

FCC RADIO TEST REPORT

FCC ID Equipment Brand Name Model Name	: XMR2020EM120RGL2 : LTE-A Cat 12 M.2 Module : Quectel Wireless Solutions Company Limited : EM120R-GL
Applicant	: Quectel Wireless Solutions Co., Ltd. Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai 200233, China
Manufacturer	 Quectel Wireless Solutions Co., Ltd. Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai 200233, China
Standard	: FCC 47 CFR Part 2, 90(R)

Equipment: Quectel EM120R-GL tested inside of Lenovo Notebook Computer.

The product was received on Nov. 26, 2020 and testing was started from Jan. 06, 2021 and completed on Jan. 07, 2021. We, SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures given in ANSI / TIA-603-E and has been in compliance with the applicable technical standards.

The test results in this partial report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Louis Win

Approved by: Louis Wu SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan

Page Number	: 1 of 13
Issued Date	: Feb. 08, 2021
Report Version	: 01

Table of Contents

His	tory o	of this test report	3
	nmary	y of Test Result	4
1	Gene	eral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Product Specification of Equipment Under Test	5
	1.3	Modification of EUT	5
	1.4	Testing Site	6
	1.5	Applied Standards	6
2	Test	Configuration of Equipment Under Test	7
	2.1	Test Mode	7
	2.2	Connection Diagram of Test System	7
	2.3	Support Unit used in test configuration and system	8
	2.4	Frequency List of Low/Middle/High Channels	8
3	Radia	ated Test Items	
	3.1	Measuring Instruments	
	3.2	Radiated Spurious Emission	11
4	List c	of Measuring Equipment	12
5	Unce	ertainty of Evaluation	13
Ар	pendix	x A. Test Results of Radiated Test	
Ар	pendix	x B. Test Setup Photographs	

History of this test report

Report No.	Version	Description	Issued Date
FG0D0427D	01	Initial issue of report	Feb. 08, 2021

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
	§2.1046	Conducted Output Power	-	See Note
-	§90.542 (a)(7)	Effective Radiated Power	-	See Note
-	-	Peak-to-Average Ratio	-	See Note
-	§2.1049	Occupied Bandwidth	-	See Note
-	§2.1053 §90.543 (e)(2)	Conducted Band Edge Measurement	-	See Note
-	§2.1051 §90.210 (n)	Emission Mask	-	See Note
-	§2.1053 §90.543 (e)(3)	Conducted Spurious Emission	-	See Note
-	§2.1055 §90.539 (e)	Frequency Stability Temperature & Voltage	-	See Note
-	§90.542 (a)(7)	Effective Radiated Power	-	See Note
§2.1053 3.2 §90.543 (e)(3) §90.543 (f)		Radiated Spurious Emission	Pass	Under limit 18.36 dB at 1586.000 MHz

Note: The module (Model: EM120R-GL) makes no difference after verifying output power, this report reuses test data from the module report.

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Wii Chang Report Producer: Celery Wei

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature							
Equipment	LTE-A Cat 12 M.2 Module						
Brand Name	Quectel Wireless Solutions Company Limited						
Model Name	EM120R-GL						
FCC ID	XMR2020EM120RGL2						
Sample 1	EUT with Host 1						
Sample 2	EUT with Host 2						
EUT supports Radios application	WCDMA/HSPA/LTE/GNSS						
EUT Stage	Production Unit						

Remark:

- 1. The above EUT's information was declared by manufacturer.
- 2. Equipment: Quectel EM120R-GL tested inside of Lenovo Notebook Computer.

The product was installed into Notebook Computer (Brand Name: Lenovo, Model Name: TP00129A) during test, and the host information was recorded in the following table.

