

RM505Q-AE Hardware Design

5G Module Series

Version: 1.0.0

Date: 2020-12-14

Status: Preliminary

Our aim is to provide customers with timely and comprehensive service. For any assistance, please contact our company headquarters:

Quectel Wireless Solutions Co., Ltd.

Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai 200233, China

Tel: +86 21 5108 6236 Email: info@quectel.com

Or our local office. For more information, please visit:

http://www.quectel.com/support/sales.htm.

For technical support, or to report documentation errors, please visit:

http://www.quectel.com/support/technical.htm

Or email to support@quectel.com.

General Notes

Quectel offers the information as a service to its customers. The information provided is based upon customers' requirements. Quectel makes every effort to ensure the quality of the information it makes available. Quectel does not make any warranty as to the information contained herein, and does not accept any liability for any injury, loss or damage of any kind incurred by use of or reliance upon the information. All information supplied herein is subject to change without prior notice.

Disclaimer

While Quectel has made efforts to ensure that the functions and features under development are free from errors, it is possible that these functions and features could contain errors, inaccuracies and omissions. Unless otherwise provided by valid agreement, Quectel makes no warranties of any kind, implied or express, with respect to the use of features and functions under development. To the maximum extent permitted by law, Quectel excludes all liability for any loss or damage suffered in connection with the use of the functions and features under development, regardless of whether such loss or damage may have been foreseeable.

Duty of Confidentiality

The Receiving Party shall keep confidential all documentation and information provided by Quectel, except when the specific permission has been granted by Quectel. The Receiving Party shall not access or use Quectel's documentation and information for any purpose except as expressly provided herein. Furthermore, the Receiving Party shall not disclose any of the Quectel's documentation and information to any third party without the prior written consent by Quectel. For any noncompliance to the above requirements, unauthorized use, or other illegal or malicious use of the documentation and information, Quectel will reserve the right to take legal action.

Copyright

The information contained here is proprietary technical information of Quectel. Transmitting, reproducing, disseminating and editing this document as well as using the content without permission are forbidden. Offenders will be held liable for payment of damages. All rights are reserved in the event of a patent grant or registration of a utility model or design.

Copyright © Quectel Wireless Solutions Co., Ltd. 2020. All rights reserved.

About the Document

Revision History

Version	Date	Author	Description
-	2020-10-20	Jared WANG Hank LIU	Creation of the document
1.0.0	2020-12-14	Jared WANG/ Simon WANG/ Hank LIU	Preliminary

Contents

Ab	bout the Document	3
Co	ontents	4
Та	able Index	6
Fiç	gure Index	7
1	Introduction	9
	1.1. Safety Information	
2	Product Concept	11
_	2.1. General Description	
	2.2. Key Features	
	2.3. Functional Diagram	
	2.4. Evaluation Board	
3	Application Interfaces	16
	3.1. Pin Assignment	
	3.2. Pin Description	18
	3.3. Operating Modes	22
	3.4. Power Supply	23
	3.4.1. Decrease Voltage Drop	23
	3.4.2. Reference Design for Power Supply	24
	3.5. Turn on and off Scenarios	25
	3.5.1. Turn on the Module	25
	3.5.2. Turn off the Module	26
	3.5.2.1. Turn off the Module through FULL_CARD_POWER_OFF#	26
	3.5.2.2. Turn off the Module through AT Command	27
	3.6. Reset the Module	27
	3.7. (U)SIM Interfaces	30
	3.8. USB Interface	
	3.9. PCIe Interface	
	3.9.1. PCIe Operating Mode	
	3.9.2. USB and PCle Modes	
	3.10. PCM Interface*	
	3.11. Control and Indication Interfaces	
	3.11.1. W_DISABLE1#	
	3.11.2. W_DISABLE2#	
	3.11.3. WWAN_LED#*	
	3.11.4. WAKE_ON_WAN#	
	3.11.5. DPR*	_
	3.11.6. STATUS*	
	3.12. Cellular/WLAN Interface*	
	3.13. Antenna Tuner Control Interface*	
	3.14. Configuration Pins	47

4	GNS	S Receiver	48
	4.1.	General Description	48
	4.2.	GNSS Performance	48
5	Ante	nna Interfaces	50
	5.1.	Antenna Connectors	50
	5.2.	Cellular Antenna Port Mapping	51
	5.3.	Cellular Frequency	52
	5.4.	GNSS Frequency	53
	5.5.	Reference Design for Cellular Antenna Interfaces	55
	5.6.	Reference Design of RF Layout	56
	5.7.	Antenna Installation	58
	Ę	5.7.1. Antenna Requirements	58
	5	5.7.2. Recommended RF Connector for Antenna Installation	58
6	Relia	bility, Radio and Electrical Characteristics	61
	6.1.	Absolute Maximum Ratings	61
	6.2.	Power Supply Requirements	
	6.3.	I/O Requirements	62
	6.4.	Operating and Storage Temperatures	62
	6.5.	Current Consumption	63
	6.6.	RF Output Power	68
	6.7.	RF Receiving Sensitivity	68
	6.8.	ESD Characteristics	71
	6.9.	Thermal Dissipation	72
7	Mech	nanical Dimensions and Packaging	74
	7.1.	Mechanical Dimensions of the Module	
	7.2.	Top and Bottom Views of the Module	75
	7.3.	M.2 Connector	75
	7.4.	Packaging	75
8	Appe	endix References	77

Table Index

T. I. A. F	4.4
Table 1: Frequency Bands and GNSS Systems of RM505Q-AE Module	
Table 2: Key Features of RM505Q-AE	
Table 3: Definition of I/O Parameters	
•	
Table 5: Overview of Operating Modes Table 6: Definition of VCC and GND Pins	
Table 7: Definition of FULL_CARD_POWER_OFF# Pin	
Table 7: Definition of FOLL_CARD_FOWER_OFF# PIII	
Table 9: Pin Definition of (U)SIM Interfaces	
Table 9: Fin Definition of USB Interfaces	
Table 11: Pin Definition of PCIe Interface	
Table 12: Pin Definition of PCM Interface	
Table 13: Pin Definition of Control and Indication Interfaces	
Table 13: Fin Definition of Control and Indication Interfaces	
Table 15: GNSS Function Status	
Table 16: Network Status Indications of WWAN_LED# Signal	
Table 17: State of the WAKE_ON_WAN# Signal	
Table 18: Function of the DPR Signal	
Table 19: Pin Definition of COEX Interface	
Table 20: Pin Definition of Antenna Tuner Control Interface	
Table 21: Definition of Configuration Pins	
Table 22: Configuration Pins List of M.2 Specification	
Table 23: GNSS Performance	
Table 24: RF Bands Supported by RM505Q-AE Antenna Connectors	
Table 25: RM505Q-AE Cellular Antenna Mapping	
Table 26: RM505Q-AE Module Operating Frequencies	
Table 27: GNSS Frequency	
Table 28: Antenna Requirements	
Table 29: Major Specifications of the RF Connector	
Table 30: Absolute Maximum Ratings	
Table 31: Power Supply Requirements	61
Table 32: I/O Requirements	
Table 33: Operating and Storage Temperatures	
Table 34: RM505Q-AE Current Consumption	63
Table 35: RF Output Power	68
Table 36: RM505Q-AE Conducted RF Receiving Sensitivity	
Table 37: Electrostatic Discharge Characteristics (Temperature: 25 °C, Humidity: 40 %)	
Table 38: Related Documents	
Table 39: Terms and Abbreviations	77

Figure Index

Figure 1: Functional Block Diagram	15
Figure 2: Pin Assignment	17
Figure 3: Power Supply Limits during Radio Transmission	23
Figure 4: Reference Circuit for VCC Pins	24
Figure 5: Reference Design of Power Supply	24
Figure 6: Turn-on Timing of the Module	25
Figure 7: Turn on the Module with a Host GPIO	
Figure 8: Turn-off Timing through FULL_CARD_POWER_OFF#	27
Figure 9: Turn-off Timing through AT Command and FULL_CARD_POWER_OFF#	27
Figure 10: Reference Circuit for RESET_N with NPN Driving Circuit	28
Figure 11: Reference Circuit for RESET_N with NMOS Driving Circuit	29
Figure 12: Reference Circuit for RESET_N with Button	29
Figure 13: Resetting Timing of the Module	30
Figure 14: Reference Circuit for Normally Closed (U)SIM Card Connector	31
Figure 15: Reference Circuit for Normally Open (U)SIM Card Connector	32
Figure 16: Reference Circuit for a 6-Pin (U)SIM Card Connector	32
Figure 17: Reference Circuit for USB 3.1/2.0 Interface	34
Figure 18: PCIe Interface Reference Circuit	36
Figure 19: PCIe Power-on Timing Requirements of M.2 Specification	37
Figure 20: PCIe Power-on Timing Requirements of the Module	37
Figure 21: Primary Mode Timing	39
Figure 22: Auxiliary Mode Timing	40
Figure 23: W_DISABLE1# and W_DISABLE2# Reference Circuit	43
Figure 24: WWAN_LED# Reference Circuit	43
Figure 25: WAKE_ON_WAN# Signal Reference Circuit	44
Figure 26: Recommended Circuit for Configuration Pins	47
Figure 27: Antenna Connectors on the Module	50
Figure 28: Reference Circuit of GNSS Antenna	54
Figure 29: Reference Design for Cellular Antenna	55
Figure 30: Microstrip Design on a 2-layer PCB	56
Figure 31: Coplanar Waveguide Design on a 2-layer PCB	56
Figure 32: Coplanar Waveguide Design on a 4-layer PCB (Layer 3 as Reference Ground)	56
Figure 33: Coplanar Waveguide Design on a 4-layer PCB (Layer 4 as Reference Ground)	57
Figure 34: RM505Q-AE RF Connector Dimensions (Unit: mm)	58
Figure 35: Specifications of Mating Plugs Using Ø 0.81 mm Coaxial Cables	59
Figure 36: Connection between RF Connector and Mating Plug Using Ø 0.81 mm Coaxial Cable	60
Figure 37: Connection between RF Connector and Mating Plug Using Ø 1.13 mm Coaxial Cable	60
Figure 38: Thermal Dissipation Area on Both Sides of Module (Unit: mm)	
Figure 39: Mechanical Dimensions of RM505Q-AE (Unit: mm)	74
Figure 40: TOP & Bottom View of the Module	75
Figure 41: Tray Size (Unit: mm)	76

Figure 42: T	ray Packaging	Procedure	76	
rigule 42. I	ray rackaging	Flocedule		,

1 Introduction

This document introduces RM505Q-AE module and describes its air interface and hardware interfaces which are connected with customers' applications.

This document helps you quickly understand the interface specifications, electrical and mechanical details, as well as other related information of the module. To facilitate its application in different fields, reference design is also provided for reference. Coupled with application notes and user guides, you can easily design and set up mobile applications with RM505Q-AE.

1.1. Safety Information

The following safety precautions must be observed during all phases of operation, such as usage, service or repair of any cellular terminal or mobile incorporating the module. Manufacturers of the cellular terminal should notify users and operating personnel of the following safety information by incorporating these guidelines into all manuals of the product. Otherwise, Quectel assumes no liability for customers' failure to comply with these precautions.

Full attention must be paid to driving at all times in order to reduce the risk of an accident. Using a mobile while driving (even with a handsfree kit) causes distraction and can lead to an accident. Please comply with laws and regulations restricting the use of wireless devices while driving.

Switch off the cellular terminal or mobile before boarding an aircraft. The operation of wireless appliances in an aircraft is forbidden to prevent interference with communication systems. If there is an Airplane Mode, it should be enabled prior to boarding an aircraft. Please consult the airline staff for more restrictions on the use of wireless devices on an aircraft.

Wireless devices may cause interference on sensitive medical equipment, so please be aware of the restrictions on the use of wireless devices when in hospitals, clinics or other healthcare facilities.

Cellular terminals or mobiles operating over radio signal and cellular network cannot be guaranteed to connect in certain conditions, such as when the mobile bill is unpaid or the (U)SIM card is invalid. When emergent help is needed in such conditions, use emergency call if the device supports it. In order to make or receive a call, the cellular terminal or mobile must be switched on in a service area with adequate cellular signal strength. In an emergency, the device with emergency call function cannot be used as the only contact method considering network connection cannot be guaranteed under all circumstances.

The cellular terminal or mobile contains a transceiver. When it is ON, it receives and transmits radio frequency signals. RF interference can occur if it is used close to TV sets, radios, computers or other electric equipment.

In locations with explosive or potentially explosive atmospheres, obey all posted signs and turn off wireless devices such as mobile phone or other cellular terminals. Areas with explosive or potentially explosive atmospheres include fuelling areas, below decks on boats, fuel or chemical transfer or storage facilities, and areas where the air contains chemicals or particles such as grain, dust or metal powders.

2 Product Concept

2.1. General Description

RM505Q-AE is a 5G NR/LTE-A/UMTS/HSPA+ wireless communication module with receive diversity. It provides data connectivity on 5G NR SA and NSA, LTE-FDD, LTE-TDD, DC-HSDPA, HSPA+, HSDPA, HSUPA and WCDMA networks and a standard PCI Express M.2 interface.

It supports embedded operating systems such as Windows, Linux and Android, and also provides GNSS and voice functionality to meet specific application demands.

The following table shows the frequency bands and GNSS systems of RM505Q-AE module.

Table 1: Frequency Bands and GNSS Systems of RM505Q-AE Module

Mode	RM505Q-AE
5G NR	n1/n2/n3/n5/n7/n8/n12/n20/n25/n28/n38/n40/n41/n48*/n66/n71/n77/n78/n79
LTE-FDD	B1/B2/B3/B4/B5/B7/B8//B12/B13/B14/B17/B18/B19/B20/B25/B26/B28/B29/B30/B 32/B66/B71
LTE-TDD	B34/B38/B39/B40/B41/B42/B43/B46/B48
WCDMA	B1/B2/B3/B4/B5/B6/B8/B19
GNSS	GPS/GLONASS/BeiDou/Galileo

NOTES

- 1. LTE-FDD B29/B32 and LTE-TDD B46 are supported for receiving only.
- 2. "*" means under development.

RM505Q-AE can be applied in the following fields:

- Rugged tablet PC and laptop computer
- Remote monitor system

- Smart metering system
- Wireless router and switch
- Other wireless terminal devices

2.2. Key Features

The following table describes key features of RM505Q-AE.

