





# RF TEST REPORT

**Applicant** Quectel Wireless Solutions Co., Ltd

FCC ID XMR202004BG600LM3

Product LTE Cat M1 & Cat NB2 & EGPRS Module

**Brand** Quectel

Model BG600L-M3

**Report No.** R2003A0168-R2

Issue Date June 8, 2020

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in FCC CFR47 Part 2 (2019)/ FCC CFR 47 Part 24E (2019). The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Performed by: Peng Tao

Approved by: Kai Xu

# TA Technology (Shanghai) Co., Ltd.

No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3

FAX: +86-021-50791141/2/3-8000



# **TABLE OF CONTENT**

| 1. | Lest | t Laboratory                                           | 4   |
|----|------|--------------------------------------------------------|-----|
|    | 1.1. | Notes of the test report                               | . 4 |
|    | 1.2. | Test facility                                          | . 4 |
|    | 1.3. | Testing Location                                       | . 4 |
| 2. | Gen  | neral Description of Equipment under Test              | 5   |
|    | 2.3. | Applicant and Manufacturer Information                 |     |
|    | 2.4. | General information                                    | .5  |
| 3. | Арр  | lied Standards                                         | 6   |
| 4. | Test | t Configuration                                        | 7   |
| 5. | Test | t Case Results                                         | 8   |
|    | 5.1. | RF Power Output and Effective Isotropic Radiated Power | 8   |
|    | 5.2. | Occupied Bandwidth1                                    | 13  |
|    | 5.3. | Band Edge Compliance                                   | 19  |
|    | 5.4. | Peak-to-Average Power Ratio (PAPR)                     | 36  |
|    | 5.5. | Frequency Stability                                    | 38  |
|    | 5.6. | Spurious Emissions at Antenna Terminals                |     |
|    | 5.7. | Radiates Spurious Emission6                            | 30  |
| 6. | Mair | n Test Instruments                                     | 66  |
|    |      |                                                        |     |



Test Report Report No.: R2003A0168-R2

# **Summary of measurement results**

| No. | Test Case                                              | Clause in FCC rules        | Verdict |
|-----|--------------------------------------------------------|----------------------------|---------|
| 1   | RF Power Output and Effective Isotropic Radiated Power | 2.1046<br>24.232(c)        | PASS    |
| 2   | Occupied Bandwidth                                     | 2.1049                     | PASS    |
| 3   | Band Edge Compliance                                   | 2.1051 /24.238(a)          | PASS    |
| 4   | Peak-to-Average Power Ratio                            | 24.232/KDB 971168 D01(5.7) | PASS    |
| 5   | Frequency Stability                                    | 2.1055 / 24.235            | PASS    |
| 6   | Spurious Emissions at Antenna Terminals                | 2.1051 / 24.238(a)         | PASS    |
| 7   | Radiates Spurious Emission                             | 2.1053 / 24.238(a)         | PASS    |

Date of Testing: April 20, 2020~ May 21, 2020

Note: PASS: The EUT complies with the essential requirements in the standard.

FAIL: The EUT does not comply with the essential requirements in the standard.

All indications of Pass/Fail in this report are opinions expressed by TA Technology (Shanghai) Co., Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only.



1. Test Laboratory

1.1. Notes of the test report

(shanghai) co., Ltd. The results documented in this report apply only to the tested sample, under the

This report shall not be reproduced in full or partial, without the written approval of TA technology

conditions and modes of operation as described herein .Measurement Uncertainties were not taken

into account and are published for informational purposes only. This report is written to support

regulatory compliance of the applicable standards stated above.

1.2. Test facility

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission

list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA (Certificate Number: 3857.01)

TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

Accreditation to perform electromagnetic emission measurement.

1.3. Testing Location

Company: TA Technology (Shanghai) Co., Ltd.

Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong

City: Shanghai

Post code: 201201

Country: P. R. China

Contact: Xu Kai

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000 Website: http://www.ta-shanghai.com

E-mail: xukai@ta-shanghai.com





# 2. General Description of Equipment under Test

# 2.3. Applicant and Manufacturer Information

| Applicant            | Quectel Wireless Solutions Co., Ltd                                                                                      |  |  |  |  |
|----------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Applicant address    | Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai, China 200233    |  |  |  |  |
| Manufacturer         | Quectel Wireless Solutions Co., Ltd                                                                                      |  |  |  |  |
| Manufacturer address | Building 5, Shanghai Business Park Phase III (Area B), No.1016<br>Tianlin Road, Minhang District, Shanghai, China 200233 |  |  |  |  |

### 2.4. General information

| EUT Description                   |                          |                 |               |                    |  |  |  |  |
|-----------------------------------|--------------------------|-----------------|---------------|--------------------|--|--|--|--|
| Model                             | BG600L-M3                |                 |               |                    |  |  |  |  |
| IMEI                              | 860873040012816          | 860873040012816 |               |                    |  |  |  |  |
| Hardware Version                  | R1.2                     |                 |               |                    |  |  |  |  |
| Software Version                  | BG600LM3LAR02A03         | 3               |               |                    |  |  |  |  |
| Power Supply                      | External Power Suppl     | у               |               |                    |  |  |  |  |
|                                   | The EUT don't have       | standard        | I Antenna,    | The Antenna used   |  |  |  |  |
| Antenna Type                      | for testing in this repo | rt is the a     | after-market  | accessory (Dipole  |  |  |  |  |
|                                   | Antenna)                 |                 |               |                    |  |  |  |  |
|                                   | Frequency(MHz            | <u>z</u> )      | (             | Gain(dBi)          |  |  |  |  |
| Antenna Gain                      | 1860                     |                 | 1.25          |                    |  |  |  |  |
| 7 merina Can                      | 1880                     |                 | 1.38          |                    |  |  |  |  |
|                                   | 1900                     |                 |               | 1.59               |  |  |  |  |
| Test Mode(s)                      | LTE Band 2/25;           |                 |               |                    |  |  |  |  |
| Test Modulation                   | (LTE)QPSK,16QAM          |                 |               |                    |  |  |  |  |
| LTE Category                      | M1                       |                 |               |                    |  |  |  |  |
| Maximum E.I.R.P                   | LTE Band 2:              |                 | 23.62dBm      |                    |  |  |  |  |
| Maximum E.I.K.P                   | LTE Band 25:             |                 | 23.57dBm      |                    |  |  |  |  |
| Rated Power Supply Voltage        | 3.8V                     |                 |               |                    |  |  |  |  |
| Extreme Voltage                   | Minimum: 3.3V Ma         | ximum: 4        | 1.3V          |                    |  |  |  |  |
| Extreme Temperature               | Lowest: -40°C Hig        | hest: +8        | 5°C           |                    |  |  |  |  |
|                                   | Band                     | Tx              | (MHz)         | Rx (MHz)           |  |  |  |  |
| Operating Frequency Range(s)      | LTE Band 2               | 1850            | ~ 1910        | 1930 ~ 1990        |  |  |  |  |
|                                   | LTE Band 25              | 1850            | ~ 1915        | 1930 ~ 1995        |  |  |  |  |
| Note: 1 The FLIT is sent from the | applicant to TA and the  | informa         | tion of the l | IIT is declared by |  |  |  |  |

