

FCC Radio Test Report

FCC ID: XMR2020EM160RGL2

Report No. Equipment Model Name Brand Name Applicant Address	 BTL-FCCP-6-2311T077 LTE-A Cat 16 M.2 Module EM160R-GL Quectel Quectel Wireless Solutions Company Limited Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai, China 200233
Radio Function	: LTE Band 48
FCC Rule Part(s)	: FCC CFR Title 47, Part 96
Date of Receipt Date of Test Issued Date	: 2023/12/5 : 2023/12/25 ~ 2024/1/12 : 2024/1/30

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by

Chuang, Supervisor Jerrv

Approved by

Peter Chen, Manager

BTL Inc.

No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com Service mail: btl_qa@newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO/IEC 17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

1 SUMMARY OF TEST RESULTS 5 1.1 **REFERENCE TEST GUIDANCE** 6 TEST FACILITY 1.2 6 MEASUREMENT UNCERTAINTY 1.3 6 1.4 TEST ENVIRONMENT CONDITIONS 6 2 **GENERAL INFORMATION** 7 DESCRIPTION OF EUT 2.1 7 2.2 **TEST MODES** 8 2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 9 2.4 9 SUPPORT UNITS EFFECTIVE ISOTROPIC RADIATED POWER MEASUREMENT 3 10 3.1 LIMIT 10 3.2 TEST PROCEDURE 10 3.3 **DEVIATION FROM TEST STANDARD** 10 3.4 TEST SETUP 10 3.5 EUT OPERATING CONDITIONS 10 3.6 TEST RESULT 10 4 RADIATED SPURIOUS EMISSIONS MEASUREMENT 11 4.1 LIMIT 11 **TEST PROCEDURE** 4.2 11 4.3 DEVIATION FROM TEST STANDARD 11 4.4 TEST SETUP 12 4.5 EUT OPERATING CONDITIONS 12 4.6 TEST RESULT 12 5 LIST OF MEASURING EQUIPMENTS 13 EUT TEST PHOTO 6 14 7 EUT PHOTOS 14 APPENDIX A EQUIVALENT ISOTROPIC RADIATED POWER 15 APPENDIX B RADIATED SPURIOUS EMISSIONS 20

CONTENTS

REVISION HISTORY

Report No.	Version	Description	Issued Date	Note
BTL-FCCP-6-2311T077	R00	Original Report.	2024/1/30	Valid

1 SUMMARY OF TEST RESULTS

Test procedures according to the technical standards.

Standard(s) Section	n Description	Test Result	Judgement	Remark
2.1046 96.41	Effective Isotropic Radiated Power	APPENDIX A	Pass	
2.1053 96.41	Radiated Spurious Emissions	APPENDIX B	Pass	

NOTE:

- (1) "N/A" denotes test is not applicable in this Test Report.
- (2) The report format version is TP.1.1.1.
- (3) This test report is issued for the RF module (FCCID: XMR2020EM160RGL2) to be incorporated to the host device (Model number: TP00157A), Product name: Notebook Computer). Since the RF module has been certificated, after evaluation, above test items were criticized and reconfirmed in this report.
- (4) After spot check, this revision does not change original radio parameters.

1.1 **REFERENCE TEST GUIDANCE**

ANSI C63.26-2015 ANSI/TIA-603-E-2016 FCC KDB 971168 D01 Power Meas License Digital Systems v03r01

1.2 **TEST FACILITY**

The test locations stated below are under the TAF Accreditation Number 0659. The test location(s) used to collect the test data in this report are: No. 68-1, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan (FCC DN: TW0659) C05 □ SR10 ⊠ SR11 No. 72, Ln. 169, Sec. 2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan (FCC DN: TW0659) ⊠ CB21 □ CB22

□ C06

1.3 **MEASUREMENT UNCERTAINTY**

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = 2$, providing a level of confidence of approximately 95 %. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 Ucispr requirement.

A. Radiated emissions test :

Test Site	Measurement Frequency Range	U,(dB)
	0.03 GHz ~ 0.2 GHz	4.17
	0.2 GHz ~ 1 GHz	4.72
CB21	1 GHz ~ 6 GHz	5.21
CB21	6 GHz ~ 18 GHz	5.51
	18 GHz ~ 26 GHz	3.69
	26 GHz ~ 40 GHz	4.23

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.4 **TEST ENVIRONMENT CONDITIONS**

Test Item	Environment Condition	Test Voltage	Tested by
Effective Isotropic Radiated Power	23.2 °C, 45 %	AC 120V	Jerry Chuang
Radiated Spurious Emissions	Refer to data	AC 120V	Kevin Zhen