Table 2: Key Features of RM505Q-AE

Feature	Details
Function Interface	PCI Express M.2 Interface
Power Supply	Supply voltage: 3.135–4.4 V Trained awards and 3.7 V
Transmitting Power	 Typical supply voltage: 3.7 V Class 3 (24 dBm +1/-3 dB) for WCDMA bands Class 3 (23 dBm ±2 dB) for LTE bands Class 3 (23 dBm ±2 dB) for 5G NR bands Class 2 (26 dBm ±2 dB) for LTE B38/B40/B41/B42/B43 bands HPUE ¹⁾ Class 2 (26 dBm +2/-3 dB) for 5G NR n41/n77/n78/n79 bands HPUE ¹⁾
5G NR Features	 3GPP Rel-15 Modulation: Uplink 256QAM Downlink 256QAM Support downlink 4 × 4 MIMO on:
LTE Features	 Support up to CA Cat 16 FDD and TDD Support uplink QPSK, 16QAM and 64QAM and 256QAM modulation Support downlink QPSK, 16QAM and 64QAM and 256QAM modulation Support 1.4 MHz to 20 MHz (3CA) RF bandwidth Support downlink 4 x 4 MIMO on: B1/B2/B3/B4/B7/B25/B30/B38/B39/B40/B41/B42/B43/B48/B66 LTE: Max 1.0 Gbps(DL)/ 200 Mbps (UL)
UMTS Features	Support 3GPP R8 DC-HSDPA, HSPA+, HSDPA, HSUPA and WCDMA

	Cumport ODCK 400AM and 4040AM and distant
	 Support QPSK, 16QAM and 64QAM modulation DC-HSDPA: Max 42 Mbps (DL)
	HSUPA: Max 5.76 Mbps (UL)
	WCDMA: Max 384 kbps (DL)/384 kbps (UL)
Internet Protocol	QMI/NTP* protocols
Features	The protocols PAP and EIRP usually used for PPP connections
	Text and PDU modes
0.40	Point-to-point MO and MT
SMS	SMS cell broadcast
	 SMS storage: ME by default
	 Support (U)SIM card: Class B (3.0 V) and Class C(1.8 V)
(U)SIM Interfaces	 (U)SIM1 and (U)SIM2 interfaces
	Dual SIM Single Standby*
	 Compliant with USB 3.1 and 2.0 specifications, with maximum transmission
	rates up to 10 Gbps on USB 3.1 and 480 Mbps on USB 2.0.
	Used for AT command communication, data transmission, firmware
USB Interface	upgrade, software debugging, GNSS NMEA sentence output.
	USB serial drivers for: Windows 7/9/9 4/49
	Windows 7/8/8.1/10Linux 2.6–5.4
	- Linux 2.0–5.4 - Android 4.x/5.x/6.x/7.x/8.x/9.x/10
	Complaint with PCle Gen3, support 8 Gbps per lane.
PCIe Interface	 Used for AT command communication, data transmission, firmware
1 GIG III.GIIGGG	upgrade, software debugging, GNSS NMEA sentence output.
Rx-diversity	5G NR/LTE/WCDMA Rx-diversity
	Gen9 Lite of Qualcomm
GNSS Features	Protocol: NMEA 0183
	Data Update Rate: 1 Hz
AT Commands	 Compliant with 3GPP TS 27.007 and 3GPP TS 27.005
AT Commands	Quectel enhanced AT commands
Antenna Interfaces	ANT0, ANT1, ANT2, ANT3 and ANT4_GNSS
Physical	 Size: (52.0 ±0.15) mm × (30.0 ±0.15) mm × (2.3 ±0.2) mm
Characteristics	Weight: TBD
	 Operating temperature range: -20 °C to +60 °C ²⁾
Temperature Range	 Restricted operating temperature range: -30 °C to -20 °C, +60 °C to +70 °C
Tomporataro rango	• Extended temperature range: -40 °C to -30 °C, +70 °C to +85 °C ³⁾
	Storage temperature range: -40°C to +90 °C
	USB 2.0 interface
Firmware Upgrade	PCle interface
	• DFOTA*
RoHS	All hardware components are fully compliant with EU RoHS directive

NOTES

- 1. 1) HPUE is only for single carrier.
- 2. ²⁾ To meet this operating temperature range, you need to ensure effective thermal dissipation, for example, by adding passive or active heatsinks, heat pipes, vapor chambers, etc. Within this range, the module can meet 3GPP specifications.
- 3. ³⁾ To meet this extended temperature range, you need to ensure effective thermal dissipation, for example, by adding passive or active heatsinks, heat pipes, vapor chambers, etc. Within this range, the module remains the ability to establish and maintain functions such as voice, SMS, emergency call, etc., without any unrecoverable malfunction. Radio spectrum and radio network are not influenced, while one or more specifications, such as P_{out}, may undergo a reduction in value, exceeding the specified tolerances of 3GPP. When the temperature returns to the normal operating temperature level, the module will meet 3GPP specifications again.
- 4. "*" means under development.

2.3. Functional Diagram

The following figure shows the functional block diagram of RM505Q-AE.

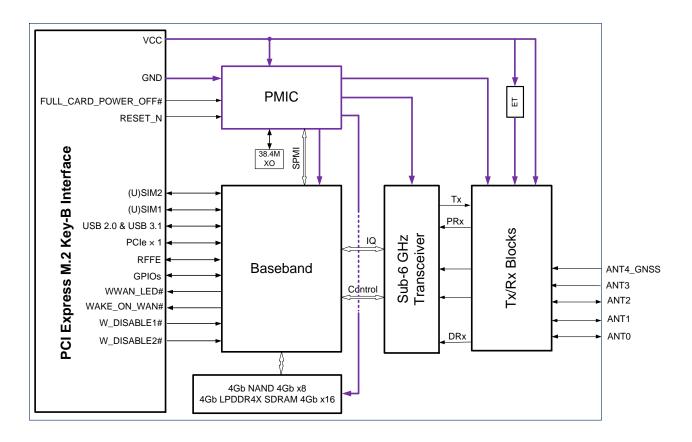


Figure 1: Functional Block Diagram

2.4. Evaluation Board

To help you develop applications conveniently with RM505Q-AE, Quectel supplies an evaluation board (PCIe Card EVB), a USB to RS-232 converter cable, a USB type-C cable, antennas and other peripherals to control or test the module. For more details, see *document* [1].

3 Application Interfaces

The physical connections and signal levels of RM505Q-AE comply with *PCI Express M.2 specification*. This chapter mainly describes the definition and application of the following interfaces/pins of RM505Q-AE:

- Power supply
- (U)SIM interfaces
- USB interface
- PCle interface
- PCM interface*
- Control and indication interfaces
- Cellular/WLAN COEX interface*
- Antenna tuner control interface*
- Configuration pins

NOTE

"*" means under development.

3.1. Pin Assignment

The following figure shows the pin assignment of RM505Q-AE. The top side contains RM505Q-AE module and antenna connectors.

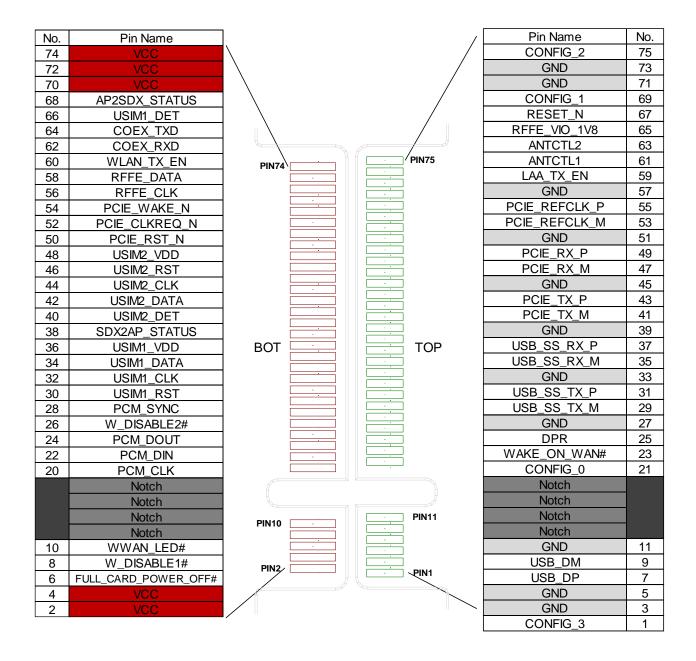


Figure 2: Pin Assignment

3.2. Pin Description

Table 3: Definition of I/O Parameters

Туре	Description	
Al	Analog Input	
AO	Analog Output	
DI	Digital Input	
DO	Digital Output	
Ю	Bidirectional	
OD	Open Drain	
PI	Power Input	
РО	Power Output	

The following table shows the pin definition and description of RM505Q-AE.

Table 4: Pin Description

Pin No.	Pin Name	I/O	Description	Comment
1	CONFIG_3	DO	Not connected internally	
2	VCC	PI	Power supply for the module	$V_{min} = 3.135 \text{ V}$ $V_{norm} = 3.7 \text{ V}$ $V_{max} = 4.4 \text{ V}$
3	GND		Ground	
4	VCC	PI	Power supply	$V_{min} = 3.135 \text{ V}$ $V_{norm} = 3.7 \text{ V}$ $V_{max} = 4.4 \text{ V}$
5	GND		Ground	
6	FULL_CARD_POWER_ OFF#	DI	Turn on/off of the module.	Internally pulled down with a 100 kΩ resistor When it is at low voltage level, the module is

				turned off. When it is at high voltage level, the module is turned on.
7	USB_DP	AI, AO	USB differential data (+)	Requires differential impedance of 90 Ω
8	W_DISABLE1#	DI	Airplane mode control.	1.8/3.3 V power domain. Active LOW.
9	USB_DM	AI, AO	USB differential data (-)	Requires differential impedance of 90 Ω
10	WWAN_LED#*	OD	RF status indication LED	Open drain and active low signal.
11	GND		Ground	
12	Notch		Notch	
13	Notch		Notch	
14	Notch		Notch	
15	Notch		Notch	
16	Notch		Notch	
17	Notch		Notch	
18	Notch		Notch	
19	Notch		Notch	
20	PCM_CLK*	Ю	PCM data bit clock	1.8 V power domain
21	CONFIG_0	DO	Not connected internally	
22	PCM_DIN*	DI	PCM data input	1.8 V power domain
23	WAKE_ON_WAN#	OD	Wake up the host.	Open drain Active LOW.
24	PCM_DOUT*	DO	PCM data output	1.8 V power domain
25	DPR*	DI	Dynamic power reduction. High voltage level by default.	1.8 V power domain
26	W_DISABLE2#	DI	GNSS disable control.	1.8/3.3 V power domain Active LOW.
27	GND		Ground	

28	PCM_SYNC*	Ю	PCM data frame sync	1.8 V power domain
29	USB_SS_TX_M	АО	USB 3.1 super-speed transmit (-)	Requires differential impedance of 90 $\boldsymbol{\Omega}$
30	USIM1_RST	DO	(U)SIM1 card reset	1.8/3.0 V power domain
31	USB_SS_TX_P	АО	USB 3.1 super-speed transmit (+)	Requires differential impedance of 90 $\boldsymbol{\Omega}$
32	USIM1_CLK	DO	(U)SIM1 card clock	1.8/3.0 V power domain
33	GND		Ground	
34	USIM1_DATA	Ю	(U)SIM1 card data	1.8/3.0 V power domain
35	USB_SS_RX_M	AI	USB 3.1 super-speed receive (-)	Requires differential impedance of 90 Ω
36	USIM1_VDD	РО	(U)SIM1 card power supply	1.8/3.0 V power domain
37	USB_SS_RX_P	AI	USB 3.1 super-speed receive (+)	Requires differential impedance of 90 Ω
38	SDX2AP_STATUS*	DO	Status indication to AP	1.8 V power domain
39	GND		Ground	
40	USIM2_DET	DI	(U)SIM2 card insertion detection	Internally pulled up to 1.8 V
41	PCIE_TX_M	АО	PCIe transmit (-)	Requires differential impedance of 85 $\boldsymbol{\Omega}$
42	USIM2_DATA	Ю	(U)SIM2 card data	1.8/3.0 V power domain
43	PCIE_TX_P	АО	PCIe transmit (+)	Requires differential impedance of 85 Ω
44	USIM2_CLK	DO	(U)SIM2 card clock	1.8/3.0 V power domain
45	GND		Ground	
46	USIM2_RST	DO	(U)SIM2 card reset	1.8/3.0 V power domain
47	PCIE_RX_M	AI	PCIe receive (-)	Requires differential impedance of 85 Ω
48	USIM2_VDD	РО	(U)SIM2 card power supply	1.8/3.0 V power domain
49	PCIE_RX_P	Al	PCIe receive (+)	Requires differential impedance of 85 Ω
50	PCIE_RST_N	OD	PCIe reset.	Open drain Active LOW.

51	GND		Ground	
52	PCIE_CLKREQ_N	OD	PCIe clock request.	Open drain Active LOW.
53	PCIE_REFCLK_M	AI, AO	PCIe reference clock (-)	100 MHz. Requires differential impedance of 85 Ω
54	PCIE_WAKE_N	OD	PCIe wake up.	Open drain Active LOW.
55	PCIE_REFCLK_P	AI, AO	PCIe reference clock (+)	100 MHz. Requires differential impedance of 85 Ω
56	RFFE_CLK*	DO	Used for external MIPI IC control	1.8 V power domain
57	GND		Ground	
58	RFFE_DATA*	DO	Used for external MIPI IC control	1.8 V power domain
59	LAA_TX_EN*	DO	Notification from SDR to WLAN when transmitting via LTE	1.8 V power domain
60	WLAN_TX_EN*	DI	Notification from WLAN to SDR while transmitting	1.8 V power domain
61	ANTCTL*	DO	Antenna control	1.8 V power domain
62	COEX_RXD*	DI	LTE/WLAN coexistence receive	1.8 V power domain
63	ANTCTL*	DO	Antenna control	1.8 V power domain
64	COEX_TXD*	DO	LTE/WLAN coexistence transmit	1.8 V power domain
65	RFFE_VIO_1V8	РО	Power output	1.8 V power output
66	USIM1_DET	DI	(U)SIM1 card insertion detection	Internally pulled up to 1.8 V
67	RESET_N	DI	Reset the module.	Internally pulled up to 1.5 V with a 100 $k\Omega$ resistor Active LOW.
68	AP2SDX_STATUS*	DI	Status indication from AP	1.8 V power domain
69	CONFIG_1	DO	Connected to GND internally	
70	VCC	PI	Power supply	$V_{min} = 3.135 \text{ V}$

				V _{norm} = 3.7 V
				$V_{max} = 4.4 V$
71	GND		Ground	
				Vmin = 3.135 V
72	VCC	PI	Power supply	Vnorm = 3.7 V
				Vmax = 4.4 V
73	GND		Ground	
				Vmin = 3.135 V
74	VCC	PI	Power supply	Vnorm = 3.7 V
				Vmax = 4.4 V
75	CONFIG_2	DO	Not connected internally	

NOTES

- 1. "*" means under development.
- 2. Keep all NC, reserved and unused pins unconnected.

3.3. Operating Modes

The table below briefly summarizes various operating modes to be mentioned in the following chapters.

Table 5: Overview of Operating Modes

Mode	Details						
Normal	Idle Software is active. The module has registered on the network, and it is ready to send and receive data.						
Operation	Talk/Data The module is connected to network. In this mode, the power consumption is decided by network setting and data transfer rate.						
Minimum Functionality Mode	AT+CFUN=0 command sets the module to a minimum functionality mode without removing the power supply. In this mode, both RF function and (U)SIM card are invalid.						
Airplane Mode	AT+CFUN=4 command or driving W_DISABLE1# pin low will set the module to airplane mode. In this mode, the RF function is invalid.						
In this mode, the current consumption of the module is reduced to the minimal while the module keeps receiving paging messages, SMS, voice calls and TCF data from the network.							

Power Down	In this mode, the power management unit shuts down the power supply. Software is
Mode	inactive, the serial interfaces are inaccessible, and the operating voltage (connected to
Mode	VCC) remains applied.

3.4. Power Supply

The following table shows pin definition of VCC pins and ground pins.

Table 6: Definition of VCC and GND Pins

Pin No.	Pin Name	I/O	Power Domain	Description
2, 4, 70, 72, 74	VCC	PI	3.135–4.4 V	3.7 V typical DC supply
3, 5, 11, 27, 33, 39, 45, 51, 57, 71, 73	GND			Ground

3.4.1. Decrease Voltage Drop

The power supply range of the module is from 3.135 V to 4.4 V. Ensure that the input voltage will never drop below 3.135 V, otherwise the module will be powered off automatically. The following figure shows the maximum voltage drop during burst transmission in 3G/4G/5G networks.

