

RF TEST REPORT

Applicant	Quectel Wireless Solutions Co., Ltd
FCC ID	XMR201808EC25AFX
Product	LTE Module
Brand	Quectel
Model	EC25-AFX; EC25-AFX MINIPCIE
Report No.	R1907A0408-R2
Issue Date	September 25, 2019

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **FCC CFR47 Part 2 (2017)/ FCC CFR 47 Part 24E (2017)**. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Peng Tao

Performed by: Peng Tao

KaiXu

Approved by: Kai Xu

TA Technology (Shanghai) Co., Ltd.

No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3 FAX: +86-021-50791141/2/3-8000

TABLE OF CONTENT

1.	Tes	t Laboratory	4
1	.1.	Notes of the test report	4
1	.2.	Test facility	4
1	.3.	Testing Location	5
2.	Ger	neral Description of Equipment under Test	6
3.	Арр	blied Standards	8
4.	Tes	t Configuration	9
5.	Tes	t Case Results	11
5	.1.	RF Power Output	. 11
5	.2.	Effective Isotropic Radiated Power	. 16
5	.3.	Occupied Bandwidth	. 20
5	.4.	Band Edge Compliance	. 30
5	.5.	Peak-to-Average Power Ratio (PAPR)	. 40
5	.6.	Frequency Stability	. 43
5	.7.	Spurious Emissions at Antenna Terminals	. 47
5	.8.	Radiates Spurious Emission	. 59
6.	Mai	n Test Instruments	62
ANI	NEX	A: EUT Appearance and Test Setup	63
А	.1	EUT Appearance	. 63
А	.2	Test Setup	. 65

No.	Test Case	Clause in FCC rules	Verdict			
1	RF power output	2.1046	PASS			
2	Effective Isotropic Radiated power	24.232(c)	PASS			
3	Occupied Bandwidth	2.1049	PASS			
4	Band Edge Compliance	2.1051 /24.238(a)				
5	Peak-to-Average Power Ratio	24.232/KDB 971168 D01(5.7)	PASS			
6	Frequency Stability	2.1055 / 24.235	PASS			
7	Spurious Emissions at Antenna Terminals	2.1051 / 24.238(a)	PASS			
8	Radiates Spurious Emission 2.1053 / 24.238(a) P					
Date of Te	sting: June 29, 2018~ July 16, 2018 and July	30, 2018~ July 31, 2018 and Aug	just 3, 2019~			
August 13	, 2019					
Note: PAS	S: The EUT complies with the essential requi	rements in the standard.				
FAIL	.: The EUT does not comply with the essential	I requirements in the standard.				

Summary of measurement results

1. Test Laboratory

1.1.Notes of the test report

This report shall not be reproduced in full or partial, without the written approval of **TA technology** (shanghai) co., Ltd. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein .Measurement Uncertainties were not taken into account and are published for informational purposes only. This report is written to support regulatory compliance of the applicable standards stated above.

1.2. Test facility

CNAS (accreditation number: L2264)

TA Technology (Shanghai) Co., Ltd. has obtained the accreditation of China National Accreditation Service for Conformity Assessment (CNAS).

FCC (Designation number: CN1179, Test Firm Registration Number: 446626)

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

IC (recognition number is 8510A)

TA Technology (Shanghai) Co., Ltd. has been listed by industry Canada to perform electromagnetic emission measurement.

VCCI (recognition number is C-4595, T-2154, R-4113, G-10766)

TA Technology (Shanghai) Co., Ltd. has been listed by industry Japan to perform electromagnetic emission measurement.

A2LA (Certificate Number: 3857.01)

TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

1.3. Testing Location

Company:	TA Technology (Shanghai) Co., Ltd.
Address:	No.145, Jintang Rd, Tangzhen Industry Park, Pudong
City:	Shanghai
Post code:	201201
Country:	P. R. China
Contact:	Xu Kai
Telephone:	+86-021-50791141/2/3
Fax:	+86-021-50791141/2/3-8000
Website:	http://www.ta-shanghai.com
–	

2. General Description of Equipment under Test

Client Information

Applicant	Quectel Wireless Solutions Co., Ltd
Applicant address	Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai, China 200233
Manufacturer	Quectel Wireless Solutions Co., Ltd
Manufacturer address	Building 5, Shanghai Business Park Phase III (Area B), No.1016 Tianlin Road, Minhang District, Shanghai, China 200233

