B1	486	mA
	LTE-FDD B3	479	mA
LTE data transmission	LTE-FDD B7	508	mA
	LTE-FDD B8	524	mA
	LTE-FDD B20	418	mA
	EGSM900 PCL = 5 @ 32.14 dBm	219	mA
	EGSM900 PCL = 12 @ 19.60 dBm	92	mA
	EGSM900 PCL = 19 @ 5.54 dBm	60	mA
GSM voice call	DCS1800 PCL = 0 @ 29.02 dBm	152	mA
	DCS1800 PCL = 7 @ 15.99 dBm	72	mA
	DCS1800 PCL = 15 @ 0.24 dBm	57	mA

Table 39: EG915N-LA Power Consumption

Description	Conditions	Тур.	Unit
OFF state	Power down	26	μΑ
Sleep state	AT+CFUN=0 (USB disconnected)	0.83	mA

	EGSM900 @ DRX = 2 (USB disconnected)	1.80	mA
	EGSM900 @ DRX = 5 (USB disconnected)	1.38	mA
	EGSM900 @ DRX = 5 (USB suspend)	1.46	mA
	EGSM900 @ DRX = 9 (USB disconnected)	1.17	mA
	DCS1800 @ DRX = 2 (USB disconnected)	1.82	mA
	DCS1800 @ DRX = 5 (USB disconnected)	1.33	mA
	DCS1800 @ DRX = 5 (USB suspend)	1.48	mA
	DCS1800 @ DRX = 9 (USB disconnected)	1.18	mA
	LTE-FDD @ PF = 32 (USB disconnected)	1.71	mA
	LTE-FDD @ PF = 64 (USB disconnected)	1.30	mA
	LTE-FDD @ PF = 64 (USB suspend)	1.46	mA
	LTE-FDD @ PF = 128 (USB disconnected)	1.09	mA
	LTE-FDD @ PF = 256 (USB disconnected)	0.99	mA
	EGSM900 @ DRX = 5 (USB disconnected)	16.81	mA
	EGSM900 @ DRX = 5 (USB connected)	29.04	mA
Idle state	LTE-FDD @ PF = 64 (USB disconnected)	16.86	mA
	LTE-FDD @ PF = 64 (USB connected)	29.06	mA
	GSM850 4DL/1UL @ 32.50 dBm	227	mA
	GSM850 3DL/2UL @ 32.34 dBm	419	mA
	GSM850 2DL/3UL @ 30.96 dBm	515	mA
GPRS data	GSM850 1DL/4UL @ 28.76 dBm	538	mA
transmission	EGSM900 4DL/1UL @ 32.04 dBm	215	mA
	EGSM900 3DL/2UL @ 31.91 dBm	396	mA
	EGSM900 2DL/3UL @ 31.01 dBm	514	mA
	EGSM900 1DL/4UL @ 28.91 dBm	545	mA

	DCS1800 4DL/1UL @ 29.94 dBm	167	mA
	DCS1800 3DL/2UL @ 29.83 dBm	296	mA
	DCS1800 2DL/3UL @ 28.35 dBm	355	mA
	DCS1800 1DL/4UL @ 26.37 dBm	382	mA
	PCS1900 4DL/1UL @ 29.89 dBm	153	mA
	PCS1900 3DL/2UL @ 29.78 dBm	278	mA
	PCS1900 2DL/3UL @ 28.44 dBm	338	mA
	PCS1900 1DL/4UL @ 26.45 dBm	364	mA
	GSM850 4DL/1UL @ 26.50 dBm	135	mA
	GSM850 3DL/2UL @ 26.33 dBm	236	mA
	GSM850 2DL/3UL @ 25.04 dBm	293	mA
	GSM850 1DL/4UL @ 23.12 dBm	337	mA
	EGSM900 4DL/1UL @ 26.77 dBm	136	mA
	EGSM900 3DL/2UL @ 26.63 dBm	240	mA
	EGSM900 2DL/3UL @ 25.32 dBm	304	mA
EDGE data	EGSM900 1DL/4UL @ 23.19 dBm	334	mA
transmission	DCS1800 4DL/1UL @ 26.01 dBm	136	mA
	DCS1800 3DL/2UL @ 26.01 dBm	223	mA
	DCS1800 2DL/3UL @ 24.33 dBm	273	mA
	DCS1800 1DL/4UL @ 22.17 dBm	317	mA
	PCS1900 4DL/1UL @ 26.04 dBm	121	mA
	PCS1900 3DL/2UL @ 25.96 dBm	215	mA
	PCS1900 2DL/3UL @ 24.44 dBm	269	mA
	PCS1900 1DL/4UL @ 22.31 dBm	310	mA
LTE data	LTE-FDD B2	512	mA