Note: 1. The EUT is sent from the applicant to TA and the information of the EUT is declared by the applicant.

TA Technology (Shanghai) Co., Ltd.

TA-MB-05-002R



FTest Report Report No.: R2003A0168-R2

# 3. Applied Standards

According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

Test standards:

FCC CFR 47 Part 24E (2019)

ANSI C63.26 (2015)

Reference standard:

FCC CFR47 Part 2 (2019)

KDB 971168 D01 Power Meas License Digital Systems v03r01





# 4. Test Configuration

Radiated measurements are performed by rotating the EUT in three different orthogonal test planes. EUT stand-up position (Z axis), lie-down position (X, Y axis). Receiver antenna polarization (horizontal and vertical), the worst emission was found in position (Z axis, horizontal polarization) and the worst case was recorded.

All mode and data rates and positions and RB size and modulations were investigated.

Subsequently, only the worst case emissions are reported.

The following testing in LTE is set based on the maximum RF Output Power.

Test modes are chosen to be reported as the worst case configuration below for LTE Band 2/25:

| Tankitawa                                                       | Bandwidth (MHz) |   |   | Modulation |    | RB |      |              | Test Channel |         |      |   |   |   |
|-----------------------------------------------------------------|-----------------|---|---|------------|----|----|------|--------------|--------------|---------|------|---|---|---|
| Test items                                                      | 1.4             | 3 | 5 | 10         | 15 | 20 | QPSK | 16QAM        | 1            | 50%     | 100% | L | М | Н |
| RF Power Output<br>and Effective<br>Isotropic<br>Radiated Power | 0               | 0 | 0 | 0          | 0  | 0  | 0    | 0            | 0            | 0       | 0    | 0 | 0 | 0 |
| Occupied<br>Bandwidth                                           | 0               | 0 | 0 | 0          | 0  | 0  | 0    | 0            | -            | -       | 0    | 0 | 0 | 0 |
| Band Edge<br>Compliance                                         | 0               | 0 | 0 | 0          | 0  | 0  | 0    | 0            | 0            | -       | 0    | 0 | - | 0 |
| Peak-to-Average<br>Power Ratio                                  | 0               | 0 | 0 | 0          | 0  | 0  | 0    | 0            | -            | -       | 0    | 0 | 0 | 0 |
| Frequency Stability                                             | 0               | 0 | 0 | 0          | 0  | 0  | 0    | 0            | 0            | 0       | 0    | 0 | 0 | 0 |
| Conducted<br>Spurious Emissions                                 | 0               | 0 | 0 | 0          | 0  | 0  | 0    | -            | 0            | -       | -    | 0 | 0 | 0 |
| Radiates Spurious<br>Emission                                   | 0               | - | 0 | -          | -  | 0  | 0    | -            | 0            | -       | -    | - | 0 | - |
| Note                                                            |                 |   |   |            |    |    | _    | tion is chos |              | testing |      |   |   |   |

TA Technology (Shanghai) Co., Ltd.

TA-MB-05-002R

Page 7 of 67





#### 5. Test Case Results

# 5.1.RF Power Output and Effective Isotropic Radiated Power

#### **Ambient condition**

| Temperature | Relative humidity | Pressure |  |  |  |
|-------------|-------------------|----------|--|--|--|
| 23°C ~25°C  | 45%~50%           | 101.5kPa |  |  |  |

#### **Methods of Measurement**

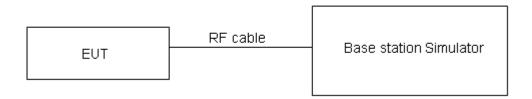
During the process of the testing, The EUT is controlled by the Base Station Simulator to ensure max power transmission and proper modulation.

The testing follows FCC KDB 971168 v03r01 Section 5.8 and ANSI C63.26 (2015).

