

BG77 Hardware Design

LPWA Module Series

Rev. BG77_Hardware_Design_V1.1

Date: 2019-10-08

Status: Preliminary

Our aim is to provide customers with timely and comprehensive service. For any assistance, please contact our company headquarters:

Quectel Wireless Solutions Co., Ltd.

Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai, China 200233

Tel: +86 21 5108 6236 Email: info@quectel.com

Or our local office. For more information, please visit:

http://www.quectel.com/support/sales.htm

For technical support, or to report documentation errors, please visit:

http://www.quectel.com/support/technical.htm

Or email to: support@quectel.com

GENERAL NOTES

QUECTEL OFFERS THE INFORMATION AS A SERVICE TO ITS CUSTOMERS. THE INFORMATION PROVIDED IS BASED UPON CUSTOMERS' REQUIREMENTS. QUECTEL MAKES EVERY EFFORT TO ENSURE THE QUALITY OF THE INFORMATION IT MAKES AVAILABLE. QUECTEL DOES NOT MAKE ANY WARRANTY AS TO THE INFORMATION CONTAINED HEREIN, AND DOES NOT ACCEPT ANY LIABILITY FOR ANY INJURY, LOSS OR DAMAGE OF ANY KIND INCURRED BY USE OF OR RELIANCE UPON THE INFORMATION. ALL INFORMATION SUPPLIED HEREIN IS SUBJECT TO CHANGE WITHOUT PRIOR NOTICE.

COPYRIGHT

THE INFORMATION CONTAINED HERE IS PROPRIETARY TECHNICAL INFORMATION OF QUECTEL WIRELESS SOLUTIONS CO., LTD. TRANSMITTING, REPRODUCTION, DISSEMINATION AND EDITING OF THIS DOCUMENT AS WELL AS UTILIZATION OF THE CONTENT ARE FORBIDDEN WITHOUT PERMISSION. OFFENDERS WILL BE HELD LIABLE FOR PAYMENT OF DAMAGES. ALL RIGHTS ARE RESERVED IN THE EVENT OF A PATENT GRANT OR REGISTRATION OF A UTILITY MODEL OR DESIGN.

Copyright © Quectel Wireless Solutions Co., Ltd. 2019. All rights reserved.

About the Document

History

Revision	Date	Author	Description	
1.0	2019-06-17	Jake JIANG/ Newgate HUA	Initial	
			Delete GNSS optional information.	
			2. Updated the power supply in Table 3.	
	2019-10-08	Lyndon LIU/ Watt ZHU	3. Updated Pin Assignment in Figure 2.	
			4. Updated Pin Description in Table 3.	
			5. Added PON_TRIG pin to wake-up the module from	
1.1			PSM in Chapter 3.4.2.	
1.1			6. Updated the power supply in Chapter 3.5.	
			7. Added automatically turn-on circuit in chapter 3.61.	
			8. Added PON_TRIG information in chapter 3.8.	
			9. Added GRFC interfaces description in chapter 3.20.	
			10. Updated the absolute maximum ratings in Chapter 6.1.	
			11. Updated the power supply ratings in Chapter 6.3.	

Contents

Ab	bout the Document	2
Со	Contents	3
Та	able Index	5
Fig	igure Index	7
1	Introduction	9
	1.1. Safety Information	10
2	•	
	2.1. General Description	
	2.2. Key Features	
	2.3. Functional Diagram	
	2.4. Evaluation Board	14
3	Application Interfaces	15
	3.1. Pin Assignment	16
	3.2. Pin Description	17
	3.3. Operating Modes	24
	3.4. Power Saving	25
	3.4.1. Airplane Mode	25
	3.4.2. Power Saving Mode (PSM)	26
	3.4.3. Extended Idle Mode DRX (e-I-DRX)	
	3.4.4. Sleep Mode	
	3.4.4.1. UART Application	27
	3.5. Power Supply	28
	3.5.1. Power Supply Pins	28
	3.5.2. Decrease Voltage Drop	29
	3.5.3. Monitor the Power Supply	29
	3.6. Power on and off Scenarios	30
	3.6.1. Turn on Module Using the PWRKEY Pin	30
	3.6.2. Turn off Module	32
	3.6.2.1. Turn off Module Using the PWRKEY Pin	32
	3.6.2.2. Turn off Module Using AT Command	32
	3.7. Reset the Module*	32
	3.8. PON_TRIG Interface	34
	3.9. (U)SIM Interface	35
	3.10. USB Interface	37
	3.11. UART Interfaces	39
	3.12. PCM and I2C Interfaces*	42
	3.13. Network Status Indication	43
	3.14. STATUS	44

	3.15. Behaviors of RI*	45
	3.16. USB_BOOT Interface	45
	3.17. ADC Interfaces	46
	3.18. SPI Interface*	47
	3.19. GPIO Interfaces*	48
	3.20. GRFC Interfaces*	49
4	GNSS Receiver	50
	4.1. General Description	50
	4.2. GNSS Performance	50
	4.3. Layout Guidelines	51
5	Antenna Interfaces	52
	5.1. Main Antenna Interface	52
	5.1.1. Pin Definition	52
	5.1.2. Operating Frequency	52
	5.1.3. Reference Design of RF Antenna Interface	53
	5.1.4. Reference Design of RF Layout	54
	5.2. GNSS Antenna Interface	56
	5.3. Antenna Installation	57
	5.3.1. Antenna Requirements	57
	5.3.2. Recommended RF Connector for Antenna Installation	58
6	Electrical, Reliability and Radio Characteristics	60
	6.1. Absolute Maximum Ratings	60
	6.2. Power Supply Ratings	60
	6.3. Operation and Storage Temperatures	61
	6.4. Current Consumption	61
	6.5. RF Output Power	63
	6.6. RF Receiving Sensitivity	64
	6.7. Electrostatic Discharge	65
7	Mechanical Dimensions	66
	7.1. Mechanical Dimensions of the Module	66
	7.2. Recommended Footprint	68
	7.3. Design Effect Drawings of the Module	69
8	3	
	8.1. Storage	
	8.2. Manufacturing and Soldering	
	8.3. Packaging	72
9	Appendix A References	74

Table Index

TABLE 1: FREQUENCY BANDS AND GNSS TYPES OF BG77 MODULE	11
TABLE 2: KEY FEATURES OF BG77 MODULE	12
TABLE 3: DEFINITION OF I/O PARAMETERS	17
TABLE 4: PIN DESCRIPTION	17
TABLE 5: OVERVIEW OF OPERATING MODES	25
TABLE 6: VBAT AND GND PINS	28
TABLE 7: PIN DEFINITION OF PWRKEY	30
TABLE 8: PIN DEFINITION OF RESET_N	33
TABLE 9: PIN DEFINITION OF PON_TRIG INTERFACE	34
TABLE 10: PIN DEFINITION OF (U)SIM INTERFACE	35
TABLE 11: PIN DEFINITION OF USB INTERFACE	
TABLE 12: PIN DEFINITION OF MAIN UART INTERFACE	40
TABLE 13: PIN DEFINITION OF DEBUG UART INTERFACE	40
TABLE 14: PIN DEFINITION OF GNSS UART INTERFACE	40
TABLE 15: LOGIC LEVELS OF DIGITAL I/O	41
TABLE 16: PIN DEFINITION OF PCM AND I2C INTERFACES	42
TABLE 17: PIN DEFINITION OF NETLIGHT	43
TABLE 18: WORKING STATE OF NETLIGHT	43
TABLE 19: PIN DEFINITION OF STATUS	44
TABLE 20: DEFAULT BEHAVIORS OF RI	45
TABLE 21: PIN DEFINITION OF USB_BOOT INTERFACE	46
TABLE 22: PIN DEFINITION OF ADC INTERFACES	47
TABLE 23: CHARACTERISTICS OF ADC INTERFACES	47
TABLE 24: PIN DEFINITION OF SPI INTERFACE	48
TABLE 25: PIN DEFINITION OF GPIO INTERFACES	48
TABLE 26: LOGIC LEVELS OF GPIO INTERFACES	48
TABLE 27: PIN DEFINITION OF GRFC INTERFACES	49
TABLE 28: LOGIC LEVELS OF GRFC INTERFACES	49
TABLE 29: GNSS PERFORMANCE	50
TABLE 30: PIN DEFINITION OF MAIN ANTENNA INTERFACE	52
TABLE 31: BG77 OPERATING FREQUENCY	52
TABLE 32: PIN DEFINITION OF GNSS ANTENNA INTERFACE	56
TABLE 33: GNSS FREQUENCY	56
TABLE 34: ANTENNA REQUIREMENTS	57
TABLE 35: ABSOLUTE MAXIMUM RATINGS	60
TABLE 36: POWER SUPPLY RATINGS	60
TABLE 37: OPERATION AND STORAGE TEMPERATURES	61
TABLE 38: BG77 CURRENT CONSUMPTION	61
TABLE 39: BG77 RF OUTPUT POWER	64
TABLE 40: BG77 CONDUCTED RF RECEIVING SENSITIVITY	64
TABLE 41: ELECTROSTATIC DISCHARGE CHARACTERISTICS (25°C, 45% RELATIVE HUMIDITY)	65

TABLE 42: RECOMMENDED THERMAL PROFILE PARAMETERS	71
TABLE 43: REEL PACKAGING	73
TABLE 44: RELATED DOCUMENTS	74
TARLE 45: TERMS AND ARREVIATIONS	7/

Figure Index

FIGURE 1: FUNCTIONAL DIAGRAM	. 14
FIGURE 2: PIN ASSIGNMENT (TOP VIEW)	. 16
FIGURE 3: SLEEP MODE APPLICATION VIA UART	. 28
FIGURE 4: STAR STRUCTURE OF THE POWER SUPPLY	. 29
FIGURE 5: TURN ON THE MODULE USING DRIVING CIRCUIT	. 30
FIGURE 6: TURN ON THE MODULE USING KEYSTROKE	31
FIGURE 7: TIMING OF TURNING ON MODULE	. 31
FIGURE 8: TIMING OF TURNING OFF MODULE	. 32
FIGURE 9: TIMING OF RESET MODULE	. 33
FIGURE 10: REFERENCE CIRCUIT OF RESET_N BY USING DRIVING CIRCUIT	. 33
FIGURE 11: REFERENCE CIRCUIT OF RESET_N BY USING BUTTON	. 34
FIGURE 12: REFERENCE CIRCUIT OF PON_TRIG CIRCUIT	
FIGURE 13: REFERENCE CIRCUIT OF (U)SIM INTERFACE WITH AN 8-PIN (U)SIM CARD CONNECTO	
FIGURE 14: REFERENCE CIRCUIT OF (U)SIM INTERFACE WITH A 6-PIN (U)SIM CARD CONNECTOR	
FIGURE 15: REFERENCE DESIGN OF USB PHY	. 38
FIGURE 16: REFERENCE DESIGN OF USB INTERFACE	. 38
FIGURE 17: REFERENCE CIRCUIT WITH TRANSLATOR CHIP	. 41
FIGURE 18: REFERENCE CIRCUIT WITH TRANSISTOR CIRCUIT	. 42
FIGURE 19: REFERENCE CIRCUIT OF PCM APPLICATION WITH AUDIO CODEC	. 43
FIGURE 20: REFERENCE CIRCUIT OF THE NETWORK STATUS INDICATOR	. 44
FIGURE 21: REFERENCE CIRCUIT OF STATUS	. 45
FIGURE 22: REFERENCE CIRCUIT OF USB_BOOT INTERFACE	. 46
FIGURE 23: REFERENCE CIRCUIT OF RF ANTENNA INTERFACE	. 54
FIGURE 24: MICROSTRIP LINE DESIGN ON A 2-LAYER PCB	. 54
FIGURE 25: COPLANAR WAVEGUIDE LINE DESIGN ON A 2-LAYER PCB	. 55
FIGURE 26: COPLANAR WAVEGUIDE LINE DESIGN ON A 4-LAYER PCB (LAYER 3 AS REFERENCE	
GROUND)	. 55
FIGURE 27: COPLANAR WAVEGUIDE LINE DESIGN ON A 4-LAYER PCB (LAYER 4 AS REFERENCE	
GROUND)	
FIGURE 28: REFERENCE CIRCUIT OF GNSS ANTENNA INTERFACE	. 57
FIGURE 29: DIMENSIONS OF THE U.FL-R-SMT CONNECTOR (UNIT: MM)	. 58
FIGURE 30: MECHANICALS OF U.FL-LP CONNECTORS	. 59
FIGURE 31: SPACE FACTOR OF MATED CONNECTOR (UNIT: MM)	. 59
FIGURE 32: MODULE TOP AND SIDE DIMENSIONS	. 66
FIGURE 33: MODULE BOTTOM DIMENSIONS (BOTTOM VIEW)	. 67
FIGURE 34: RECOMMENDED FOOTPRINT (TOP VIEW)	. 68
FIGURE 35: TOP VIEW OF THE MODULE	. 69
FIGURE 36: BOTTOM VIEW OF THE MODULE	
FIGURE 37: RECOMMENDED REFLOW SOLDERING THERMAL PROFILE	71
FIGURE 38: TAPE DIMENSIONS	. 72

$\mathbf{1}$ Introduction

This document defines BG77 module and describes its air interface and hardware interfaces which are connected with customers' applications.

This document can help customers quickly understand the interface specifications, electrical and mechanical details, as well as other related information of BG77. To facilitate its application in different fields, reference design is also provided for customers' reference. Associated with application notes and user guides, customers can use the module to design and set up mobile applications easily.

1.1. Safety Information

The following safety precautions must be observed during all phases of the operation, such as usage, service or repair of any cellular terminal or mobile incorporating BG77. Manufacturers of the cellular terminal should send the following safety information to users and operating personnel, and incorporate these guidelines into all manuals supplied with the product. If not so, Quectel assumes no liability for customers' failure to comply with these precautions.