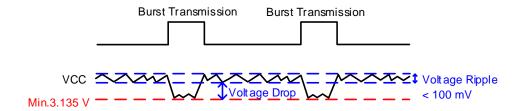


Figure 3: Power Supply Limits during Radio Transmission

The main power supply from an external system must be a single voltage source. To decrease voltage drop, an energy storage capacitor of about 100 μF with low ESR (ESR = 0.7 Ω) should be used, and a multi-layer ceramic chip capacitor (MLCC) array should also be used due to its ultra-low ESR. It is recommended to use four ceramic capacitors (1 μF , 100 nF, 33 pF, 10 pF) for composing the MLCC array, and place these capacitors close to VCC pins. The width of VCC trace should be no less than 2.0 mm. In principle, the longer the VCC trace is, the wider it should be.

In addition, to guarantee stability of the power supply, please use a zener diode with a reverse zener voltage of 5.1 V and a dissipation power of higher than 0.5 W. The following figure shows a reference

circuit for the VCC.

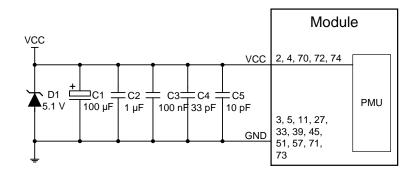


Figure 4: Reference Circuit for VCC Pins

3.4.2. Reference Design for Power Supply

Power design is critical as the module's performance largely depends on its power source. The power supply of the module should be able to provide a sufficient current of 3.0 A at least. If the voltage difference between input and output is not too big, use an LDO when supplying power to the module. If there is a big voltage difference between the input source and the desired output (VCC = 3.7 V typical), a buck DC-DC converter is preferred as the power supply.

The following figure shows a reference design for +5.0 V input power source based on the DC-DC converter. The typical output of the power supply is about 3.7 V and the maximum load current is 3.0 A.

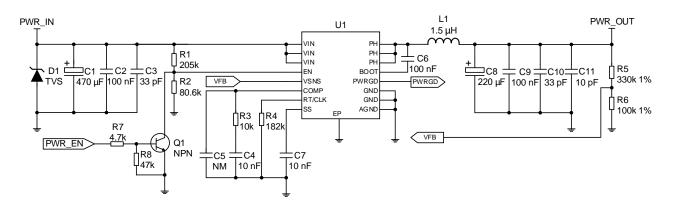


Figure 5: Reference Design of Power Supply

NOTE

To avoid damaging the internal flash, do not switch off the power supply directly when the module works normally. Only cut off the power supply after the module is switched off by pulling down the FULL_CARD_POWER_OFF# pin for more than 10 s.

3.5. Turn on and off Scenarios

3.5.1. Turn on the Module

FULL_CARD_POWER_OFF# asynchronous signal is an active low input that is used to turn on/off the entire module. When the input signal is asserted high (≥ 1.19 V) the module will be turned on. When the input signal is driven low (≤ 0.2 V) or Tri-stated, the module will be shut down.

This input signal is 3.3-V-tolerant and can be driven by either 1.8 V or 3.3 V GPIO. Also, it has been internally pulled down with a 100 k Ω resistor.

The following table shows the definition of FULL CARD POWER OFF#.

.

Table 7: Definition of FULL_CARD_POWER_OFF# Pin

Pin No.	Pin Name	Description	DC Characteristics	Comment
6	FULL_CARD_ POWER_OFF#	Turn on/off of the module.	$\begin{split} V_{IH(max)} &= 4.4 \text{ V} \\ V_{IH(min)} &= 1.19 \text{ V} \\ V_{IL(max)} &= 0.2 \text{ V} \end{split}$	Internally pulled down with a $100~k\Omega$ resistor. When it is at low voltage level, the module is turned off. When it is at high voltage level, the module is turned on.

The timing of turn-on scenario is illustrated in the following figure.

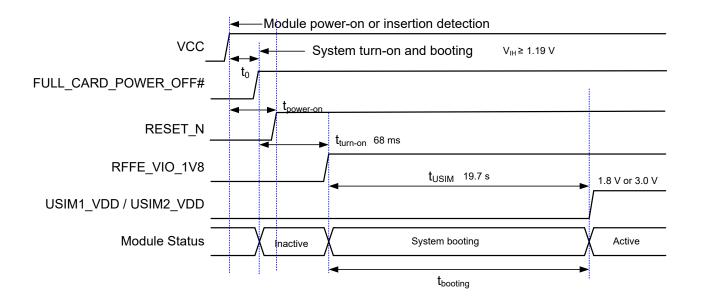
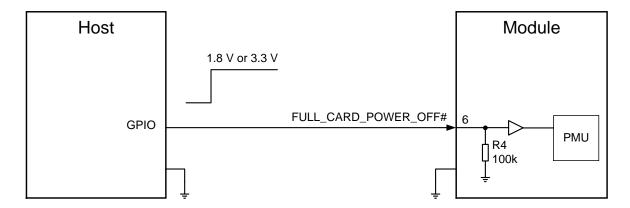



Figure 6: Turn-on Timing of the Module

It is recommended to use a host GPIO to control FULL_CARD_POWER_OFF# to turn on the module. A simple reference circuit is illustrated as the following figure.

Note: The voltage of pin 6 should be no less than 1.19 V when it is at HIGH level.

Figure 7: Turn on the Module with a Host GPIO

NOTES

- 1. t_{power-on} is the interval between VCC and RESET_N high voltage level. It is measured when RESET_N is not pulled down by the host device.
- 2. t_{turn-on} is the interval between FULL_CARD_POWER_OFF# high voltage level and RFFE_VIO_1V8 (an internal LDO output) high voltage level, which is typically 68 ms.
- 3. t₀ is the interval between VCC and FULL_CARD_POWER_OFF# high voltage level. FULL_CARD_POWER_OFF# could be pulled up at any time decided by the host, as shown in figure above.
- 4. t_{booting} is the interval between RFFE VIO 1V8 high voltage level and the USIM VDD power-on.

3.5.2. Turn off the Module

3.5.2.1. Turn off the Module through FULL_CARD_POWER_OFF#

For the design that turns on the module with a host GPIO, when the power is supplied to VCC, pulling down the FULL_CARD_POWER_OFF# pin will turn off the module.

The timing of turning-off scenario is illustrated in the following figure.

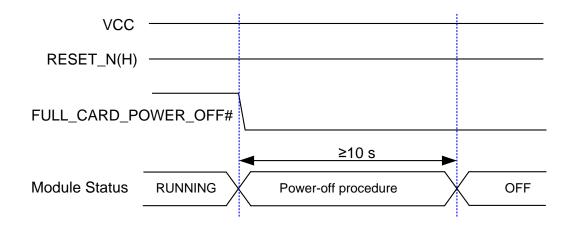


Figure 8: Turn-off Timing through FULL_CARD_POWER_OFF#

3.5.2.2. Turn off the Module through AT Command

It is also a safe way to use AT+QPOWD command to turn off the module. For more details about the command, see *document* [2].

The module is designed to be turned on with a host GPIO. Pull down FULL_CARD_POWER_OFF# pin after the module's USB/PCIe is removed, otherwise, the module will be powered on again.

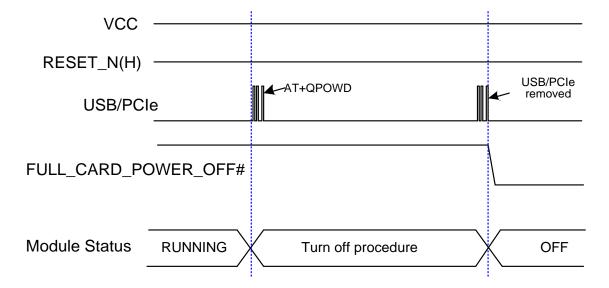


Figure 9: Turn-off Timing through AT Command and FULL_CARD_POWER_OFF#

3.6. Reset the Module

RESET_N pin is of an asynchronous and active low signal (1.5 V logic level). Whenever this pin is active,

the module will be immediately placed in a Power On Reset (POR) condition.

CAUTION: Triggering the RESET# signal will lead to the loss of all data in the modem and the removal of system drivers. It will also disconnect the modem from the network.

Table 8: Definition of RESET_N Pin

Pin No.	Pin Name	Description	DC Characteristics	Comment
67	RESET_N	Reset the module	$V_{IH(max)} = 1.5 \text{ V}$ $V_{IH(min)} = TBD$ $V_{IL(max)} = TBD$	Internally pulled up to 1.5 V with a 100 $k\Omega$ resistor

The module can be reset by pulling down the RESET_N pin for 200–700 ms. You can use an open collector/drain driver or button to control RESET_N pin.

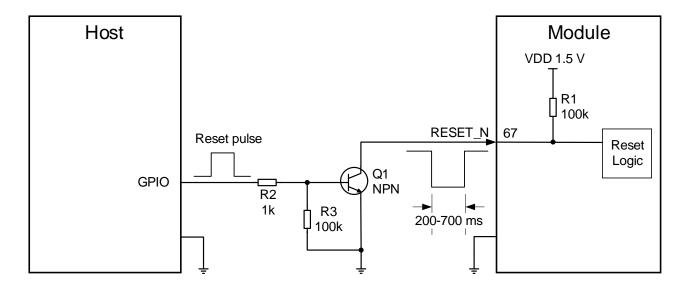


Figure 10: Reference Circuit for RESET_N with NPN Driving Circuit

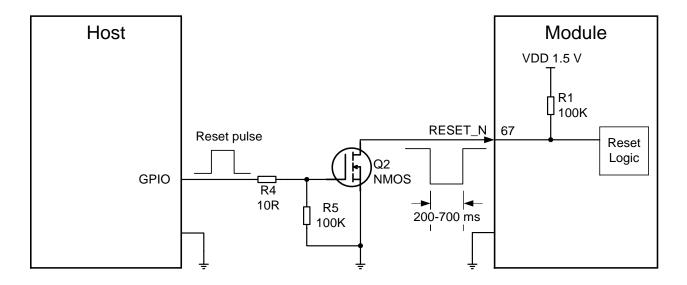
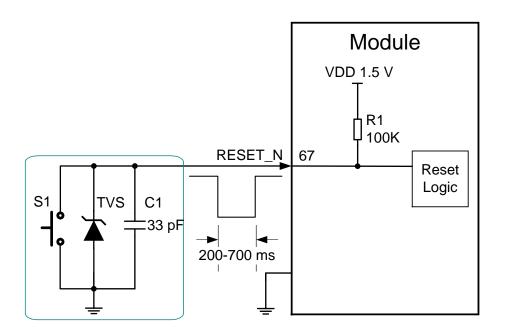



Figure 11: Reference Circuit for RESET_N with NMOS Driving Circuit

Note: The capacitor C1 is recommended to be less than 47 pF.

Figure 12: Reference Circuit for RESET_N with Button

The timing of reset scenario is illustrated in the following figure.

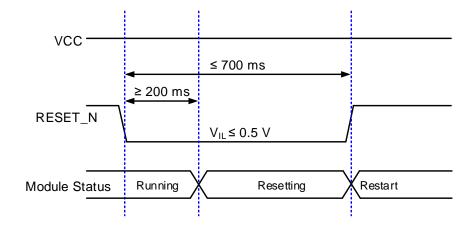


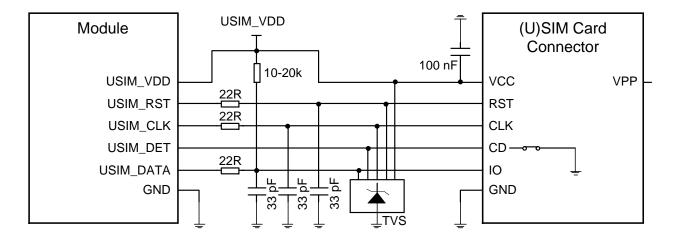
Figure 13: Resetting Timing of the Module

3.7. (U)SIM Interfaces

The (U)SIM interfaces circuitry meets ETSI and IMT-2000 requirements. Both Class B (3.0 V) and Class C (1.8 V) (U)SIM cards are supported, and Dual SIM Single Standby* function is supported.

Table 9: Pin Definition of (U)SIM Interfaces

Pin No.	Pin Name	I/O	Description	Comment
36	USIM1_VDD	РО	Power supply for (U)SIM1 card	Class B (3.0 V) and Class C (1.8 V)
34	USIM1_DATA	Ю	(U)SIM1 card data	1.8/3.0 V power domain
32	USIM1_CLK	DO	(U)SIM1 card clock	1.8/3.0 V power domain
30	USIM1_RST	DO	(U)SIM1 card reset	1.8/3.0 V power domain
66	USIM1_DET	DI	(U)SIM1 card insertion detection.	Internally pulled up to 1.8 V
48	USIM2_VDD	РО	Power supply for (U)SIM2 card	Class B (3.0 V) and Class C (1.8 V)
42	USIM2_DATA	Ю	(U)SIM2 card data	1.8/3.0 V power domain
44	USIM2_CLK	DO	(U)SIM2 card clock	1.8/3.0 V power domain
46	USIM2_RST	DO	(U)SIM2 card reset	1.8/3.0 V power domain
40	USIM2_DET	DI	(U)SIM2 card insertion detection.	Internally pulled up to 1.8 V


"*" means under development.

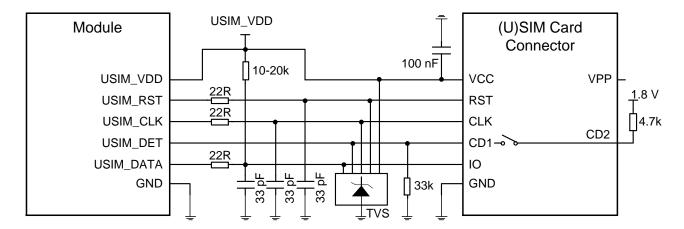
RM505Q-AE supports (U)SIM card hot-plug via the USIM_DET pin. With a normally closed (U)SIM card connector, the USIM_DET is normally short-circuited to ground when a (U)SIM card is not inserted, and the USIM_DET will change from low to high voltage level when a (U)SIM card is inserted. The rising edge indicates an insertion of the (U)SIM card. When the (U)SIM card is removed, USIM_DET will change from high to low voltage level. This falling edge indicates a removal of the (U)SIM card.

Normally Closed (U)SIM Card Connector:

- When the (U)SIM is absent, CD is short-circuited to ground and USIM_DET is at low voltage level.
- When the (U)SIM is inserted, CD is open from ground and USIM_DET is at high voltage level.

The following figure shows a reference design of (U)SIM interface with a normally closed (U)SIM card connector.

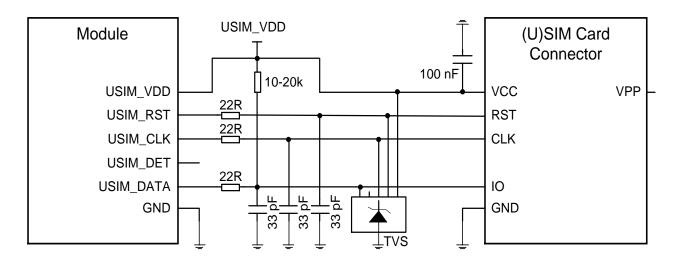
Note: All these resistors, capacitors and TVS should be close to (U)SIM card connector in PCB layout.