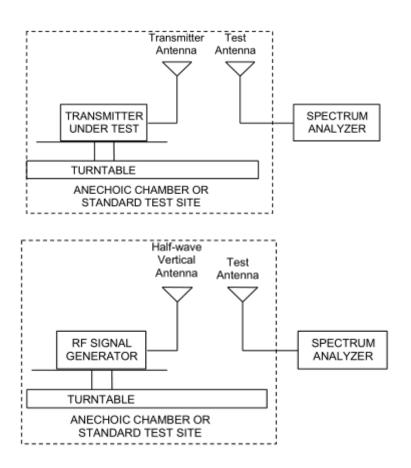
- a) Connect the equipment as illustrated. Mount the equipment with the manufacturer specified antenna in a vertical orientation on a manufacturer specified mounting surface located on a non-conducting rotating platform of a RF anechoic chamber (preferred) or a standard radiation site.
- b) Key the transmitter, then rotate the EUT 360° azimuthally and record spectrum analyzer power level (LVL) measurements at angular increments that are sufficiently small to permit resolution of all peaks. If a standard radiation test site is used, raise and lower the test antenna to obtain a maximum reading at each angular increment. (Note: several batteries may be needed to offset the effect of battery voltage droop, which should not exceed 5% of the manufactured specified battery voltage during transmission).
- c) Replace the transmitter under test with a vertically polarized half-wave dipole (or an antenna whose gain is known relative to an ideal half-wave dipole). The center of the antenna should be at the same location as the center of the antenna under test.
- d) Connect the antenna to a signal generator with a known output power and record the path loss (in dB) as LOSS. If a standard radiation test site is used, raise and lower the test antenna to obtain a maximum reading.LOSS = Generator Output Power (dBm) - Analyzer reading (dBm)
- e) Determine the effective radiated output power at each angular position from the readings in steps b) and d) using the following equation: ERP (dBm) = LVL (dBm) + LOSS (dB)
- f) The maximum ERP is the maximum value determined in the preceding step.
- g) When calculating ERP, in addition to knowing the antenna radiation and matching characteristics, it is necessary to know the loss values of all elements (e.g. transmission line attenuation, mismatches, filters, combiners) interposed between the point where transmitter output power is measured, and the point where power is applied to the antenna. ERP can then be calculated as follows:

EIRP (dBm) = Output Power (dBm) - Losses (dB) + Antenna Gain (dBi)

where:dBd refers to gain relative to an ideal dipole.


EIRP (dBm) = ERP (dBm) + 2.15 (dB.)




RF Test Report No.: R2003A0168-R2

The RB allocation refers to section 5.1, using the maximum output power configuration.

#### **Test Setup**



The loss between RF output port of the EUT and the input port of the tester has been taken into consideration.



#### Limits

No specific RF power output requirements in part 2.1046.

Rule Part 24.232(c) Mobile and portable stations are limited to 2 watts EIRP.

Rule Part 24.232(e) Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage.

| Limit | ≤ 2 W (33 dBm) |
|-------|----------------|
|-------|----------------|



RF Test Report No.: R2003A0168-R2

# **Measurement Uncertainty**

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 0.4 dB for RF power output, k = 2, U = 1.19 dB for EIRP.



Report No.: R2003A0168-R2 **Test Results** 

| LTE     | Channel/       | Index | RB#      |       | ed Power | EIRP  | (dBm) |
|---------|----------------|-------|----------|-------|----------|-------|-------|
| Band 2  | Frequency(MHz) |       | RB start | QPSK  | 16QAM    | QPSK  | 16QAM |
|         | 4000=440=0=    | 0     | 1#0      | 21.29 | 20.51    | 22.54 | 21.76 |
|         | 18607/1850.7   | 0     | 6#0      | 19.21 | 19.24    | 20.46 | 20.49 |
|         | 10000/1000     | 0     | 1#0      | 21.88 | 20.25    | 23.26 | 21.63 |
| 1.4MHz  | 18900/1880     | 0     | 6#0      | 19.28 | 19.51    | 20.66 | 20.89 |
|         | 40400/4000     | 0     | 1#5      | 22.03 | 20.51    | 23.62 | 22.10 |
|         | 19193/1909.3   | 0     | 6#0      | 19.50 | 19.87    | 21.09 | 21.46 |
|         | 40045/4054.5   | 0     | 1#0      | 21.39 | 20.16    | 22.64 | 21.41 |
|         | 18615/1851.5   | 0     | 6#0      | 19.20 | 19.44    | 20.45 | 20.69 |
| 2041.1- | 40000/4000     | 0     | 1#0      | 21.42 | 20.42    | 22.80 | 21.80 |
| 3MHz    | 18900/1880     | 0     | 6#0      | 19.15 | 19.22    | 20.53 | 20.60 |
|         | 1010E/1000 E   | 1     | 1#5      | 21.72 | 20.27    | 23.31 | 21.86 |
|         | 19185/1908.5   | 1     | 6#0      | 19.59 | 19.77    | 21.18 | 21.36 |
|         | 40005/4050.5   | 0     | 1#0      | 21.30 | 21.18    | 22.55 | 22.43 |
|         | 18625/1852.5   | 0     | 6#0      | 20.27 | 20.32    | 21.52 | 21.57 |
| 5MHz    | 18900/1880     | 0     | 1#0      | 21.26 | 21.12    | 22.64 | 22.50 |
| SIVITZ  |                | 0     | 6#0      | 20.30 | 20.41    | 21.68 | 21.79 |
|         | 19175/1907.5   | 0     | 1#5      | 21.61 | 21.23    | 23.20 | 22.82 |
|         |                | 3     | 6#0      | 20.62 | 20.62    | 22.21 | 22.21 |
|         | 18650/1855     | 3     | 1#0      | 21.35 | 21.05    | 22.60 | 22.30 |
|         |                | 0     | 4#0      | 21.38 | 21.63    | 22.63 | 22.88 |
| 10MHz   | 18900/1880     | 0     | 1#0      | 21.33 | 21.09    | 22.71 | 22.47 |
| TOME    | 16900/1660     | 0     | 4#0      | 21.37 | 21.57    | 22.75 | 22.95 |
|         | 19150/1905     | 4     | 1#5      | 21.39 | 21.84    | 22.98 | 23.43 |
|         | 19150/1905     | 7     | 4#2      | 21.56 | 21.72    | 23.15 | 23.31 |
|         | 18675/1857.5   | 3     | 1#0      | 21.32 | 21.05    | 22.57 | 22.30 |
|         | 10075/1057.5   | 0     | 6#0      | 21.33 | 21.29    | 22.58 | 22.54 |
| 15MU>   | 19000/1990     | 0     | 1#0      | 21.28 | 21.20    | 22.66 | 22.58 |
| 15MHz   | 18900/1880     | 0     | 6#0      | 21.33 | 21.28    | 22.71 | 22.66 |
|         | 19125/1902.5   | 8     | 1#5      | 21.56 | 21.29    | 23.15 | 22.88 |
|         | 19125/1902.5   | 11    | 6#0      | 21.57 | 21.54    | 23.16 | 23.13 |
|         | 19700/1960     | 3     | 1#0      | 21.27 | 21.07    | 22.52 | 22.32 |
|         | 18700/1860     | 0     | 6#0      | 21.20 | 21.25    | 22.45 | 22.50 |
| 20MHz   | 18900/1880     | 0     | 1#0      | 21.16 | 21.02    | 22.54 | 22.40 |
| ZUIVITZ | 10900/1000     | 0     | 6#0      | 21.32 | 21.24    | 22.70 | 22.62 |
|         | 19100/1900     | 12    | 1#5      | 21.43 | 21.19    | 23.02 | 22.78 |
|         | 19100/1900     | 15    | 6#0      | 21.56 | 21.66    | 23.15 | 23.25 |