Full attention must be given to driving at all times in order to reduce the risk of an accident. Using a mobile while driving (even with a handsfree kit) causes distraction and can lead to an accident. Please comply with laws and regulations restricting the use of wireless devices while driving.

Switch off the cellular terminal or mobile before boarding an aircraft. The operation of wireless appliances in an aircraft is forbidden to prevent interference with communication systems. If the device offers an Airplane Mode, then it should be enabled prior to boarding an aircraft. Please consult the airline staff for more restrictions on the use of wireless devices on boarding the aircraft.

Wireless devices may cause interference on sensitive medical equipment, so please be aware of the restrictions on the use of wireless devices when in hospitals, clinics or other healthcare facilities.

Cellular terminals or mobiles operating over radio signals and cellular network cannot be guaranteed to connect in all possible conditions (for example, with unpaid bills or with an invalid (U)SIM card). When emergent help is needed in such conditions, please remember using emergency call. In order to make or receive a call, the cellular terminal or mobile must be switched on in a service area with adequate cellular signal strength.

The cellular terminal or mobile contains a transmitter and receiver. When it is ON, it receives and transmits radio frequency signals. RF interference can occur if it is used close to TV set, radio, computer or other electric equipment.

In locations with potentially explosive atmospheres, obey all posted signs to turn off wireless devices such as your phone or other cellular terminals. Areas with potentially explosive atmospheres include fueling areas, below decks on boats, fuel or chemical transfer or storage facilities, areas where the air contains chemicals or particles such as grain, dust or metal powders, etc.

1.2 FCC Certification Requirements.

According to the definition of mobile and fixed device is described in Part 2.1091(b), this device is a mobile device.

And the following conditions must be met:

- 1. This Modular Approval is limited to OEM installation for mobile and fixed applications only. The antenna installation and operating configurations of this transmitter, including any applicable source-based time- averaging duty factor, antenna gain and cable loss must satisfy MPE categorical Exclusion Requirements of 2.1091.
- The EUT is a mobile device; maintain at least a 20 cm separation between the EUT and the user's body and must not transmit simultaneously with any other antenna or transmitter.
- 3.A label with the following statements must be attached to the host end product: This device contains FCC ID: XMR201912BG77.
- 4.To comply with FCC regulations limiting both maximum RF output power and human exposure to RF radiation, maximum antenna gain (including cable loss) must not exceed:
 - □ Catm LTE Band2/25:≤11.000dBi
 □ Catm LTE Band4/66:≤8.000dBi
 □ Catm LTE Band5:≤12.416dBi
 □ Catm LTE Band12:≤11.734dBi
 □ Catm LTE Band13:≤12.173dBi
 □ Catm LTE Band14:≤12.255 dBi
 □ Catm LTE Band26:≤15.013 dBi
 □ Catm LTE Band85:≤12.770 dBi
 □ NB LTE Band4/66:≤8.000dBi
 □ NB LTE Band5/26:≤15.013dBi

□ NB LTE Band12/85:≤12.416dBi
 □ NB LTE Band13:≤11.734dBi
 □ BNLTE Band14:≤12.272 dBi
 □ NB LTE Band71:≤11.447 dBi
 □ NB LTE Band85:≤12.770 dBi

- 5. This module must not transmit simultaneously with any other antenna or transmitter
- 6. The host end product must include a user manual that clearly defines operating requirements and conditions that must be observed to ensure compliance with current FCC RF exposure guidelines.

For portable devices, in addition to the conditions 3 through 6 described above, a separate approval is required to satisfy the SAR requirements of FCC Part 2.1093

If the device is used for other equipment that separate approval is required for all other operating configurations, including portable configurations with respect to 2.1093 and different antenna configurations.

For this device, OEM integrators must be provided with labeling instructions of finished products. Please refer to KDB784748 D01 v07, section 8. Page 6/7 last two paragraphs:

A certified modular has the option to use a permanently affixed label, or an electronic label. For a permanently affixed label, the module must be labeled with an FCC ID - Section 2.926 (see 2.2 Certification (labeling requirements) above). The OEM manual must provide clear instructions explaining to the OEM the labeling requirements, options and OEM user manual instructions that are required (see next paragraph).

For a host using a certified modular with a standard fixed label, if (1) the module's FCC ID is not visible when installed in the host, or (2) if the host is marketed so that end

users do not have straightforward commonly used methods for access to remove the module so that the FCC ID of the module is visible; then an additional permanent label referring to the enclosed module: "Contains Transmitter Module FCC ID: XMR201912BG77" or "Contains FCC ID: XMR201912BG77" must be used. The host OEM user manual must also contain clear instructions on how end users can find and/or access the module and the FCC ID.

The final host / module combination may also need to be evaluated against the FCC Part 15B criteria for unintentional radiators in order to be properly authorized for operation as a Part 15 digital device.

The user's manual or instruction manual for an intentional or unintentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment. In cases where the manual is provided only in a form other than paper, such as on a computer disk or over the Internet, the information required by this section may be included in the manual in that alternative form, provided the user can reasonably be expected to have the capability to access information in that form.

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the manufacturer could void the user's authority to operate the equipment.

2 Product Concept

2.1. General Description

BG77 is an embedded IoT (LTE Cat M1, LTE Cat NB2) wireless communication module. It provides data connectivity on LTE-FDD network, and supports half-duplex operation in LTE network. It also provides GNSS and voice ¹⁾ functionality to meet customers' specific application demands.

Table 1: Frequency Bands and GNSS Types of BG77 Module

Module	Supported Bands	LTE Bands Power Class	GNSS
BG77	Cat M1: LTE-FDD: B1/B2/B3/B4/B5/B8/B12/B13/B14/B18/ B19/B20/B25/B26*/ B27/B28/B66/B85 Cat NB2 ²⁾ : LTE-FDD: B1/B2/B3/B4/B5/B8/B12/B13/B18/B19/ B20/B25/B26*/B28/B66/B71/B85	Power Class 5 (21dBm)	GPS, GLONASS, BeiDou, Galileo, QZSS

NOTES

- 1. 1) BG77 supports VoLTE (Voice over LTE) under LTE Cat M1. This voice function is still under development.
- 2. ²⁾LTE Cat NB2 is backward compatible with LTE Cat NB1.
- 3. "*" means under development.

With a compact profile of 14.9mm × 12.9mm × 1.7mm, BG77 can meet almost all requirements for M2M applications such as smart metering, tracking system, security, wireless POS, etc. It is especially suitable for size and weight sensitive applications such as smart watch and other wearable devices.

BG77 is an SMD type module which can be embedded into applications through its 94 LGA pads. It supports internet service protocols like TCP, UDP and PPP. Extended AT commands have been developed for customers to use these internet service protocols easily.

2.2. Key Features

The following table describes the detailed features of BG77 module.

Table 2: Key Features of BG77 Module

Features	Details				
Power Supply	 Supply voltage: 2.6V~4.8V 				
Fower Supply	Typical supply voltage: 3.3V				
Transmitting Power	Class 5 (21dBm+1/-3dB) for LTE-FDD bands				
	Support 3GPP Rel. 14				
	 Support LTE Cat M1 and LTE Cat NB2 				
LTE Features	 Support 1.4MHz RF bandwidth for LTE Cat M1 				
2.2.00000	 Support 200KHz RF bandwidth for LTE Cat NB2on 				
	 Cat M1: Max. 588Kbps (DL)/1119Kbps (UL) 				
	 Cat NB2: Max. 127Kbps (DL)/158.5Kbps (UL) 				
	 Support PPP/TCP/UDP/SSL/TLS/FTP(S)/HTTP(S)/NITZ/PING/MQTT/ 				
Internet Protocol	CoAP protocols				
Features	 Support PAP (Password Authentication Protocol) and CHAP 				
i catules	(Challenge Handshake Authentication Protocol) protocols which are				
	usually used for PPP connections				
	 Text and PDU mode 				
SMS	 Point to point MO and MT 				
31/13	SMS cell broadcast				
	SMS storage: ME by default				
(U)SIM Interface	Support 1.8V USIM/SIM card only				
Audio Feature	Support one digital audio interface: PCM interface*				
	Compliant with USB 2.0 specification (slave only)				
	 Support operations at low-speed and full-speed 				
USB Interface	 Used for AT command communication, data transmission, GNSS 				
USB IIILEITACE	NMEA output, software debugging and firmware upgrade				
	 Support USB serial drivers for Windows 7/8/8.1/10, Linux 2.6/3.x (3.4 				
	or later)/4.1~4.15, Android 4.x/5.x/6.x/7.x/8.x/9.x				
	Main UART:				
	 Used for data transmission and AT command communication 				
UART Interfaces	 115200bps baud rate by default 				
OANT IIIICHAUCS	 The default frame format is 8N1 (8 data bits, no parity, 1 stop bit) 				
	 Support RTS and CTS hardware flow control 				
	Debug UART:				

 Used for software debugging and log output Support 115200bps baud rate GNSS UART: Used for GNSS data and NMEA sentences output 			
GNSS UART:Used for GNSS data and NMEA sentences output			
 Used for GNSS data and NMEA sentences output 			
·			
115200bps baud rate by default			
3GPP TS 27.007 and 3GPP TS 27.005 AT commands, as well as Quectel			
enhanced AT commands			
One NETLIGHT pin for network connectivity status indication			
Main antenna (ANT_MAIN) and GNSS antenna (ANT_GNSS) interfaces			
• Size: (14.9±0.15)mm × (12.9±0.15)mm × (1.7±0.2)mm			
Weight: approx. 0.73g			
 Operation temperature range: -35°C ~ +75°C ¹⁾ 			
• Extended temperature range: -40°C ~ +85°C ²⁾			
 Storage temperature range: -40°C ~ +90°C 			
USB interface and DFOTA*			
All hardware components are fully compliant with EU RoHS directive			

NOTES

- 1. "*" means under development.
- 2. 1) Within operation temperature range, the module is 3GPP compliant.
- 3. ²⁾ Within extended temperature range, the module remains the ability to establish and maintain a voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction. There are also no effects on radio spectrum and no harm to radio network. Only one or more parameters like P_{out} might reduce in their value and exceed the specified tolerances. When the temperature returns to the normal operating temperature levels, the module will meet 3GPP specifications again.

2.3. Functional Diagram

The following figure shows a block diagram of BG77 and illustrates the major functional parts.

- Power management
- Baseband
- Radio frequency
- Peripheral interfaces

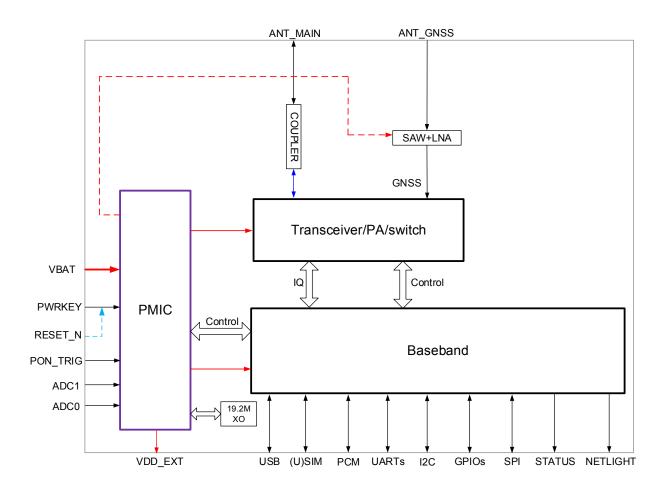


Figure 1: Functional Diagram

NOTES

- 1. PWRKEY output voltage is 1.5V because of the voltage drop inside the Qualcomm chipset. Due to platform limitations, the chipset has integrated the reset function into PWRKEY. Therefore, PWRKEY should never be pulled down to GND permanently.
- 2. RESET_N is multiplexed from PWRKEY.

2.4. Evaluation Board

In order to help customers to develop applications conveniently with BG77, Quectel supplies the evaluation board (EVB), USB to RS-232 converter cable, USB data cable, earphone, antenna and other peripherals to control or test the module. For more details, please refer to *document* [1].

3 Application Interfaces

BG77 is equipped with 94 LGA pads that can be connected to customers' cellular application platforms. The following sub-chapters will provide detailed description of interfaces listed below:

- Power supply
- (U)SIM interface
- USB interface
- UART interfaces
- PCM and I2C interfaces*
- Status indication
- USB_BOOT interface
- ADC interfaces
- GPIO interfaces*
- GRFC interfaces*

NOTE

"*" means under development.

3.1. Pin Assignment

The following figure shows the pin assignment of BG77.

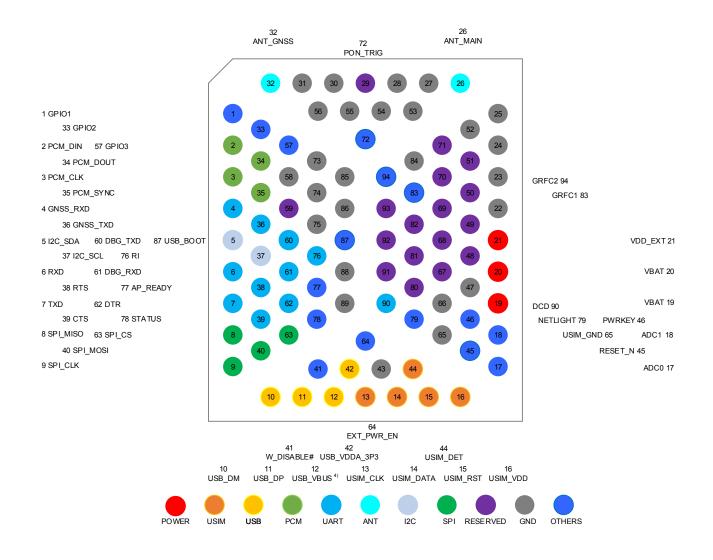


Figure 2: Pin Assignment (Top View)

NOTES

- 1. PWRKEY output voltage is 1.5V because of the voltage drop inside the Qualcomm chipset. Due to platform limitations, the chipset has integrated the reset function into PWRKEY. Therefore, PWRKEY should never be pulled down to GND permanently.
- RESET_N is multiplexed from PWRKEY.