Figure 14: Reference Circuit for Normally Closed (U)SIM Card Connector

Normally Open (U)SIM Card Connector:

- When the (U)SIM is absent, CD1 is open from CD2 and USIM_DET is at low voltage level.
- When the (U)SIM is inserted, CD1 is short-circuited to 1.8 V and USIM DET is at high voltage level.

The following figure shows a reference design of (U)SIM interface with a normally open (NO) (U)SIM card connector.



Note: All these resistors, capacitors and TVS should be close to (U)SIM card connector in PCB layout.

Figure 15: Reference Circuit for Normally Open (U)SIM Card Connector

If (U)SIM card detection function is not needed, please keep USIM_DET disconnected. A reference circuit for (U)SIM card interface with a 6-pin (U)SIM card connector is illustrated by the following figure.

Note: All these resistors, capacitors and TVS should be close to (U)SIM card connector in PCB layout.

Figure 16: Reference Circuit for a 6-Pin (U)SIM Card Connector

To enhance the reliability and availability of the (U)SIM card in applications, please follow the criteria below in (U)SIM circuit design.

- Place the (U)SIM card connector as close to the module as possible. Keep the trace length less than 200 mm.
- Keep (U)SIM card signals away from RF and VCC traces.
- Make sure the ground between the module and the (U)SIM card connector is short and wide. Keep
 the trace width of ground and USIM VDD no less than 0.5 mm to maintain the same electric

potential.

- To avoid cross-talk between USIM_DATA and USIM_CLK, keep them away from each other and shield them with surrounded ground.
- To offer better ESD protection, add a TVS diode array of which the parasitic capacitance should be not higher than 10 pF. Add 22 Ω resistors in series between the module and the (U)SIM card connector to suppress EMI such as spurious transmission, and to enhance ESD protection. The 33 pF capacitors are used to filter out RF interference.
- For USIM_DATA, a 10–20 kΩ pull-up resistor must be added near the (U)SIM card connector.
- (U)SIM card hot-plug is disabled by default.

3.8. USB Interface

The module provides one integrated Universal Serial Bus (USB) interface which complies with the USB 3.1/2.0 specifications and supports super speed (10 Gbps) on USB 3.1 and high speed (480 Mbps) and full speed (12 Mbps) modes on USB 2.0. The USB interface is used for AT command communication, data transmission, GNSS NMEA sentence output, software debugging, firmware upgrade.

Note that only USB 2.0 can be used for firmware upgrade currently.

The following table shows the pin definition of USB interface.

Table 10: Pin Definition of USB Interface

Pin No.	Pin Name	I/O	Description	Comment
7	USB_DP	AI/AO	USB differential data (+)	
9	USB_DM	AI/AO	USB differential data (-)	_
29	USB_SS_TX_M	АО	USB 3.1 super-speed transmit (-)	Requires differential
31	USB_SS_TX_P	АО	USB 3.1 super-speed transmit (+)	impedance of 90 Ω
35	USB_SS_RX_M	Al	USB 3.1 super-speed receive (-)	_
37	USB_SS_RX_P	Al	USB 3.1 super-speed receive (+)	_

"*" means under development.

For more details about the USB 3.1 & 2.0 specifications, please visit http://www.usb.org/home.

The USB 2.0 interface is recommended to be reserved for firmware upgrade in designs. The following figure shows a reference circuit for USB 3.1/2.0 interface.

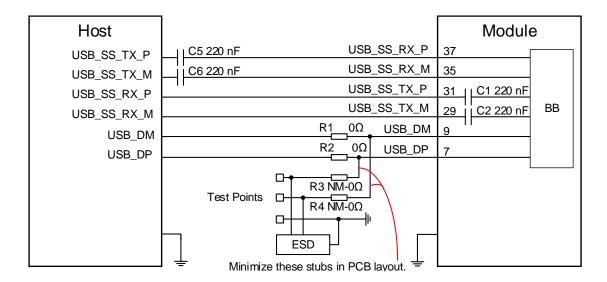


Figure 17: Reference Circuit for USB 3.1/2.0 Interface

AC coupling capacitors C5 and C6 must be placed close to the host and close to each other. C1 and C2 have been embedded into the module, so do not place these two capacitors on your schematic and PCB. To ensure the signal integrity of USB 2.0 data traces, R1, R2, R3 and R4 must be placed close to the module, and the stubs must be minimized in PCB layout.

You should follow the principles below when designing for the USB interface to meet USB 3.1 and 2.0 specifications:

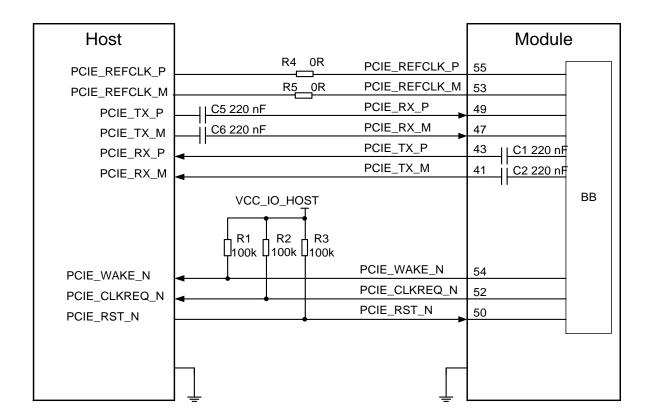
- Route the USB signal traces as differential pairs with ground surrounded. The impedance of differential trace of USB 2.0 and 3.1 is 90Ω .
- For USB 2.0 signal traces, the trace length should be less than 120 mm, and the differential data pair matching should be less than 2 mm. For USB 3.1 signal traces, length matching of each differential data pair (Tx/Rx) should be less than 0.7 mm, while the matching between Tx and Rx should be less than 10 mm.
- Do not route signal traces under crystals, oscillators, magnetic devices, PCIe and RF signal traces.
 Route the USB differential traces in inner-layer of the PCB, and surround the traces with ground on that layer and with ground planes above and below.
- Junction capacitance of the ESD protection device might cause influences on USB data lines, so you should pay attention to the selection of the device. Typically, the stray capacitance should be less than 1.0 pF for USB 2.0, and less than 0.15 pF for USB 3.1.
- Keep the ESD protection devices as close to the USB connector as possible.
- If possible, reserve 0 Ω resistors on USB_DP and USB_DM lines respectively.

3.9. PCle Interface

RM505Q-AE provides one integrated PCIe (Peripheral Component Interconnect Express) interface which complies with the *PCI Express Base Specification*, *Revision 3.0* and supports up to 8 Gbps per lane.

- PCI Express Base Specification, Revision 3.0 compliant
- Data rate up to 8 Gbps per lane

The following table presents the pin definition of PCIe interface.


Table 11: Pin Definition of PCIe Interface

Pin No.	Pin Name	I/O	Description	Comment
55	PCIE_REFCLK_P	AI/AO	PCIe reference clock (+)	100 MHz. Requires differential
53	PCIE_REFCLK_M	AI/AO	PCIe reference clock (-)	impedance of 85 Ω
49	PCIE_RX_P	Al	PCIe receive (+)	Requires differential
47	PCIE_RX_M	Al	PCIe receive (-)	impedance of 85 Ω
43	PCIE_TX_P	AO	PCIe transmit (+)	Requires differential
41	PCIE_TX_M	AO	PCIe transmit (-)	impedance of 85 Ω
50	PCIE_RST_N	DI	PCle reset	Open drain Active LOW.
52	PCIE_CLKREQ_N	DO	PCIe clock request	Open drain Active LOW
54	PCIE_WAKE_N	DO	PCIe wake up	Open drain Active LOW

3.9.1. PCle Operating Mode

RM505Q-AE supports endpoint (EP) mode and root complex (RC) mode. In EP mode, the module is configured as a PCIe EP device. In RC mode, the module is configured as a PCIe root complex. The following figure shows a reference circuit for the PCIe interface.

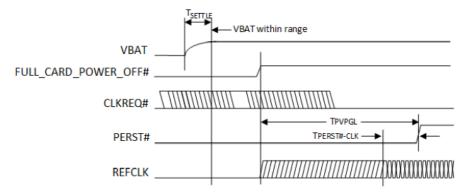

Note: The voltage level of VCC_IO_HOST depends on the host side due to the open drain in pins 50, 52 and 54.

Figure 18: PCIe Interface Reference Circuit

AT+QCFG="pcie/mode" is used to set PCIe RC/EP mode. For more details about the command, see **document [2]**.

To ensure the signal integrity of PCIe interface, AC coupling capacitors C5 and C6 should be placed close to the host on PCB. C1 and C2 have been embedded into the module, so do not place these two capacitors on your schematic and PCB.

Symbol	Parameter	Min	Max	Units
T _{PVPGL}	Power Valid* to PERST# input inactive	Implementation specific; recommended 50 ms		ms
TPERST#-CLK	REFCLK stable before PERST# inactive	100		μs

Figure 19: PCle Power-on Timing Requirements of M.2 Specification

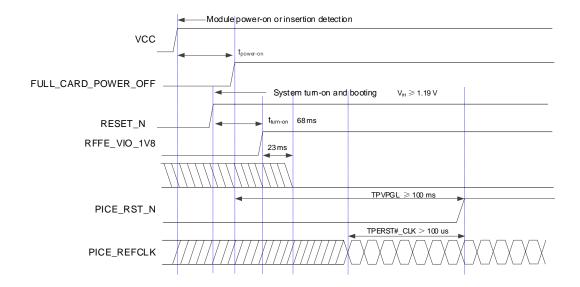


Figure 20: PCle Power-on Timing Requirements of the Module

The following principles of PCIe interface design should be complied with, so as to meet PCIe specification.

- Keep the PCIe data and control signals away from sensitive circuits and signals, such as RF, audio, crystal and oscillator signals.
- Add a capacitor in series on Tx/Rx traces to prevent any DC bias.
- Keep the maximum trace length less than 300 mm.
- Keep the length matching of each differential data pair (Tx/Rx) less than 0.7 mm for PCle routing traces.
- Keep the differential impedance of PCIe data trace as 85 Ω ±10 %.

You must not route PCle data traces under components or cross them with other traces.

3.9.2. USB and PCIe Modes

RM505Q-AE supports to communicate through both USB and PCIe interfaces, respectively referring to the USB mode and the PCIe mode, as described below:

USB Mode

- Supports all USB 2.0/3.1 features
- Supports MBIM/QMI/QRTR/AT
- Communication can be switched to PCle mode by AT command

USB is the default communication interface between RM505Q-AE module and a host. To use PCIe interface for the communication between a host, an AT command under USB mode can be used. For more details about the AT command, see *document* [2].

It is suggested that USB 2.0 interface be reserved for firmware upgrade.

USB-AT-based PCIe Mode

- Supports MBIM/QMI/QRTR/AT
- Communication can be switched back to USB mode by AT command

When RM505Q-AE module works at the USB-AT-based (switched from USB mode by AT command) PCIe mode, it supports MBIM/QMI/QRTR/AT, and can be switched back to USB mode by AT command. But the firmware upgrade via PCIe interface is not supported, so USB 2.0 interface must be reserved for the firmware upgrade.

eFuse-based PCIe Mode

- Supports MBIM/QMI/QRTR/AT
- Supports Non-X86 systems and X86 system (supports BIOS PCIe early initial)

RM505Q-AE can also be reprogrammed to PCIe mode based on eFuse. If the communication is switched to PCIe mode by burnt eFuse, the communication cannot be switched back to USB mode.

Note that if the host does not support firmware upgrade through PCIe, then RM505Q-AE USB 2.0 interface (Pin 7 and Pin 9) and two test points (VREG_L6E_1P8 and FORCE_USB_BOOT, reserved on bottom side) must be used for the firmware upgrade. Also, the firmware can be upgraded by the PCIe Card EVB, which could be inserted into a PC. For more details, see *document* [1].

3.10. PCM Interface*

RM505Q-AE supports audio communication via Pulse Code Modulation (PCM) digital interface. The PCM interface supports the following modes:

- Primary mode (short frame synchronization): the module works as both master and slave.
- Auxiliary mode (long frame synchronization): the module works as master only.

In the primary mode, the data is sampled on the falling edge of the PCM_CLK and transmitted on the rising edge. The PCM_SYNC falling edge represents the MSB. In this mode, the PCM interface supports 256 kHz, 512 kHz, 1024 kHz or 2048 kHz PCM_CLK at 8 kHz PCM_SYNC, and also supports 4096 kHz PCM_CLK at 16 kHz PCM_SYNC.

In the auxiliary mode, the data is sampled on the falling edge of the PCM_CLK and transmitted on the rising edge. The PCM_SYNC rising edge represents the MSB. In this mode, PCM interface operates with a 256 kHz PCM_CLK and an 8 kHz PCM_SYNC of 50 % duty cycle only.

RM505Q-AE supports 16-bit linear data format. The following figures show the primary mode's timing relationship with 8 kHz PCM_SYNC and 2048 kHz PCM_CLK, as well as the auxiliary mode's timing relationship with 8 kHz PCM_SYNC and 256 kHz PCM_CLK.

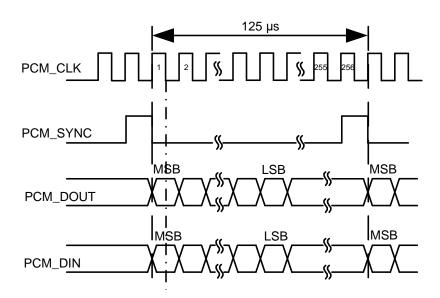


Figure 21: Primary Mode Timing

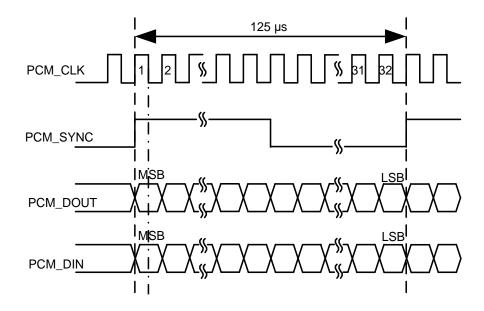


Figure 22: Auxiliary Mode Timing

The following table shows the pin definition of PCM interface which can be applied to audio codec design.

Table 12: Pin Definition of PCM Interface

Pin No.	Pin Name	I/O	Description	Comment
20	PCM_CLK	Ю	PCM data bit clock	1.8 V power domain In master mode, it is an output signal. In slave mode, it is an input signal. If unused, keep it open.
22	PCM_DIN	DI	PCM data input	1.8 V power domain
24	PCM_DOUT	DO	PCM data output	1.8 V power domain
28	PCM_SYNC	Ю	PCM data frame sync	1.8 V power domain

The clock and mode can be configured by AT command, and the default configuration is master mode using short frame synchronization format with 2048 kHz PCM_CLK and 8 kHz PCM_SYNC. See **document [2]** for details about **AT+QDAI** command.

NOTE

"*" means under development.

3.11. Control and Indication Interfaces

The following table shows the pin definition of control and indication pins.

Table 13: Pin Definition of Control and Indication Interfaces

Pin No.	Pin Name	I/O	Description	Comment
8	W_DISABLE1#	DI	Airplane mode control.	1.8/3.3 V power domain Active LOW.
10	WWAN_LED#*	OD	Indicate RF status of the module.	Open drain and active low signal.
23	WAKE_ON_WAN#	OD	Wake up the host. I	Open drain and active low signal.
25	DPR*	DI	Dynamic power reduction.	1.8 V power domain. High voltage level by default.
26	W_DISABLE2#	DI	GNSS disable control.	1.8/3.3 V power domain. Active LOW.
38	SDX2AP_STATUS*	DO	Status indication to AP	1.8 V power domain
68	AP2SDX_STATUS*	DI	Status indication from AP	1.8 V power domain

[&]quot;*" means under development.