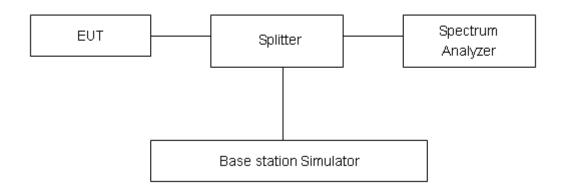
| LTE             | Channel/       | Index | RB#     |       | ed Power<br>3m) | EIRP  | (dBm) |
|-----------------|----------------|-------|---------|-------|-----------------|-------|-------|
| Band 25         | Frequency(MHz) |       | RBstart | QPSK  | 16QAM           | QPSK  | 16QAM |
|                 | 20047/4050 7   | 0     | 1#0     | 21.22 | 20.49           | 22.47 | 21.74 |
|                 | 26047/1850.7   | 0     | 6#0     | 19.10 | 19.05           | 20.35 | 20.30 |
| 4 4 1 1 1 -     | 20205/4002.5   | 0     | 1#0     | 21.72 | 20.11           | 23.10 | 21.49 |
| 1.4MHz          | 26365/1882.5   | 0     | 6#0     | 19.13 | 19.29           | 20.51 | 20.67 |
|                 | 20002/404 4 2  | 0     | 1#5     | 21.81 | 20.14           | 23.40 | 21.73 |
|                 | 26683/1914.3   | 0     | 6#0     | 19.66 | 19.72           | 21.25 | 21.31 |
|                 | 20055/4054-5   | 0     | 1#0     | 21.39 | 20.10           | 22.64 | 21.35 |
|                 | 26055/1851.5   | 0     | 6#0     | 19.24 | 19.36           | 20.49 | 20.61 |
| 2011            | 26265/4002 F   | 0     | 1#0     | 21.25 | 20.41           | 22.63 | 21.79 |
| 3IVITZ          | 26365/1882.5   | 0     | 6#0     | 19.05 | 19.10           | 20.43 | 20.48 |
|                 | 2007E/4042 E   | 1     | 1#5     | 21.70 | 20.31           | 23.29 | 21.90 |
|                 | 26675/1913.5   | 1     | 6#0     | 19.58 | 19.86           | 21.17 | 21.45 |
|                 | 2000E/40E2 E   | 0     | 1#0     | 21.18 | 21.03           | 22.43 | 22.28 |
|                 | 26065/1852.5   | 0     | 6#0     | 20.15 | 20.28           | 21.40 | 21.53 |
| CN411-          | 26265/4002 F   | 0     | 1#0     | 21.15 | 21.54           | 22.53 | 22.92 |
| SIVIFIZ         | 26365/1882.5   | 0     | 6#0     | 20.04 | 20.23           | 21.42 | 21.61 |
|                 | 26665/1912.5   | 0     | 1#5     | 21.50 | 21.10           | 23.09 | 22.69 |
|                 | 20003/1912.5   | 3     | 6#0     | 20.55 | 20.62           | 22.14 | 22.21 |
|                 | 26090/1855     | 3     | 1#0     | 21.31 | 21.01           | 22.56 | 22.26 |
|                 |                | 0     | 4#0     | 21.32 | 21.52           | 22.57 | 22.77 |
| 400411-         | 26265/4002 F   | 0     | 1#0     | 21.14 | 20.92           | 22.52 | 22.30 |
| TOWINZ          | 26365/1882.5   | 0     | 4#0     | 21.12 | 21.38           | 22.50 | 22.76 |
| 3MHz 5MHz 10MHz | 26640/1910     | 4     | 1#5     | 21.45 | 21.17           | 23.04 | 22.76 |
|                 | 20040/1910     | 7     | 4#2     | 21.71 | 21.98           | 23.30 | 23.57 |
|                 | 26115/1957 5   | 3     | 1#0     | 21.16 | 21.07           | 22.41 | 22.32 |
|                 | 26115/1857.5   | 0     | 6#0     | 21.16 | 21.24           | 22.41 | 22.49 |
| 15N1U-          | 26365/1882.5   | 0     | 1#0     | 21.16 | 21.55           | 22.54 | 22.93 |
| TOMICE          | 20303/1002.3   | 0     | 6#0     | 21.11 | 21.33           | 22.49 | 22.71 |
|                 | 26615/1907.5   | 8     | 1#5     | 21.47 | 21.11           | 23.06 | 22.70 |
|                 | 20015/1907.5   | 11    | 6#0     | 21.62 | 21.57           | 23.21 | 23.16 |
|                 | 26140/1860     | 3     | 1#0     | 21.19 | 21.01           | 22.44 | 22.26 |
|                 | ZU 14U/ 100U   | 0     | 6#0     | 21.13 | 21.20           | 22.38 | 22.45 |
| 20MHz           | 26365/1882.5   | 0     | 1#0     | 21.07 | 20.94           | 22.45 | 22.32 |
| ZUIVITZ         | 20303/1002.3   | 0     | 6#0     | 21.05 | 20.97           | 22.43 | 22.35 |
|                 | 26590/1905     | 12    | 1#5     | 21.45 | 21.12           | 23.04 | 22.71 |
|                 | 20030/1300     | 15    | 6#0     | 21.67 | 21.63           | 23.26 | 23.22 |



## 5.2. Occupied Bandwidth

#### **Ambient condition**

| Temperature | Relative humidity | Pressure |  |  |  |
|-------------|-------------------|----------|--|--|--|
| 23°C ~25°C  | 45%~50%           | 101.5kPa |  |  |  |


#### **Method of Measurement**

The EUT was connected to Spectrum Analyzer and Base Station Simulator via power Splitter. The occupied bandwidth is measured using spectrum analyzer.