- 3. ADC input voltage must not exceed 1.8V
- 4. The input voltage range of USB_VBUS is 1.3V~1.8V.
- 5. Keep all RESERVED pins and unused pins unconnected.
- 6. GND pins should be connected to ground in the design.
- 7. W_DISABEL#, AP_READY, USIM_DET, PCM, I2C, GRFC and GPIO functions are under development.
- 8. SPI_MOSI(pin40), NETLIGHT(pin79) and GPRC1(pin83) are BOOT_CONFIG pins, They should not be pulled up before startup.

3.2. Pin Description

The following tables show the pin definition and description of BG77.

Table 3: Definition of I/O Parameters

Туре	Description
Al	Analog Input
AO	Analog Output
DI	Digital Input
DO	Digital Output
Ю	Bidirectional
OD	Open Drain
PI	Power Input
РО	Power Output

Table 4: Pin Description

Power Supply						
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
VBAT	19, 20	PI	Power supply for the module	Vmax=4.8V Vmin=2.6V Vnorm=3.3V		

22-25, 27, 28, 30, 31, 43, 47, 43, 47, 52-56, 58, 66, 73-75, 84-86, 88, 89	VDD_EXT	21	PO	1.8V output power supply for external circuit	Vnorm=1.8V I _O max=50mA	Power supply for external GPIO's pull-up circuits. If unused, keep this pin open.	
Pin Name Pin No. I/O Description DC Characteristics Comment PWRKEY 46 DI Turn on/off the module Vnorm=1.5V VILMax=0.45V PWRKEY should never be pulled down to GND permanently. Reset Pin Name Pin Name Pin No. I/O Description DC Characteristics Comment Status Indication Pin No. I/O Description DC Characteristics Comment STATUS 78 DO Indicate the module's operation status VoHmin=1.35V VoH	GND	27, 28, 30, 31, 43, 47, 52~56, 58, 66, 73~75, 84~86,		Ground			
Pin Name No. No. Description DC Characteristics Comment PWRKEY should never be pulled down to GND permanently. Reset Pin Name Pin No. Vo Description Pin Name Pin No. Turn on/off the module Pin No. Pin Name Pin No. Pin Name Pin No. Vo Description Pin Name Pin No. Pin No. Pin Name Pin No. Po Description Po Characteristics Comment 1.8V power domain. If unused, keep this pin open. Po not pull it up before startup. 1.8V power domain. If unused, keep this pin open. Po not pull it up before startup. 1.8V power domain. If unused, keep this pin open. USB Interface	Turn on/off						
PWRKEY 46 DI Turn on/off the module VilLmax=0.45V VilLmax=0.45V never be pulled down to GND permanently. Reset Pin Name Pin No. I/O Description DC Characteristics Reset the module VilLmax=0.45V VilLmax=0.45V Status Indication Pin Name Pin No. I/O Description DC Characteristics Comment Indicate the module's voltmax=0.45V Voltmax=0.45V NETLIGHT 79 DO Indicate the module's voltmax=0.45V Voltmax=0.45V Indicate the module's voltmax=0.45V Voltmax=0.45V BOOT_CONFIG. Do not pull it up before startup. 1.8V power domain. If unused, keep this pin open. BOOT_CONFIG. Do not pull it up before startup. 1.8V power domain. If unused, keep this pin open. USB Interface	Pin Name		I/O	Description	DC Characteristics	Comment	
Pin Name Pin No. I/O Description DC Characteristics Comment RESET_N 45 DI Reset the module Vnorm=1.5V VIL max=0.45V Status Indication Pin Name Pin No. I/O Description DC Characteristics Comment STATUS 78 DO Indicate the module's operation status VoHmin=1.35V VoHmin=1.35V VoHmax=0.45V If unused, keep this pin open. NETLIGHT 79 DO Indicate the module's network activity status VoHmin=1.35V VoHmin=1.35V VoHmax=0.45V BOOT_CONFIG. Do not pull it up before startup. 1.8V power domain. If unused, keep this pin open. USB Interface USB Interface	PWRKEY	46	DI			never be pulled down	
RESET_N 45 DI Reset the wodule Viller with viller w	Reset						
Status Indication Pin Name Pin No. I/O Description DC Characteristics Comment Indicate the module's operation status Indicate the module's Volmax=0.45V Indicate the module it up before startup. Indicate the module it up before startup. Indicate the module it up before startup. Indicate the module volmax=0.45V	Pin Name		I/O	Description	DC Characteristics	Comment	
Pin Name Pin No. I/O No. Description DC Characteristics Comment STATUS 78 DO Indicate the module's operation status V _{OH} min=1.35V V _{OL} max=0.45V pin open. 1.8V power domain. If unused, keep this pin open. NETLIGHT 79 DO Indicate the module's network activity status V _{OH} min=1.35V V _{OL} max=0.45V network activity status Do not pull it up before startup. 1.8V power domain. If unused, keep this pin open. USB Interface	RESET_N	45	DI				
Pin Name No. No. N	Status Indication						
STATUS 78 DO module's V _{OH} min=1.35V operation V _{OL} max=0.45V status BOOT_CONFIG. Do not pull it up before startup. network activity V _{OL} max=0.45V status Indicate the module's V _{OH} min=1.35V network activity V _{OL} max=0.45V status It unused, keep this pin open. BOOT_CONFIG. Do not pull it up before startup. 1.8V power domain. If unused, keep this pin open.	Pin Name		I/O	Description	DC Characteristics	Comment	
NETLIGHT 79 DO $\frac{1}{100}$ Indicate the module's $\frac{1}{100}$ before startup. $\frac{1}{100}$ hetwork activity $\frac{1}{100}$ max=0.45V $\frac{1}{100}$ hetwork activity $$	STATUS	78	DO	module's operation		If unused, keep this	
	NETLIGHT	79	DO	module's network activity		Do not pull it up before startup. 1.8V power domain. If unused, keep this	
Pin Name Pin I/O Description DC Characteristics Comment	USB Interface						
	Pin Name	Pin	I/O	Description	DC Characteristics	Comment	

	No.				
USB_VBUS	12	AI	USB detection	V _{IH} max=1.8V V _{IH} min=1.3V	
USB_DP	11	Ю	USB differential data bus (+)		Compliant with USB 2.0 standard
USB_DM	10	Ю	USB differential data bus (-)		 specification. Require differential impedance of 90Ω.
USB_VDDA_3P3	42	PI	Power for USB PHY circuit	Vnorm=3.3V	
EXT_PWR_EN	64	DO	External LDO enable of USB	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain.
(U)SIM Interface					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
USIM_DET	44	DI	(U)SIM card insertion detection	V _{IL} min=-0.3V V _{IL} max=0.6V V _{IH} min=1.2V V _{IH} max=2.0V	1.8V power domain. If unused, keep this pin open. The pin function is under development.
USIM_VDD	16	РО	Power supply for (U)SIM card	Vmax=1.9V Only 1.8V (U)9 Vmin=1.7V card is suppor	
USIM_RST	15	DO	Reset signal of (U)SIM card	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain.
USIM_DATA	14	Ю	Data signal of (U)SIM card	V _{IL} min=-0.3V V _{IL} max=0.6V V _{IH} min=1.2V V _{IH} max=2.0V V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain.
USIM_CLK	13	DO	Clock signal of (U)SIM card	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain.
USIM_GND	65		Specified ground for (U)SIM card		
Main UART Interfac	ce				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
DTR	62	DI	Data terminal ready. Sleep mode control.	V _{IL} min=-0.3V V _{IL} max=0.6V V _{IH} min=1.2V	1.8V power domain. If unused, keep this pin open.

				V _{IH} max=2.0V	
RXD	6	DI	Receive data	V _{IL} min=-0.3V V _{IL} max=0.6V V _{IH} min=1.2V V _{IH} max=2.0V	1.8V power domain. If unused, keep this pin open.
TXD	7	DO	Transmit data	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain. If unused, keep this pin open.
CTS	39	DO	Clear to send	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain. If unused, keep this pin open.
RTS	38	DI	Request to send	V _{IL} min=-0.3V V _{IL} max=0.6V V _{IH} min=1.2V V _{IH} max=2.0V	1.8V power domain. If unused, keep this pin open.
DCD	90	DO	Data carrier detection	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain. If unused, keep this pin open.
RI	76	DO	Ring indication signal	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain. If unused, keep this pin open.
Debug UART Interfa	асе				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
DBG_RXD	61	DI	Receive data	V _{IL} min=-0.3V V _{IL} max=0.6V V _{IH} min=1.2V V _{IH} max=2.0V	1.8V power domain. If unused, keep this pin open.
DBG_TXD	60	DO	Transmit data	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain. If unused, keep this pin open.
GNSS UART Interfa	се				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
GNSS_UART_TXD	36	DO	Transmit data	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain. If unused, keep this pin open.
GNSS_UART_RXD	4	DI	Receive data	V_{IL} min=-0.3V V_{IL} max=0.6V V_{IH} min=1.2V V_{IH} max=2.0V	1.8V power domain. If unused, keep this pin open.

PCM Interface*					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
PCM_CLK	3	DO	PCM clock output	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain. If unused, keep this pin open.
PCM_SYNC	35	DO	PCM frame synchronization output	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain. If unused, keep this pin open.
PCM_DIN	2	DI	PCM data input	V _{IL} min=-0.3V V _{IL} max=0.6V V _{IH} min=1.2V V _{IH} max=2.0V	1.8V power domain. If unused, keep this pin open.
PCM_DOUT	34	DO	PCM data output	· OL···································	
I2C Interface*					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
I2C_SCL	37	OD	I2C serial clock. Used for external codec.		External pull-up resistor is required. 1.8V only. If unused, keep this pin open.
I2C_SDA	5	OD	I2C serial data. Used for external codec.		External pull-up resistor is required. 1.8V only. If unused, keep this pin open.
Antenna Interfaces					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
ANT_MAIN	26	Ю	Main antenna interface		50Ω impedance
ANT_GNSS	32	Al	GNSS antenna interface		50Ω impedance. If unused, keep this pin open.
SPI Interface*					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment

SPI_MOSI	40	DO	SPI master-out slave-in	V _{OL} max=0.45V V _{OH} min=1.35V	BOOT_CONFIG. Do not pull it up before startup. 1.8V power domain. If unused, keep this pin open.
SPI_MISO	8	DI	SPI master-in slave-out	V _{IL} min=-0.3V V _{IL} max=0.6V V _{IH} min=1.2V V _{IH} max=2.0V	1.8V power domain. If unused, keep this pin open.
SPI_CS_N	63	DO	SPI chip select	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain. If unused, keep this pin open.
SPI_CLK	9	DO	SPI clock	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain. If unused, keep this pin open.
GPIO Interfaces*					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
GPIO1	1	10	General- purpose input/ output interface	V_{OL} max=0.45 V V_{OH} min=1.35 V V_{IL} min=-0.3 V V_{IL} max=0.6 V V_{IH} min=1.2 V V_{IH} max=2.0 V	1.8V power domain. If unused, keep this pin open.
GPIO2	33	Ю	General- purpose input/ output interface	V_{OL} max=0.45V V_{OH} min=1.35V V_{IL} min=-0.3V V_{IL} max=0.6V V_{IH} min=1.2V V_{IH} max=2.0V	1.8V power domain. If unused, keep this pin open.
GPIO3	57	Ю	General- purpose input/ output interface	V _{OL} max=0.45V V _{OH} min=1.35V V _{IL} min=-0.3V V _{IL} max=0.6V V _{IH} min=1.2V V _{IH} max=2.0V	1.8V power domain. If unused, keep this pin open.
ADC Interfaces					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
ADC0	17	Al	General purpose analog	Voltage range: 0.1V to 1.8V	If unused, keep this pin open.

			to digital converter interface		
ADC1	18	Al	General purpose analog to digital converter interface	Voltage range: 0.1V to 1.8V	If unused, keep this pin open.
Other Interface P	ins				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
W_DISABLE#	41	DI	Airplane mode control	V _{IL} min=-0.3V V _{IL} max=0.6V V _{IH} min=1.2V V _{IH} max=2.0V	1.8V power domain. Pulled up by default. When it is in low voltage level, the module can enter into airplane mode. If unused, keep this pin open. The pin function is under development
AP_READY	77	DI	Application processor sleep state detection	V _{IL} min=-0.3V V _{IL} max=0.6V V _{IH} min=1.2V V _{IH} max=2.0V	1.8V power domain. If unused, keep this pin open. The pin function is under development
USB_BOOT	87	DI	Force the module to enter into emergency download mode	V _{IL} min=-0.3V V _{IL} max=0.6V V _{IH} min=1.2V V _{IH} max=2.0V	1.8V power domain. If unused, keep this pin open.
PON_TRIG	72	DI	Wake up the module from PSM		1.8V power domain. Rising-edge triggered. Pulled-down by default. If unused, keep this pin open.
GRFC pins*					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
GRFC1	83	DO	General RF control	V _{OL} max=0.45V V _{OH} min=1.35V	BOOT_CONFIG. Do not pull it up

			interface		before startup 1.8V power domain. If unused, keep this pin open.
GRFC2	94	DO	General RF control interface	V _{OL} max=0.45V V _{OH} min=1.35V	1.8V power domain. If unused, keep this pin open.
RESERVED Pins					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
	29, 48~51,				

NOTES

- 1. PWRKEY output voltage is 1.5V because of the voltage drop inside the Qualcomm chipset. Due to platform limitations, the chipset has integrated the reset function into PWRKEY. Therefore, PWRKEY should never be pulled down to GND permanently.
- 2. RESET N is multiplexed from PWRKEY.
- 3. The input voltage range of USB_VBUS is $1.3V \sim 1.8V$.
- 4. USB_VDDA_3P3 and EXT_PWR_EN pins are used for USB PHY circuits.
- 5. W_DISABEL#, AP_READY, USIM_DET, PCM, I2C, GRFC and GPIO functions are under development.
- 6. SPI_MOSI(pin40), NETLIGHT(pin79) and GPRC1(pin83) are BOOT_CONFIG pins, They should not be pulled up before startup.
- 7. ADC input voltage must not exceed 1.8V.
- 8. Keep all RESERVED pins and unused pins unconnected.
- 9. "*" means under development.