Host Information						
Host 1	Host with Novocomms/JYT Antenna					
Host 2 Host with Amphenol Antenna						

WWAN Antenna Information								
	Manufacturer	Amphenol	Peak gain (dBi)	1.95				
Main Antenna	Part number	TKC116-16-000-C	Туре	PIFA				
	Manufacturer	Novocomms/JYT	Peak gain (dBi)	1.83				
	Part number	JYAAE0150HR	Туре	PIFA				

Remark:

- 1. The above EUT's information was declared by manufacturer. Please refer to Comments and Explanations in report summary.
- 2. All test items were performed with Amphenol Antenna.

1.2 Product Specification of Equipment Under Test

Product Specification subjective to this standard								
Tx Frequency	LTE Band 14 :790.5 MHz ~ 795.5 MHz							
Rx Frequency	LTE Band 14 :760.5 MHz ~ 765.5 MHz							
Bandwidth	5MHz / 10MHz							
Type of Modulation	QPSK / 16QAM / 64QAM							

1.3 Modification of EUT

No modifications are made to the EUT during all test items.

1.4 Testing Site

Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory					
Test Site LocationNo.58 , Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City, Taiwan						
Test Site No.	Sporton Site No.					
Test Site NO.	03CH15-HY					
Test Engineer	Leo Lee, Mancy Chou and Bigshow Wang					
Temperature	22.4~23.1 ℃					
Relative Humidity	48~56%					

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC Designation No.: TW0007

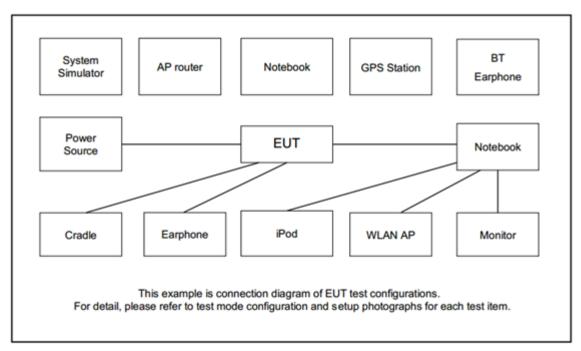
1.5 Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- + ANSI C63.26-2015
- FCC 47 CFR Part 2, Part 90(R)
- ANSI / TIA-603-E
- + FCC KDB 971168 D01 Power Meas. License Digital Systems v03r01
- FCC KDB 414788 D01 Radiated Test Site v01r01

Remark:

- **1.** All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.


2 Test Configuration of Equipment Under Test

2.1 Test Mode

Antenna port conducted and radiated test items listed below are performed according to KDB 971168 D01 Power Meas. License Digital Systems v03r01 with maximum output power.

Conducted	Dand	Bandwidth (MHz)						Modulation				RB #			Test Channel		
Test Cases	Band	1.4	3	5	10	15	20	QPSK	16QAM	64QAM	256QAM	1	Half	Full	L	Μ	н
Radiated																	
Spurious	14	-	-	v	v	-	-	v				v			v	v	v
Emission																	
Remark	2. The 3. The b	mark device r diffe	"-" m e is ir erent	eans ivesti	that t gatec	his ba I from	andw n 30M	idth is not IHz to 10 t		l. ndamenta	l signal for Subseque		•				

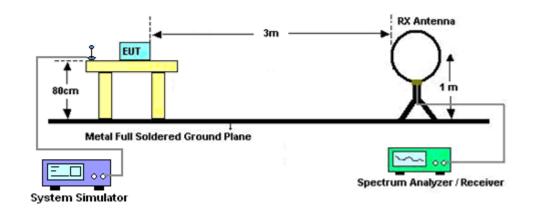
2.2 Connection Diagram of Test System

2.3 Support Unit used in test configuration and system

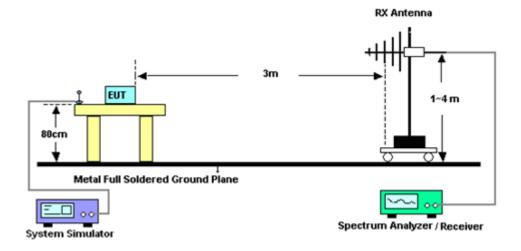
ltem	Equipment	quipment Brand Name Model No. FCC I		FCC ID	Data Cable	Power Cord		
1.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m		
2.	iPod Earphone	Apple	N/A	Verification	Unshielded, 1.0 m	N/A		