transmission	LTE-FDD B3	617	mA
	LTE-FDD B4	500	mA
	LTE-FDD B5	490	mA
	LTE-FDD B7	543	mA
	LTE-FDD B8	486	mA
	LTE-FDD B28	485	mA
	LTE-FDD B66	497	mA
	GSM850 PCL = 5 @ 32.48 dBm	235	mA
	GSM850 PCL = 12 @ 19.36 dBm	96	mA
	GSM850 PCL = 19 @ 5.06 dBm	63	Ма
	EGSM900 PCL = 5 @ 32.03 dBm	227	mA
	EGSM900 PCL = 12 @ 19.34 dBm	93	mA
0004	EGSM900 PCL = 19 @ 4.33 dBm	60	mA
GSM voice call	DCS1800 PCL = 0 @ 29.91 dBm	171	mA
	DCS1800 PCL = 7 @ 17.27 dBm	81	mA
	DCS1800 PCL = 15 @ 1.05 dBm	58	mA
	PCS1900 PCL = 0 @ 29.89 dBm	164	mA
	PCS1900 PCL = 7 @ 16.87 dBm	79	mA
	PCS1900 PCL = 15 @ 1.21 dBm	59	mA

6.6. Rx Sensitivity

The following tables show conducted RF receiving sensitivity of the module.

Table 40: EG915N-EU Conducted RF Receiving Sensitivity

Fraguency Danda	Rece	eiving Sensitiv	20DD (SIMO)	
Frequency Bands	Primary	Diversity	SIMO	3GPP (SIMO)
EGSM900	-109 dBm	-	-	-102 dBm
DCS1800	-104 dBm	-	-	-102 dBm
LTE-FDD B1 (10 MHz)	-98 dBm	-	-	-96.3 dBm
LTE-FDD B3 (10 MHz)	-98 dBm	-	-	-93.3 dBm
LTE-FDD B7 (10 MHz)	-97 dBm	-	-	-94.3 dBm
LTE-FDD B8 (10 MHz)	-98 dBm	-	-	-93.3 dBm
LTE-FDD B20 (10 MHz)	-98 dBm	-	-	-93.3 dBm

Table 41: EG915N-LA Conducted RF Receiving Sensitivity

Francisco Danda	Rece	iving Sensitiv	20DD (SIMO)	
Frequency Bands	Primary Diversity SIMO		3GPP (SIMO)	
GSM850	-108 dBm	-	-	-102 dBm
EGSM900	-107 dBm	-	-	-102 dBm
DCS1800	-104 dBm	-	-	-102 dBm
PCS1900	-104 dBm	-	-	-102 dBm
LTE-FDD B2 (10 MHz)	-99 dBm	-	-	-94.3 dBm
LTE-FDD B3 (10 MHz)	-98 dBm	-	-	-93.3 dBm
LTE-FDD B4 (10 MHz)	-98.5 dBm	-	-	-9.3 dBm
LTE-FDD B5 (10 MHz)	-99.5 dBm	-	-	-94.3 dBm
LTE-FDD B5 (10 MHz)	-99.5 dBm	-	-	-94.3 dBm

LTE-FDD B7 (10 MHz)	-97 dBm	-	-	-94.3 dBm
LTE-FDD B8 (10 MHz)	-99 dBm	-	-	-93.3 dBm
LTE-FDD B28 (10 MHz)	-99 dBm	-	-	-94.8 dBm
LTE-FDD B66 (10 MHz)	-99 dBm	-	-	-96.5 dBm

6.7. ESD Protection

Static electricity occurs naturally and it may damage the module. Therefore, applying proper ESD countermeasures and handling methods is imperative. For example, wear anti-static gloves during the development, production, assembly and testing of the module; add ESD protection components to the ESD sensitive interfaces and points in the product design.