3.11.1. W_DISABLE1#

RM505Q-AE provides a W_DISABLE1# pin to disable or enable airplane mode through hardware method. The W_DISABLE1# pin is pulled up by default. Driving it low will set the module to airplane mode. In airplane mode, the RF function will be disabled.

The RF function can also be enabled or disabled through software method, that is, through AT commands. The following table shows the AT command and corresponding RF function status of the module.

Table 14: RF Function Status

W_DISABLE1# Logic Level	AT Commands	RF Function Status
High	AT+CFUN=1	Enabled
High	AT+CFUN=0 AT+CFUN=4	Disabled
Low	AT+CFUN=0 AT+CFUN=1 AT+CFUN=4	Disabled

3.11.2. W_DISABLE2#

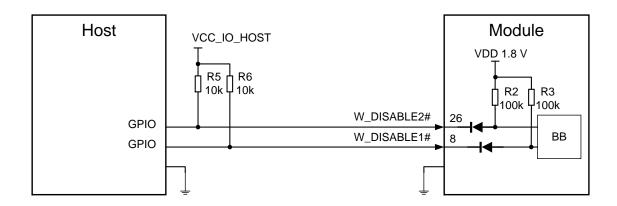

RM505Q-AE provides a W_DISABLE2# pin to disable or enable the GNSS function. The W_DISABLE2# pin is pulled up by default. Driving it low will disable the GNSS function. The combination of W_DISABLE2# pin and AT commands controls the GNSS function.

Table 15: GNSS Function Status

W_DISABLE2# Logic Level	AT Commands	GNSS Function Status	
High	AT+QGPS=1	Enabled	
High	AT+QGPSEND		
Low	AT+QGPS=1	Disabled	
Low	AT+QGPSEND	_	

A simple level shifter based on diodes is used on W_DISABLE1# pin and W_DISABLE2# pin which are pulled up to a 1.8 V voltage in the module, as shown in the following figure. So the control signals (GPIO) of the host device could be a 1.8 V or 3.3 V voltage level. Signals from W_DISABLE1# and W_DISABLE2# are active low, and a reference circuit is presented below.

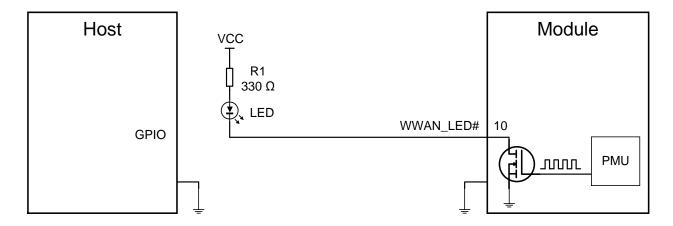

Note: The voltage level of VCC_IO_HOST could be 1.8 V or 3.3 V typically.

Figure 23: W_DISABLE1# and W_DISABLE2# Reference Circuit

3.11.3. WWAN_LED#*

The WWAN_LED# signal is used to indicate the RF status of the module, and its sink current is up to 10 mA.

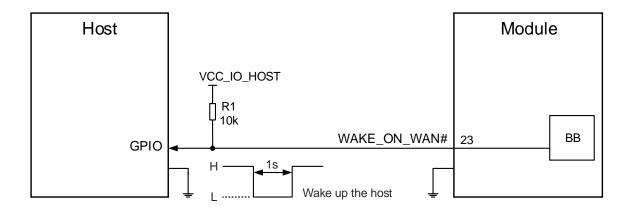
To reduce current consumption of the LED, a current-limited resistor must be placed in series with the LED, as illustrated in the figure below. The LED is ON when the WWAN_LED# signal is at low voltage level.

Note: This VCC could be the power supply of the module.

Figure 24: WWAN_LED# Reference Circuit

The following table shows the RF status indicated by WWAN_LED# signal.

Table 16: Network Status Indications of WWAN_LED# Signal


WWAN_LED# Logic Level	Description		
Low (LED on)	RF function is turned on		
High (LED off)	 RF function is turned off if any of the following occurs: The (U)SIM card is not powered. W_DISABLE1# is at low voltage level (airplane mode enabled). AT+CFUN=4 (RF function disabled). 		

3.11.4. WAKE_ON_WAN#

The WAKE_ON_WAN# is an open drain pin, which requires a pull-up resistor on the host. When a URC returns, a one-second low level pulse signal will be outputted to wake up the host. The module operation status indicated by WAKE_ON_WAN# is shown as below.

Table 17: State of the WAKE_ON_WAN# Signal

WAKE_ON_WAN# State	Module Operation Status
Output a one-second pulse signal at low voltage level	Call/SMS/Data is incoming (to wake up the host)
Always at high voltage level	Idle/Sleep

Note: The voltage level on VCC_IO_HOST depends on the host side due to the open drain in pin 23.

Figure 25: WAKE_ON_WAN# Signal Reference Circuit

3.11.5. DPR*

RM505Q-AE provides a DPR (Dynamic Power Reduction) pin for body SAR (Specific Absorption Rate) detection. The signal is sent from the proximity sensor of a host system to RM505Q-AE module to provide an input trigger, which will reduce the output power in radio transmission.

Table 18: Function of the DPR Signal

DPR Level	Function
High/Floating	NO max. transmitting power backoff
Low	Max. transmitting power backoff by AT+QCFG="sarcfg"

NOTE

See document [2] for more details about the command AT+QCFG="sarcfg".

3.11.6. STATUS*

RM505Q-AE provides two status indication pins for communication with IPQ807x device. Pin 38 (SDX2AP_STATUS) outputs the status indication signal to IPQ807x device, and pin 68 (AP2SDX_STATUS) inputs the status indication signal from IPQ807x device.

3.12. Cellular/WLAN Interface*

RM505Q-AE provides a cellular/WLAN COEX interface, the following table shows the pin definition of this interface.

Table 19: Pin Definition of COEX Interface

Pin No.	Pin Name	I/O	Description	Comment
62	COEX_RXD	DI	LTE/WLAN coexistence receive	1.8 V power domain
64	COEX_TXD	DO	LTE/WLAN coexistence transmit	1.8 V power domain
59	LAA_TX_EN	DO	Notification from SDR to WLAN when transmitting via LTE	1.8 V power domain

60	WLAN_TX_EN	DI	Notification from WLAN to SDR while transmitting	1.8 V power domain
----	------------	----	--	--------------------

"*" means under development.

3.13. Antenna Tuner Control Interface*

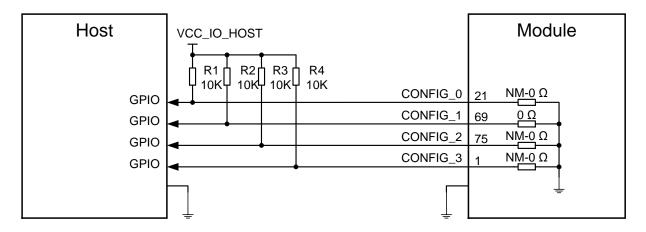
ANTCTL[1:2] and RFFE signals are used for antenna tuner control and should be routed to an appropriate antenna control circuit. More details about the interface will be added in the future version of this document.

Table 20: Pin Definition of Antenna Tuner Control Interface

Pin No.	Pin Name	I/O	Description	DC Characteristics
56	RFFE_CLK	DO	Used for external MIPI IC control	V_{OL} max = 0.45 V
58	RFFE_DATA	DO		V_{OH} min = 1.35 V V_{OH} max = 1.8 V
61	ANTCTL*	DO	Antonno Control	V_{OL} max = 0.45 V
63	ANTCTL*	DO	Antenna Control	V_{OH} min = 1.35 V V_{OH} max = 1.8 V

NOTE

"*" means under development.


3.14. Configuration Pins

RM505Q-AE provides four configuration pins, which are defined as below.

Table 21: Definition of Configuration Pins

Pin No.	Pin Name	I/O	Power Domain	Description
21	CONFIG_0	DO	0	Not connected internally
69	CONFIG_1	DO	0	Connected to GND internally
75	CONFIG_2	DO	0	Not connected internally
1	CONFIG_3	DO	0	Not connected internally

The following figure shows a reference circuit for these four pins.

Note: The voltage level of VCC_IO_HOST depends on the host side and could be 1.8 V or 3.3 V.

Figure 26: Recommended Circuit for Configuration Pins

Table 22: Configuration Pins List of M.2 Specification

Config_0	Config_1	Config_2	Config_3	Module Type and	Port
(Pin 21)	(Pin 69)	(Pin 75)	(Pin 1)	Main Host Interface	Configuration
NC	GND	NC	NC	Quectel defined	N/A

4 GNSS Receiver

4.1. General Description

RM505Q-AE includes a fully integrated global navigation satellite system solution that supports Gen9-Lite of Qualcomm (GPS, GLONASS, BeiDou/Compass, and Galileo).

The module supports standard NMEA-0183 protocol, and outputs NMEA sentences at 1 Hz data update rate via USB interface by default.

The GNSS engine is switched off by default. It has to be switched on via AT command. For more details about GNSS engine technology and configurations, see **document [3]**.

4.2. GNSS Performance

The following table shows GNSS performance of the module.

Table 23: GNSS Performance

Description	Conditions	Тур.	Unit
Cold start	Autonomous	TBD	dBm
Reacquisition	Autonomous	TBD	dBm
Tracking	Autonomous	TBD	dBm
Cold start	Autonomous	TBD	S
@ open sky	XTRA enabled	TBD	S
Warm start @ open sky	Autonomous	TBD	S
	XTRA enabled	TBD	S
	Cold start Reacquisition Tracking Cold start @ open sky Warm start	Cold start Reacquisition Autonomous Tracking Autonomous Cold start @ open sky XTRA enabled Warm start @ open sky Autonomous	Cold start Autonomous TBD Reacquisition Autonomous TBD Tracking Autonomous TBD Cold start Autonomous TBD Cold start Autonomous TBD Warm start Autonomous TBD Warm start Autonomous TBD

	Hot start @ open sky	Autonomous	TBD	S
		XTRA enabled	TBD	S
Accuracy (GNSS)	CEP-50	Autonomous @ open sky	TBD	m

NOTES

- 1. Tracking sensitivity: the minimum GNSS signal power at which the module can maintain locked (keep positioning for at least 3 minutes continuously).
- 2. Reacquisition sensitivity: the minimum GNSS signal power required for the module to maintain locked within 3 minutes after the loss of lock.
- 3. Cold start sensitivity: the minimum GNSS signal power at which the module can fix position successfully within 3 minutes after executing cold start command.

5 Antenna Interfaces

RM505Q-AE provides five antenna interfaces, the impedance of each antenna port is 50 Ω .

5.1. Antenna Connectors

The ANT0, ANT1, ANT2, ANT3 and ANT4_GNSS antenna connectors are shown by the following figure.

Figure 27: Antenna Connectors on the Module

Table 24: RF Bands Supported by RM505Q-AE Antenna Connectors

Pin Name	I/O	Description	Comment
ANT0	AI/AO	LTE MHB TRx0; LTE UHB PRx MIMO 5G FDD/TDD MHB TRx0; 5G NR n77/n78/n79 PRx MIMO;	50 Ω impedance
ANT1	AI/AO	LTE LB TRx0; LTE MHB DRx MIMO; LTE B46 PRx; LTE UHB DRx MIMO 5G FDD LB TRx0; 5G FDD/TDD MHB DRx MIMO; 5G NR n77/n78/n79 DRx MIMO;	50 Ω impedance
ANT2	AI/AO	LTE LB DRx; LTE MHB PRx MIMO; 5G NR n77/n78/n41/n79 TRx0; LTE UHB TRx0; 5G FDD LB DRx; 5G FDD MHB PRx MIMO;	50 Ω impedance
ANT3	AI/AO	LTE MHB DRx; LTE B46 DRx LTE UHB DRx 5G FDD/TDD MHB DRx; 5G NR n77/n78/n79 DRx;	50 Ω impedance
ANT4_ GNSS	AI	GNSS L1 & L5 Rx	50 Ω impedance

5.2. Cellular Antenna Port Mapping

Table 25: RM505Q-AE Cellular Antenna Mapping

Pin Name	I/O	Description	Comment
ANT0	AI/AO	LTE MHB TRx0; LTE UHB PRx MIMO 5G FDD/TDD MHB TRx0; 5G NR n77/n78/n79 PRx MIMO;	50 Ω impedance
ANT1	AI/AO	LTE LB TRx0; LTE MHB DRx MIMO: LTE B46 PRx;	50 Ω impedance

		LTE UHB DRx MIMO;	
		5G FDD LB TRx0;	
		5G FDD/TDD MHB DRx MIMO;	
		5G NR n77/n78/n79 DRx MIMO;	
		LTE LB DRx;	
		LTE MHB PRx MIMO;	
A NITO	A1/A ()	5G NR n77/n78/n41/n79 TRx0;	EO O impadana
ANT2	AI/AO	LTE UHB TRx0;	50 Ω impedance
		5G FDD LB DRx;	
		5G FDD MHB PRx MIMO;	
		LTE MHB DRx;LTE B46 DRx	
ANT3	A1/A C	LTE UHB DRx;	
	AI/AO	5G FDD/TDD MHB DRx;	50 Ω impedance
		5G NR n77/n78/n79 DRx;	
ANT4_	Al	GNSS L1 & L5 Rx	EO O impodonos
GNSS	AI	GN33 LI & L3 KX	50 Ω impedance

5.3. Cellular Frequency

Table 26: RM505Q-AE Module Operating Frequencies

Band Name	Transmit (MHz)	Receive (MHz)	LTE-FDD	LTE-TDD	UMTS	5G NR
IMT (2100)	1920–1980	2110–2170	B1	_	B1	n1
PCS (1900)	1850–1910	1930–1990	B2	_	B2	n2
DCS (1800)	1710–1785	1805–1880	В3	_	В3	n3
AWS	1710–1755	2110–2155	B4	_	B4	_
Cell (850)	824–849	869–894	B5	_	B5	n5
JCELL (800)	830–840	875–885	_	_	B6	_
IMT-E (2600)	2500–2570	2620–2690	B7	_	_	n7
EGSM (950)	880–915	925–960	В8	_	B8	n8
J1700	1750–1785	1845–1880		_	_	_
700 lower A–C	699–716	729–746	B12	_	_	n12
700 upper C	777–787	746–756	B13	_	_	_
700 D	788–798	758–768	B14	_	_	_

B17	704–716	734–746	B17	_	_	_
B18	815–830	860–875	B18	_	-	_
B19	830–845	875–890	B19	_	B19	_
EU800	832–862	791–821	B20	_	_	n20
PCS + G	1850–1915	1930–1995	B25	_	_	n25
B26	814–849	859–894	B26	_	-	_
700 APAC	703–748	758–803	B28	_	_	n28
FLO	_	717–728	B29	_	_	_
WCS	2305–2315	2350–2360	B30	_	_	_
L-band	_	1452–1496	B32	_	_	_
B34	2010–2025	2010–2025	_	B34	_	_
B38	2570–2620	2570–2620	_	B38	-	n38
B39	1880–1920	1880–1920	_	B39	_	_
B40	2300–2400	2300–2400	_	B40	_	n40
B41/B41-XGP	2496–2690	2496–2690	_	B41	-	n41
B42	3400–3600	3400–3600	_	B42	_	_
B43	3600–3800	3600–3800	_	B43	_	_
B46	5150–5925	5150–5925	_	B46	_	_
B48	3550–3700	3550–3700	_	B48	_	n48
B66	1710–1780	2110–2200	B66	_	-	n66
B71	663–698	617–652	B71	_	_	n71
n77	3300 - 4200	3300 - 4200	_	_	_	n77
n78	3300 - 3800	3300 - 3800	_	_	_	n78
n79	4400 - 5000	4400 - 5000	_	_	_	n79

5.4. GNSS Frequency

The following table shows the frequency specification of GNSS antenna connector.