3.3. Operating Modes

The table below briefly summarizes the various operating modes of BG77.

Table 5: Overview of Operating Modes

Mode	Details					
Normal	Connected	Network has been connected. In this mode, the power consumption may vary with the network setting and data transfer rate.				
Operation	ldle	Software is active. The module remains registered on network, and it is ready to send and receive data.				
Extended Idle Mode DRX (e-I-DRX)	use of e-I-DR terminating d	BG77 module and the network may negotiate over non-access stratum signaling the use of e-I-DRX for reducing power consumption, while being available for mobile terminating data and/or network originated procedures within a certain delay dependent on the DRX cycle value.				
Airplane Mode	AT+CFUN=4 or W_DISABLE# pin can set the module into airplane mode. In this case, RF function will be invalid.					
Minimum Functionality Mode	AT+CFUN=0 can set the module into a minimum functionality mode without removing the power supply. In this case, both RF function and (U)SIM card will be invalid.					
Sleep Mode*	In this mode, the current consumption of the module will be reduced to a lower level. During this mode, the module can still receive paging message, SMS and TCP/UDP data from the network normally.					
Power Saving Mode (PSM)	BG77 module may enter into Power Saving Mode to further reduce its power consumption. PSM is similar to power-off, but the module remains registered on the network and there is no need to re-attach or re-establish PDN connections.					
Power OFF Mode	not active. The	the power management unit shuts down the power supply. Software is ne serial interfaces are not accessible. But the operating voltage VBAT) remains applied.				

NOTES

- 1. During e-I-DRX, it is recommended to use UART interface for data communication, as the use of USB interface will increase power consumption.
- 2. W_DISABLE# function is still under development.

3.4. Power Saving

3.4.1. Airplane Mode

When the module enters into airplane mode, the RF function does not work, and all AT commands correlative with RF function will be inaccessible. This mode can be set via the following ways.

Hardware:

W DISABLE# is pulled up by default. Driving it to low level will let the module enter into airplane mode.

Software:

AT+CFUN=<fun> provides choice of the functionality level, through setting <fun> into 0, 1 or 4.

- AT+CFUN=0: Minimum functionality mode. Both (U)SIM and RF functions are disabled.
- AT+CFUN=1: Full functionality mode (by default).
- AT+CFUN=4: Airplane mode. RF function is disabled.

NOTES

- 1. Airplane mode control via W_DISABLE# is disabled in firmware by default. It can be enabled by AT+QCFG="airplanecontrol" command which is still under development. Details about the command will be provided in *document [2]*. W_DISABLE# function is also under development.
- 2. The execution of AT+CFUN command will not affect GNSS function.

3.4.2. Power Saving Mode (PSM)

BG77 module can enter into PSM for reducing its power consumption. The mode is similar to power-off, but the module remains registered on the network and there is no need to re-attach or re-establish PDN connections. So BG77 in PSM cannot immediately respond users' requests.

When the module wants to use the PSM it shall request an Active Time value during every Attach and TAU procedures. If the network supports PSM and accepts that the module uses PSM, the network confirms usage of PSM by allocating an Active Time value to the module. If the module wants to change the Active Time value, e.g. when the conditions are changed in the module, the module consequently requests the value it wants in the TAU procedure.

If PSM is supported by the network, then it can be enabled via **AT+CPSMS** command.

Either of the following methods will wake up the module from PSM:

- A rising edge on PON TRIG will wake up the module from PSM. (Recommended)
- Drive PWRKEY pin low will wake up the module.
- When the T3412_Ext timer expires, the module will be woken up automatically.

NOTES

Please refer to **document [2]** for details about **AT+CPSMS** command.

3.4.3. Extended Idle Mode DRX (e-I-DRX)

The module (UE) and the network may negotiate over non-access stratum signalling the use of e-I-DRX for reducing its power consumption, while being available for mobile terminating data and/or network originated procedures within a certain delay dependent on the DRX cycle value.

Applications that want to use e-I-DRX need to consider specific handling of mobile terminating services or data transfers, and in particular they need to consider the delay tolerance of mobile terminated data.

In order to negotiate the use of e-I-DRX, the UE requests e-I-DRX parameters during attach procedure and RAU/TAU procedure. The EPC may reject or accept the UE request for enabling e-I-DRX. In case the EPC accepts e-I-DRX, the EPC based on operator policies and, if available, the e-I-DRX cycle length value in the subscription data from the HSS, may also provide different values of the e-I-DRX parameters than what was requested by the UE. If the EPC accepts the use of e-I-DRX, the UE applies e-I-DRX based on the received e-I-DRX parameters. If the UE does not receive e-I-DRX parameters in the relevant accept message because the EPC rejected its request or because the request was received by EPC not supporting e-I-DRX, the UE shall apply its regular discontinuous reception.

If e-I-DRX is supported by the network, then it can be enabled by AT+CEDRXS=1 command.

Please refer to **document [2]** for details about **AT+CEDRXS** command.

3.4.4. Sleep Mode

BG77 is able to reduce its current consumption to a lower value during the sleep mode. The following sub-chapters describe the power saving procedure of BG77 module.

3.4.4.1. UART Application

If the host communicates with module via UART interface, the following preconditions can let the module enter into sleep mode.

- Execute AT+QSCLK=1 command to enable sleep mode.
- Drive DTR to high level.

The following figure shows the connection between the module and the host.

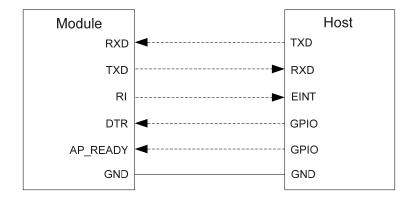


Figure 3: Sleep Mode Application via UART

- When BG77 has URC to report, RI signal will wake up the host. Please refer to Chapter 3.14 for details about RI behavior.
- Driving the host DTR to low level will wake up the module.
- AP_READY will detect the sleep state of the host (can be configured to high level or low level detection). Please refer to AT+QCFG="apready" command in document [2] for details.

NOTE

AP_READY function is still under development.

3.5. Power Supply

3.5.1. Power Supply Pins

BG77 provides two VBAT pins for connection with an external power supply.

The following table shows the details of VBAT pins and ground pins.

Table 6: VBAT and GND Pins

Pin Name	Pin No.	Description	Min.	Тур.	Max.	Unit
VBAT	19, 20	Power supply for the module	2.6	3.3	4.8	V
GND	22~25, 27, 28, 30, 31, 47, 52~56, 58, 66, 73~75, 84~86, 88, 89	Ground	-	-	-	-

3.5.2. Decrease Voltage Drop

The power supply range of BG77 is from 2.6V to 4.8V. Please make sure that the input voltage will never drop below 2.6V.

To decrease voltage drop, a bypass capacitor of about $100\mu\text{F}$ with low ESR should be used, and a multi-layer ceramic chip capacitor (MLCC) array should also be reserved due to its low ESR. It is recommended to use three ceramic capacitors (100nF, 33pF, 10pF) for composing the MLCC array, and place these capacitors close to VBAT pins. The main power supply from an external application has to be a single voltage source and can be expanded to two sub paths with star structure. The width of VBAT trace should be no less than 1mm. In principle, the longer the VBAT trace is, the wider it will be.

In addition, in order to get a stable power source, it is suggested to use a TVS with low leakage current and suitable reverse stand-off voltage, and also it is recommended to place it as close to the VBAT pins as possible. The following figure shows the star structure of the power supply.

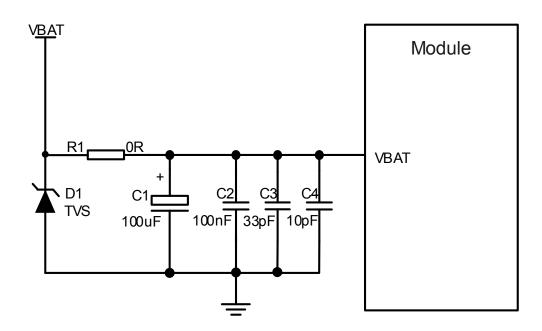


Figure 4: Star Structure of the Power Supply

3.5.3. Monitor the Power Supply

AT+CBC* command can be used to monitor the VBAT voltage value. For more details, please refer to **document [2]**.

NOTE

"*" means under development.

3.6. Power on and off Scenarios

3.6.1. Turn on Module Using the PWRKEY Pin

The following table shows the pin definition of PWRKEY.

Table 7: Pin Definition of PWRKEY

Pin Name	Pin No.	Description	DC Characteristics	Comment
PWRKEY	46	Turn on/off the module	Vnorm=1.5V V _{IL} max=0.45V	The output voltage is 1.5V because of the voltage drop inside the Qualcomm chipset.

When BG77 is in power off mode, it can be turned on to normal mode by driving the PWRKEY pin to a low level for a duration between 500ms and 1000ms. It is recommended to use an open drain/collector driver to control the PWRKEY. A simple reference circuit is illustrated in the following figure.

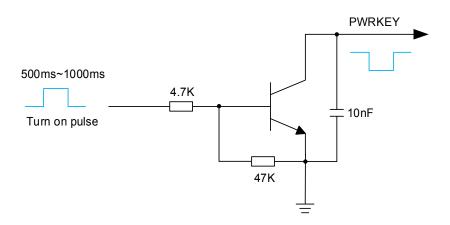


Figure 5: Turn on the Module Using Driving Circuit

Another way to control the PWRKEY is using a button directly. When pressing the key, electrostatic strike may generate from the finger. Therefore, a TVS component is indispensable to be placed nearby the button for ESD protection. A reference circuit is shown in the following figure.

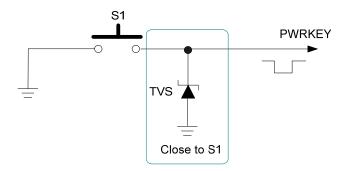


Figure 6: Turn on the Module Using Keystroke

The power on timing is illustrated in the following figure.

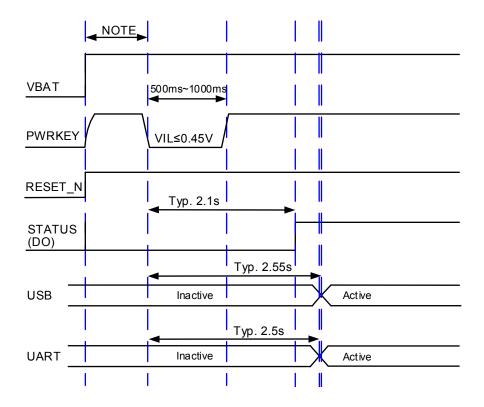


Figure 7: Timing of Turning on Module

NOTES

- 1. Make sure that VBAT is stable before pulling down PWRKEY pin and keep the interval no less than 30ms.
- 2. PWRKEY output voltage is 1.5V because of the voltage drop inside the Qualcomm chipset. Due to platform limitations, the chipset has integrated the reset function into PWRKEY. Therefore, PWRKEY should never be pulled down to GND permanently.

3.6.2. Turn off Module

Either of the following methods can be used to turn off the module:

- Normal power down procedure: Turn off the module using the PWRKEY pin.
- Normal power down procedure: Turn off the module using AT+QPOWD command.

3.6.2.1. Turn off Module Using the PWRKEY Pin

Driving the PWRKEY pin to a low level voltage for a duration between 650ms and 1500ms, the module will execute power-down procedure after the PWRKEY is released.

The power-off timing is illustrated in the following figure.

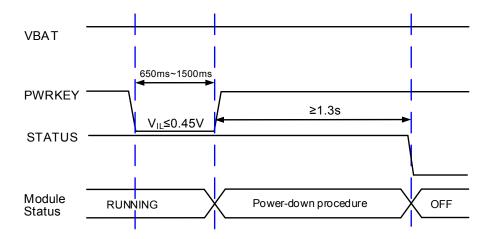


Figure 8: Timing of Turning off Module

3.6.2.2. Turn off Module Using AT Command

It is also a safe way to use **AT+QPOWD** command to turn off the module, which is similar to turning off the module via PWRKEY pin.

Please refer to **document [2]** for details about **AT+QPOWD** command.

3.7. Reset the Module*

RESET_N, which is multiplexed from PWRKEY, is used to reset the module. Due to platform limitations, the chipset has integrated the reset function into PWRKEY.

The module can be reset by driving RESET_N low for a duration between 2s and 3.8s.

Table 8: Pin Definition of RESET_N

Pin Name	Pin No.	Description	DC Characteristics	Comment
RESET_N	45	Reset the module	V _{IL} max=0.45V	Multiplexed from PWRKEY.