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Equipment	LTE-A Cat 16 M.2 M	odule					
Model Name	EM160R-GL						
Brand Name	Quectel						
Model Difference		N/A					
Power Source	Supplied from host s						
Power Rating	3.1 ~4.1Vdc, typical	3.7Vdc					
Host device information							
Equipment	Notebook Computer						
Model Name	TP00157A						
Brand Name	Lenovo						
Model Difference	N/A						
Power Source	DC voltage supplied (Lenovo/ ADL135YS		er Supply.				
Power Rating	I/P: 100-240V~ 2.5A 50-60Hz O/P: 20.0VDC 6.75A 135.0W / 19.95VDC 5.0A / 15.0VDC 3.0A / 9.0VDC 3.0A / 5.0VDC 3.0A 15.0W						
WIFI+BT Module	Intel® Wi-Fi 6E AX2	11 / AX211D2W					
	Quectel / EM160R-GL						
WWAN Module	Quectel / EM160R-G	jL					
	Quectel / EM160R-G	UL Frequency	(MHz)	DL Fr	equency (MHz)		
WWAN Module Operation Frequency		UL Frequency 3550 ~ 370		DL Fr	equency (MHz) -		
	Band	UL Frequency	00 Mo	de	- Power (W)		
	Band LTE 48	UL Frequency 3550 ~ 370	00	de	-		
	Band LTE 48	UL Frequency 3550 ~ 370	00 Mo	de SK	- Power (W)		
	Band LTE 48	UL Frequency 3550 ~ 370 BW (MHz)	00 Mo QPS	de SK AM	- Power (W) 0.172		
	Band LTE 48	UL Frequency 3550 ~ 370 BW (MHz)	00 Mo QPS 16Q	de SK AM AM	- Power (W) 0.172 0.147		
	Band LTE 48	UL Frequency 3550 ~ 370 BW (MHz)	00 Mo QPS 16Q 64Q	de SK AM AM SK	- Power (W) 0.172 0.147 0.145		
	Band LTE 48 Band	UL Frequency 3550 ~ 37(BW (MHz) 5	00 QPS 16Q 64Q QPS	de SK AM AM SK AM	- Power (W) 0.172 0.147 0.145 0.174		
Operation Frequency	Band LTE 48	UL Frequency 3550 ~ 37(BW (MHz) 5	00 Mo QP 16Q 64Q QP 16Q	de SK AM AM SK AM AM	- Power (W) 0.172 0.147 0.145 0.174 0.174 0.149		
Operation Frequency	Band LTE 48 Band	UL Frequency 3550 ~ 37(BW (MHz) 5	00 QPS 16Q 64Q QPS 16Q 64Q	de SK AM AM SK AM AM SK	- Power (W) 0.172 0.147 0.145 0.174 0.149 0.147		
Operation Frequency	Band LTE 48 Band	UL Frequency 3550 ~ 37(BW (MHz) 5 10	00 Mo QPS 16Q 64Q QPS 16Q 64Q QPS	de SK AM AM SK AM AM SK AM	- Power (W) 0.172 0.147 0.145 0.145 0.174 0.149 0.147 0.147		
Operation Frequency	Band LTE 48 Band	UL Frequency 3550 ~ 37(BW (MHz) 5 10	00 Mo QP 16Q 64Q 0P 16Q 64Q QP 16Q	de SK AM AM SK AM AM SK AM AM	- Power (W) 0.172 0.147 0.145 0.145 0.174 0.149 0.147 0.147 0.176 0.151		
Operation Frequency	Band LTE 48 Band	UL Frequency 3550 ~ 37(BW (MHz) 5 10	00 Mo QPS 16Q 64Q 16Q 64Q QPS 16Q 16Q 64Q	de SK AM AM SK AM SK AM SK AM SK	- Power (W) 0.172 0.147 0.145 0.174 0.149 0.149 0.147 0.147 0.176 0.151 0.150		
Operation Frequency	Band LTE 48 Band	UL Frequency 3550 ~ 37(BW (MHz) 5 10 15	00 Mo QPS 16Q 64Q QPS 16Q 64Q QPS 16Q 64Q QPS	de SK AM AM SK AM SK AM AM SK AM SK AM	- Power (W) 0.172 0.147 0.145 0.174 0.149 0.147 0.147 0.176 0.151 0.150 0.179		
Operation Frequency	Band LTE 48 Band	UL Frequency 3550 ~ 37(BW (MHz) 5 10 15	00 Mo QPS 16Q 64Q QPS 16Q 64Q QPS 16Q 02S 16Q 16Q	de SK AM AM SK AM SK AM AM SK AM SK AM	- Power (W) 0.172 0.147 0.145 0.174 0.149 0.147 0.147 0.147 0.151 0.151 0.150 0.179 0.153		
Operation Frequency Maximum EIRP	Band LTE 48 Band LTE 48	UL Frequency 3550 ~ 37(BW (MHz) 5 10 15 20	00 Mo QPS 16Q 64Q QPS 16Q 64Q QPS 16Q 02S 16Q 16Q	de SK AM AM SK AM SK AM AM SK AM SK AM	- Power (W) 0.172 0.147 0.145 0.174 0.149 0.147 0.147 0.147 0.151 0.151 0.150 0.179 0.153		