The following table shows the module electrostatics discharge characteristics.

Table 42: Electrostatics Discharge Characteristics (25 °C, 45 % Relative Humidity)

Tested Interfaces	Contact Discharge	Air Discharge	Unit
VBAT, GND	±5	±10	kV
All Antenna Interfaces	±4	±8	kV
Other Interfaces	±0.5	±1	kV

7 Mechanical Information

This chapter describes the mechanical dimensions of the module. All dimensions are measured in millimeter (mm), and the dimensional tolerances are ±0.2 mm unless otherwise specified.

7.1. Mechanical Dimensions

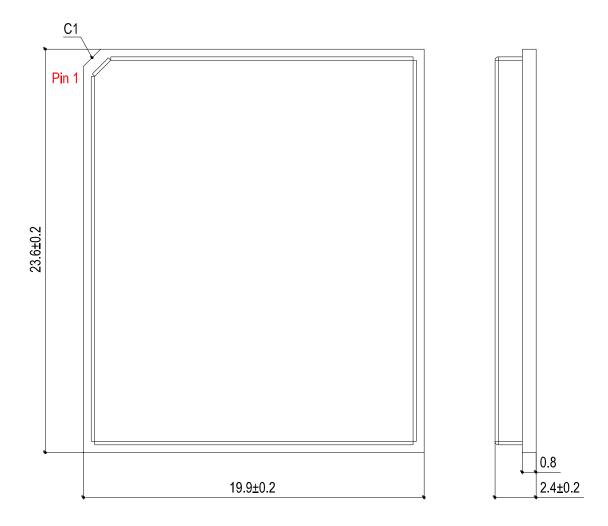


Figure 41: Top and Side Dimensions

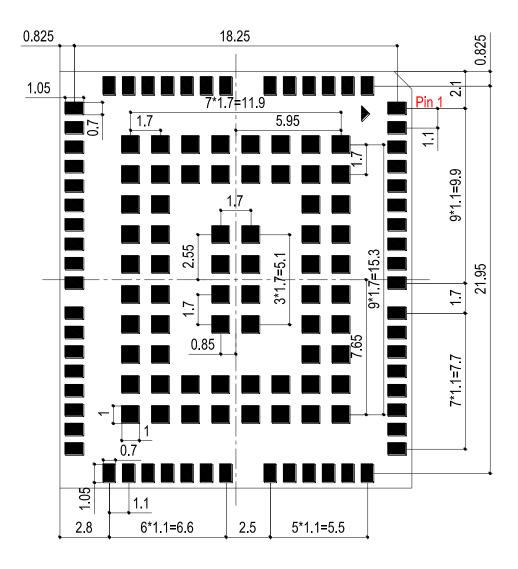


Figure 42: Bottom Dimensions (Bottom View)

NOTE

The package warpage level of the module conforms to *JEITA ED-7306* standard.