2.4 Frequency List of Low/Middle/High Channels

LTE Band 14 Channel and Frequency List										
BW [MHz]	BW [MHz] Channel/Frequency(MHz) Lowest Middle Highest									
10	Channel	-	23330	-						
	Frequency	-	793	-						
5	Channel	23305	23330	23355						
	Frequency	790.5	793	795.5						

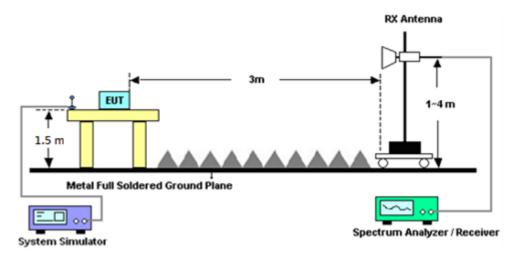

3 Radiated Test Items

3.1 Measuring Instruments


See list of measuring instruments of this test report.

3.1.1 Test Setup

For radiated test below 30MHz



For radiated test from 30MHz to 1GHz

For radiated test above 1GHz

3.1.2 Test Result of Radiated Test

Please refer to Appendix A.

Note:

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

3.2 Radiated Spurious Emission

3.2.1 Description of Radiated Spurious Emission

The radiated spurious emission was measured by substitution method according to ANSI / TIA-603-E. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power (P) by a factor of at least 43 + 10 log (P) dB.

For operations in the 758-775 MHz and 788-805 MHz bands, all emissions including harmonics in the band 1559–1610 MHz shall be limited to -70 dBW/MHz equivalent isotropically radiated power (EIRP) for wideband signals, and -80 dBW EIRP for discrete emissions of less than 700 Hz bandwidth. For the purpose of equipment authorization, a transmitter shall be tested with an antenna that is representative of the type that will be used with the equipment in normal operation.

The spectrum is scanned from 30 MHz up to a frequency including its 10th harmonic.

3.2.2 Test Procedures

The testing follows FCC KDB 971168 D01 v03r01 Section 7 and ANSI / TIA-603-E Section 2.2.12.

- 1. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 2. The EUT was set 3 meters from the receiving antenna, which was mounted on the antenna tower.
- 3. The table was rotated 360 degrees to determine the position of the highest spurious emission.
- 4. The height of the receiving antenna is varied between one meter and four meters to search the maximum spurious emission for both horizontal and vertical polarizations.
- 5. Make the measurement with the spectrum analyzer's RBW = 1MHz, VBW = 3MHz, Sweep = 500ms, Taking the record of maximum spurious emission.
- 6. A horn antenna was substituted in place of the EUT and was driven by a signal generator.
- 7. Tune the output power of signal generator to the same emission level with EUT maximum spurious emission.
- 8. Taking the record of output power at antenna port.
- 9. Repeat step 7 to step 8 for another polarization.
- 10. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
- 11. The limit line is derived from 43 + 10log(P)dB below the transmitter power P(Watts)