NOTE:

(1) The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

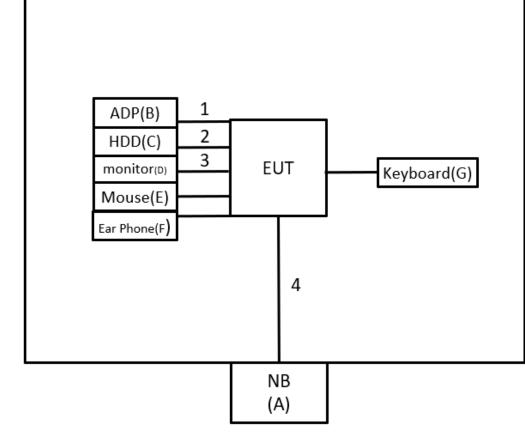
(2) Table for Filed Antenna:

(z) Table I	or theu Antenna.					
Antenna	Manufacture	Parts Number	Туре	Connector	Gain (dBi)	Note
Main	Luxshare-ICT	DC330023020	PIFA	I-PEX	0.60	LTE Band 48
Aux	Luxshare-ICT	DC330023030	PIFA	I-PEX	-	RX only
Antenna	Manufacture	Parts Number	Туре	Connector	Gain (dBi)	Note
Main	SPEEDWIRE	DC330023120	PIFA	I-PEX	-3.11	LTE Band 48
Aux	SPEEDWIRE	DC330023130	PIFA	I-PEX	-	RX only

(3) The above Antenna information are derived from the antenna data sheet provided by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

2.2 **TEST MODES**

Test Items	Band	Test Mode	Note
Effective Isotropic Radiated Power	LTE Band 48	Refer to APPENDIX A	-
Radiated Spurious Emissions (Below 1G)	LTE Band 48	TX Mode (CH 55990)	-
Radiated Spurious Emissions (Above 1G)	LTE Band 48	TX Mode (CH 55340/55990/56640)	-
Radiated Spurious Emissions (Above 18G)	LTE Band 48	TX Mode (CH 55990)	-


NOTE:

(1) All X, Y and Z axes are evaluated, but only the worst case (X axis) is recorded.
(2) For Radiated Spurious Emissions both QPSK, 16QAM and 64QAM are evaluated, but only the worst case (QPSK) is recorded.

2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.	Remarks
Α	NB	HP	TPN-I119	N/A	Furnished by test lab.
В	ADP	Lenovo	ADL135YSDC3 A	N/A	Supplied by test requester.
С	USB 2.5" HDD	TOSIBA	XS700	483B60M9KQSS	Furnished by test lab.
D	27" 4K Monitor	DELL	U2720Q	CN-083VF-WSL0 0-0B7-332L	Furnished by test lab.
Е	Mouse	Lenovo	SM-8823	N/A	Furnished by test lab.
F	Ear Phone	HTC	N/A	N/A	Furnished by test lab.
G	Keyboard	Bloody	KB-8	N/A	Furnished by test lab.
Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	N/A	N/A	0.9m	Power Cord	Supplied by test requester.
2	N/A	N/A	1m	Type C to USB Cable	Furnished by test lab.
3	N/A	N/A	1.8m	HDMI	Furnished by test lab.
4	N/A	N/A	10m	RJ45 Cable	Furnished by test lab.

3 EFFECTIVE ISOTROPIC RADIATED POWER MEASUREMENT

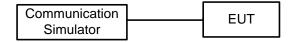
3.1 LIMIT

EIRP for CBRS equipment as below table:

Device	Maximum EIRP (dBm/10 MHz)
End User Device	23
Category A CBSD	30
Category B CBSD	47

3.2 TEST PROCEDURE

The testing follows FCC KDB 971168 v03r01 Section 5.8.


- a. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- b. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a TX cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step a. Record the power level of S.G
- c. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.
- d. ERP can be calculated form EIRP by subtracting the gain of dipole, ERP = EIPR 2.15dBi..
- e. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1MHz/3MHz.

3.3 DEVIATION FROM TEST STANDARD

No deviation.

3.4 TEST SETUP

Conducted Measurement:

3.5 EUT OPERATING CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

3.6 TEST RESULT

Please refer to the APPENDIX A.