RBW is set to 51kHz, VBW is set to 160kHz for LTE Band 2/25

99% power and -26dBc occupied bandwidths are recorded. Spectrum analyzer plots are included on the following pages.

#### **Test Setup**



#### Limits

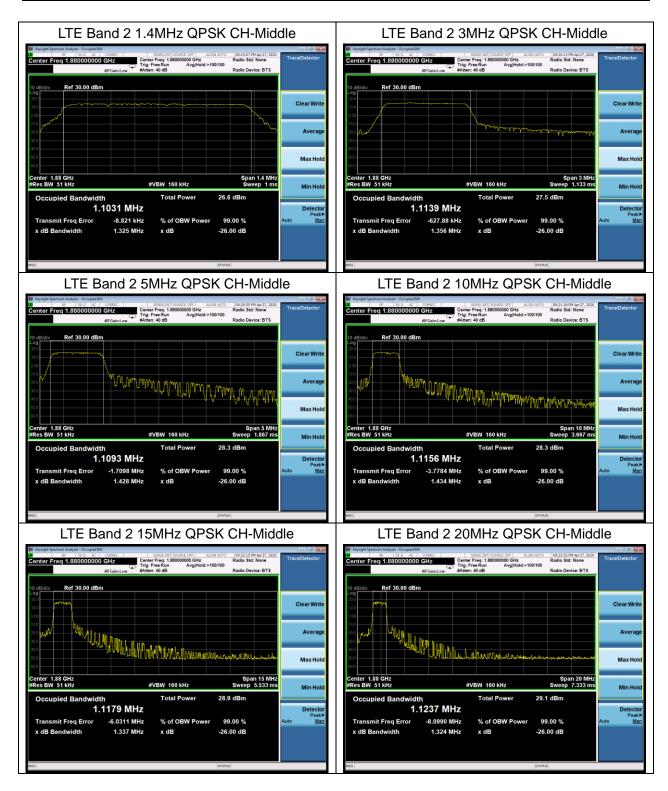
No specific occupied bandwidth requirements in part 2.1049.

#### **Measurement Uncertainty**

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 624Hz.