7.2. Recommended Footprint

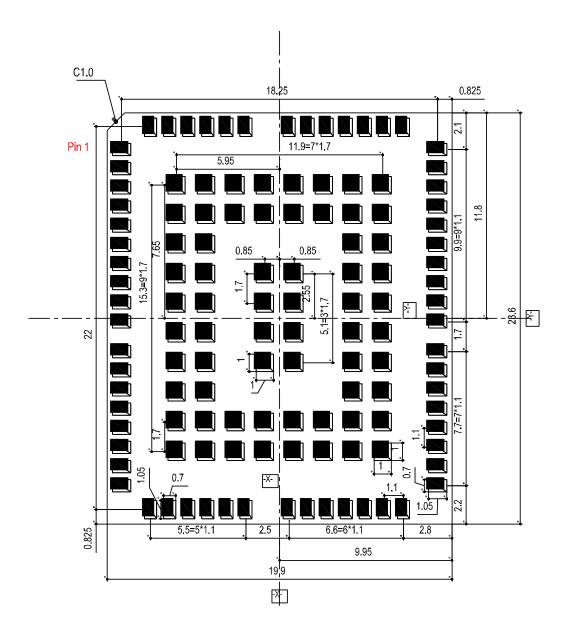


Figure 43: Recommended Footprint (Top View)

NOTE

Keep at least 3 mm between the module and other components on the motherboard to improve soldering quality and maintenance convenience.

7.3. Tx Power

The following tables show the RF output power of the module.

Table 43: EG915N-EU RF Output Power

Frequency Bands	Max. RF Output Power	Min. RF Output Power
EGSM900	33 dBm ±2 dB	5 dBm ±5 dB
DCS1800	30 dBm ±2 dB	0 dBm ±5 dB
EGSM900 (8-PSK)	27 dBm ±3 dB	5 dBm ±5 dB
DCS1800 (8-PSK)	26 dBm ±3 dB	0 dBm ±5 dB
LTE-FDD B1/B3/B7/B8/B20	23 dBm ±2 dB	< -39 dBm

Table 44: EG915N-LA RF Output Power

Frequency Bands	Max. RF Output Power	Min. RF Output Power
GSM850	33 dBm ±2 dB	5 dBm ±5 dB
EGSM900	33 dBm ±2 dB	5 dBm ±5 dB
DCS1800	30 dBm ±2 dB	0 dBm ±5 dB
PCS1800	30 dBm ±2 dB	0 dBm ±5 dB
GSM850 (8-PSK)	27 dBm ±3 dB	5 dBm ±5 dB
EGSM900 (8-PSK)	27 dBm ±3 dB	5 dBm ±5 dB
DCS1800 (8-PSK)	26 dBm ±3 dB	0 dBm ±5 dB
PCS1900 (8-PSK)	26 dBm ±3 dB	0 dBm ±5 dB
LTE-FDD B2/B3/B4/B5/B7/B8/B28/B66	23 dBm ±2 dB	< -39 dBm

NOTE

In GPRS 4 slots Tx mode, the maximum output power is reduced by 2.5 dB. The design conforms to the

GSM specification as described in Chapter 13.16 of 3GPP TS 51.010-1.

7.4. Top and Bottom Views

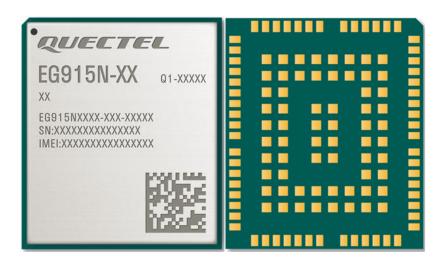


Figure 44: Top View and Bottom View of the Module

NOTE

Images above are for illustration purpose only and may differ from the actual module. For authentic appearance and label, please refer to the module received from Quectel.

8 Storage, Manufacturing and Packaging

8.1. Storage Conditions

The module is provided with vacuum-sealed packaging. MSL of the module is rated as 3. The storage requirements are shown below.

- 1. Recommended Storage Condition: The temperature should be 23 ±5 °C and the relative humidity should be 35–60 %.
- 2. The storage life (in vacuum-sealed packaging): 12 months in Recommended Storage Condition.
- 3. Floor life: 168 hours ⁶ in a factory where the temperature is 23 ±5 °C and relative humidity is below 60 %. After the vacuum-sealed packaging is removed, the module must be processed in reflow soldering or other high-temperature operations within 168 hours. Otherwise, the module should be stored in an environment where the relative humidity is less than 10 % (e.g. a drying cabinet).
- 4. The module should be pre-baked to avoid blistering, cracks and inner-layer separation in PCB under the following circumstances:
 - The module is not stored in Recommended Storage Condition;
 - Violation of the third requirement above occurs;
 - Vacuum-sealed packaging is broken, or the packaging has been removed for over 24 hours;
 - Before module repairing.
- 5. If needed, the pre-baking should follow the requirements below:
 - The module should be baked for 8 hours at 120 ±5 °C;
 - The module must be soldered to PCB within 24 hours after the baking, otherwise it should be put in a dry environment such as in a drying cabinet.