The reset timing is illustrated in the following figure.

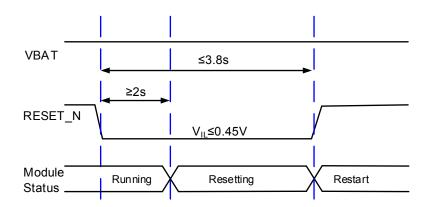


Figure 9: Timing of Reset Module

The recommended circuit is similar to the PWRKEY control circuit. An open drain/collector driver or button can be used to control the RESET_N pin.

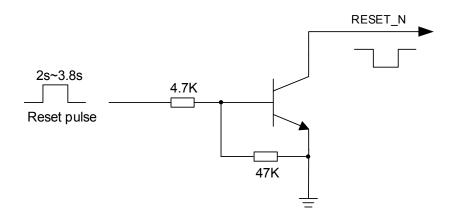


Figure 10: Reference Circuit of RESET_N by Using Driving Circuit

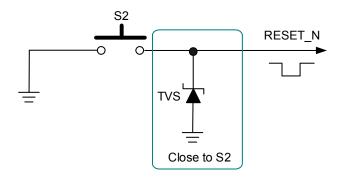


Figure 11: Reference Circuit of RESET_N by Using Button

NOTES

Please assure that there is no large capacitance on RESET_N pin.

3.8. PON_TRIG Interface

BG77 provides one PON_TRIG pin which is used to wake up the module from PSM. When the pin detects a rising edge, the module will be woken up from PSM.

Table 9: Pin Definition of PON_TRIG Interface

Pin Name	Pin No.	I/O	Description	Comment
PON_TRIG	72	DI	Wake up the module from PSM	Rising-edge triggered. Pulled-down by default. 1.8V power domain.

A reference circuit is shown in the following figure.

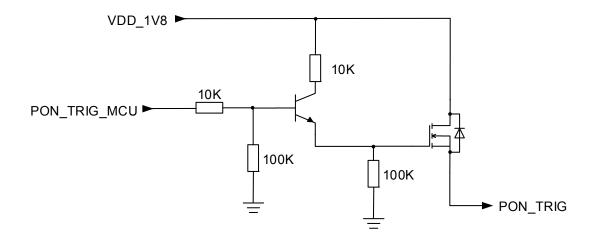


Figure 12: Reference Circuit of PON_TRIG Circuit

NOTE

VDD_1V8 is provided by an external LDO.

3.9. (U)SIM Interface

BG77 supports 1.8V (U)SIM card only. The (U)SIM interface circuitry meets ETSI and IMT-2000 requirements.

Table 10: Pin Definition of (U)SIM Interface

Pin Name	Pin No.	I/O	Description	Comment
USIM_DET	44	DI	(U)SIM card insertion detection	1.8V power domain. The pin function is under development.
USIM_VDD	16	РО	Power supply for (U)SIM card	Only 1.8V (U)SIM card is supported.
USIM_RST	15	DO	Reset signal of (U)SIM card	1.8V power domain.
USIM_DATA	14	Ю	Data signal of (U)SIM card	1.8V power domain.
USIM_CLK	13	DO	Clock signal of (U)SIM card	1.8V power domain.
USIM_GND	65		Specified ground for (U)SIM card	

BG77 supports (U)SIM card hot-plug via USIM_DET. The function supports low level or high level detections, and is disabled by default. Please refer to **document [2]** about **AT+QSIMDET** command for details.

The following figure shows a reference design of (U)SIM interface with an 8-pin (U)SIM card connector.

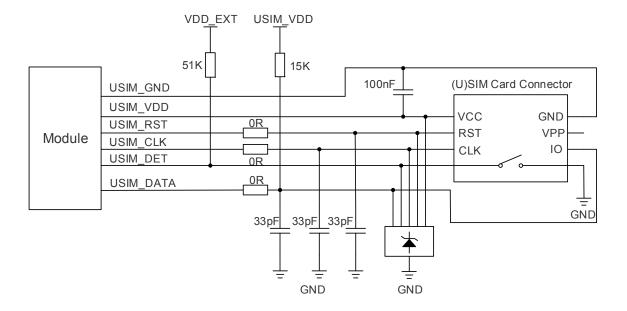


Figure 13: Reference Circuit of (U)SIM Interface with an 8-Pin (U)SIM Card Connector

If (U)SIM card detection function is not needed, please keep USIM_DET unconnected. A reference circuit for (U)SIM interface with a 6-pin (U)SIM card connector is illustrated in the following figure.

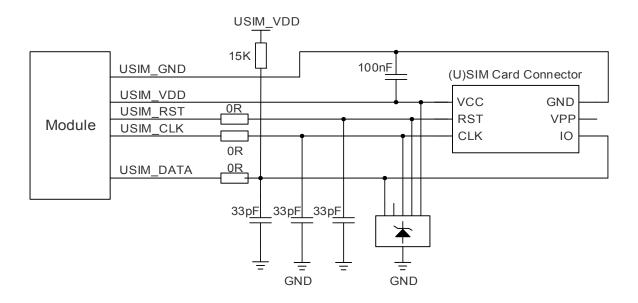


Figure 14: Reference Circuit of (U)SIM Interface with a 6-Pin (U)SIM Card Connector

In order to enhance the reliability and availability of the (U)SIM card in applications, please follow the

criteria below in (U)SIM circuit design:

- Keep the placement of (U)SIM card connector as close to the module as possible. Keep the trace length as less than 200mm as possible.
- Keep (U)SIM card signals away from RF and VBAT traces.
- Assure the ground between the module and the (U)SIM card connector short and wide. Keep the
 trace width of ground and USIM_VDD no less than 0.5mm to maintain the same electric potential.
 Make sure the bypass capacitor between USIM_VDD and USIM_GND less than 1uF, and place it as
 close to (U)SIM card connector as possible. If the system ground plane is complete, USIM_GND can
 be connected to the system ground directly.
- To avoid cross-talk between USIM_DATA and USIM_CLK, keep them away from each other and shield them with surrounded ground. USIM_RST should also be ground shielded.
- In order to offer good ESD protection, it is recommended to add a TVS diode array with parasitic capacitance not exceeding 15pF. In order to facilitate debugging, it is recommended to reserve series resistors for the (U)SIM signals of the module. The 33pF capacitors are used for filtering interference of GSM 900MHz. Please note that the (U)SIM peripheral circuit should be close to the (U)SIM card connector.
- The pull-up resistor on USIM_DATA line can improve anti-jamming capability when long layout trace and sensitive occasion are applied, and should be placed close to the (U)SIM card connector.

NOTE

USIM DET function is still under development.

3.10. USB Interface

BG77 contains one integrated Universal Serial Bus (USB) interface which complies with the USB 2.0 specification and supports low-speed (1.5Mbps) and full-speed (12Mbps) modes. The USB interface is used for AT command communication, data transmission, software debugging and firmware upgrade. The following table shows the pin definition of USB interface.

Table 11: Pin Definition of USB Interface

Pin Name	Pin No.	I/O	Description	Comment
USB_VBUS	12	Al	USB connection detection	The input range is 1.3V~1.8V
USB_DP	11	Ю	USB differential data bus (+)	Require differential impedance
USB_DM	10	Ю	USB differential data bus (-)	of 90Ω

USB_VDDA_3P3	42	PI	Power supply for USB PHY circuit	Vnorm=3.3V
EXT_PWR_EN	64	DO	External LDO enable of USB	1.8V power domain
GND	43		Ground	

For more details about USB 2.0 specification, please visit http://www.usb.org/home.

The USB interface is recommended to be reserved for firmware upgrade in customers' design. The following figures illustrate reference designs of USB PHY and USB interface.

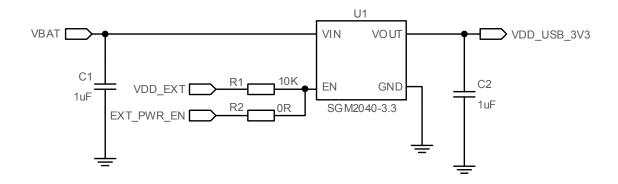


Figure 15: Reference Design of USB PHY

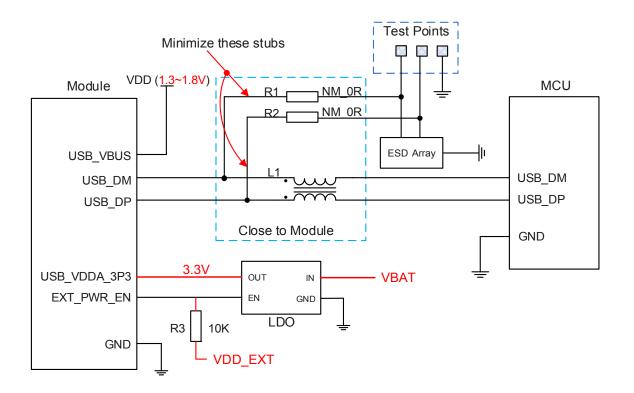


Figure 16: Reference Design of USB Interface

A common mode choke L1 is recommended to be added in series between the module and customer's MCU in order to suppress EMI spurious transmission. Meanwhile, the 0Ω resistors (R3 and R4) should be added in series between the module and the test points so as to facilitate debugging, and the resistors are not mounted by default. In order to ensure the integrity of USB data line signal, L1/R3/R4 components must be placed close to the module, and also these resistors should be placed close to each other. The extra stubs of trace must be as short as possible.

The following principles should be complied with when design the USB interface, so as to meet USB 2.0 specification.

- It is important to route the USB signal traces as differential pairs with total grounding. The impedance
 of USB differential trace is 90Ω.
- Do not route signal traces under crystals, oscillators, magnetic devices and RF signal traces. It is
 important to route the USB differential traces in inner-layer with ground shielding on not only upper
 and lower layers but also right and left sides.
- Pay attention to the influence of junction capacitance of ESD protection components on USB data lines. Typically, the capacitance value should be less than 2pF.
- Keep the ESD protection components as close to the USB connector as possible.

NOTES

- 1. BG77 can only be used as a slave device.
- 2. The input voltage range of USB_VBUS is 1.3V~1.8V.

3.11. UART Interfaces

The module provides three UART interfaces: Main UART, Debug UART and GNSS UART interfaces. Features of them are illustrated below:

- The Main UART interface supports 9600bps, 19200bps, 38400bps, 57600bps, 115200bps, 230400bps, 460800bps and 921600bps baud rates, and the default is 115200bps. It is used for data transmission and AT command communication, and supports RTS and CTS hardware flow control. The default frame format is 8N1 (8 data bits, no parity, 1 stop bit).
- The Debug UART interface supports a fixed baud rate of 115200bps, and is used for software debugging and log output.
- The GNSS UART interface supports 115200bps baud rate by default, and is used for GNSS data and NMEA sentences output.

The following tables show the pin definition of the three UART interfaces.

Table 12: Pin Definition of Main UART Interface

Pin Name	Pin No.	I/O	Description	Comment
DTR	62	DI	Data terminal ready. Sleep mode control.	1.8V power domain
RXD	6	DI	Receive data	1.8V power domain
TXD	7	DO	Transmit data	1.8V power domain
CTS	39	DO	Clear to send	1.8V power domain
RTS	38	DI	Request to send	1.8V power domain
DCD	90	DO	Data carrier detection	1.8V power domain
RI	76	DO	Ring indication signal	1.8V power domain

NOTE

AT+IPR command can be used to set the baud rate of the Main UART interface, and **AT+IFC** command can be used to set the hardware flow control (hardware flow control is disabled by default). Please refer to **document [2]** for more details about these AT commands.

Table 13: Pin Definition of Debug UART Interface

Pin Name	Pin No.	I/O	Description	Comment
DBG_TXD	60	DO	Transmit data	1.8V power domain
DBG_RXD	61	DI	Receive data	1.8V power domain

Table 14: Pin Definition of GNSS UART Interface

Pin Name	Pin No.	I/O	Description	Comment
GNSS_UART_TXD	36	DO	Transmit data	1.8V power domain
GNSS_UART_RXD	4	DI	Receive data	1.8V power domain

The logic levels of UART interfaces are described in the following table.

Table 15: Logic Levels of Digital I/O

Parameter	Min.	Max.	Unit
V_{IL}	-0.3	0.6	V
V _{IH}	1.2	2.0	V
V _{OL}	0	0.45	V
V _{OH}	1.35	1.8	V

The module provides 1.8V UART interfaces. A level translator should be used if customers' application is equipped with a 3.3V UART interface. A level translator TXS0108EPWR provided by *Texas Instruments* is recommended. The following figure shows a reference design of the Main UART interface:



Figure 17: Reference Circuit with Translator Chip

Please visit http://www.ti.com for more information.

Another example with transistor translation circuit is shown as below. The circuit design of dotted line section can refer to that of solid line section, in terms of both module input and output circuit designs, but please pay attention to the direction of connection.

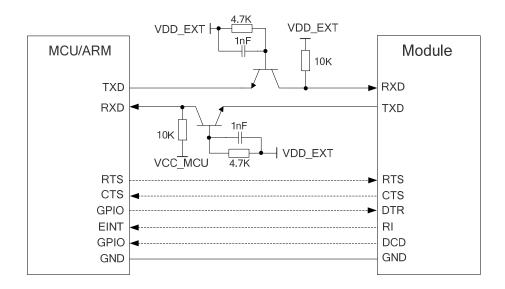


Figure 18: Reference Circuit with Transistor Circuit

NOTE

Transistor circuit solution is not suitable for applications with high baud rates exceeding 460Kbps.

3.12. PCM and I2C Interfaces*

BG77 provides one Pulse Code Modulation (PCM) digital interface and one I2C interface. The following table shows the pin definition of the two interfaces which can be applied on audio codec design.