Table 27: GNSS Frequency

Туре	Frequency	Unit
GPS/Galileo/QZSS	1575.42±1.023 (GPS L1) 1176.45±10.23 (GPS L5)	MHz
Galileo	1575.42 ±2.046 (E1)	MHz
QZSS	1575.42 (L1)	MHz
GLONASS	1597.5–1605.8	MHz
BeiDou	1561.098 ±2.046	MHz

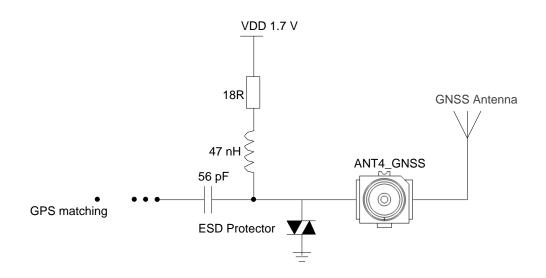


Figure 28: Reference Circuit of GNSS Antenna

NOTES

- 1. Keep the characteristic impedance for the trace of GNSS antenna (ANT4_GNSS) to 50 Ω .
- 2. Place the π -type matching components as close to the antenna as possible.
- 3. Keep the digital circuits, such as that of (U)SIM card, USB interface, camera module, display connector and SD card, away from the antenna traces.
- 4. Keep 75 dB isolation between each two antenna traces.
- 5. Keep 15 dB isolation between each two antenna to improve the receiving sensitivity.

5.5. Reference Design for Cellular Antenna Interfaces

A reference design for cellular antenna interface is shown as below. A π -type matching circuit should be reserved for better cellular RF performance. The capacitors are not mounted by default.

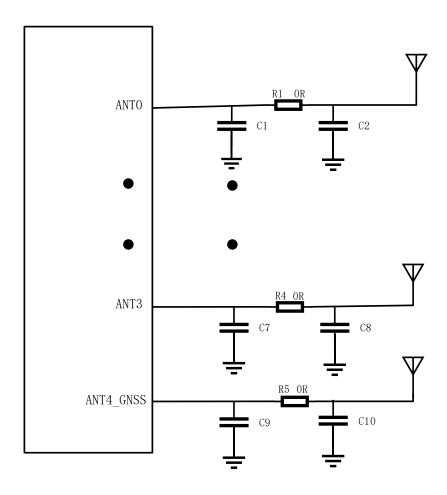


Figure 29: Reference Design for Cellular Antenna

NOTES

- 1. Keep the characteristic impedance for cellular antenna traces to 50 Ω .
- 2. Place the π -type matching components as close to the antenna as possible.
- 3. Keep the digital circuits, such as that of (U)SIM card, USB interface, camera module, display connector and SD card, away from the antenna traces.
- 4. Keep 75 dB PCB isolation between two antenna traces.
- 5. Keep 15 dB isolation between each two antennas to improve the receiving sensitivity, and 20 dB isolation between 5G NR UL MIMO antennas.

5.6. Reference Design of RF Layout

For user's PCB, the characteristic impedance of all RF traces should be controlled to 50 Ω . The impedance of the RF traces is usually determined by the trace width (W), the materials' dielectric constant, the height from the reference ground to the signal layer (H), and the spacing between RF traces and grounds (S). Microstrip or coplanar waveguide is typically used in RF layout to control characteristic impedance. The following are reference designs of microstrip or coplanar waveguide with different PCB structures.

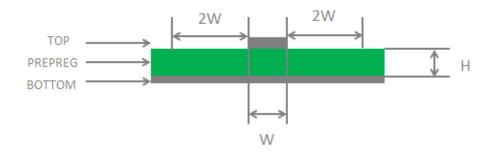


Figure 30: Microstrip Design on a 2-layer PCB

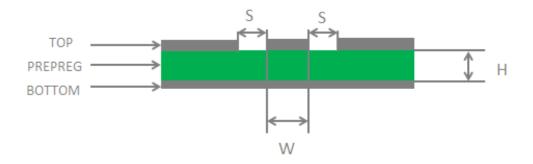


Figure 31: Coplanar Waveguide Design on a 2-layer PCB

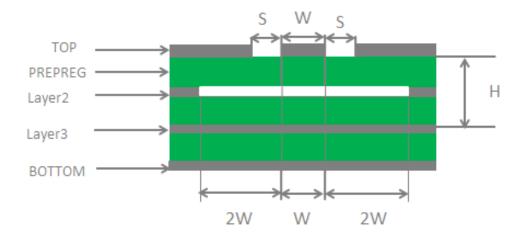


Figure 32: Coplanar Waveguide Design on a 4-layer PCB (Layer 3 as Reference Ground)

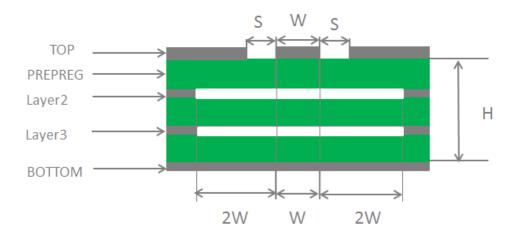


Figure 33: Coplanar Waveguide Design on a 4-layer PCB (Layer 4 as Reference Ground)

In order to ensure RF performance and reliability, the following principles should be complied with in RF layout design:

- Use an impedance simulation tool to accurately control the characteristic impedance of RF traces to 50Ω .
- The GND pins adjacent to RF pins should not be designed as thermal relief pads, and should be fully connected to ground.
- The distance between the RF pins and the RF connector should be as short as possible, and all the right-angle traces should be changed to curved ones. The recommended trace angle is 135°.
- There should be clearance under the signal pin of the antenna connector or solder joint.
- The reference ground of RF traces should be complete. Meanwhile, adding some ground vias around RF traces and the reference ground could help to improve RF performance. The distance between the ground vias and RF traces should be no less than two times the width of RF signal traces (2 x W).
- Keep RF traces away from interference sources, and avoid intersection and paralleling between traces on adjacent layers.

For more details about RF layout, see document [4].

5.7. Antenna Installation

5.7.1. Antenna Requirements

The following table shows the requirements on WCDMA, LTE, 5G NR antenna and GNSS antenna.

Table 28: Antenna Requirements

Туре	Requirements
	Frequency range: 1559–1606 MHz
GNSS	Polarization: RHCP or linear
01100	VSWR: < 2 (typical)
	Passive antenna gain: >0 dBi
	VSWR: ≤ 3
	Efficiency: > 30 %
MCDMA/LTE/EC ND	Input Impedance: 50 Ω
WCDMA/LTE/5G NR	WCDMA LB, LTE LB: Cable insertion loss: < 1 dB
	WCDMA MB, LTE MB: Cable insertion loss: < 1.5 dB
	LTE HB, 5G NR TDD MHB: Cable insertion loss < 2 dB

5.7.2. Recommended RF Connector for Antenna Installation

RM505Q-AE is mounted with standard 2.0 mm \times 2.0 mm receptacle RF connectors for convenient antenna connection.

The connector dimensions are illustrated as below:

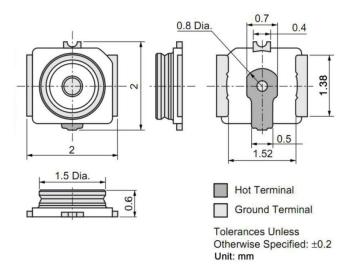


Figure 34: RM505Q-AE RF Connector Dimensions (Unit: mm)

Table 29: Major Specifications of the RF Connector

Item	Specification
Nominal Frequency Range	DC to 6 GHz
Nominal Impedance	50 Ω
Temperature Rating	-40 °C to +85 °C
	Meet the requirements of:
Voltage Standing Wave Ratio (VSWR)	Max 1.3 (DC-3 GHz)
	Max 1.45 (3–6 GHz)

The receptacle RF connector used in conjunction with RM505Q-AE will accept two types of mating plugs that will meet a maximum height of 1.2 mm using a \emptyset 0.81 mm coaxial cable or a maximum height of 1.45 mm utilizing a \emptyset 1.13 mm coaxial cable.

The following figure shows the specifications of mating plugs using Ø 0.81 mm coaxial cables.

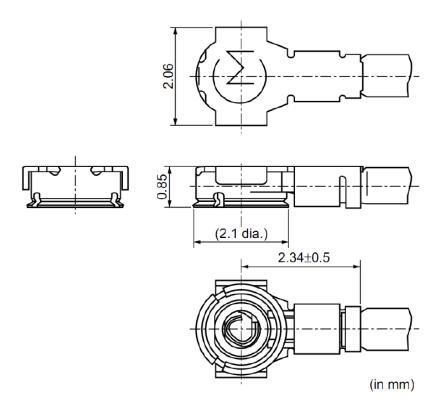


Figure 35: Specifications of Mating Plugs Using Ø 0.81 mm Coaxial Cables

The following figure illustrates the connection between the receptacle RF connector on RM505Q-AE and the mating plug using a Ø 0.81 mm coaxial cable.

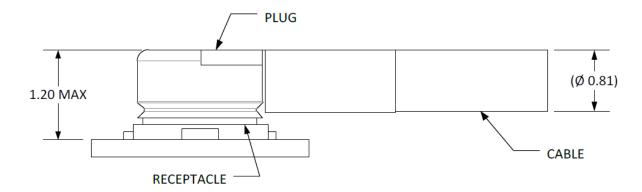


Figure 36: Connection between RF Connector and Mating Plug Using Ø 0.81 mm Coaxial Cable

The following figure illustrates the connection between the receptacle RF connector on RM505Q-AE and the mating plug using a Ø 1.13 mm coaxial cable.

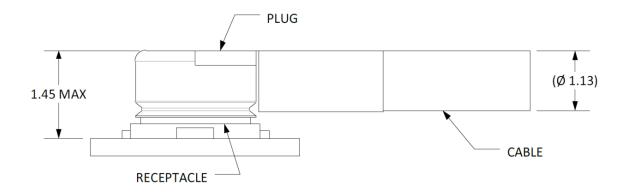


Figure 37: Connection between RF Connector and Mating Plug Using Ø 1.13 mm Coaxial Cable

6 Reliability, Radio and Electrical Characteristics

6.1. Absolute Maximum Ratings

Absolute maximum ratings for power supply and voltage on digital and analog pins of the module are listed in the following table.

Table 30: Absolute Maximum Ratings

Parameter	Min.	Max.	Unit
VCC	-0.3	4.7	V
Voltage at Digital Pins	-0.3	2.3	V

6.2. Power Supply Requirements

The typical input voltage of RM505Q-AE is 3.7 V, as specified by *PCle M.2 Electromechanical Specification Rev 1.0.* The following table shows the power supply requirements of RM505Q-AE.

Table 31: Power Supply Requirements

Parameter	Description	Min.	Тур.	Max.	Unit
VCC	Power Supply	3.135	3.7	4.4	V
Voltage Ripple		_	30	100	mV
Voltage Drop		_	_	165	mV

6.3. I/O Requirements

Table 32: I/O Requirements

Parameter	Description	Min.	Max.	Unit
VIH	Input high voltage	$0.7 \times V_{DD18}^{1)}$	V _{DD18} +0.3	V
V _{IL}	Input low voltage	-0.3	0.3 × V _{DD18}	V
V _{OH}	Output high voltage	V _{DD18} -0.5	V_{DD18}	V
V _{OL}	Output low voltage	0	0.4	V

NOTE

6.4. Operating and Storage Temperatures

Table 33: Operating and Storage Temperatures

Parameter	Min.	Тур.	Max.	Unit
Operating Temperature Range 1)	-30	+25	+60	°C
Extended Temperature Range 2)	-40	+25	+85	°C
Storage temperature Range	-40	+25	+90	°C

NOTES

- 1. The restricted operating temperature range is -30 $^{\circ}$ C to -20 $^{\circ}$ C, +60 $^{\circ}$ C to +70 $^{\circ}$ C.
- 2. ¹⁾ To meet this operating temperature range, you need to ensure effective thermal dissipation, for example, by adding passive or active heatsinks, heat pipes, vapor chambers, etc. Within this range, the module meets 3GPP specifications.
- 3. ²⁾ To meet this extended temperature range, you need to ensure effective thermal dissipation, for example, by adding passive or active heatsinks, heat pipes, vapor chambers, etc. Within this range, the module remains the ability to establish and maintain functions such as voice, SMS, emergency

¹⁾ V_{DD18} is the I/O power domain of the module.

call, etc., without any unrecoverable malfunction. Radio spectrum and radio network are not influenced, while one or more specifications, such as P_{out} , may undergo a reduction in value, exceeding the specified tolerances of 3GPP. When the temperature returns to the normal operating temperature level, the module will meet 3GPP specifications again.