4 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Jul. 14, 2020	Jan. 06, 2021~ Jan. 07, 2021	Jul. 13, 2021	Radiation (03CH15-HY)
Bilog Antenna	TESEQ	CBL 6111D & 00800N1D01N- 06	37059 & 01	30MHz~1GHz	Oct. 11, 2020	Jan. 06, 2021~ Jan. 07, 2021	Oct. 10, 2021	Radiation (03CH15-HY)
Bilog Antenna	TESEQ	CBL6111D&008 00N1D01N-06	41912&05	30MHz to 1GHz	Feb. 09, 2020	Jan. 06, 2021~ Jan. 07, 2021	Feb. 08, 2021	Radiation (03CH15-HY)
Amplifier	SONOMA	310N	363440	9kHz~1GHz	Dec. 28, 2020	Jan. 06, 2021~ Jan. 07, 2021	Dec. 27, 2021	Radiation (03CH15-HY)
Horn Antenna	SCHWARZB ECK	BBHA 9120 D	9120D-02114	1-18GHz	Aug. 04, 2020	Jan. 06, 2021~ Jan. 07, 2021	Aug. 03, 2021	Radiation (03CH15-HY)
Horn Antenna	SCHWARZB ECK	BBHA 9120 D	9120D-1326	1GHz~18GHz	Nov. 03, 2020	Jan. 06, 2021~ Jan. 07, 2021	Nov. 02, 2021	Radiation (03CH15-HY)
Preamplifier	Jet-Power	JPA0118-55-30 3	1710001800 055006	1GHz~18GHz	May 07, 2020	Jan. 06, 2021~ Jan. 07, 2021	May 06, 2021	Radiation (03CH15-HY)
Preamplifier	Keysight	83017A	MY53270195	1GHz~26.5GHz	Aug. 21, 2020	Jan. 06, 2021~ Jan. 07, 2021	Aug. 20, 2021	Radiation (03CH15-HY)
Spectrum Analyzer	Keysight	N9010A	MY54200485	10Hz~44GHz	Feb. 10, 2020	Jan. 06, 2021~ Jan. 07, 2021	Feb. 09, 2021	Radiation (03CH15-HY
Spectrum Analyzer	Agilent	E4446A	MY50180136	3Hz~44GHz	May 04, 2020	Jan. 06, 2021~ Jan. 07, 2021	May 03, 2021	Radiation (03CH15-HY)
Antenna Mast	ChainTek	MBS-520-1	N/A	1m~4m	N/A	Jan. 06, 2021~ Jan. 07, 2021	N/A	Radiation (03CH15-HY)
Turn Table	ChainTek	T-200-S-1	N/A	0~360 Degree	N/A	Jan. 06, 2021~ Jan. 07, 2021	N/A	Radiation (03CH15-HY)
Software	Audix	E3 6.2009-8-24 (k5)	RK-000451	N/A	N/A	Jan. 06, 2021~ Jan. 07, 2021	N/A	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104, 102E	MY36980/4, MY9838/4PE ,508405/2E	30MHz~18G	Nov. 16, 2020	Jan. 06, 2021~ Jan. 07, 2021	Nov. 15, 2021	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	505134/2	30MHz-40GHz	Feb. 25, 2020	Jan. 06, 2021~ Jan. 07, 2021	Feb. 24, 2021	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	800740/2	30MHz-40GHz	Feb. 25, 2020	Jan. 06, 2021~ Jan. 07, 2021	Feb. 24, 2021	Radiation (03CH15-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY9837/4PE	9kHz~30MHz	Mar. 12, 2020	Jan. 06, 2021~ Jan. 07, 2021	Mar. 11, 2021	Radiation (03CH15-HY)
Filter	Wainwright	WLK4-1000-15 30-8000-40SS	SN4	1.53G Low Pass	Jul. 03, 2020	Jan. 06, 2021~ Jan. 07, 2021	Jul. 02, 2021	Radiation (03CH15-HY)
Filter	Wainwright	WHKX12-1080- 1200-15000-60 ST	SN5	1.2GHz High Pass Filter	Jul. 01, 2020	Jan. 06, 2021~ Jan. 07, 2021	Jun. 30, 2021	Radiation (03CH15-HY)
Filter	Wainwright	WHKX12-2700- 3000-18000-60 ST	SN4	3GHz High Pass Filter	Sep. 16, 2020	Jan. 06, 2021~ Jan. 07, 2021	Sep. 15, 2021	Radiation (03CH15-HY)
Signal Generator	Anritsu	MG3694C	163401	0.1Hz~40GHz	Feb. 15, 2020	Jan. 06, 2021~ Jan. 07, 2021	Feb. 14, 2021	Radiation (03CH15-HY)