Table 16: Pin Definition of PCM and I2C Interfaces

Pin Name	Pin No.	I/O	Description	Comment
PCM_CLK	3	DO	PCM clock output	1.8V power domain
PCM_SYNC	35	DO	PCM frame synchronization output	1.8V power domain
PCM_DIN	2	DI	PCM data input	1.8V power domain
PCM_DOUT	34	DO	PCM data output	1.8V power domain
I2C_SCL	37	OD	I2C serial clock	Require external pull-up to 1.8V
I2C_SDA	5	OD	I2C serial data	Require external pull-up to 1.8V

The following figure shows a reference design of PCM and I2C interfaces with an external codec IC.

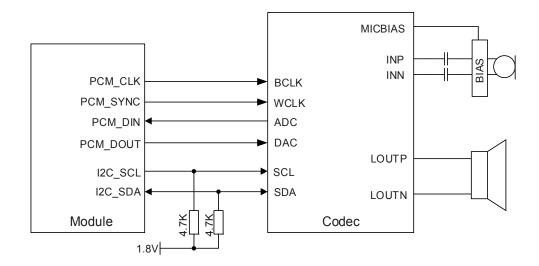


Figure 19: Reference Circuit of PCM Application with Audio Codec

NOTE

"*" means under development.

3.13. Network Status Indication

BG77 provides one network status indication pin: NETLIGHT. The pin is used to drive a network status indication LED. The following tables describe the pin definition and logic level changes of NETLIGHT in different network activity status.

Table 17: Pin Definition of NETLIGHT

Pin Name	Pin No.	I/O	Description	Comment
				BOOT_CONFIG. Do not pull it up
NETLIGHT	79	DO	Indicate the module's network activity status	before startup. 1.8V power domain.

Table 18: Working State of NETLIGHT

Pin Name Logic Level Changes Network Status	
---	--

NETLIGHT	Flicker slowly (200ms High/1800ms Low)	Network searching
	Flicker slowly (1800ms High/200ms Low)	Idle
	Flicker quickly (125ms High/125ms Low)	Data transfer is ongoing
	Always high	Voice calling

A reference circuit is shown in the following figure.

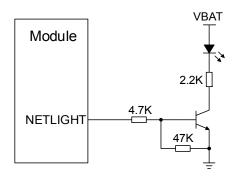


Figure 20: Reference Circuit of the Network Status Indicator

NOTES

NETLIGHT is a BOOT_CONFIG pin. It should not be pulled up before startup.

3.14. STATUS

The STATUS pin is used to indicate the operation status of BG77 module. It will output high level when the module is powered on.

The following table describes the pin definition of STATUS.

Table 19: Pin Definition of STATUS

Pin Name	Pin No.	I/O	Description	Comment
STATUS	78	DO	Indicate the module's operation status	1.8V power domain

The following figure shows a reference circuit of STATUS.

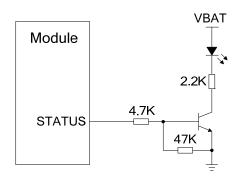


Figure 21: Reference Circuit of STATUS

3.15. Behaviors of RI*

AT+QCFG="risignaltype", "physical" command can be used to configure RI behavior.

No matter on which port URC is presented, URC will trigger the behavior of RI pin.

The default behaviors of RI are shown as below.

Table 20: Default Behaviors of RI

State	Response
Idle	RI keeps in high level.
URC	RI outputs 120ms low pulse when new URC returns.

The default RI behaviors can be configured flexibly by **AT+QCFG="urc/ri/ring"** command. For more details about **AT+QCFG***, please refer to **document [2]**.

NOTES

- 1. URC can be outputted from UART port, USB AT port and USB modem port, through configuration via **AT+QURCCFG** command. The default port is USB AT port.
- 2. "*" means under development.

3.16. USB_BOOT Interface

BG77 provides a USB_BOOT pin. During development or factory production, USB_BOOT can force the module to boot from USB port for firmware upgrade.

Table 21: Pin Definition of USB_BOOT Interface

Pin Name	Pin No.	I/O	Description	Comment
USB_BOOT	87	DI	Force the module to enter into emergency download mode	1.8V power domain.Active high.If unused, keep it open.

The following figure shows a reference circuit of USB_BOOT interface.

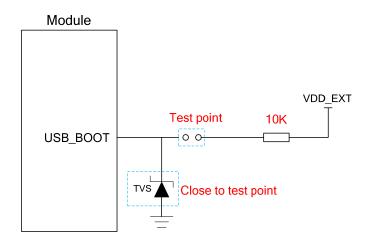


Figure 22: Reference Circuit of USB_BOOT Interface

NOTE

It is recommended to reserve the above circuit design during application design.

3.17. ADC Interfaces

The module provides two analog-to-digital converter (ADC) interfaces. **AT+QADC=0** command can be used to read the voltage value on ADC0 pin. **AT+QADC=1** command can be used to read the voltage value on ADC1 pin. For more details about the AT command, please refer to **document [2]**.

In order to improve the accuracy of ADC voltage values, the trace of ADC should be surrounded by ground.

Table 22: Pin Definition of ADC Interfaces

Pin Name	Pin No.	Description
ADC0	17	General purpose analog to digital converter interface
ADC1	18	General purpose analog to digital converter interface

The following table describes the characteristics of ADC interfaces.

Table 23: Characteristics of ADC Interfaces

Parameter	Min.	Тур.	Max.	Unit
Voltage Range	0.1		1.8	V
Resolution (LSB)		64.979		uV
Analog Bandwidth		500		kHz
Sample Clock		4.8		MHz
Input Resistance	10			ΜΩ

NOTES

- 1. ADC input voltage must not exceed 1.8V.
- 2. It is prohibited to supply any voltage to ADC pin when VBAT is removed.
- 3. It is recommended to use resistor divider circuit for ADC application, and the divider resistor accuracy should be no less than 1%.

3.18. SPI Interface*

BG77 module provides one SPI interface which support master/slave mode.

Master mode: up to 50MHzSlave mode: up to 25MHz

Table 24: Pin Definition of SPI Interface

Pin Name	Pin No.	I/O	Description	Comment
SPI_MOSI	40	DO	SPI master-out slave-in	BOOT_CONFIG. Do not pull it up before startup. 1.8V power domain
SPI_MISO	8	DI	SPI master-in slave-out	1.8V power domain
SPI_CS_N	63	DO	SPI chip select	1.8V power domain
SPI_CLK	9	DO	SPI clock	1.8V power domain

NOTES

- 1. SPI_MOSI cannot be pulled up before the module powers up.
- 2. The module provides 1.8V SPI interface. A level translator should be used between the module and the host if customers' application is equipped with a 3.3V processor or device interface.
- 3. "*" means under development.

3.19. GPIO Interfaces*

The module provides three general-purpose input and output (GPIO) interfaces. **AT+QCFG="gpio"*** command can be used to configure corresponding GPIO pin's status. For more details about the AT command, please refer to *document [2]*.

Table 25: Pin Definition of GPIO Interfaces

Pin Name	Pin No.	Description
GPIO1	1	General-purpose input and output interface
GPIO2	33	General purpose input and output interface
GPIO3	57	General purpose input and output interface

The following table describes the characteristics of GPIO interfaces.

Table 26: Logic Levels of GPIO Interfaces

Parameter Min. Max. Unit	
--------------------------	--

V_{IL}	-0.3	0.6	V	
V_{IH}	1.2	2.0	V	
V _{OL}	0	0.45	V	
V _{OH}	1.35	1.8	V	

NOTE

"*" means under development.

3.20. GRFC Interfaces*

The module provides two general RF control interfaces. Those can be used for control external antenna tuner. This function is under development.

Table 27: Pin Definition of GRFC Interfaces

Pin Name	Pin No.	Description	Comments
GRFC1	83	General RF control interface	BOOT_CONFIG. Do not pull it up before startup. 1.8V power domain.
GRFC2	94	General RF control interface	1.8V power domain.

Table 28: Logic Levels of GRFC Interfaces

Parameter	Min.	Max.	Unit
V _{OL}	0	0.45	V
V _{OH}	1.35	1.8	V

NOTE

- 1. "*" means under development.
- 2. GRFC1 is a BOOT_CONFIG pin. It should not be pulled up before startup.

4 GNSS Receiver

4.1. General Description

BG77 includes a fully integrated global navigation satellite system solution that supports Gen9 VT of Qualcomm (GPS, GLONASS, BeiDou, Galileo and QZSS).

BG77 supports standard NMEA-0183 protocol, and outputs NMEA sentences at 1Hz data update rate via USB interface by default.

By default, BG77 GNSS engine is switched off. It has to be switched on via AT command. For more details about GNSS engine technology and configurations, please refer to *document* [3].

4.2. GNSS Performance

The following table shows the GNSS performance of BG77.

Table 29: GNSS Performance

Parameter	Description Conditions		Тур.	Unit
	Cold start	Autonomous	TBD	dBm
Sensitivity (GNSS)	Reacquisition	Autonomous	TBD	dBm
,	Tracking	Autonomous	TBD	dBm
	Cold start	Autonomous	TBD	S
TTFF	@open sky	XTRA enabled	TBD	S
(GNSS)	Warm start @open sky	Autonomous	TBD	S
		XTRA enabled	TBD	S

	Hot start	Autonomous	TBD	S
	@open sky	XTRA enabled	TBD	S
Accuracy (GNSS)	CEP-50	Autonomous @open sky	TBD	m

NOTES

- 1. Tracking sensitivity: the lowest GNSS signal value at the antenna port on which the module can keep on positioning for 3 minutes.
- 2. Reacquisition sensitivity: the lowest GNSS signal value at the antenna port on which the module can fix position again within 3 minutes after loss of lock.
- 3. Cold start sensitivity: the lowest GNSS signal value at the antenna port on which the module fixes position within 3 minutes after executing cold start command.

4.3. Layout Guidelines

The following layout guidelines should be taken into account in customers designs.

- Maximize the distance between GNSS antenna and main antenna.
- Digital circuits such as (U)SIM card, USB interface, camera module, display connector and SD card should be kept away from the antennas.
- Use ground vias around the GNSS trace and sensitive analog signal traces to provide coplanar isolation and protection.
- Keep 50Ω characteristic impedance for the ANT_GNSS trace.

Please refer to *Chapter 5* for GNSS antenna reference design and antenna installation information.

5 Antenna Interfaces

BG77 includes a main antenna interface and a GNSS antenna interface. The antenna ports have an impedance of 50Ω .

5.1. Main Antenna Interface

5.1.1. Pin Definition

The pin definition of main antenna interface is shown below.

Table 30: Pin Definition of Main Antenna Interface

Pin Name	Pin No.	I/O	Description	Comment
ANT_MAIN	26	Ю	Main antenna interface	50Ω characteristic impedance

5.1.2. Operating Frequency

Table 31: BG77 Operating Frequency

3GPP Band	Transmit	Receive	Unit
LTE-FDD B1	1920~1980	2110~2170	MHz
LTE-FDD B2	1850~1910	1930~1990	MHz
LTE-FDD B3	1710~1785	1805~1880	MHz
LTE-FDD B4	1710~1755	2110~2155	MHz
LTE-FDD B5	824~849	869~894	MHz
LTE-FDD B8	880~915	925~960	MHz
LTE-FDD B12	699~716	729~746	MHz

LTE-FDD B13	777~787	746~756	MHz
LTE-FDD B14 1)	788~798	758~768	MHz
LTE-FDD B18	815~830	860~875	MHz
LTE-FDD B19	830~845	875~890	MHz
LTE-FDD B20	832~862	791~821	MHz
LTE-FDD B25	1850~1915	1930~1995	MHz
LTE-FDD B26*	814~849	859~894	MHz
LTE-FDD B27 1)	807~824	852~869	MHz
LTE-FDD B28	703~748	758~803	MHz
LTE-FDD B66	1710~1780	2110~2180	MHz
LTE-FDD B71 2)	663~698	617~652	MHz
LTE-FDD B85	698~716	728~746	MHz

NOTES

- 1. 1) LTE-FDD B14 and B27 are supported by Cat M1 only.
- 2. 2) LTE-FDD B71 is supported by Cat NB2 only.
- 3. "*" means under development.

5.1.3. Reference Design of RF Antenna Interface

A reference design of main antenna pad is shown as below. A π -type matching circuit should be reserved for better RF performance, and the π -type matching components (R1/C1/C2) should be placed as close to the antenna as possible. The capacitors are not mounted by default.

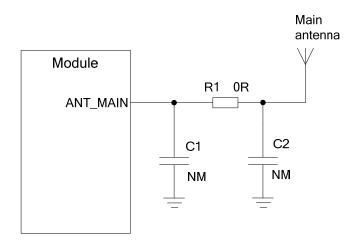


Figure 23: Reference Circuit of RF Antenna Interface

5.1.4. Reference Design of RF Layout

For user's PCB, the characteristic impedance of all RF traces should be controlled as 50Ω . The impedance of the RF traces is usually determined by the trace width (W), the materials' dielectric constant, the distance between signal layer and reference ground (H), and the clearance between RF trace and ground (S). Microstrip line or coplanar waveguide line is typically used in RF layout for characteristic impedance control. The following are reference designs of microstrip line or coplanar waveguide line with different PCB structures.