6.5. Current Consumption

Table 34: RM505Q-AE Current Consumption

Description	Conditions	Тур.	Unit
OFF state	Power down	71.8	μΑ
	AT+CFUN=0 (USB disconnected)	TBD	mA
	WCDMA PF = 64 (USB disconnected)	TBD	mA
	WCDMA PF = 128 (USB disconnected)	TBD	mA
	WCDMA PF = 512 (USB disconnected)	TBD	mA
Cloop atota	LTE-FDD PF = 32 (USB disconnected)	TBD	mA
Sleep state	LTE-FDD PF = 64 (USB disconnected)	TBD	mA
	LTE-FDD PF = 128 (USB disconnected)	TBD	mA
	LTE-TDD PF = 32 (USB disconnected)	TBD	mA
	LTE-TDD PF = 64 (USB disconnected)	TBD	mA
	LTE-TDD PF = 128 (USB disconnected)	TBD	mA
	WCDMA PF = 64 (USB disconnected)	TBD	mA
	WCDMA PF = 64 (USB connected)	TBD	mA
Idla atata	LTE-FDD PF = 64 (USB disconnected)	TBD	mA
Idle state	LTE-FDD PF = 64 (USB connected)	TBD	mA
	LTE-TDD PF = 64 (USB disconnected)	TBD	mA
	LTE-TDD PF = 64 (USB connected)	TBD	mA
WCDMA data	WCDMA B1 HSDPA CH10700 @ 23 dBm	TBD	mA

transfer (GNSS OFF)	WCDMA B1 HSUPA CH10700 @ 23 dBm	TBD	mA
OIT)	WCDMA B2 HSDPA CH9800 @ 23 dBm	TBD	mA
	WCDMA B2 HSUPA CH9800 @ 23 dBm	TBD	mA
	WCDMA B3 HSDPA CH1338 @ 23 dBm	TBD	mA
	WCDMA B3 HSUPA CH1338 @ 23 dBm	TBD	mA
	WCDMA B4 HSDPA CH1638 @ 23 dBm	TBD	mA
	WCDMA B4 HSUPA CH1638 @ 23 dBm	TBD	mA
	WCDMA B5 HSDPA CH4407 @ 23 dBm	TBD	mA
	WCDMA B5 HSUPA CH4407 @ 23 dBm	TBD	mA
	WCDMA B6 HSDPA CH4400 @ 23 dBm	TBD	mA
	WCDMA B6 HSUPA CH4400 @ 23 dBm	TBD	mA
	WCDMA B8 HSDPA CH3012 @ 23 dBm	TBD	mA
	WCDMA B8 HSUPA CH3012 @ 23 dBm	TBD	mA
	WCDMA B19 HSDPA CH738 @ 23 dBm	TBD	mA
	WCDMA B19 HSUPA CH738 @ 23 dBm	TBD	mA
	LTE-FDD B1 CH300 @ 23 dBm	TBD	mA
	LTE-FDD B2 CH900 @ 23 dBm	TBD	mA
	LTE-FDD B3 CH1575 @ 23 dBm	TBD	mA
	LTE-FDD B4 CH2175 @ 23 dBm	TBD	mA
LTE data	LTE-FDD B5 CH2525 @ 23 dBm	TBD	mA
transfer (GNSS	LTE-FDD B7 CH3100 @ 23 dBm	TBD	mA
OFF)	LTE-FDD B8 CH3625 @ 23 dBm	TBD	mA
	LTE-FDD CH3975 @ 23 dBm	TBD	mA
	LTE-FDD B12 CH5095 @ 23 dBm	TBD	mA
	LTE-FDD B13 CH5230 @ 23 dBm	TBD	mA
	LTE-FDD B14 CH5330 @ 23 dBm	TBD	mA

	LTE-FDD B17 CH5790 @ 23 dBm	TBD	mA
	LTE-FDD B18 CH5925 @ 23 dBm	TBD	mA
	LTE-FDD B19 CH6075 @ 23 dBm	TBD	mA
	LTE-FDD B20 CH6300 @ 23 dBm	TBD	mA
	LTE-FDD B25 CH8365 @ 23 dBm	TBD	mA
	LTE-FDD B26 CH8865 @ 23 dBm	TBD	mA
	LTE-FDD B28 CH9435 @ 23 dBm	TBD	mA
	LTE-FDD B30 CH9820 @ 23 dBm	TBD	mA
	LTE-TDD B34 CH36275 @ 23 dBm	TBD	mA
	LTE-TDD B38 CH38000 @ 23 dBm	TBD	mA
	LTE-TDD B39 CH38450 @ 23 dBm	TBD	mA
	LTE-TDD B40 CH39150 @ 23 dBm	TBD	mA
	LTE-TDD B41 CH40620 @ 23 dBm	TBD	mA
	LTE-TDD B42 CH42590 @ 23 dBm	TBD	mA
	LTE-TDD B43 CH44590 @ 23 dBm	TBD	mA
	LTE-TDD B48 CH55990 @ 23 dBm	TBD	mA
	LTE-FDD B66 CH66886 @ 23 dBm	TBD	mA
	LTE-FDD B71 CH68761 @ 23 dBm	TBD	mA
	5G NR-TDD n41 CH501204 @ 23 dBm	TBD	mA
	5G NR-TDD n41 CH518598 @ 23 dBm	TBD	mA
	5G NR-TDD n41 CH535998 @ 23 dBm	TBD	mA
5G NR data transfer (GNSS OFF)	5G NR-TDD n77 CH620668 @ 23 dBm	TBD	mA
	5G NR-TDD n77 CH650000 @ 23 dBm	TBD	mA
	5G NR-TDD n77 CH679332 @ 23 dBm	TBD	mA
	5G NR-TDD n78 CH620668 @ 23 dBm	TBD	mA

5G NR-TDD n78 CH652666 @ 23 dBm	TBD	mA
5G NR-TDD n79 CH695090 @ 23 dBm	TBD	mA
5G NR-TDD n79 CH713522 @ 23 dBm	TBD	mA
5G NR-TDD n79 CH731976 @ 23 dBm	TBD	mA
5G NR-FDD n1 CH423000 @ 23 dBm	TBD	mA
5G NR-FDD n1 CH428000 @ 23 dBm	TBD	mA
5G NR-FDD n1 CH433000 @ 23 dBm	TBD	mA
5G NR-FDD n2 CH387000 @ 23 dBm	TBD	mA
5G NR-FDD n2 CH392000 @ 23 dBm	TBD	mA
5G NR-FDD n2 CH397000 @ 23 dBm	TBD	mA
5G NR-FDD n3 CH362000 @ 23 dBm	TBD	mA
5G NR-FDD n3 CH368500 @ 23 dBm	TBD	mA
5G NR-FDD n3 CH375000 @ 23 dBm	TBD	mA
5G NR-FDD n5 CH174800 @ 23 dBm	TBD	mA
5G NR-FDD n5 CH176300 @ 23 dBm	TBD	mA
5G NR-FDD n5 CH177800 @ 23 dBm	TBD	mA
5G NR-FDD n7 CH525000 @ 23 dBm	TBD	mA
5G NR-FDD n7 CH531000 @ 23 dBm	TBD	mA
5G NR-FDD n7 CH537000 @ 23 dBm	TBD	mA
5G NR-FDD n8 CH186000 @ 23 dBm	TBD	mA
5G NR-FDD n8 CH188500 @ 23 dBm	TBD	mA
5G NR-FDD n8 CH191000 @ 23 dBm	TBD	mA
5G NR-FDD n12 CH146800 @ 23 dBm	TBD	mA
5G NR-FDD n12 CH147500 @ 23 dBm	TBD	mA
5G NR-FDD n12 CH148200 @ 23 dBm	TBD	mA
5G NR-FDD n20 CH159200 @ 23 dBm	TBD	mA

	5G NR-FDD n20 CH161200 @ 23 dBm	TBD	mA
	5G NR-FDD n20 CH163200 @ 23 dBm	TBD	mA
	5G NR-FDD n25 CH387000 @ 23 dBm	TBD	mA
	5G NR-FDD n25 CH392500 @ 23 dBm	TBD	mA
	5G NR-FDD n25 CH398000 @ 23 dBm	TBD	mA
	5G NR-FDD n28 CH152600 @ 23 dBm	TBD	mA
	5G NR-FDD n28 CH156100 @ 23 dBm	TBD	mA
	5G NR-FDD n28 CH159600 @ 23 dBm	TBD	mA
	5G NR-TDD n38 CH515000 @ 23 dBm	TBD	mA
	5G NR-TDD n38 CH519000 @ 23 dBm	TBD	mA
	5G NR-TDD n38 CH523000 @ 23 dBm	TBD	mA
	5G NR-TDD n40 CH461000 @ 23 dBm	TBD	mA
	5G NR-TDD n40 CH470000 @ 23 dBm	TBD	mA
	5G NR-TDD n40 CH479000 @ 23 dBm	TBD	mA
	5G NR-FDD n66 CH423000 @ 23 dBm	TBD	mA
	5G NR-FDD n66 CH429000 @ 23 dBm	TBD	mA
	5G NR-FDD n66 CH435000 @ 23 dBm	TBD	mA
	5G NR-FDD n71 CH124400 @ 23 dBm	TBD	mA
	5G NR-FDD n71 CH126900 @ 23 dBm	TBD	mA
	5G NR-FDD n71 CH129400 @ 23 dBm	TBD	mA
	WCDMA B1 CH10700 @ 23 dBm	TBD	mA
	WCDMA B2 CH9800 @ 23 dBm	TBD	mA
WCDMA voice	WCDMA B3 CH1338 @ 23 dBm	TBD	mA
call	WCDMA B4 CH1638 @ 23 dBm	TBD	mA
	WCDMA B5 CH4408 @ 23 dBm	TBD	mA
	WCDMA B6 CH4175 @ 23 dBm	TBD	mA

WCDMA B8 CH3012 @ 23 dBm
WCDMA B19 CH338 @ 23 dBm

6.6. RF Output Power

The following table shows the RF output power of RM505Q-AE module.

Table 35: RF Output Power

Mode	Frequency	Max.	Min.
WCDMA	WCDMA bands	24 dBm +1/-3 dB (Class 3)	< -50 dBm
	LTE bands	23 dBm ±2 dB (Class 3)	< -40 dBm
LTE	LTE HPUE bands (B38/B40/B41/B42/B43)	26 dBm ±2 dB (Class 2)	< -40 dBm
EC ND	5G NR bands	23 dBm ±2 dB (Class 3)	< -40 dBm (BW: 5–20 MHz) ¹⁾
5G NR	5G NR HPUE bands (n41/n77/n78/n79)	26 dBm +2/-3 dB (Class 2)	< -40 dBm (BW: 5–20 MHz) ¹⁾

NOTE

6.7. RF Receiving Sensitivity

The following tables show conducted RF receiving sensitivity of RM505Q-AE module.

Table 36: RM505Q-AE Conducted RF Receiving Sensitivity

Mode	Frequency	Primary	Diversity	SIMO 1)	3GPP (SIMO)
WCDMA	WCDMA B1	TBD	TBD	TBD	-106.7 dBm

¹⁾ For 5G NR TDD bands, the normative reference for this requirement is *3GPP TS 38.101-1* [2] clause 6.3.1

	WCDMA B2	TBD	TBD	TBD	-104.7 dBm
	WCDMA B3	TBD	TBD	TBD	-103.7 dBm
	WCDMA B4	TBD	TBD	TBD	-106.7 dBm
	WCDMA B5	TBD	TBD	TBD	-104.7 dBm
	WCDMA B8	TBD	TBD	TBD	-103.7 dBm
	WCDMA B19	TBD	TBD	TBD	-104.7 dBm
	LTE-FDD B1 (10 MHz)	TBD	TBD	TBD	-96.3 dBm
	LTE-FDD B2 (10 MHz)	TBD	TBD	TBD	-94.3 dBm
	LTE-FDD B3 (10 MHz)	TBD	TBD	TBD	-93.3 dBm
	LTE-FDD B4 (10 MHz)	TBD	TBD	TBD	-96.3 dBm
	LTE-FDD B5 (10 MHz)	TBD	TBD	TBD	-94.3 dBm
	LTE-FDD B7 (10 MHz)	TBD	TBD	TBD	-94.3 dBm
	LTE-FDD B8 (10 MHz)	TBD	TBD	TBD	-93.3 dBm
	LTE-FDD (10 MHz)	TBD	TBD	TBD	-95.3 dBm
	LTE-FDD B12 (10 MHz)	TBD	TBD	TBD	-93.3 dBm
LTE	LTE-FDD B13 (10 MHz)	TBD	TBD	TBD	-93.3 dBm
	LTE-FDD B14 (10 MHz)	TBD	TBD	TBD	-93.3 dBm
	LTE-FDD B17 (10 MHz)	TBD	TBD	TBD	-93.3 dBm
	LTE-FDD B18 (10 MHz)	TBD	TBD	TBD	-96.3 dBm
	LTE-FDD B19 (10 MHz)	TBD	TBD	TBD	-96.3 dBm
	LTE-FDD B20 (10 MHz)	TBD	TBD	TBD	-93.3 dBm
	LTE-FDD B25 (10 MHz)	TBD	TBD	TBD	-92.8 dBm
	LTE-FDD B26 (10 MHz)	TBD	TBD	TBD	-93.8 dBm
	LTE-FDD B28 (10 MHz)	TBD	TBD	TBD	-94.8 dBm

	LTE-FDD B32 (10 MHz)	TBD	TBD	TBD	-95.3 dBm
	LTE-TDD B34 (10 MHz)	TBD	TBD	TBD	-96.3 dBm
	LTE-TDD B38 (10 MHz)	TBD	TBD	TBD	-96.3 dBm
	LTE-TDD B39 (10 MHz)	TBD	TBD	TBD	-96.3 dBm
	LTE-TDD B40 (10 MHz)	TBD	TBD	TBD	-96.3 dBm
	LTE-TDD B41 (10 MHz)	TBD	TBD	TBD	-94.3 dBm
	LTE-TDD B42 (10 MHz)	TBD	TBD	TBD	-95 dBm
	LTE-TDD B43 (10 MHz)	TBD	TBD	TBD	-95 dBm
	LTE-TDD B48 (10 MHz)	TBD	TBD	TBD	-95 dBm
	LTE-FDD B66 (10 MHz)	TBD	TBD	TBD	-96.5 dBm
	LTE-FDD B71 (10 MHz)	TBD	TBD	TBD	-94.2 dBm
5G NR	5G NR-FDD n1 (20 MHz) (SCS: 15 kHz)	TBD	TBD	TBD	-94.0 dBm
	5G NR-FDD n2 (20 MHz) (SCS: 15 kHz)	TBD	TBD	TBD	-92.0 dBm
	5G NR-FDD n3 (20 MHz) (SCS: 15 kHz)	TBD	TBD	TBD	-91.0 dBm
	5G NR-FDD n5 (10 MHz) (SCS: 15 kHz)	TBD	TBD	TBD	-95.0 dBm
	5G NR-FDD n7 (20 MHz) (SCS: 15 kHz)	TBD	TBD	TBD	-92.0 dBm
	5G NR-FDD n8 (10 MHz) (SCS: 15 kHz)	TBD	TBD	TBD	-94.0 dBm
	5G NR-FDD n12 (10 MHz) (SCS: 15 kHz)	TBD	TBD	TBD	-94.0 dBm
	5G NR-FDD n20 (10 MHz) (SCS: 15 kHz)	TBD	TBD	TBD	-94.0 dBm
	5G NR-FDD n25 (20 MHz) (SCS: 15 kHz)	TBD	TBD	TBD	-90.5 dBm
	5G NR-FDD n28 (10 MHz) (SCS: 15 kHz)	TBD	TBD	TBD	-96.0 dBm
	5G NR-TDD n38 (20 MHz) (SCS: 30 kHz)	TBD	TBD	TBD	-94.0 dBm
	5G NR-TDD n40 (20 MHz) (SCS: 30 kHz)	TBD	TBD	TBD	-94.0 dBm

	5G NR-TDD n41 (20 MHz) (SCS: 30 kHz)	TBD	TBD	TBD	-92.0 dBm
	5G NR-FDD n66 (20 MHz) (SCS: 15 kHz)	TBD	TBD	TBD	-93.5 dBm
	5G NR-FDD n71 (10 MHz) (SCS: 15 kHz)	TBD	TBD	TBD	-94.0 dBm
	5G NR-TDD n77 (20 MHz) (SCS: 30 kHz)	TBD	TBD	TBD	-92.9 dBm
	5G NR-TDD n78 (20 MHz) (SCS: 30 kHz)	TBD	TBD	TBD	-92.9 dBm
	5G NR-TDD n79 (40 MHz) (SCS: 30 kHz)	TBD	TBD	TBD	-89.7 dBm

NOTE

6.8. ESD Characteristics

The module is not protected against electrostatic discharge (ESD) in general. Consequently, it is subject to ESD handling precautions that typically apply to ESD sensitive components. Proper ESD handling and packaging procedures must be applied throughout the processing, handling and operation of any application that incorporates the module.

The following table shows the module electrostatic discharge characteristics.

Table 37: Electrostatic Discharge Characteristics (Temperature: 25 °C, Humidity: 40 %)

Tested Interfaces	Contact Discharge	Air Discharge	Unit
VCC, GND	TBD	TBD	kV
Antenna Interfaces	TBD	TBD	kV
Other Interfaces	TBD	TBD	kV

¹⁾ SIMO is a smart antenna technology that uses a single antenna at the transmitter side and two antennas at the receiver side, which improves Rx performance.