4 RADIATED SPURIOUS EMISSIONS MEASUREMENT

4.1 LIMIT

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$. The emission limit equal to -13dBm.

NOTE:

- (1) The measurements of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.
- (2) The test result calculated as following:
 - Measurement Value = Reading Level + Correct Factor
 - Correct Factor = Antenna Factor + Cable Loss Amplifier Gain(if use) Margin Level = Measurement Value - Limit Value

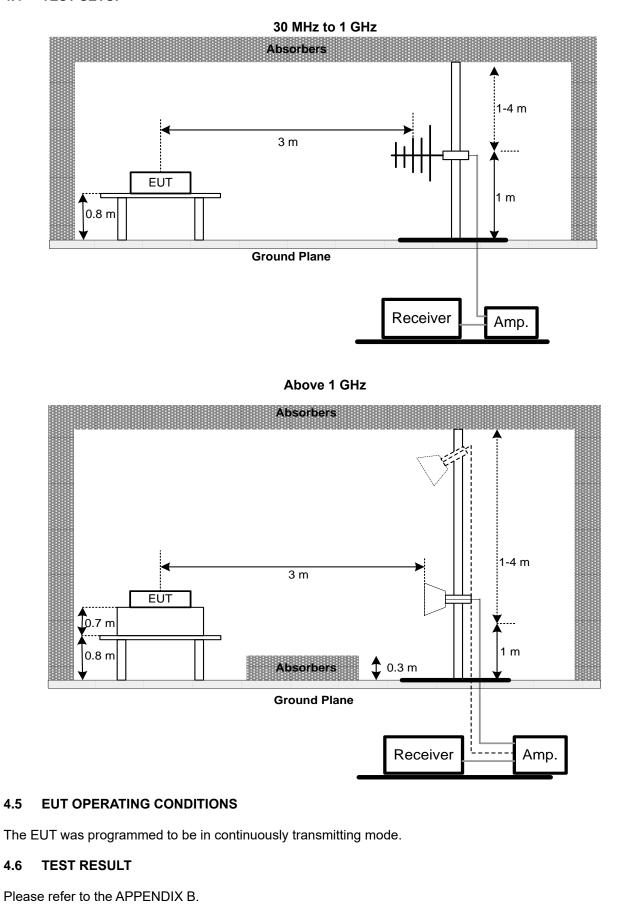
Calculation example:

Reading Level (dBm)		Correct Factor (dB/m)		Measurement Value (dBm)
-50.43	+	-2.11	=	-52.54

Measurement Value (dBm)		Limit Value (dBm)		Margin Level (dB)
-52.54	-	-13	=	-39.54

4.2 TEST PROCEDURE

The testing follows FCC KDB 971168 v03r01 Section 6.2.


- a. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- b. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a TX cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step a. Record the power level of S.G
- c. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.
- d. ERP can be calculated form EIRP by subtracting the gain of dipole, ERP = EIPR 2.15dBi..
- e. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1MHz/3MHz.

4.3 DEVIATION FROM TEST STANDARD

No deviation.

4.4 TEST SETUP

5 LIST OF MEASURING EQUIPMENTS

		Effecti	ve Isotropic Radia	ated Power		
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	WIRELESS COMMUNICATIO N TEST SET	Agilent	E5515C	GB47390193	2023/7/4	2024/7/3
2	Radio Communication Test Station	ANRITSU	MT8821C	6262044728	2023/11/22	2024/11/21
			Radiated Emission	ons		
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	Preamplifier	EMCI	EMC330N	980850	2023/9/6	2024/9/5
2	Preamplifier	EMCI	EMC118A45SE	980819	2023/3/7	2024/3/6
3	Pre-Amplifier	EMCI	EMC184045SE	980907	2023/9/21	2024/9/20

3	Pre-Amplifier	EMCI	EMC184045SE	980907	2023/9/21	2024/9/20
4	Test Cable	EMCI	EMC104-SM-100 0	180809	2023/7/10	2024/7/9
5	Test Cable	EMCI	EMC104-SM-SM- 3000	220322	2023/3/14	2024/3/13
6	Test Cable	EMCI	EMC104-SM-SM- 7000	220324	2023/3/14	2024/3/13
7	EXA Signal Analyzer	keysight	N9020B	MY57120120	2023/2/24	2024/2/23
8	Horn Antenna	RFSPIN	DRH18-E	211202A18EN	2023/5/12	2024/5/11
9	Horn Ant	Schwarzbeck	BBHA 9170D	1136	2023/5/12	2024/5/11
10	Log-bicon Antenna	Schwarzbeck	VULB9168	1369	2023/5/9	2024/5/8
11	6dB Attenuator	EMCI	EMCI-N-6-06	AT-06001	2023/5/9	2024/5/8
12	Test Cable	EMCI	EMC101G-KM-K M-3000	220329	2023/3/14	2024/3/13
13	Test Cable	EMCI	EMC102-KM-KM- 1000	220327	2023/3/14	2024/3/13
14	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A
15	WIRELESS COMMUNICATIO N TEST SET	Agilent	E5515C	GB47390193	2023/7/4	2024/7/3
16	Radio Communication Test Station	ANRITSU	MT8821C	6262044728	2023/11/22	2024/11/21