General information

EUT Description								
Model	EC25-AFX; EC25-AFX MINIPCIE							
IMEI	EC25-AFX :866834040000767							
	EC25-AFX MINIPCIE: 86	6834040	002375					
Hardware Version	R1.0							
Software Version	EC25AFXGAR07A01M1	G						
Power Supply	External Power Supply							
Antenna Type	The EUT don't have stan	dard Ante	enna, The <i>i</i>	Antenna used for tes				
	ting in this report is the a	fter-mark	et accesso	ry (Dipole Antenna)				
Antenna Gain	4dBi							
Test Mode(s)	WCDMA Band II; LTE Band 2;							
Test Modulation	(WCDMA)QPSK; (LTE)QPSK,16QAM							
HSDPA UE Category	24							
HSUPA UE Category	6							
LTE Category	4							
	WCDMA Band II:		25.49dBm					
	LTE Band 2:		25.75dBm					
Rated Power Supply Voltage	3.8V							
Extreme Voltage	Minimum: 3.3V Maxim	um: 4.3V	,					
Extreme Temperature	Lowest: -40°C Highe	st: +85°C						
	Band	Tx (MHz)	Rx (MHz)				
Operating Frequency	WCDMA Band II	1850	~ 1910	1930 ~ 1990				
Range(S)	LTE Band 2	1850 ~ 1910		1930 ~ 1990				
Note: The information of the EUT is declared by the manufacturer.								

Accessory equipment						
Evaluation Board	RF Cable					
RS232-to-USB Cable	Antenna: Dipole Antenna					
Headset	DC 5V Adaptor					

EC25-AFX and EC25-AFX MINIPCIE are all LTE modules. They support the same frequency bands, use the same chipset and share the same software & hardware design. The main difference is on the carrier board.

EC25-AFX MINIPCIE makes up of EC25-AFX module and PCIe transferred board.

The transferred board switches EC25-AFX module to follow PCI Express Mini Card 1.2 standard connector protocol. No any other internal changes in EC25-AFX module.

Two models are identical in interior structure and components, and just connector interface is different for the marketing requirement.

3. Applied Standards

According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC CFR47 Part 2 (2017)

FCC CFR 47 Part 24E (2017)

ANSI/TIA-603-E (2016)

KDB 971168 D01 Power Meas License Digital Systems v03r01

4. Test Configuration

Radiated measurements are performed by rotating the EUT in three different orthogonal test planes. EUT stand-up position (Z axis), lie-down position (X, Y axis). Receiver antenna polarization (horizontal and vertical), the worst emission was found in position (X axis, horizontal polarization) and the worst case was recorded.

All mode and data rates and positions and RB size and modulations were investigated. Subsequently, only the worst case emissions are reported.

The following testing in WCDMA/LTE is set based on the maximum RF Output Power.

Test items	Modes/Modulation
rest items	WCDMA Band II
	RMC
RF power output	HSDPA/HSUPA
	DC-HSDPA
Effective Isotropic Radiated power	RMC
Occupied Bandwidth	RMC
Band Edge Compliance	RMC
Peak-to-Average Power Ratio	RMC
Frequency Stability	RMC
Spurious Emissions at Antenna Terminals	RMC
Radiates Spurious Emission	RMC

Test modes are chosen to be reported as the worst case configuration below:

FCC RF Test Report

Report No: R1907A0408-R2

Test modes are chosen to be reported as the worst case configuration below for LTE Band 2:

Testiteme	Bandwidth (MHz)					Modulation		RB			Test Channel			
Test items	1.4	3	5	10	15	20	QPSK	16QAM	1	50%	100%	L	М	н
RF power output	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Effective Isotropic Radiated power	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Occupied Bandwidth	0	0	0	0	0	0	0	0	-	-	0	0	0	0
Band Edge Compliance	0	0	0	0	0	0	0	0	0	-	0	0	-	0
Peak-to-Average Power Ratio	0	0	0	0	0	0	0	0	-	-	0	0	0	0
Frequency Stability	0	0	0	0	0	0	0	0	-	-	0	0	-	0
Conducted Spurious Emissions	0	0	0	0	0	0	0	-	0	0	0	0	0	0
Radiates Spurious Emission	-	-	0	-	-	0	0	-	0	-	-	0	0	0
Note1. The mark "O" means that this configuration is chosen for testing.2. The mark "-" means that this configuration is not testing.														