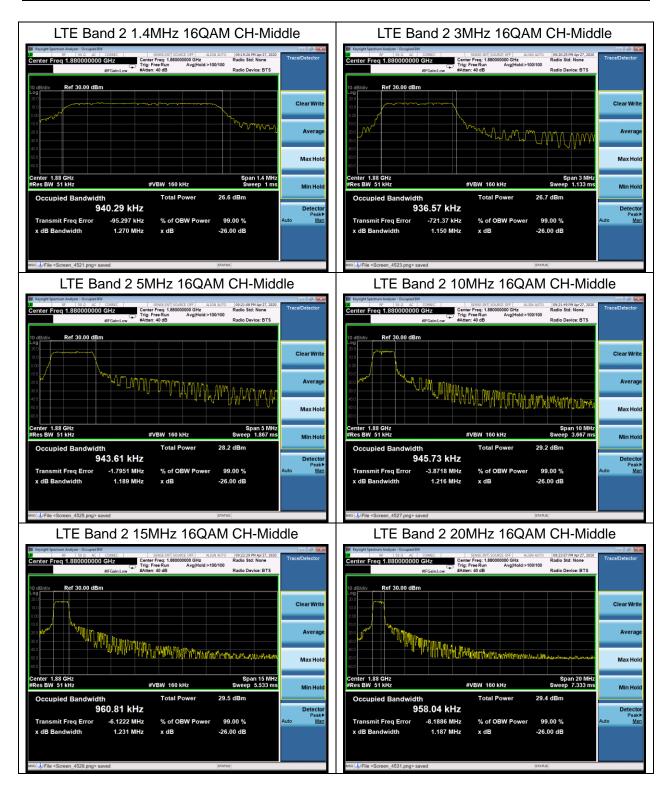





### **Test Result**

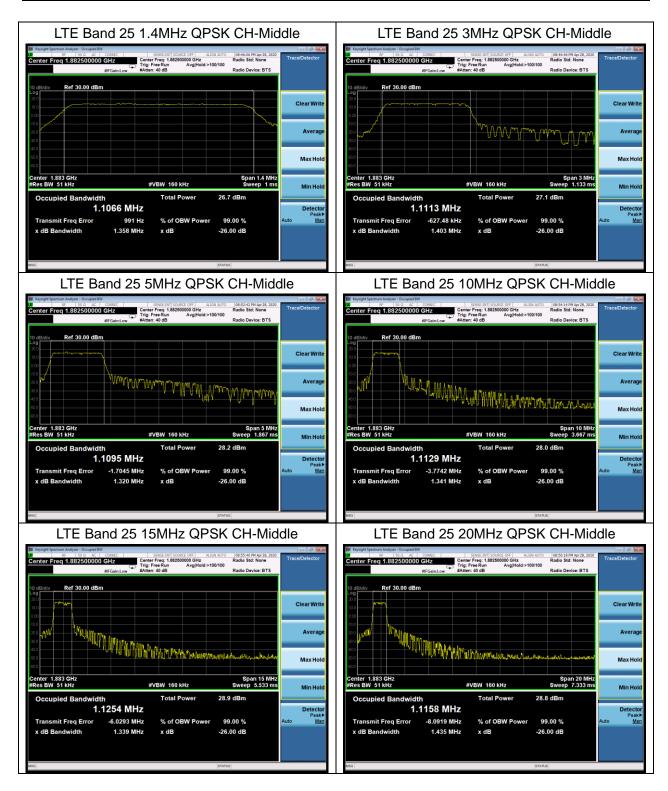
| Mode   | Deve alvei alth | Madulatian | Channel/       | DD  | بر مام برا | Bandwid   | th(MHz) |
|--------|-----------------|------------|----------------|-----|------------|-----------|---------|
| Mode   | Bandwidth       | Modulation | Frequency(MHz) | RB  | Index      | 99% Power | -26dBc  |
|        | 1.4MHz          | QPSK       | 18900/1880     | 6#0 | 0          | 1.1031    | 1.325   |
|        | 1.41/1⊓2        | 16QAM      | 18900/1880     | 6#0 | 0          | 0.9403    | 1.270   |
|        | 3MHz            | QPSK       | 18900/1880     | 6#0 | 0          | 1.1139    | 1.356   |
|        | SIVIFIZ         | 16QAM      | 18900/1880     | 6#0 | 0          | 0.9366    | 1.150   |
|        | 5MHz            | QPSK       | 18900/1880     | 6#0 | 0          | 1.1093    | 1.428   |
| LTE    |                 | 16QAM      | 18900/1880     | 6#0 | 0          | 0.9436    | 1.189   |
| Band 2 | 10MHz           | QPSK       | 18900/1880     | 6#0 | 0          | 1.1156    | 1.434   |
|        |                 | 16QAM      | 18900/1880     | 6#0 | 0          | 0.9457    | 1.216   |
|        | 15MHz           | QPSK       | 18900/1880     | 6#0 | 0          | 1.1179    | 1.337   |
|        | TOMEZ           | 16QAM      | 18900/1880     | 6#0 | 0          | 0.9608    | 1.231   |
|        | 20MHz           | QPSK       | 18900/1880     | 6#0 | 0          | 1.1237    | 1.324   |
|        | ΖυΙνίΠΖ         | 16QAM      | 18900/1880     | 6#0 | 0          | 0.9580    | 1.187   |

| Mode        | Bandwidth | Modulation | Channel/       | RB  | Index | Bandwid   | th(MHz) |
|-------------|-----------|------------|----------------|-----|-------|-----------|---------|
| iviode      | Dandwidth | wodulation | Frequency(MHz) | KD  | muex  | 99% Power | -26dBc  |
|             | 1.4MHz    | QPSK       | 26365/1882.5   | 6#0 | 0     | 1.1066    | 1.358   |
|             | 1.410172  | 16QAM      | 26365/1882.5   | 6#0 | 0     | 0.9343    | 1.163   |
|             | 3MHz      | QPSK       | 26365/1882.5   | 6#0 | 0     | 1.1113    | 1.403   |
|             | SIVIFIZ   | 16QAM      | 26365/1882.5   | 6#0 | 0     | 0.9423    | 1.150   |
| ,           | 5MHz      | QPSK       | 26365/1882.5   | 6#0 | 0     | 1.1095    | 1.320   |
| LTE<br>Band | SIVIFIZ   | 16QAM      | 26365/1882.5   | 6#0 | 0     | 0.9472    | 1.207   |
| 25          | 10MHz     | QPSK       | 26365/1882.5   | 6#0 | 0     | 1.1129    | 1.341   |
| 23          |           | 16QAM      | 26365/1882.5   | 6#0 | 0     | 0.9547    | 1.233   |
|             | 45841-    | QPSK       | 26365/1882.5   | 6#0 | 0     | 1.1254    | 1.339   |
|             | 15MHz     | 16QAM      | 26365/1882.5   | 6#0 | 0     | 0.9570    | 1.175   |
|             | 20MHz     | QPSK       | 26365/1882.5   | 6#0 | 0     | 1.1158    | 1.435   |
|             | ZUIVITZ   | 16QAM      | 26365/1882.5   | 6#0 | 0     | 0.9607    | 1.190   |



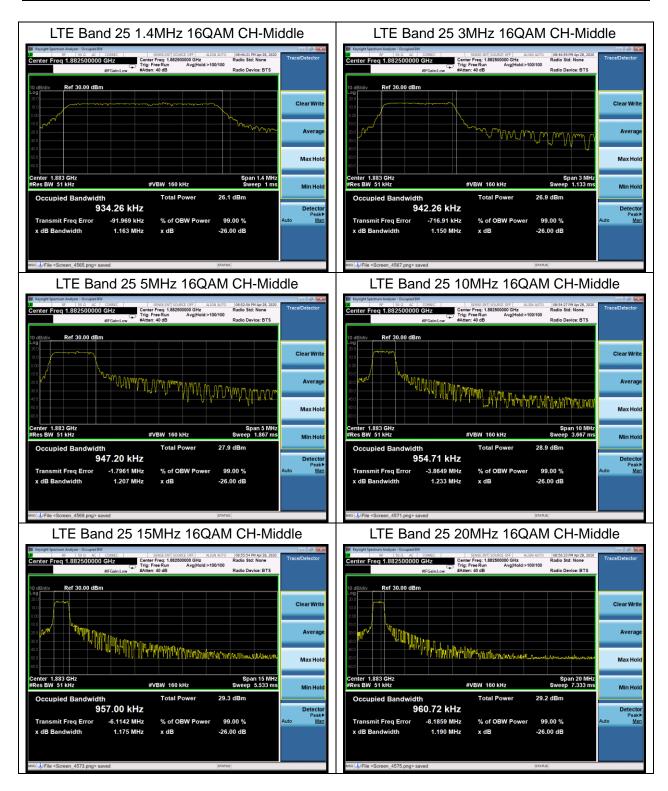
















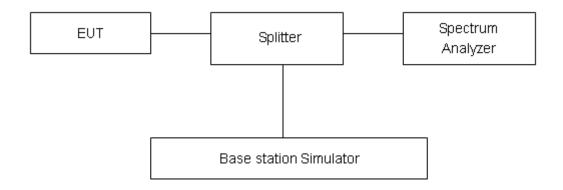







### 5.3. Band Edge Compliance

#### Ambient condition


| Temperature | Relative humidity | Pressure |
|-------------|-------------------|----------|
| 23°C ~25°C  | 45%~50%           | 101.5kPa |

#### **Method of Measurement**

The EUT was connected to Spectrum Analyzer and Base Station Simulator via power Splitter. The band edge of the lowest and highest channels were measured. The Average detector is used and RBW is set to 51kHz, VBW is set to 160kHz for LTE Band 2/25

Spectrum analyzer plots are included on the following pages.