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

6 EUT TEST PHOTO

Please refer to document Appendix No.: TP-2311T077-FCCP-1 (APPENDIX-TEST PHOTOS).

7 EUT PHOTOS

Please refer to document Appendix No.: EP-2311T077-1(APPENDIX-EUT PHOTOS).

APPENDIX A EQUIVALENT ISOTROPIC RADIATED POWER

LTE Ban	d 48 Pow	/er:								
Dand	BW	Channel	Frequency	Mode	UL RB	UL RB	MDD	Average power	EIRP power	EIRP power
Band	(MHz)	Channel	(MHz)	iviode	Allocation	Start	MPR	(dBm)	(dBm)	(W)
					1	0	0	21.59	22.19	0.166
				ODCK	1	12	0	21.73	22.33	0.171
				QPSK	1	24	0	21.69	22.29	0.169
					25	0	1	20.70	21.30	0.135
					1	0	1	20.94	21.54	0.143
		55265	2552.5	10000	1	12	1	20.97	21.57	0.144
		55265	3552.5	16QAIVI	1	24	1	21.08	21.68	0.147
					25	0	2	19.69	20.29	0.107
					1	0	1	20.77	21.37	0.137
				640444	1	12	1	20.93	21.53	0.142
				64QAIVI	1	24	1	21.02	21.62	0.145
					25	0	2	19.63	20.23	0.105
					1	0	0	21.75	22.35	0.172
				ODCK	1	12	0	21.68	22.28	0.169
				QPSK	1	24	0	21.51	22.11	0.163
					25	0	1	20.49	21.09	0.129
					1	0	1	20.93	21.53	0.142
40	F	55000	2625.0	10000	1	12	1	20.88	21.48	0.141
48	5	55990	3625.0	16QAIVI	1	24	1	20.80	21.40	0.138
					25	0	2	19.57	20.17	0.104
					1	0	1	20.95	21.55	0.143
				640444	1	12	1	20.81	21.41	0.138
				64QAIVI	1	24	1	20.64	21.24	0.133
					25	0	2	19.65	20.25	0.106
					1	0	0	21.28	21.88	0.154
				ODCK	1	12	0	21.42	22.02	0.159
				QPSK	1	24	0	21.40	22.00	0.158
					25	0	1	20.35	20.95	0.124
			5715 3697.5		1	0	1	20.57	21.17	0.131
		E 6 7 1 E		160414	1 24 0 25 0 1 25 0 1 1 12 1 1 24 1 50AM 1 24 1 1 12 1 1 25 0 2 1 4QAM 1 12 1 1 24 1 1 25 0 2 1 1 24 1 1 25 0 2 1 0 1 12 1 1 12 0 1 1 24 1 1 50AM 1 12 1 1 12 1 1 1 12 1 1 1 12 1 1 1 24 1 1 25 0 2 1 <		20.71	21.31	0.135	
		20/12		TOUAIVI	1	24	1	20.81	21.41	0.138
					25	0	2	19.38	19.98	0.100
					1	0	1	20.49	21.09	0.129
				640414	1	12	1	20.55	21.15	0.130
				64QAM	1	24	1	20.73	21.33	0.136
					25	0	2	19.37	19.97	0.099