5. Test Case Results

5.1.RF Power Output

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Methods of Measurement

During the process of the testing, The EUT is controlled by the Base Station Simulator to ensure max power transmission and proper modulation.

Test Setup

The loss between RF output port of the EUT and the input port of the tester has been taken into consideration.

Limits

No specific RF power output requirements in part 2.1046.

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 0.4 dB.

FCC RF Test Report

Test Results

		Conducted Power(dBm)					
WCDMA	Band II	Channel 9262	Channel 9400	Channel 9538			
		1852.4(MHz)	1880(MHz)	1907.6(MHz)			
RM	С	23.17	23.01	23.02			
	Sub - Test 1	22.13	22.03	21.96			
Нерра	Sub - Test 2	22.12	22.01	21.94			
ПЭДРА	Sub - Test 3	21.61	21.46	21.43			
	Sub - Test 4	21.60	21.57	21.46			
	Sub - Test 1	22.19	22.05	21.98			
	Sub - Test 2	21.58	21.40	21.40			
HSUPA	Sub - Test 3	22.05	21.88	21.89			
	Sub - Test 4	21.51	21.37	21.37			
	Sub - Test 5	22.12	22.03	21.95			
	Sub - Test 1	22.51	22.37	22.36			
	Sub - Test 2	22.50	22.36	22.35			
DC-DOPA	Sub - Test 3	22.08	21.85	21.86			
	Sub - Test 4	22.07	21.84	21.85			

	LTE Ban	d 2	Conducted Power(dBm)					
Development				Chanr	nel/Frequency	(MHz)		
Bandwidth	wooulation	RB SIZE	RD Oliset	18607/1850.7	18900/1880	19193/1909.3		
		1	0	23.37	23.41	22.99		
		1	2	23.41	23.79	22.99		
		1	5	23.33	23.26	22.91		
	QPSK	3	0	23.35	23.29	23.12		
		3	2	23.18	23.09	23.21		
		3	3	23.37	23.26	22.90		
1 AMU-		6	0	22.23	22.49	22.07		
1.411172		1	0	22.36	22.91	22.68		
		1	2	22.41	22.94	23.00		
		1	5	22.20	22.95	23.02		
	16QAM	3	0	22.33	22.19	22.16		
		3	2	22.42	22.16	22.07		
		3	3	22.31	22.29	22.06		
		6	0	21.36	21.29	21.30		
Dondwidth	Modulation	RB size	RB offset	Channel/Frequency (MHz)				
Danuwiuth	Modulation			18615/1851.5	18900/1880	19185/1908.5		
	QPSK	1	0	23.39	23.45	23.02		
		1	7	23.44	23.84	23.03		
		1	14	23.36	23.31	22.95		
		8	0	22.45	22.41	22.25		
		8	4	22.30	22.19	22.33		
		8	7	22.47	22.37	22.00		
2MЦ ,		15	0	22.26	22.53	22.10		
JIVITIZ		1	0	22.39	22.93	22.71		
		1	7	22.44	22.99	23.04		
		1	14	22.22	22.99	23.05		
	16QAM	8	0	21.44	21.32	21.28		
		8	4	21.53	21.29	21.19		
		8	7	21.41	21.41	21.19		
		15	0	21.39	21.33	21.33		
Bandwidth	Modulation	RB size	RB offect	Chanr	nel/Frequency	(MHz)		
Banuwiuth	wodulation	IND SIZE	ILD UISEL	18625/1852.5	18900/1880	19175/1907.5		
		1	0	23.36	23.43	22.98		
5MU-7	OPek	1	13	23.42	23.80	23.00		
JIVI⊓Z	W-SV	1	24	23.33	23.26	22.91		
		12	0	22.42	22.36	22.21		

TA Technology (Shanghai) Co., Ltd.TA-MB-05-002RPage 13 of 65This report shall not be reproduced except in full, without the written approval of TA Technology (Shanghai) Co., Ltd.