⁶ This floor life is only applicable when the environment conforms to *IPC/JEDEC J-STD-033*. It is recommended to start the solder reflow process within 24 hours after the package is removed if the temperature and moisture do not conform to, or are not sure to conform to *IPC/JEDEC J-STD-033*. And do not remove the packages of tremendous modules if they are not ready for soldering.

NOTE

- 1. To avoid blistering, layer separation and other soldering issues, extended exposure of the module to the air is forbidden.
- 2. Take out the module from the package and put it on high-temperature-resistant fixtures before baking. If shorter baking time is desired, see *IPC/JEDEC J-STD-033* for the baking procedure.
- 3. Pay attention to ESD protection, such as wearing anti-static gloves, when touching the modules.

8.2. Manufacturing and Soldering

Push the squeegee to apply the solder paste on the surface of stencil, thus making the paste fill the stencil openings and then penetrate to the PCB. Apply proper force on the squeegee to produce a clean stencil surface on a single pass. To guarantee module soldering quality, the thickness of stencil for the module is recommended to be 0.13–0.15 mm. For more details, see **document [5].**

The peak reflow temperature should be 235–246 °C, with 246 °C as the absolute maximum reflow temperature. To avoid damage to the module caused by repeated heating, it is strongly recommended that the module should be mounted only after reflow soldering for the other side of PCB has been completed. The recommended reflow soldering thermal profile (lead-free reflow soldering) and related parameters are shown below.

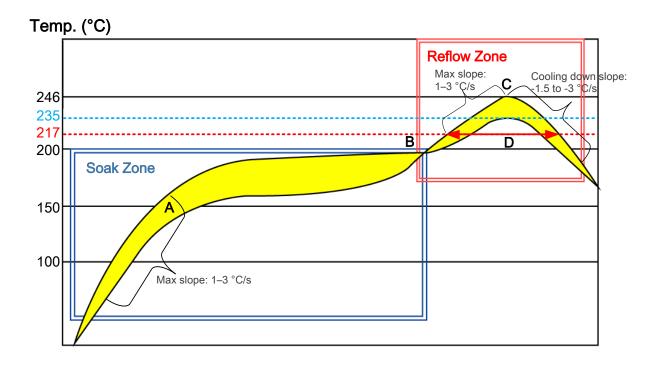


Figure 45: Recommended Reflow Soldering Thermal Profile

Table 45: Recommended Thermal Profile Parameters

Factor	Recommendation
Soak Zone	
Max slope	1–3 °C/s
Soak time (between A and B: 150 °C and 200 °C)	70–120 s
Reflow Zone	
Max slope	1–3 °C/s
Reflow time (D: over 217 °C)	40–70 s
Max temperature	235 °C to 246 °C
Cooling down slope	-1.5 to -3 °C/s
Reflow Cycle	
Max reflow cycle	1

NOTE

- 1. During manufacturing and soldering, or any other processes that may contact the module directly, NEVER wipe the module's shielding can with organic solvents, such as acetone, ethyl alcohol, isopropyl alcohol, trichloroethylene, etc. Otherwise, the shielding can may become rusted.
- 2. The shielding can for the module is made of Cupro-Nickel base material. It is tested that after 12 hours' Neutral Salt Spray test, the laser engraved label information on the shielding can is still clearly identifiable and the QR code is still readable, although white rust may be found.
- 3. If a conformal coating is necessary for the module, do NOT use any coating material that may chemically react with the PCB or shielding cover, and prevent the coating material from flowing into the module.
- 4. Avoid using ultrasonic technology for module cleaning since it can damage crystals inside the module.
- 5. Due to the complexity of the SMT process, please contact Quectel Technical Supports in advance for any situation that you are not sure about, or any process (e.g. selective soldering, ultrasonic soldering) that is not mentioned in *document* [5].