Band	BW	Channel	Frequency	Mode	UL RB	UL RB	MPR	Average power	EIRP power	EIRP power						
Ballu	(MHz)	Channel	(MHz)	Woue	Allocation	Start	IVIEN	(dBm)	(dBm)	(W)						
					1	0	0	21.64	22.24	0.167						
				QPSK	1	24	0	21.80	22.40	0.174						
				QPSK	1	49	0	21.76	22.36	0.172						
					50	0	1	20.76	21.36	0.137						
					1	0	1	21.00	21.60	0.145						
		55200	2555.0	10000	1	24	1	21.03	21.63	0.146						
		55290	3555.0	16QAM	1	49	1	21.13	21.73	0.149						
					50	0	2	19.76	20.36	0.109						
					1	0	1	20.84	21.44	0.139						
				64QAM	1	24	1	20.99	21.59	0.144						
				64QAIVI	1	49	1	21.07	21.67	0.147						
					50	0	2	19.71	20.31	0.107						
					1	0	0	21.80	22.40	0.174						
				QPSK	1	24	0	21.72	22.32	0.171						
				QPSK	1	49	0	21.58	22.18	0.165						
					50	0	1	20.55	21.15	0.130						
					1	0	1	21.01	21.61	0.145						
48	10	55990	2625.0	16QAM	1	24	1	20.92	21.52	0.142						
40	10	55990	3625.0	3625.0	3625.0	3625.0	3625.0	3625.0	3625.0	TOQAIN	1	49	1	20.87	21.47	0.140
					50	0	2	19.64	20.24	0.106						
					1	0	1	21.00	21.60	0.145						
				64QAM	1	24	1	20.89	21.49	0.141						
				64QAIVI	1	49	1	20.71	21.31	0.135						
					50	0	2	19.72	20.32	0.108						
					1	0	0	21.34	21.94	0.156						
				QPSK	1	24	0	21.47	22.07	0.161						
				QF3K	1	49	0	21.47	22.07	0.161						
					50	0	1	20.42	21.02	0.126						
			56690 3695.0		1	0	1	20.63	21.23	0.133						
		56600		16QAM	1	24	1	20.79	21.39	0.138						
		06000		TOUAIVI	1	49	1	20.86	21.46	0.140						
					50	0	2	19.46	20.06	0.101						
					1	0	1	20.54	21.14	0.130						
		1		64QAM	1	24	1	20.62	21.22	0.132						
				04QAIVI	1	49	1	20.80	21.40	0.138						
					50	0	2	19.42	20.02	0.100						

Band	BW	Channel	Frequency	Mode	UL RB	UL RB	MPR	Average power	EIRP power	EIRP power				
Ballu	(MHz)	Channel	(MHz)	Widde	Allocation	Start		(dBm)	(dBm)	(W)				
					1	0	0	21.70	22.30	0.170				
				QPSK	1	37	0	21.86	22.46	0.176				
				QPSK	1	74	0	21.83	22.43	0.175				
					75	0	1	20.82	21.42	0.139				
					1	0	1	21.05	21.65	0.146				
		55315	3557.5	16QAM	1	37	1	21.11	21.71	0.148				
		55515	5557.5	IOQAW	1	74	1	21.19	21.79	0.151				
					75	0	2	19.82	20.42	0.110				
					1	0	1	20.91	21.51	0.142				
				64QAM	1	37	1	21.06	21.66	0.147				
				64QAIVI	1	74	1	21.15	21.75	0.150				
					75	0	2	19.77	20.37	0.109				
					1	0	0	21.86	22.46	0.176				
				QPSK	1	37	0	21.79	22.39	0.173				
				QPSK	1	74	0	21.65	22.25	0.168				
			-		75	0	1	20.62	21.22	0.132				
					1	0	1	21.06	21.66	0.147				
48	15	55990	3625.0	16QAM	1	37	1	20.98	21.58	0.144				
40	15	55990		3625.0	3625.0	3625.0	3625.0	3625.0	TOQAIVI	1	74	1	20.93	21.53
					75	0	2	19.71	20.31	0.107				
					1	0	1	21.05	21.65	0.146				
				64QAM	1	37	1	20.94	21.54	0.143				
				04QAIVI	1	74	1	20.77	21.37	0.137				
					75	0	2	19.77	20.37	0.109				
					1	0	0	21.40	22.00	0.158				
				QPSK	1	37	0	21.55	22.15	0.164				
				QF3K	1	74	0	21.53	22.13	0.163				
					75	0	1	20.47	21.07	0.128				
					1	0	1	20.69	21.29	0.135				
		56665	5 3692.5	16QAM	1	37	1	20.84	21.44	0.139				
		50003		TUCKIN	1	74	1	20.91	21.51	0.142				
					75	0	2	19.54	20.14	0.103				
					1	0	1	20.62	21.22	0.132				
				64QAM	1	37	1	20.69	21.29	0.135				
					1	74	1	20.84	21.44	0.139				
					75	0	2	19.49	20.09	0.102				