FCC RF Test Report

Report No: R1907A0408-R2

		12	6	22.28	22.15	22.28
		12	13	22.45	22.35	21.96
		25	0	22.24	22.52	22.08
		1	0	22.36	22.89	22.68
		1	13	22.41	22.97	23.01
		1	24	22.19	22.97	23.01
	16QAM	12	0	21.42	21.28	21.25
		12	6	21.50	21.24	21.15
		12	13	21.38	21.36	21.15
		25	0	21.37	21.29	21.28
Donoluuialth				Chanr	nel/Frequency	(MHz)
Bandwidth	Modulation	RB SIZE	RB Offset	18650/1855	18900/1880	19150/1905
		1	0	23.38	23.44	23.01
		1	25	23.45	23.85	23.04
		1	49	23.35	23.30	22.94
	QPSK	25	0	22.45	22.41	22.25
		25	13	22.31	22.20	22.32
		25	25	22.47	22.39	22.01
40001-		50	0	22.32	22.54	22.12
TUNIHZ		1	0	22.38	22.92	22.70
		1	25	22.44	23.01	23.04
		1	49	22.22	22.99	23.04
	16QAM	25	0	21.45	21.33	21.29
		25	13	21.52	21.28	21.18
		25	25	21.41	21.41	21.19
		50	0	21.40	21.34	21.32
Donducidth	Madulation		DD offeet	Chanr	nel/Frequency	(MHz)
Bandwidth	Modulation	RD SIZE	RD Olisel	18675/1857.5	18900/1880	19125/1902.5
		1	0	23.37	23.40	22.99
		1	38	23.43	23.84	23.01
15MHz		1	74	23.32	23.25	22.90
	QPSK	36	0	22.43	22.37	22.22
		36	18	22.28	22.15	22.28
		36	39	22.44	22.36	21.97
		75	0	22.30	22.50	22.07
		1	0	22.33	22.90	22.68
		1	38	22.42	22.98	23.02
	16QAM	1	74	22.19	22.95	23.01
		36	0	21.42	21.31	21.26
		36	18	21.49	21.23	21.14

TA Technology (Shanghai) Co., Ltd.TA-MB-05-002RPage 14 of 65This report shall not be reproduced except in full, without the written approval of TA Technology (Shanghai) Co., Ltd.

FCC R	F Test Report				Report No	: R1907A0408-R2
		36	39	21.39	21.37	21.16
		75	0	21.37	21.29	21.28
Pandwidth	Modulation	DP cizo	DP offect	Chanr	nel/Frequency	(MHz)
Banuwiuth	wouldtion	ND SIZE	KD UIISel	18700/1860	18900/1880	19100/1900
		1	0	23.34	23.36	22.96
		1	50	23.42	23.80	22.99
	QPSK	1	99	23.30	23.24	22.87
		50	0	22.40	22.32	22.18
		50	25	22.26	22.11	22.25
		50	50	22.41	22.31	21.93
20MU-		100	0	22.27	22.45	22.03
20101112		1	0	22.31	22.86	22.63
		1	50	22.38	22.96	22.98
		1	99	22.17	22.92	22.99
		50	0	21.39	21.27	21.23
		50	25	21.46	21.21	21.11
		50	50	21.36	21.32	21.12
		100	0	21.35	21.25	21.25

5.2. Effective Isotropic Radiated Power

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Methods of Measurement

The testing follows FCC KDB 971168 v03r01 Section 5.8 and ANSI/TIA-603-E (2016).

a) Connect the equipment as illustrated. Mount the equipment with the manufacturer specified antenna in a vertical orientation on a manufacturer specified mounting surface located on a non-conducting rotating platform of a RF anechoic chamber (preferred) or a standard radiation site.

b) Key the transmitter, then rotate the EUT 360° azimuthally and record spectrum analyzer power level (LVL) measurements at angular increments that are sufficiently small to permit resolution of all peaks. If a standard radiation test site is used, raise and lower the test antenna to obtain a maximum reading at each angular increment. (Note: several batteries may be needed to offset the effect of battery voltage droop, which should not exceed 5% of the manufactured specified battery voltage during transmission).

c) Replace the transmitter under test with a vertically polarized half-wave dipole (or an antenna whose gain is known relative to an ideal half-wave dipole). The center of the antenna should be at the same location as the center of the antenna under test.

d) Connect the antenna to a signal generator with a known output power and record the path loss (in dB) as LOSS. If a standard radiation test site is used, raise and lower the test antenna to obtain a maximum reading.LOSS = Generator Output Power (dBm) – Analyzer reading (dBm)

e) Determine the effective radiated output power at each angular position from the readings in stepsb) and d) using the following equation:ERP (dBm) = LVL (dBm) + LOSS (dB)

f) The maximum ERP is the maximum value determined in the preceding step.

g) When calculating ERP, in addition to knowing the antenna radiation and matching characteristics, it is necessary to know the loss values of all elements (e.g.transmission line attenuation, mismatches,

filters, combiners) interposed between the point where transmitter output power is measured, and the point where power is applied to the antenna. ERP can then be calculated as follows:

EIRP (dBm) = Output Power (dBm) - Losses (dB) + Antenna Gain (dBi)

where:dBd refers to gain relative to an ideal dipole.