8.3. Packaging Specifications

This chapter describes only the key parameters and process of packaging. All figures below are for reference only. The appearance and structure of the packaging materials are subject to the actual delivery.

The module adopts carrier tape packaging and details are as follow:

8.3.1. Carrier Tape

Dimension details are as follow:

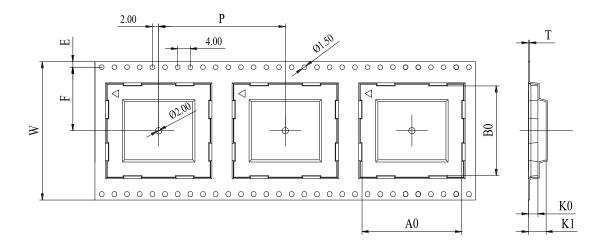
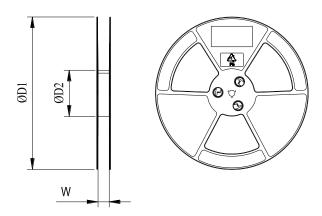


Figure 46: Carrier Tape Dimension Drawing

Table 46: Carrier Tape Dimension Table (Unit: mm)

W	Р	Т	Α0	В0	K0	K1	F	E
44	32	0.35	20.2	24	3.15	6.65	20.2	1.75

8.3.2. Plastic Reel



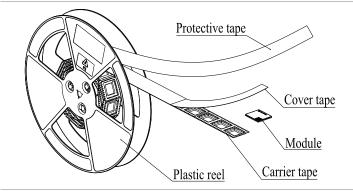
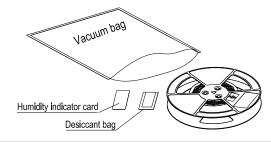
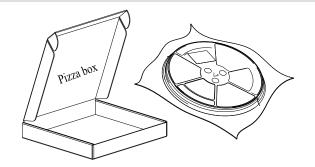

Figure 47: Plastic Reel Dimension Drawing

Table 47: Plastic Reel Dimension Table (Unit: mm)

øD1	øD2	W
330	100	44.5




8.3.3. Packaging Process

Place the module into the carrier tape and use the cover tape to cover them; then wind the heat-sealed carrier tape to the plastic reel and use the protective tape for protection. One plastic reel can load 250 modules.

Place the packaged plastic reel, humidity indicator card and desiccant bag into a vacuum bag, then vacuumize it.

Place the vacuum-packed plastic reel into a pizza box.

Put 4 pizza boxes into 1 carton and seal it. One carton can pack 1000 modules.

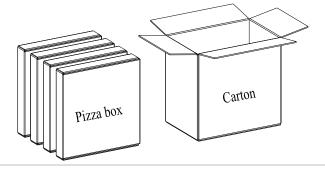


Figure 48: Packaging Process

9 Appendix References

Table 48: Related Documents

Document Name
[1] Quectel_UMTS<E_EVB_User_Guide
[2] Quectel_EC200x&EG912Y&EG915N_Series_AT_Commands_Manual
[3] Quectel_EC200x&EG912Y&EG915N_Series_Audio_Application_Note
[4] Quectel_RF_Layout_Application_Note
[5] Quectel_Module_Secondary_SMT_Application_Note

Table 49: Terms and Abbreviations

Abbreviation	Description
3GPP	3rd Generation Partnership Project
ADC	Analog-to-Digital Converter
AMR	Adaptive Multi-rate