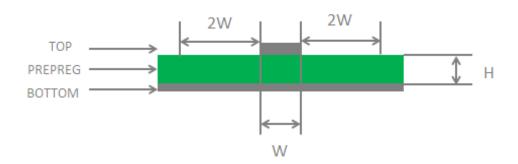


Figure 24: Microstrip Line Design on a 2-layer PCB

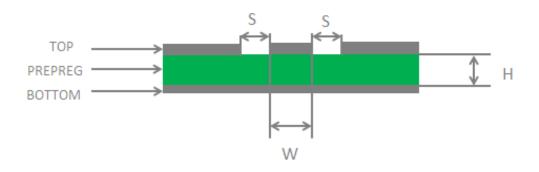


Figure 25: Coplanar Waveguide Line Design on a 2-layer PCB

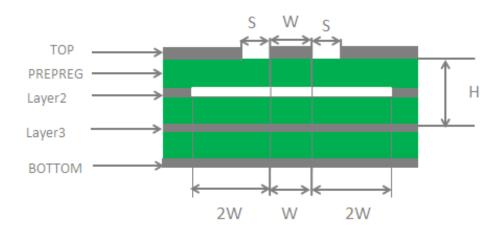


Figure 26: Coplanar Waveguide Line Design on a 4-layer PCB (Layer 3 as Reference Ground)

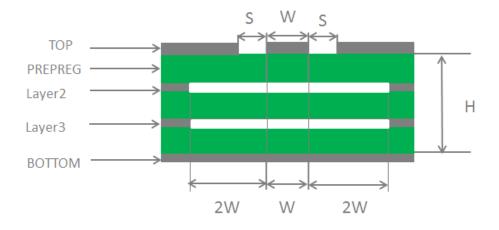


Figure 27: Coplanar Waveguide Line Design on a 4-layer PCB (Layer 4 as Reference Ground)

In order to ensure RF performance and reliability, the following principles should be complied with in RF layout design:

- Use impedance simulation tool to control the characteristic impedance of RF traces as 50Ω.
- The GND pins adjacent to RF pins should not be designed as thermal relief pads, and should be fully connected to ground.
- The distance between the RF pins and the RF connector should be as short as possible, and all the right angle traces should be changed to curved ones.
- There should be clearance area under the signal pin of the antenna connector or solder joint.
- The reference ground of RF traces should be complete. Meanwhile, adding some ground vias around RF traces and the reference ground could help to improve RF performance. The distance between the ground vias and RF traces should be no less than two times the width of RF signal traces (2*W).

For more details about RF layout, please refer to **document [4]**.

5.2. GNSS Antenna Interface

The following tables show the pin definition and frequency specification of GNSS antenna interface.

Table 32: Pin Definition of GNSS Antenna Interface

Pin Name	Pin No.	I/O	Description	Comment
ANT_GNSS	32	Al	GNSS antenna interface	50Ω impedance

Table 33: GNSS Frequency

Туре	Frequency	Unit
GPS	1575.42±1.023	MHz
GLONASS	1597.5~1605.8	MHz
Galileo	1575.42±2.046	MHz
BeiDou	1561.098±2.046	MHz
QZSS	1575.42±1.023	MHZ

A reference design of GNSS antenna interface is shown as below.

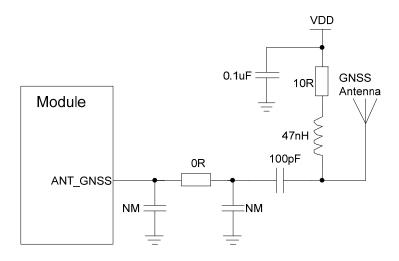


Figure 28: Reference Circuit of GNSS Antenna Interface

NOTES

- 1. An external LDO can be selected to supply power according to the active antenna requirement.
- 2. If the module is designed with a passive antenna, then the VDD circuit is not needed.

5.3. Antenna Installation

5.3.1. Antenna Requirements

The following table shows the requirements on main antenna and GNSS antenna.

Table 34: Antenna Requirements

Antenna Type	Requirements	
	Frequency range: 1559MHz ~1609MHz	
	Polarization: RHCP or linear	
	VSWR: < 2 (Typ.)	
GNSS 1)	Passive antenna gain: > 0dBi	
	Active antenna noise figure: < 1.5dB	
	Active antenna gain: > 0dBi	
	Active antenna embedded LNA gain: < 17dB	
	VSWR: ≤ 2	
	Efficiency: > 30%	
LTE	Max Input Power (W): 50	
	Input Impedance (Ω): 50	

Cable Insertion Loss: < 1dB

(LTE B5/B8/B12/B13/B14 ²⁾/B18/B19/B20/B26*/B27 ²⁾/B28/B71 ³⁾/ B85)

Cable Insertion Loss: < 1.5dB (LTE B1/B2/B3/B4/B25/B66)

NOTES

- 1. ¹⁾ It is recommended to use a passive GNSS antenna when LTE B13 or B14 is supported, as the use of active antenna may generate harmonics which will affect the GNSS performance.
- 2. 2) LTE-FDD B14 and B27 are supported by Cat M1 only.
- 3. ³⁾LTE-FDD B71 is supported by Cat NB2 only.
- 4. "*" means under development.

5.3.2. Recommended RF Connector for Antenna Installation

If RF connector is used for antenna connection, it is recommended to use the U.FL-R-SMT connector provided by *HIROSE*.

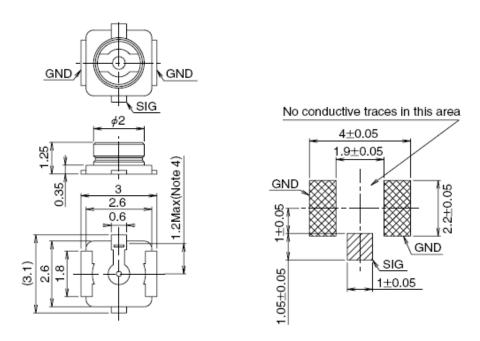


Figure 29: Dimensions of the U.FL-R-SMT Connector (Unit: mm)

U.FL-LP serial connectors listed in the following figure can be used to match the U.FL-R-SMT.

	U.FL-LP-040	U.FL-LP-066	U.FL-LP(V)-040	U.FL-LP-062	U.FL-LP-088		
Part No.	4	£ 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	3.4	87	587		
Mated Height	2.5mm Max. (2.4mm Nom.)	2.5mm Max. (2.4mm Nom.)	2.0mm Max. (1.9mm Nom.)	2.4mm Max. (2.3mm Nom.)	2.4mm Max. (2.3mm Nom.)		
Applicable cable	Dia. 0.81mm Coaxial cable	Dia. 1.13mm and Dia. 1.32mm Coaxial cable	Dia. 0.81mm Coaxial cable	Dia. 1mm Coaxial cable	Dia. 1.37mm Coaxial cable		
Weight (mg)	53.7	59.1	34.8	45.5	71.7		
RoHS	YES						

Figure 30: Mechanicals of U.FL-LP Connectors

The following figure describes the space factor of mated connector.

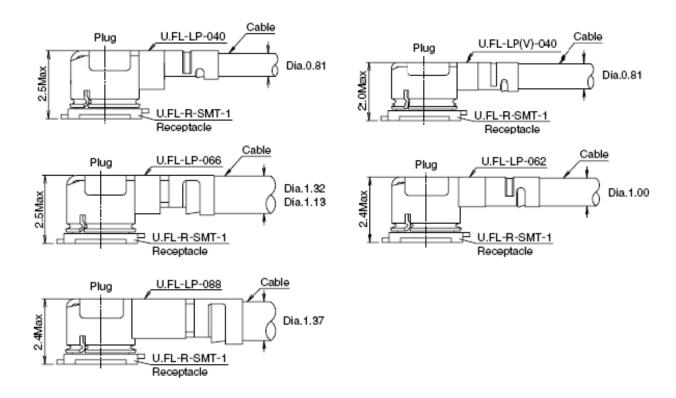


Figure 31: Space Factor of Mated Connector (Unit: mm)

For more details, please visit http://www.hirose.com.

6 Electrical, Reliability and Radio Characteristics

6.1. Absolute Maximum Ratings

Absolute maximum ratings for power supply and voltage on digital and analog pins of the module are listed in the following table.

Table 35: Absolute Maximum Ratings

Parameter	Min.	Max.	Unit
VBAT	-0.5	6.0	V
USB_VBUS	1.3	1.8	V
Voltage at Digital Pins	-0.3	2.09	V

6.2. Power Supply Ratings

Table 36: Power Supply Ratings

Parameter	Description	Conditions	Min.	Тур.	Max.	Unit
VBAT	Power supply for the module	The actual input voltages must stay between the minimum and maximum values.	2.6	3.3	4.8	V
USB_VDDA_3P3	Power for USB PHY circuit			3.3		V
USB_VBUS	USB detection		1.3		1.8	V

6.3. Operation and Storage Temperatures

The operation and storage temperatures of the module are listed in the following table.

Table 37: Operation and Storage Temperatures

Parameter	Min.	Тур.	Max.	Unit
Operation Temperature Range 1)	-35	+25	+75	°C
Extended Temperature Range ²⁾	-40		+85	°C
Storage Temperature Range	-40		+90	°C

NOTES

- 1. 1) Within operation temperature range, the module is 3GPP compliant.
- 2. ²⁾ Within extended temperature range, the module remains the ability to establish and maintain a voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction. There are also no effects on radio spectrum and no harm to radio network. Only one or more parameters like Pout might reduce in their value and exceed the specified tolerances. When the temperature returns to the normal operating temperature levels, the module will meet 3GPP specifications again.

6.4. Current Consumption

The following table shows current consumption of BG77 module.

Table 38: BG77 Current Consumption

Parameter	Description	Conditions	Average	Max.	Unit
	Leakage	Power-off	TBD	TBD	uA
	PSM	Power Saving Mode	TBD	TBD	uA
I _{VBAT}	Rock Bottom Current	AT+CFUN=0 @Sleep State	TBD	TBD	mA

	DRX=1.28s	TBD	TBD	mA
Class State	DRX=1.28s	TBD	TBD	mA
Sleep State	e-I-DRX=81.92s	TBD	TBD	mA
	e-I-DRX=81.92s	TBD	TBD	mA
	DRX=1.28s	TBD	TBD	mA
Idla Ctata	DRX=1.28s	TBD	TBD	mA
Idle State	e-I-DRX=20.48s	TBD	TBD	mA
	e-I-DRX=20.48s	TBD	TBD	mA
	LTE-FDD B1 @TBDdBm	TBD	TBD	mA
	LTE-FDD B2 @TBDdBm	TBD	TBD	mA
	LTE-FDD B3 @TBDdBm	TBD	TBD	mA
	LTE-FDD B4 @TBDdBm	TBD	TBD	mA
	LTE-FDD B5 @TBDdBm	TBD	TBD	mA
	LTE-FDD B8 @TBDdBm	TBD	TBD	mA
	LTE-FDD B12 @TBDdBm	TBD	TBD	mA
LTE Cat M1	LTE-FDD B13 @TBDdBm	TBD	TBD	mA
data transfer	LTE-FDD B14 @TBDdBm	TBD	TBD	mA
(GNSS OFF)	LTE-FDD B18 @TBDdBm	TBD	TBD	mA
	LTE-FDD B19 @TBDdBm	TBD	TBD	mA
	LTE-FDD B20 @TBDdBm	TBD	TBD	mA
	LTE-FDD B25 @TBDdBm	TBD	TBD	mA
	LTE-FDD B26 @TBDdBm	TBD	TBD	mA
	LTE-FDD B27 @TBDdBm	TBD	TBD	mA
	LTE-FDD B28 @TBDdBm	TBD	TBD	mA
	LTE-FDD B66 @TBDdBm	TBD	TBD	mA

	LTE-FDD B85 @TBDdBm	TBD	TBD	mA
	LTE-FDD B1 @TBDdBm	TBD	TBD	mA
	LTE-FDD B2 @TBDdBm	TBD	TBD	mA
	LTE-FDD B3 @TBDdBm	TBD	TBD	mA
	LTE-FDD B4 @TBDdBm	TBD	TBD	mA
	LTE-FDD B5 @TBDdBm	TBD	TBD	mA
	LTE-FDD B8 @TBDdBm	TBD	TBD	mA
	LTE-FDD B12 @TBDdBm	TBD	TBD	mA
LTE Cat NB2	LTE-FDD B13 @TBDdBm	TBD	TBD	mA
data transfer	LTE-FDD B18 @TBDdBm	TBD	TBD	mA
(GNSS OFF)	LTE-FDD B19 @TBDdBm	TBD	TBD	mA
	LTE-FDD B20 @TBDdBm	TBD	TBD	mA
	LTE-FDD B25 @TBDdBm	TBD	TBD	mA
	LTE-FDD B26 @TBDdBm	TBD	TBD	mA
	LTE-FDD B28 @TBDdBm	TBD	TBD	mA
	LTE-FDD B66 @TBDdBm	TBD	TBD	mA
	LTE-FDD B71 @TBDdBm	TBD	TBD	mA
	LTE-FDD B85 @TBDdBm	TBD	TBD	mA

6.5. RF Output Power

The following table shows the RF output power of BG77.

Table 39: BG77 RF Output Power

Frequency	Max.	Min.
LTE-FDD B1/B2/B3/B4/B5/B8/B12/B13/B14 1)/B18/B19/B20/B25/B26/B27 2)/B28/B66/B71/B85	21dBm+1/-3dB	<-39dBm

NOTES

- 1. 1) LTE-FDD B14 and B27 are supported by Cat M1 only.
- 2. ²⁾LTE-FDD B71 is supported by Cat NB2 only.
- 3. "*" means under development.

6.6. RF Receiving Sensitivity

The following table shows the conducted RF receiving sensitivity of BG77.