Band	BW	Channel	Frequency	Mode	UL RB	UL RB	MPR	Average power	EIRP power	EIRP power
Ballu	(MHz)	Channel	(MHz)	Widde	Allocation	Start	IVIEN	(dBm)	(dBm)	(W)
					1	0	0	21.74	22.34	0.171
				QPSK	1	49	0	21.92	22.52	0.179
				QPSK	1	99	0	21.91	22.51	0.178
					100	0	1	20.86	21.46	0.140
					1	0	1	21.11	21.71	0.148
		55240	25.00.0	10000	1	49	1	21.18	21.78	0.151
		55340	3560.0	16QAM	1	99	1	21.26	21.86	0.153
					100	0	2	19.89	20.49	0.112
					1	0	1	20.97	21.57	0.144
				640444	1	49	1	21.12	21.72	0.149
				64QAM	1	99	1	21.19	21.79	0.151
					100	0	2	19.83	20.43	0.110
					1	0	0	21.92	22.52	0.179
				0.001	1	49	0	21.86	22.46	0.176
			3625.0	QPSK	1	99	0	21.71	22.31	0.170
					100	0	1	20.69	21.29	0.135
					1	0	1	21.10	21.70	0.148
10	20			16QAM	1	49	1	21.03	21.63	0.146
48	20	55990			1	99	1	20.99	21.59	0.144
					100	0	2	19.76	20.36	0.109
					1	0	1	21.11	21.71	0.148
				640444	1	49	1	21.01	21.61	0.145
				64QAM	1	99	1	20.82	21.42	0.139
					100	0	2	19.83	20.43	0.110
					1	0	0	21.47	22.07	0.161
				0.0001/	1	49	0	21.59	22.19	0.166
				QPSK	1	99	0	21.58	22.18	0.165
					100	0	1	20.54	21.14	0.130
					1	0	1	20.73	21.33	0.136
		56646	3690.0	1004	1	49	1	20.88	21.48	0.141
	1	56640		16QAM	1	99	1	20.97	21.57	0.144
					100	0	2	19.61	20.21	0.105
					1	0	1	20.69	21.29	0.135
					1	49	1	20.76	21.36	0.137
				64QAM	1	99	1	20.90	21.50	0.141
					100	0	2	19.57	20.17	0.104

APPENDIX B RADIATED SPURIOUS EMISSIONS

	Test M Test Ch					Band - 55990					est Dat blarizatio					4/1/8 tical	
	Ten	וף			2	2°C					Hum.				58	3%	
0.0	dBm	•															
-10																	
-10																	
-20																	
30 -																	
40 -																	-
																	-
-50																	
co																	
-60	-								6								1
-70	1 X	2 X 3					5 X		6 X								
		X		4			^										
80														_			
90																	
-100.0																	
30.00	0 127.	00 224.	00	321.0)0	418.0	0	515.0)0	612.	00 7	709.00	0 800	5.00		1000.00)MH;
No.	Mk.	Fred	1.	Read	dina	Cor	rect	Ме	asure	-	Limit		Over				
			•	Le		Fac			nent				-				
		MH	Z	dB	m	d			lBm		dBm		dB	Dete	ctor	Comm	ent
1		86.45	40	-62		-5.			67.80		-40.00		-27.80	pea			
2		158.00		-66.		-2.			8.45		-40.00		-28.45	pea			
3		198.39	920	-69.	.30	-3.	20	-7	2.50		-40.00		-32.50	pea	ak		
4		300.79	916	-72	.39	-3.	29	-7	'5.68		-40.00		-35.68	pea	ak		
5		437.43		-69	.38	-1.	60	-7	0.98		-40.00		-30.98	pea			
6	*	527.6´	00	-68.	.97	1.	54	-6	67.43		-40.00		-27.43	pea	ak		

	Test M				Ban					est Dat			4/1/8	
Te	est Cha				15599	90			Po	larizatio	on		zontal	
	Tem	р			22°C					Hum.		5	8%	
0.0 dB	m													-
-10														-
-20														1
-30														1
-40														
-40														1
-50														
-60														-
*	2 X	2												
-70	^	3 X	4		5 X	6 X								-
			*											
-80														1
-90														
														1
-100.0														
30.000	127.0			321.00	418		515.0		612.0			06.00	1000.00	MHz
No.	Mk.	Freq	-	Reading		orrect		asure-	•	Limit	Over			
				Level	F	actor		nent						
4	*	MHz		dBm		dB		dBm		dBm	dB	Detector	Comme	nt
1	^	30.00		-66.87		2.87		64.00		40.00	-24.00	peak		
2		113.03		-59.97		7.88		67.85		40.00	-27.85	peak		
3		155.71		-64.78		5.88		70.66		40.00	-30.66	peak		
4		246.76		-67.94		8.04		75.98		40.00	-35.98	peak		
5		394.88		-70.39		2.45		72.84		40.00	-32.84	peak		
6		454.92	247	-70.58	-	1.97	- 7	72.55		-40.00	-32.55	peak		