ВВ	Baseband
BDS	BeiDou Navigation Satellite System
bps	Bits Per Second
CEP	Circular Error Probable
CHAP	Challenge Handshake Authentication Protocol
CMUX	Connection MUX
CS	Coding Scheme
CTS	Clear To Send
DCE	Data Communications Equipment
DCS	Data Coding Scheme
DFOTA	Delta Firmware Upgrade Over-The-Air
DL	Downlink
DTE	Data Terminal Equipment
DTR	Data Terminal Ready
EDGE	Enhanced Data Rates for GSM Evolution
EFR	Enhanced Full Rate
EGSM	Enhanced GSM
EMI	Electromagnetic Interference
ESD	Electrostatic Discharge
ESR	Equivalent Series Resistance
ETSI	European Telecommunications Standards Institute
EVB	Evaluation Board
FDD	Frequency Division Duplex
FILE	File Protocol
FR	Full Rate

FTP	File Transfer Protocol
FTPS	FTP over SSL
Galileo	Galileo Satellite Navigation System (EU)
GLONASS	Global Navigation Satellite System (Russia)
GMSK	Gaussian Minimum Shift Keying
GNSS	Global Navigation Satellite System
GPIO	General-Purpose Input/Output
GPRS	General Packet Radio Service
GPS	Global Positioning System
GSM	Global System for Mobile Communications
HR	Half Rate
HTTP	Hyper Text Transfer Protocol
HTTPS	Hyper Text Transfer Protocol over Secure Socket Layer
IMT-2000	International Mobile Telecommunications 2000
IOmax	Maximum Output Load Current
12C	Inter-Integrated Circuit
LDO	Low Dropout Regulator
LED	Light Emitting Diode
LGA	Land Grid Array
LNA	Low-Noise Amplifier
LTE	Long Term Evolution
M2M	Machine to Machine
Mbps	Megabits per second
MCS	Modulation and Coding Scheme
ME	Mobile Equipment

MIC	Microphone
MLCC	Multi-layer Ceramic Capacitor
MMS	Multimedia Messaging Service
MO	Mobile Origination
MQTT	Message Queuing Telemetry Transport
MSL	Moisture Sensitivity Level
MT	Mobile Terminating
NITZ	Network Identity and Time Zone
NMEA	(National Marine Electronics Association)0183 Interface Standard
NTP	Network Time Protocol
PA	Power Amplifier
PAM	Power Amplifier Module
PAP	Password Authentication Protocol
PC	Personal Computer
PCB	Printed Circuit Board
PCM	Pulse Code Modulation
PDA	Personal Digital Assistant
PDU	Protocol Data Unit
PF	Paging Frame
PING	Packet Internet Groper
PMIC	Power Management IC
POS	Point of Sale
PPP	Point-to-Point Protocol
PPS	Pulse Per Second
PSK	Phase Shift Keying

QZSS	Quasi-Zenith Satellite System
RAM	Random Access Memory
RHCP	Right Hand Circular Polarization
RF	Radio Frequency
RoHS	Restriction of Hazardous Substances
RTS	Request to Send
SAW	Surface Acoustic Wave
SBAS	Satellite-Based Augmentation System
SIM	Subscriber Identity Module
SIMO	Single Input Multiple Output
SMD	Surface Mount Device
SMS	Short Message Service
SMT	Surface Mount Technology
SMTP	Simple Mail Transfer Protocol
SMTPS	Simple Mail Transfer Protocol Secure
SSL	Secure Sockets Layer
TCP	Transmission Control Protocol
TDD	Time Division Duplexing
TTFF	Time to First Fix
TVS	Transient Voltage Suppressor
UART	Universal Asynchronous Receiver &Transmitter
UDP	User Datagram Protocol
UL	Uplink
UMTS	Universal Mobile Telecommunications System
URC	Unsolicited Result Code

USB	Universal Serial Bus
(U)SIM	(Universal) Subscriber Identity Module
VBAT	Voltage at Battery (Pin)
VIH	High-level Input Voltage
V _{IL}	Low-level Input Voltage
Vmax	Maximum Voltage
Vmin	Minimum Voltage
Vnom	Nominal Voltage
Voн	High-level Output Voltage
VoL	Low-level Output Voltage
VSWR	Voltage Standing Wave Ratio
	·