#### **Test Setup**

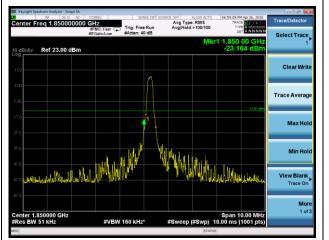


#### Limits

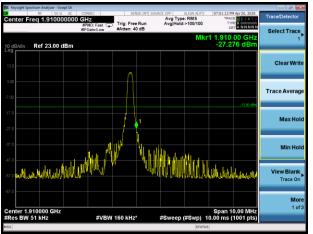
Rule Part 24.238(a) specifies that "on any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log10 (P) dB."

| Limit | -13 dBm |
|-------|---------|
|-------|---------|

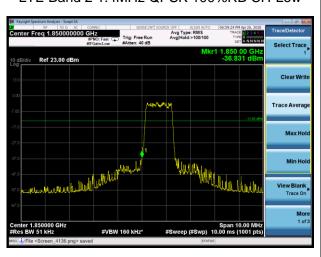
#### **Measurement Uncertainty**


The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96, U=0.684dB.

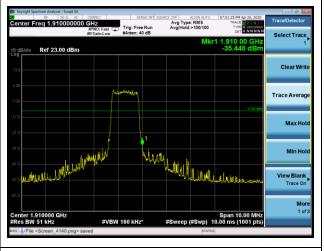




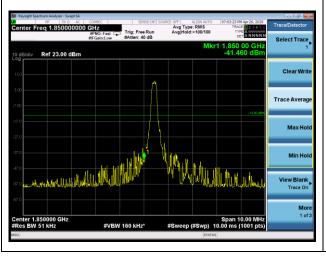

#### **Test Result:**


LTE Band 2 1.4MHz QPSK 1RB CH-Low

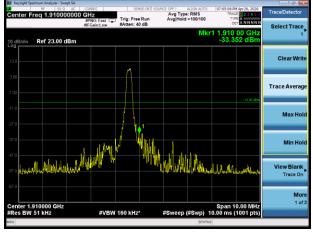



LTE Band 2 1.4MHz QPSK 1RB CH-High



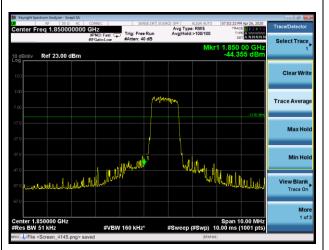

LTE Band 2 1.4MHz QPSK 100%RB CH-Low



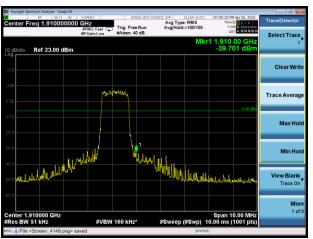

LTE Band 2 1.4MHz QPSK 100%RB CH-High



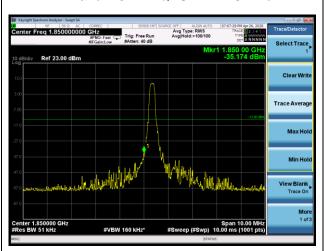
LTE Band 2 3MHz QPSK 1RB CH-Low



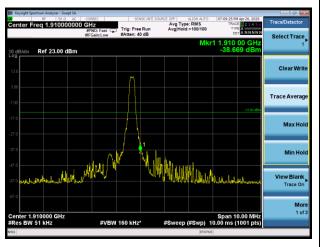

LTE Band 2 3MHz QPSK 1RB CH-High



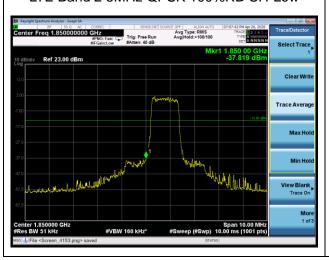




#### LTE Band 2 3MHz QPSK 100%RB CH-Low




LTE Band 2 3MHz QPSK 100%RB CH-High



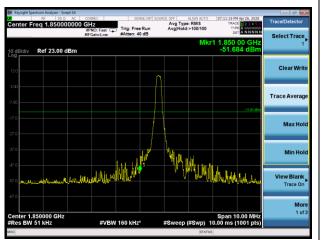

LTE Band 2 5MHz QPSK 1RB CH-Low



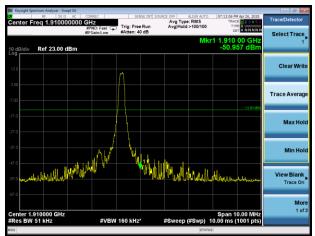
LTE Band 2 5MHz QPSK 1RB CH-High



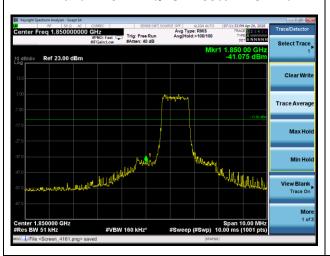
LTE Band 2 5MHz QPSK 100%RB CH-Low




LTE Band 2 5MHz QPSK 100%RB CH-High



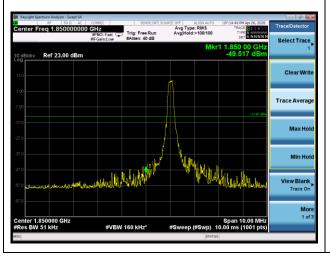




#### LTE Band 2 10MHz QPSK 1RB CH-Low

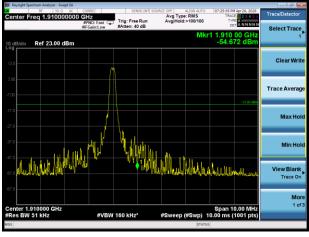