6.9. Thermal Dissipation

RM505Q-AE is designed to work over an extended temperature range. To achieve a maximum performance while working under extended temperatures or extreme conditions (such as with maximum power or data rate) for a long time, it is strongly recommended to add a thermal pad or other thermally conductive compounds between the module and the main PCB for thermal dissipation.

The thermal dissipation area on the bottom (i.e. the area for adding thermal pad) is shown below,.

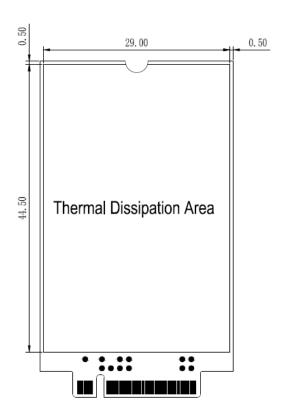


Figure 38: Thermal Dissipation Area on Both Sides of Module (Unit: mm)

There are other measures to enhance heat dissipation performance:

- Add as many ground vias as possible on PCB.
- Maximize airflow over/around the module.
- Place the module away from other heating sources.
- Module mounting holes must be used to attach (ground) the device to the main PCB ground.
- It is NOT recommended to apply solder mask on the main PCB where the module's thermal dissipation area is located.
- To facilitate the thermal dissipation, select an appropriate material with thickness and surface for the outer housing (i.e. the mechanical enclosure) of the application device that integrates the module.
- Use active cooling method when it is necessary to pull heat away from the module.
- If possible, add a heatsink on the top of the module. In this case, A thermal pad should be used

between the heatsink and the module, and the heatsink should be designed with as many fins as possible to increase the heat dissipation area.

NOTE

If a conformal coating is necessary for the module, do NOT use any coating material that may chemically react with the PCB or shielding cover, and prevent the coating material from flowing into the module.

7 Mechanical Dimensions and Packaging

This chapter mainly describes mechanical dimensions and packaging specifications of RM505Q-AE module. All dimensions are measured in mm, and the tolerances are ±0.05 mm unless otherwise specified.

7.1. Mechanical Dimensions of the Module



Figure 39: Mechanical Dimensions of RM505Q-AE (Unit: mm)

7.2. Top and Bottom Views of the Module

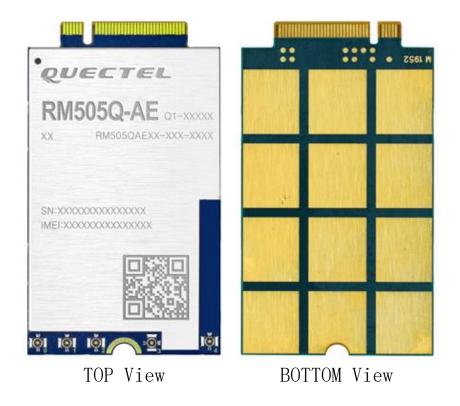


Figure 40: TOP & Bottom View of the Module

NOTE

Images above are for illustration purpose only and may differ from the actual module. For authentic appearance and label, please refer to the module received from Quectel.

7.3. M.2 Connector

RM505Q-AE adopts a standard PCI Express M.2 connector which compiles with the directives and standards listed in *document* [5].

7.4. Packaging

RM505Q-AE modules are packaged in trays. The following figure shows the tray size.

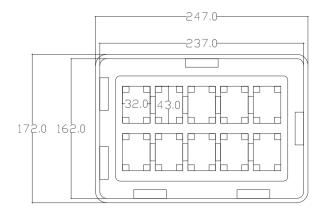


Figure 41: Tray Size (Unit: mm)

Each tray contains 10 modules. The smallest package contains 100 modules. Tray packaging procedures are as below.

- 1. Use 10 trays to package 100 modules at a time (tray size: 247 mm x 172 mm).
- 2. Place an empty tray on the top of the 10-tray stack.
- 3. Fix the stack with masking tape in "#" shape as shown in the following figure.
- 4. Pack the stack with conductive bag, and then fix the bag with masking tape.
- 5. Place the list of IMEI No. into a small carton.
- 6. Seal the carton and then label the seal with sealing sticker (small carton size: $250 \text{ mm} \times 175 \text{ mm} \times 128 \text{ mm}$).

Figure 42: Tray Packaging Procedure

8 Appendix References

Table 38: Related Documents

SN.	Document Name	Description
[1]	Quectel_PCle_Card_EVB_User_Guide	PCIe card EVB user guide
[2]	Quectel_RG50xQ&RM5xxQ_Series_AT_Commands_ Manual	AT commands manual for RG50xQ and RM5xxQ
[3]	Quectel_RG50xQ&RM5xxQ_Series_GNSS_Application_ Note	The GNSS application note for RG50xQ and RM5xxQ series
[4]	Quectel_RF_Layout_Application_Note	RF layout application note
[5]	PCI Express M.2 Specification Revision 3.0	PCI express M.2 specification

Table 39: Terms and Abbreviations

Abbreviation	Description		
bps	Bit Per Second		
COEX	Coexistence		
DFOTA	Delta Firmware Upgrade Over-The-Air		
DL	Downlink		
DPR	Dynamic Power Reduction		
EIRP	Equivalent Isotropically Radiated Power		
EMI	Electromagnetic Interference		
ESD	Electrostatic Discharge		
FDD	Frequency Division Duplexing		
GLONASS	Global Navigation Satellite System (Russia)		

GNSS	Global Navigation Satellite System
GPS	Global Positioning System
GRFC	Generic RF Control
GSM	Global System for Mobile Communications
HPUE	High Power User Equipment
HSPA	High Speed Packet Access
HSUPA	High Speed Uplink Packet Access
kbps	Kilo Bits Per Second
LAA	License-Assisted Access
LED	Light Emitting Diode
LTE	Long Term Evolution
MBIM	Mobile Broadband Interface Model
Mbps	Mega Bits Per Second
ME	Mobile Equipment
MIMO	Multiple-Input Multiple-Output
MLCC	Multiplayer Ceramic Chip Capacitor
MO	Mobile Originated
MSB	Most Signification Bit
MT	Mobile Terminated
PAP	Password Authentication Protocol
PCB	Printed Circuit Board
PCle	Peripheral Component Interconnect Express
PCM	Pulse Code Modulation
PDU	Protocol Data Unit
PME	Power Management Event

PPP	Point-to-Point Protocol		
QMI	Qualcomm MSM (Mobile Station Modems) Interface		
RC	Root Complex		
RF	Radio Frequency		
RFFE	RF Front-End		
R/LHCP	Right/Left Hand Circular Polarization		
Rx	Receive		
SAR	Specific Absorption Rate		
SCS	Subcarrier Spacing		
SDR	Software-Defined Radio		
SIMO	Single-Input Multiple-Output		
SMS	Short Message Service		
Tx	Transmit		
UART	Universal Asynchronous Receiver & Transmitter		
UL	Uplink		
URC	Unsolicited Result Code		
USB	Universal Serial Bus		
(U)SIM	(Universal) Subscriber Identity Module		
V _{IH}	Input High Voltage Level		
V _{IL}	Input Low Voltage Level		
V _{OH}	Output High Voltage Level		
V _{OL}	Output Low Voltage Level		
WCDMA	Wideband Code Division Multiple Access		
WLAN	Wireless Local Area Network		

Installation engineers need to be aware of the potential risk of the thermal effects of radio frequency energy and how to stay protected against undue risk.

The EUT is a mobile device; maintain at least a 20 cm separation between the EUT and the user's body and must not transmit simultaneously with any other antenna or transmitter.

OEM/Integrators Installation Manual

Important Notice to OEM integrators 1. This module is limited to OEM installation ONLY. 2. This module is limited to installation in mobile or fixed applications, according to Part 2.1091(b). 3. The separate approval is required for all other operating configurations, including portable configurations with respect to Part 2.1093 and different antenna configurations 4. For FCC Part 15.31 (h) and (k): The host manufacturer is responsible for additional testing to verify compliance as a composite system. When testing the host device for compliance with Part 15 Subpart B, the host manufacturer is required to show compliance with Part 15 Subpart B while the transmitter module(s) are installed and operating. The modules should be transmitting and the evaluation should confirm that the module's intentional emissions are compliant (i.e. fundamental and out of band emissions). The host manufacturer must verify that there are no additional unintentional emissions other than what is permitted in Part 15 Subpart B or emissions are compliant with the transmitter(s) rule(s). The Grantee will provide guidance to the host manufacturer for Part 15 B requirements if needed.

Important Note

notice that any deviation(s) from the defined parameters of the antenna trace, as described by the instructions, require that the host product manufacturer must notify to Quectel that they wish to change the antenna trace design. In this case, a Class II permissive change application is required to be filed by the USI, or the host manufacturer can take responsibility through the change in FCC ID (new application) procedure followed by a Class II permissive change application

End Product Labeling

When the module is installed in the host device, the FCC/IC ID label must be visible through a window on the final device or it must be visible when an access panel, door or cover is easily re-moved. If not, a second label must be placed on the outside of the final device that contains the following text: "Contains FCC ID: XMR2020RM505QAE" "Contains IC: XMR2020RM505QAE". The FCC ID/IC ID can be used only when all FCC/IC compliance requirements are met.

Antenna

- (1) The antenna must be installed such that 20 cm is maintained between the antenna and users,
- (2) The transmitter module may not be co-located with any other transmitter or antenna.

In the event that these conditions cannot be met (for example certain laptop configurations or co-location with another transmitter), then the FCC/IC authorization is no longer considered valid and the FCC ID/IC ID cannot be used on the final product. In these circumstances, the OEM integrator will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate FCC/IC authorization.

To comply with FCC regulations limiting both maximum RF output power and human exposure to RF radiation, maximum antenna gain (including cable loss) must not exceed

Test Mode	Antenna Gain (dBi)	Test Mode	Antenna Gain (dBi)
WCDMA B2	8.00	LTE B38	2.00
WCDMA B4	5.00	LTE B41	2.00
WCDMA B5	5.00	LTE B48	-2.00*
LTE B2	8.00	LTE B66	5.00
LTE B4	5.00	LTE B71	5.00
LTE B5	5.00	n2	8.00
LTE B7	8.00	n5	5.00
LTE B12	5.00	n7	8.00
LTE B13	5.00	n12	5.00
LTE B14	5.00	n25	8.00
LTE B17	5.00	n41	5.00
LTE B25	8.00	n66	5.00
LTE B26	5.00	n71	5.00
LTE B30	-1.02*	n77	5.00

Note: "*" means when using higher gain antenna, the host manufacturer should reduce the conducted power to meet the FCC maximum RF output power limit.

Manual Information to the End User

The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module in the user's manual of the end product which integrates this module. The end user manual shall include all required regulatory information/warning as show in this manual

Federal Communication Commission Interference Statement

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

(1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate this equipment. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

List of applicable FCC rules

This module has been tested and found to comply with part 22, part 24, part 27, part 90 requirements for Modular Approval.

The modular transmitter is only FCC authorized for the specific rule parts (i.e., FCC transmitter rules) listed on the grant, and that the host product manufacturer is responsible for compliance to any other FCC rules that apply to the host not covered by the modular transmitter grant of certification. If the grantee markets their product as being Part 15 Subpart B compliant (when it also contains unintentional-radiator digital circuity), then the grantee shall provide a notice stating that the final host product still requires Part 15 Subpart B compliance testing with the modular transmitter installed.

This device is intended only for OEM integrators under the following conditions: (For module device use)

- 1) The antenna must be installed such that 20 cm is maintained between the antenna and users, and
- 2) The transmitter module may not be co-located with any other transmitter or antenna.

As long as 2 conditions above are met, further transmitter test will not be required. However, the OEM integrator is still responsible for testing their end-product for any additional compliance requirements required with this module installed.

Radiation Exposure Statement

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment.

This equipment should be installed and operated with minimum distance 20 cm between the radiator & your body.

Industry Canada Statement

This device complies with Industry Canada's licence-exempt RSSs. Operation is subject to the following two conditions:

- (1) This device may not cause interference; and
- (2) This device must accept any interference, including interference that may cause undesired operation of the device.

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes:

- (1) l'appareil ne doit pas produire de brouillage, et
- (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement."

Radiation Exposure Statement

This equipment complies with IC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20 cm between the radiator & your body

Déclaration d'exposition aux radiations:

Cet équipement est conforme aux limites d'exposition aux rayonnements ISED établies pour un environnement non contrôlé. Cet équipement doit être installé et utilisé avec un minimum de 20 cm de distance entre la source de rayonnement et votre corps.

This device is intended only for OEM integrators under the following conditions: (For module device use)

- 1) The antenna must be installed such that 20 cm is maintained between the antenna and users, and
- 2) The transmitter module may not be co-located with any other transmitter or antenna. As long as 2 conditions above are met, further transmitter test will not be required. However, the OEM integrator is still responsible for testing their end-product for any additional compliance requirements required with this module installed.

Cet appareil est conçu uniquement pour les intégrateurs OEM dans les conditions suivantes: (Pour utilisation de dispositif module)

- 1) L'antenne doit être installée de telle sorte qu'une distance de 20 cm est respectée entre l'antenne et les utilisateurs, et
- 2) Le module émetteur peut ne pas être coïmplanté avec un autre émetteur ou antenne.

Tant que les 2 conditions ci-dessus sont remplies, des essais supplémentaires sur l'émetteur ne seront pas nécessaires. Toutefois, l'intégrateur OEM est toujours responsable des essais sur son produit final pour toutes exigences de conformité supplémentaires requis pour ce module installé.

IMPORTANT NOTE:

In the event that these conditions cannot be met (for example certain laptop configurations or colocation with another transmitter), then the Canada authorization is no longer considered valid and the IC ID cannot be used on the final product. In these circumstances, the OEM integrator will be responsible for re-evaluating the end product (including the transmitter) and obtaining a separate Canada authorization.

NOTE IMPORTANTE:

Dans le cas où ces conditions ne peuvent être satisfaites (par exemple pour certaines configurations d'ordinateur portable ou de certaines co-localisation avec un autre émetteur), l'autorisation du Canada n'est plus considéré comme valide et l'ID IC ne peut pas être utilisé sur le produit final. Dans ces circonstances, l'intégrateur OEM sera chargé de réévaluer le produit final (y compris l'émetteur) et l'obtention d'une autorisation distincte au Canada.

End Product Labeling

This transmitter module is authorized only for use in device where the antenna may be installed such that 20 cm may be maintained between the antenna and users. The final end product must be labeled in a visible area with the following: "Contains IC: 10224A-2021RM505AE".

Plaque signalétique du produit final

Ce module émetteur est autorisé uniquement pour une utilisation dans un dispositif où l'antenne peut être installée de telle sorte qu'une distance de 20cm peut être maintenue entre l'antenne et les utilisateurs. Le produit final doit être étiqueté dans un endroit visible avec l'inscription suivante: "Contient des IC: 10224A-2021RM510GL".

Manual Information to the End User

The OEM integrator has to be aware not to provide information to the end user regarding how to install or remove this RF module in the user's manual of the end product which integrates this module.

The end user manual shall include all required regulatory information/warning as show in this manual.

Manuel d'information à l'utilisateur final

L'intégrateur OEM doit être conscient de ne pas fournir des informations à l'utilisateur final quant à la façon d'installer ou de supprimer ce module RF dans le manuel de l'utilisateur du produit final qui intègre ce module.

Le manuel de l'utilisateur final doit inclure toutes les informations réglementaires requises et avertissements comme indiqué dans ce manuel.