: 12 of 13 : Feb. 08, 2021

· 01

5 Uncertainty of Evaluation

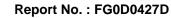
Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of	2.98
Confidence of 95% (U = 2Uc(y))	2.90

Uncertainty of Radiated Emission Measurement (1 GHz ~ 18 GHz)

Measuring Uncertainty for a Level of	3.31
Confidence of 95% (U = 2Uc(y))	5.51

Appendix A. Test Results of Radiated Test


	LTE Band 14 / 5MHz / QPSK										
Channel	Frequency (MHz)	ERP (dBm)	Limit (dBm)	Over Limit (dB)	SPA Reading (dBm)	S.G. Power (dBm)	TX Cable loss (dB)	TX Antenna Gain (dBi)	Polarization (H/V)		
	1576	-63.21	-42.15	-21.06	-75.02	-68.02	1.79	8.76	Н		
	2368	-53.81	-13	-40.81	-69.79	-59.44	2.20	9.98	Н		
	3152	-57.86	-13	-44.86	-76.47	-64.57	2.55	11.41	Н		
									Н		
									Н		
									Н		
Lowoot									Н		
Lowest	1576	-62.91	-42.15	-20.76	-74.99	-67.72	1.79	8.76	V		
	2368	-54.94	-13	-41.94	-71.63	-60.57	2.20	9.98	V		
	3152	-56.87	-13	-43.87	-75.98	-63.58	2.55	11.41	V		
									V		
									V		
									V		
									V		

LTE Band 14

	1581	-63.21	40.45						
		00.21	-42.15	-21.06	-74.97	-68.05	1.80	8.79	Н
	2368	-54.24	-13	-41.24	-70.20	-59.87	2.20	9.98	Н
:	3163	-57.82	-13	-44.82	-76.50	-64.56	2.56	11.45	Н
									Н
									Н
									Н
									Н
Middle	1581	-62.46	-42.15	-20.31	-74.53	-67.30	1.80	8.79	V
	2368	-55.59	-13	-42.59	-72.28	-61.22	2.20	9.98	V
:	3163	-57.23	-13	-44.23	-76.39	-63.97	2.56	11.45	V
									V
									V
									V
									V
	1586	-60.85	-42.15	-18.70	-72.58	-65.72	1.80	8.82	Н
	2376	-52.60	-13	-39.60	-68.60	-58.31	2.20	10.06	Н
	3173	-57.81	-13	-44.81	-76.56	-64.59	2.56	11.49	Н
									Н
									Н
									Н
Lishaat									Н
Highest	1586	-60.51	-42.15	-18.36	-72.58	-65.38	1.80	8.82	V
	2376	-54.83	-13	-41.83	-71.54	-60.54	2.20	10.06	V
	3173	-57.71	-13	-44.71	-76.93	-64.49	2.56	11.49	V
									V
									V
									V
									V

Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line.

	LTE Band 14 / 10MHz / QPSK										
Channel	Frequency (MHz)	ERP (dBm)	Limit (dBm)	Over Limit (dB)	SPA Reading (dBm)	S.G. Power (dBm)	TX Cable loss (dB)	TX Antenna Gain (dBi)	Polarization (H/V)		
	1577	-63.18	-42.15	-21.03	-74.99	-68.00	1.79	8.76	Н		
	2368	-57.06	-13	-44.06	-73.04	-62.69	2.20	9.98	Н		
	3152	-57.55	-13	-44.55	-76.16	-64.26	2.55	11.41	Н		
									Н		
									Н		
									Н		
Middle									н		
Middle	1577	-62.91	-42.15	-20.76	-74.99	-67.73	1.79	8.76	V		
	2368	-58.03	-13	-45.03	-74.71	-63.66	2.20	9.98	V		
	3152	-57.17	-13	-44.17	-76.29	-63.88	2.55	11.41	V		
									V		
									V		
									V		
									V		

Remark: Spurious emissions within 30-1000MHz were found more than 20dB below limit line.