 $\mathsf{EIRP}(\mathsf{dBm}) = \mathsf{ERP}(\mathsf{dBm}) + 2.15(\mathsf{dB.})$

The RB allocation refers to section 5.1, using the maximum output power configuration.

Test setup

Limits

Rule Part 24.232(c) Mobile and portable stations are limited to 2 watts EIRP. Rule Part 24.232(e) Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage.

Limit	\leq 2 W (33 dBm)

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 1.19 dB

Test Results:

The measurement is performed for both of horizontal and vertical antenna Polarization, and only the data of worst mode is recorded in this report.

Mode	Channel	Frequency (MHz)	Polarization	EIRP (dBm)	Limit (dBm)	Conclusion
	Low	1852.4	Horizontal	23.76	33	Pass
Rend II	Mid	1880	Horizontal	24.38	33	Pass
Dana II	High	1907.6	Horizontal	25.49	33	Pass

LTE Band 2						
bandwidth	Channel	Frequency (MHz)	Polarization	EIRP (dBm)	Limit (dBm)	Conclusion
4 4 MLI-	Low	1850.7	Horizontal	25.50	33	Pass
1.4 MHz	Mid	1880	Horizontal	25.37	33	Pass
(QPSK)	High	1909.3	Horizontal	25.75	33	Pass
2 MLI-	Low	1851.5	Horizontal	24.44	33	Pass
	Mid	1880	Horizontal	24.42	33	Pass
(QPSK)	High	1908.5	Horizontal	24.55	33	Pass
6 MU-	Low	1852.5	Horizontal	24.23	33	Pass
	Mid	1880	Horizontal	24.33	33	Pass
(QPSK)	High	1907.5	Horizontal	24.40	33	Pass
40 MUL	Low	1855	Horizontal	25.48	33	Pass
	Mid	1880	Horizontal	25.52	33	Pass
(QPSK)	High	1905	Horizontal	25.66	33	Pass
	Low	1857.5	Horizontal	25.32	33	Pass
	Mid	1880	Horizontal	25.24	33	Pass
(QPSK)	High	1902.5	Horizontal	25.68	33	Pass
	Low	1860	Horizontal	24.85	33	Pass
	Mid	1880	Horizontal	24.38	33	Pass
(QPSK)	High	1900	Horizontal	24.21	33	Pass
4 4 MIL-	Low	1850.7	Horizontal	25.07	33	Pass
	Mid	1880	Horizontal	24.74	33	Pass
(16QAW)	High	1909.3	Horizontal	25.40	33	Pass
0 MU -	Low	1851.5	Horizontal	24.20	33	Pass
	Mid	1880	Horizontal	24.01	33	Pass
	High	1908.5	Horizontal	24.39	33	Pass
	Low	1852.5	Horizontal	23.65	33	Pass
	Mid	1880	Horizontal	23.96	33	Pass
(16QAW)	High	1907.5	Horizontal	23.99	33	Pass
	Low	1855	Horizontal	25.24	33	Pass
	Mid	1880	Horizontal	25.10	33	Pass
(16QAM)	High	1905	Horizontal	25.43	33	Pass
	Low	1857.5	Horizontal	24.94	33	Pass
15 MHZ	Mid	1880	Horizontal	25.10	33	Pass
(16QAM)	High	1902.5	Horizontal	25.44	33	Pass
	Low	1860	Horizontal	24.56	33	Pass
20 MHz	Mid	1880	Horizontal	23.86	33	Pass
	High	1900	Horizontal	23.77	33	Pass

5.3. Occupied Bandwidth

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

The EUT was connected to Spectrum Analyzer and Base Station Simulator via power Splitter. The occupied bandwidth is measured using spectrum analyzer.

RBW is set to 51kHz, VBW is set to 160kHz for WCDMA Band II,

RBW is set to 51kHz, VBW is set to 160kHz for LTE Band 2 (1.4MHz),

RBW is set to 100kHz,VBW is set to 300kHz for LTE Band 2 (3MHz/5MHz),

RBW is set to 300kHz,VBW is set to 1MHz for LTE Band 2 (10MHz/15MHz/20MHz).