	Test Mod			Band 48		Test Dat		202	4/1/8
	lest Chan	nel	CH	55340		Polarizati	on	Ver	tical
	Temp		2	2°C		Hum.		58	3%
).0 d	IBm	ĺ		Ì					
10									
20									
30									
40				1 X					
50									
60									
70									
80									
90									
100.0									
1000.0	00 2700.00		6100.00	7800.00	9500.00 1			4600.00	18000.00 MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBm	dB	dBm	dBm	dB	Detector	Comment
1	*	7100.000	-63.02	18.54	-44.48	-40.00	-4.48	peak	

	Test Mod			Band 48		Test Dat			4/1/8
	Fest Chan	nel		55340		Polarizati	on		zontal
	Temp		2	2°C		Hum.		58	3%
).0 d	1Bm	1		1		1			
10									
20									
30									
40 -				1					
50				*					
60									
70									
80									
90									
100.0									
1000.0	00 2700.00	4400.00	6100.00	7800.00	9500.00 1	1200.00	12900.00 1	4600.00	18000.00 MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBm	dB	dBm	dBm	dB	Detector	Comment
1	*	7100.000	-64.34	18.40	-45.94	-40.00	-5.94	peak	

	Test Mod	le	LTE	Band 48		Test Dat	e	202	4/1/8
٦	Test Chan	nel		55990		Polarizati	on	Ver	tical
	Temp		2	2°C		Hum.		58	3%
).0 c	1Bm								
10 -									
20									
30 -									
40				1 X					
50									
60									
70									
80									
90									
100.0									
1000.0)00 2700.00	4400.00	6100.00	7800.00	9500.00 1	1200.00 1	12900.00 14	4600.00	18000.00 MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBm	dB	dBm	dBm	dB	Detector	Comment
1	*	7232.200	-61.12	17.90	-43.22	-40.00	-3.22	peak	

	Test Mod			Band 48		Test Dat			4/1/8
	Test Chan	inel		55990		Polarizati	on		zontal
	Temp		2	2°C		Hum.		58	3%
0.0	dBm						1		
10									
20									
30 -									
40 -				1					
50				1					
60 -									
70 -									
80 -									
90 -									
100.0									
1000.	.000 2700.00		6100.00	7800.00				4600.00	18000.00 MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBm	dB	dBm	dBm	dB	Detector	Comment
1	*	7230.000	-64.15	17.50	-46.65	-40.00	-6.65	peak	

Test Mode			Band 48	Test Date		2024/1/8			
Test Channel		CH56640			Polarization		Vertical		
	Temp		22°C			Hum.		58	3%
).0 c	1Bm	1	1	1					
10									
20									
30 -									
40				1 X					
50									
60 -									
70									
80									
90 -									
100.0									
1000.0)00 2700.00		6100.00	7800.00	9500.00 1			4600.00	18000.00 MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBm	dB	dBm	dBm	dB	Detector	Comment
1	*	7960.000	-62.52	17.72	-44.80	-40.00	-4.80	peak	

Test Mode			Band 48	Test Date			2024/1/8		
Test Channel		CH56640			Polarization		Horizontal		
	Temp		22°C			Hum.		58	3%
).0 c	1Bm	1		1		1	1		
10									
20									
30									
40 -				1 X					
50									
60									
70 -									
80									
90									
100.0									
1000.0)00 2700.00	4400.00	6100.00	7800.00	9500.00 1		12900.00 14	4600.00	18000.00 MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBm	dB	dBm	dBm	dB	Detector	Comment
1	*	7960.000	-62.79	18.40	-44.39	-40.00	-4.39	peak	

Test Mode		LTE	Band 48	Test Date			2024/1/8		
Test Channel		CH55990		Polarization		on	Vertical		
	Temp		22°C			Hum.		58%	
).0 (dBm								
10									
20									
30 -									
40 -									
50									
60 x									
70									
80									
90 -									
100.0									
18000	.000 20200.00	22400.00	24600.00	26800.00	29000.00	31200.00	33400.00 350	600.00	40000.00 MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBm	dB	dBm	dBm	dB	Detector	Comment
1	*	18075.00	-56.76	-6.86	-63.62	-40.00	-23.62	peak	

	Test Mode	•	LTEI	Band 48		Test Date	е	202	4/1/8
Test Channel		CH55990		Polarization		on	Horizontal		
	Temp		22°C			Hum.		58	8%
0.0	dBm								
-10									
20									
30 -									
40 -									
50									
60 X									
70 -									
80 -									
90 -									
100.0									
1800	0.000 20200.00		24600.00	26800.00				600.00	40000.00 MH
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	· Limit	Over		
		MHz	dBm	dB	dBm	dBm	dB	Detector	Comment
1	*	18075.00	-56.39	-6.86	-63.25	-40.00	-23.25	peak	

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

End of Test Report