LTE Band 2 10MHz QPSK 1RB CH-High




LTE Band 2 10MHz QPSK 100%RB CH-Low



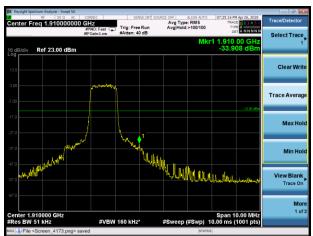

LTE Band 2 10MHz QPSK 100%RB CH-High



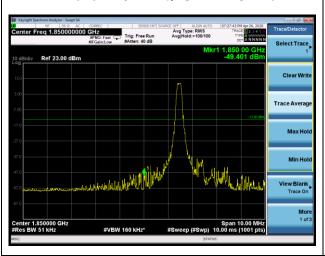
LTE Band 2 15MHz QPSK 1RB CH-Low



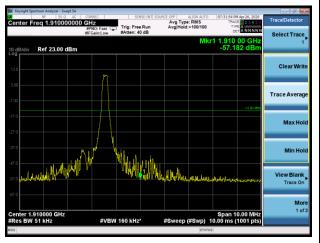

LTE Band 2 15MHz QPSK 1RB CH-High



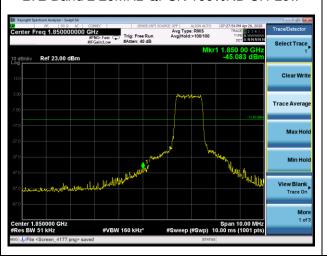




### LTE Band 2 15MHz QPSK 100%RB CH-Low




# LTE Band 2 15MHz QPSK 100%RB CH-High



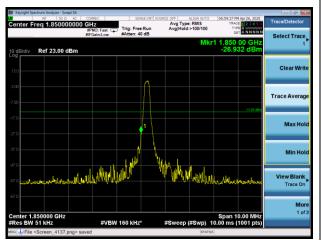

LTE Band 2 20MHz QPSK 1RB CH-Low



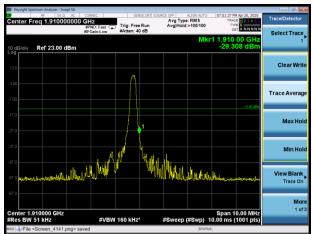
LTE Band 2 20MHz QPSK 1RB CH-High



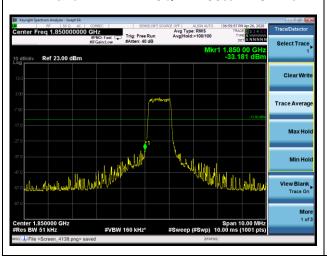
LTE Band 2 20MHz QPSK 100%RB CH-Low



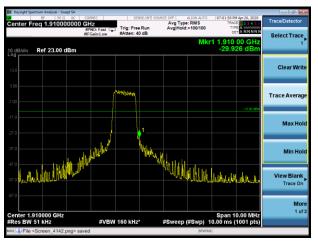

LTE Band 2 20MHz QPSK 100%RB CH-High



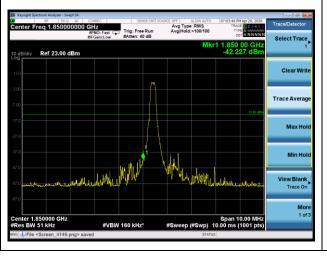




#### LTE Band 2 1.4MHz 16QAM 1RB CH-Low

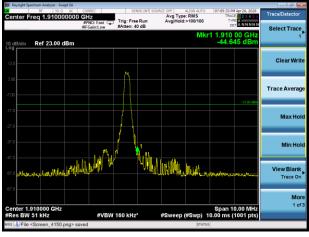



LTE Band 2 1.4MHz 16QAM 1RB CH-High




LTE Band 2 1.4MHz 16QAM 100%RB CH-Low



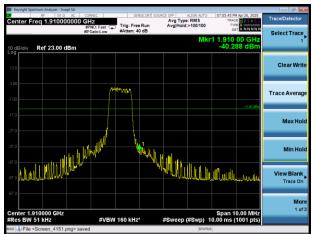

LTE Band 2 1.4MHz 16QAM 100%RB CH-High



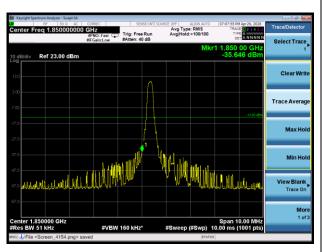
LTE Band 2 3MHz 16QAM 1RB CH-Low



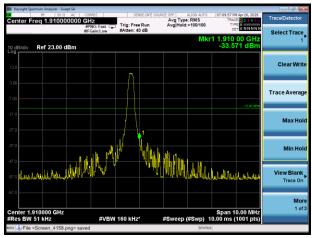
LTE Band 2 3MHz 16QAM 1RB CH-High



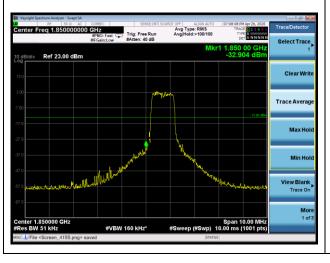




#### LTE Band 2 3MHz 16QAM 100%RB CH-Low

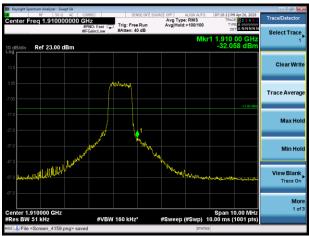



# LTE Band 2 3MHz 16QAM 100%RB CH-High




LTE Band 2 5MHz 16QAM 1RB CH-Low




LTE Band 2 5MHz 16QAM 1RB CH-High



LTE Band 2 5MHz 16QAM 100%RB CH-Low



LTE Band 2 5MHz 16QAM 100%RB CH-High