Table 40: BG77 Conducted RF Receiving Sensitivity

Network	Dend Drimon, Diversity	Diversity	Sensitivity (dBm)		
Network	Бапо	Primary Diversity		Cat M1/3GPP	Cat NB2 1)/3GPP
	LTE-FDD B1			TBD/-102.3	TBD/-107.5
	LTE-FDD B2	_		TBD/-100.3	TBD/-107.5
	LTE-FDD B3	_		TBD/-99.3	TBD/-107.5
	LTE-FDD B4	Supported	TBD/-100.8	TBD/-102.3	TBD/-107.5
	LTE-FDD B5			TBD/-100.8	TBD/-107.5
LTE	LTE-FDD B8			TBD/-99.8	TBD/-107.5
	LTE-FDD B12			TBD/-99.3	TBD/-107.5
	LTE-FDD B13	_		TBD/-99.3	TBD/-107.5
	LTE-FDD B14 2)	_		TBD/-99.3	NOT Supported
	LTE-FDD B18	_		TBD/-102.3	TBD/-107.5
	LTE-FDD B19			TBD/-102.3	TBD/-107.5

LTE-FDD B20	TBD/-99.8	TBD/-107.5
LTE-FDD B25	TBD/-100.3	TBD/-107.5
LTE-FDD B26*	TBD/-100.3	TBD/-107.5
LTE-FDD B27 ²⁾	TBD/-100.8	NOT Supported
LTE-FDD B28	TBD/-100.8	TBD/-107.5
LTE-FDD B66	TBD/-101.8	TBD/-107.5
LTE-FDD B71 3)	NOT Supported	TBD/-107.5
LTE-FDD B85	TBD/-99.3	TBD/-107.5

NOTES

- 1. 1) LTE Cat NB2 receiving sensitivity without repetitions.
- 2. ²⁾LTE-FDD B14 and B27 are supported by Cat M1 only.
- 3. 3) LTE-FDD B71 is supported by Cat NB2 only.
- 4. "*" means under development.

6.7. Electrostatic Discharge

The module is not protected against electrostatics discharge (ESD) in general. Consequently, it is subject to ESD handling precautions that typically apply to ESD sensitive components. Proper ESD handling and packaging procedures must be applied throughout the processing, handling and operation of any application that incorporates the module.

The following table shows the electrostatic discharge characteristics of BG77 module.

Table 41: Electrostatic Discharge Characteristics (25°C, 45% Relative Humidity)

Tested Points	Contact Discharge	Air Discharge	Unit
VBAT, GND	TBD	TBD	kV
Main/GNSS Antenna Interfaces	TBD	TBD	kV

7 Mechanical Dimensions

This chapter describes the mechanical dimensions of the module. All dimensions are measured in mm, and the tolerances for dimensions without tolerance values are ±0.05mm.

7.1. Mechanical Dimensions of the Module

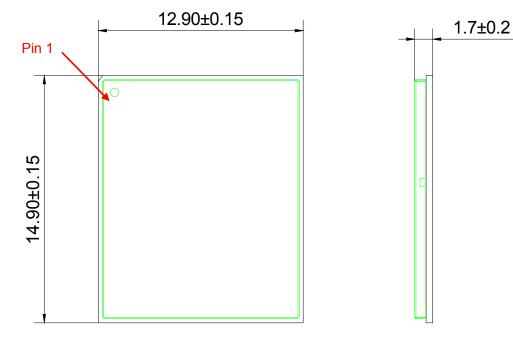


Figure 32: Module Top and Side Dimensions

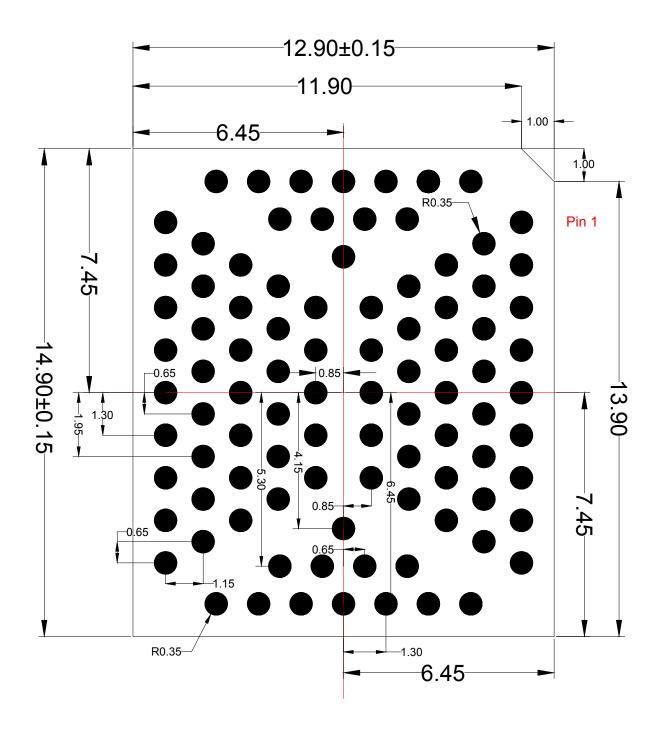


Figure 33: Module Bottom Dimensions (Bottom View)

7.2. Recommended Footprint

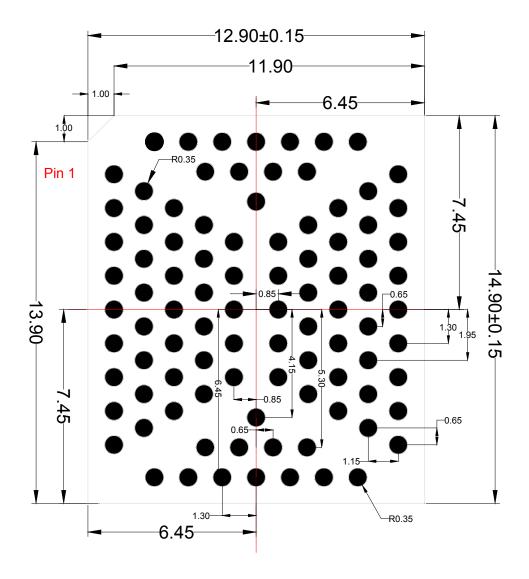


Figure 34: Recommended Footprint (Top View)

NOTES

- 1. For easy maintenance of the module, please keep about 3mm between the module and other components on the host PCB.
- 2. Keep all reserved pins open.
- 3. For stencil design requirements of the module, please refer to document [5].

7.3. Design Effect Drawings of the Module

Figure 35: Top View of the Module

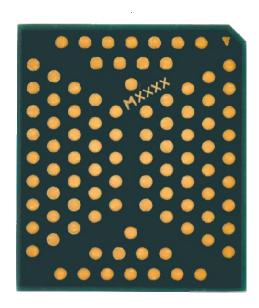


Figure 36: Bottom View of the Module

NOTE

These are renderings of BG77 module. For authentic appearance, please refer to the module that you receive from Quectel.

Storage, Manufacturing and Packaging

8.1. Storage

BG77 is stored in a vacuum-sealed bag. It is rated at MSL 3, and its storage restrictions are listed below.

- 1. Shelf life in the vacuum-sealed bag: 12 months at <40°C/90%RH.
- 2. After the vacuum-sealed bag is opened, devices that will be subjected to reflow soldering or other high temperature processes must be:
 - Mounted within 168 hours at the factory environment of ≤30°C/60%RH.
 - Stored at <10%RH.
- 3. Devices require baking before mounting, if any circumstance below occurs.
 - When the ambient temperature is 23°C±5°C and the humidity indication card shows the humidity is >10% before opening the vacuum-sealed bag.
 - Device mounting cannot be finished within 168 hours at factory conditions of ≤30°C/60% RH.
- 4. If baking is required, devices may be baked for 8 hours at 120°C±5°C.

NOTE

As the plastic package cannot be subjected to high temperature, it should be removed from devices before high temperature (120°C) baking. If shorter baking time is desired, please refer to *IPC/JEDECJ-STD-033* for baking procedure.

8.2. Manufacturing and Soldering

Push the squeegee to apply the solder paste on the surface of stencil, thus making the paste fill the stencil openings and then penetrate to the PCB. The force on the squeegee should be adjusted properly so as to produce a clean stencil surface on a single pass. To ensure the module soldering quality, the thickness of stencil for the module is recommended to be 0.13mm~0.15mm. For more details, please refer to **document [5]**.

It is suggested that the peak reflow temperature is 238~245°C, and the absolute maximum reflow temperature is 245°C. To avoid damage to the module caused by repeated heating, it is strongly recommended that the module should be mounted after reflow soldering for the other side of PCB has been completed. The recommended reflow soldering thermal profile (lead-free reflow soldering) and related parameters are shown below.



Figure 37: Recommended Reflow Soldering Thermal Profile

Table 42: Recommended Thermal Profile Parameters

Factor	Recommendation
Soak Zone	
Max slope	1 to 3°C/sec
Soak time (between A and B: 150°C and 200°C)	60 to 120 sec

Reflow Zone	
Max slope	2 to 3°C/sec
Reflow time (D: over 220°C)	40 to 60 sec
Max temperature	238°C ~ 245°C
Cooling down slope	1 to 4°C/sec
Reflow Cycle	
Max reflow cycle	1

8.3. Packaging

BG77 is packaged in a vacuum-sealed bag which is ESD protected. The bag should not be opened until the devices are ready to be soldered onto the application.

The following figures show the packaging details, measured in mm.

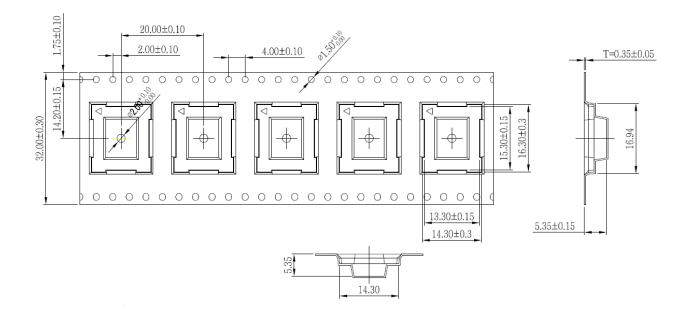


Figure 38: Tape Dimensions

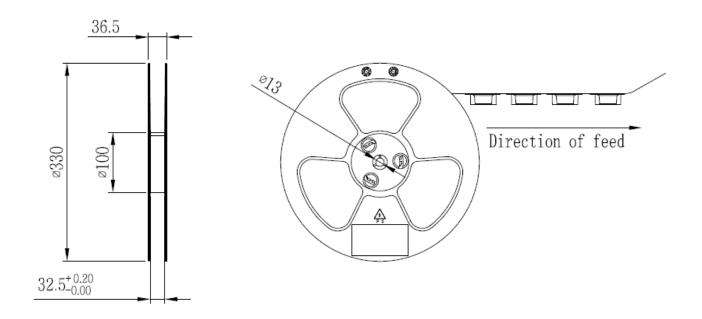


Figure 39: Reel Dimensions

Table 43: Reel Packaging

Model Name	MOQ for MP	Minimum Package: 250pcs	Minimum Package x 4=1000pcs
BG77	TBD	TBD	TBD

9 Appendix A References

Table 44: Related Documents

SN	Document Name	Remark
[1]	Quectel_UMTS<E_EVB_User_Guide	UMTS<E EVB User Guide
[2]	Quectel_BG77_AT_Commands_Manual	BG77 AT Commands Manual
[3]	Quectel_BG77_GNSS_AT_Commands_Manual	BG77 GNSS AT Commands Manual
[4]	Quectel_RF_Layout_Application_Note	RF Layout Application Note
[5]	Quectel_Module_Secondary_SMT_User_Guide	Module Secondary SMT User Guide

Table 45: Terms and Abbreviations

Abbreviation	Description
AMR	Adaptive Multi-rate
bps	Bits Per Second
CHAP	Challenge Handshake Authentication Protocol
CS	Coding Scheme
CTS	Clear To Send
DFOTA	Delta Firmware Upgrade Over The Air
DL	Downlink
DTR	Data Terminal Ready
DTX	Discontinuous Transmission
e-I-DRX	Extended Idle Mode Discontinuous Reception
EPC	Evolved Packet Core

ESD	Electrostatic Discharge
FDD	Frequency Division Duplex
FR	Full Rate
GMSK	Gaussian Minimum Shift Keying
GSM	Global System for Mobile Communications
HSS	Home Subscriber Server
I/O	Input/Output
Inorm	Normal Current
LED	Light Emitting Diode
LNA	Low Noise Amplifier
LTE	Long Term Evolution
MO	Mobile Originated
MS	Mobile Station (GSM engine)
MT	Mobile Terminated
PAP	Password Authentication Protocol
PCB	Printed Circuit Board
PDU	Protocol Data Unit
PPP	Point-to-Point Protocol
PSM	Power Saving Mode
RF	Radio Frequency
RHCP	Right Hand Circularly Polarized
Rx	Receive
SISO	Single Input Single Output
SMS	Short Message Service
TDD	Time Division Duplexing

TX	Transmitting Direction
UL	Uplink
UE	User Equipment
URC	Unsolicited Result Code
(U)SIM	(Universal) Subscriber Identity Module
Vmax	Maximum Voltage Value
Vnorm	Normal Voltage Value
Vmin	Minimum Voltage Value
V _{IH} max	Maximum Input High Level Voltage Value
V _{IH} min	Minimum Input High Level Voltage Value
V _{IL} max	Maximum Input Low Level Voltage Value
V _{IL} min	Minimum Input Low Level Voltage Value
V _I max	Absolute Maximum Input Voltage Value
V _I min	Absolute Minimum Input Voltage Value
V _{OH} max	Maximum Output High Level Voltage Value
V _{OH} min	Minimum Output High Level Voltage Value
V _{OL} max	Maximum Output Low Level Voltage Value
V _{OL} min	Minimum Output Low Level Voltage Value
VSWR	Voltage Standing Wave Ratio