99% power and -26dBc occupied bandwidths are recorded. Spectrum analyzer plots are included on the following pages.

Test Setup

Limits

No specific occupied bandwidth requirements in part 2.1049.

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 2, U = 624Hz.

Test Result

Mode	Channel	Frequency (MHz)	99% Power Bandwidth (MHz)	-26dBc Bandwidth(MHz)
WCDMA	9262	1852.4	4.1326	4.698
Band II	9400	1880	4.1256	4.703
(RMC)	9538	1907.6	4.1260	4.695

LTE Band 2							
Modulation	Bandwidth	Channel	Frequency	99% Power	-26dBc		
modulation	(MHz)	Chainer	(MHz)	Bandwidth(MHz)	Bandwidth(MHz)		
		18607	1850.7	1.1283	1.363		
	1.4	18900	1880.0	1.1245	1.347		
		19193	1909.3	1.1360	1.344		
		18615	1851.5	2.7521	3.071		
	3	18900	1880	2.7423	3.074		
		19185	1908.5	2.7429	3.071		
		18625	1852.5	4.5158	5.049		
	5	18900	1880	4.5340	5.036		
ODEK		19175	1907.5	4.5091	5.036		
QPSN		18650	1855	8.9999	10.100		
	10	18900	1880	9.0377	10.180		
		19150	1905	9.0453	10.070		
		18675	1857.5	13.4130	14.680		
	15	18900	1880	13.4790	14.810		
		19125	1902.5	13.4540	14.800		
		18700	1860	17.8360	19.250		
	20	18900	1880	17.8820	19.240		
		19100	1900	17.8620	19.410		
		18607	1850.7	1.1258	1.330		
	1.4	18900	1880.0	1.1317	1.348		
16QAM		19193	1909.3	1.1225	1.362		
	0	18615	1851.5	2.7358	3.059		
	3	18900	1880	2.7655	3.083		

TA Technology (Shanghai) Co., Ltd.TA-MB-05-002RPage 21 of 65This report shall not be reproduced except in full, without the written approval of TA Technology (Shanghai) Co., Ltd.

FCC RF Test Report			Report	No: R1907A0408-R2
	19185	1908.5	2.7377	3.067
	18625	1852.5	4.5387	5.046
5	18900	1880	4.5117	5.028
	19175	1907.5	4.5298	5.057
	18650	1855	9.0229	10.090
10	18900	1880	9.0420	10.020
	19150	1905	9.0252	10.090
	18675	1857.5	13.4540	14.740
15	18900	1880	13.4620	14.730
	19125	1902.5	13.4640	14.800
	18700	1860	17.8810	19.380
20	18900	1880	17.9150	19.350
	19100	1900	17.8400	19.300

5.4. Band Edge Compliance

Ambient condition

Temperature	Relative humidity	Pressure
23°C ~25°C	45%~50%	101.5kPa

Method of Measurement

The EUT was connected to Spectrum Analyzer and Base Station Simulator via power Splitter. The band edge of the lowest and highest channels were measured. The Average detector is used and RBW is set to 51kHz, VBW is set to 160kHz for WCDMA Band II,

RBW is set to 15kHz, VBW is set to 51kHz for LTE Band 2 (1.4MHz),

RBW is set to 30kHz,VBW is set to 100kHz for LTE Band 2 (3MHz),

RBW is set to 51kHz,VBW is set to 160kHz for LTE Band 2 (5MHz),

RBW is set to 100kHz,VBW is set to 300kHz for LTE Band 2 (10MHz),

RBW is set to 150kHz,VBW is set to 510kHz for LTE Band 2 (15MHz),

RBW is set to 200kHz, VBW is set to 620kHz for LTE Band 2 (20MHz).

Spectrum analyzer plots are included on the following pages.

Test Setup

Limits

Rule Part 24.238(a) specifies that "on any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log10 (P) dB."

Limit	-13 dBm
-------	---------

Measurement Uncertainty

The assessed measurement uncertainty to ensure 95% confidence level for the normal distribution is with the coverage factor k = 1.96, U=0.684dB.

Test Result:

LTE Band 2 1.4MHz QPSK 1RB CH-Low

LTE Band 2 1.4MHz QPSK 100%RB CH-Low

LTE Band 2 1.4MHz QPSK 100%RB CH-High

