

Report No.: SZEM180500453501 Page: 1 of 66

Appendix B

WCDMA Band 2&4&5

Report No.: SZEM180500453501 Page: 2 of 66

CONTENT

1	EFFEC	CTIVE (ISOTROPIC) RADIATED POWER OUTPUT DATA	4
2	PEAK-	TO-AVERAGE RATIO	5
2	2.1 F		6
	2.1.1	Test Band = WCDMA 1900	
	2.1.2	Test Band = WCDMA 1700	9
	2.1.3	Test Band = WCDMA 850	. 12
3	MODU	LATION CHARACTERISTICS	15
3	3.1 F	OR WCDMA	. 15
	3.1.1	Test Band = WCDMA 1900	. 15
	3.1.2	Test Band = WCDMA 1700	. 16
	3.1.3	Test Band = WCDMA 850	. 17
4	BAND	WIDTH	18
2	4.1 F	OR WCDMA	. 19
	4.1.1	Test Band = WCDMA 1900	. 19
	4.1.2	Test Band = WCDMA 1700	. 22
	4.1.3	Test Band = WCDMA 850	. 25
5	BAND	EDGES COMPLIANCE	28
5	5.1 F	OR WCDMA	. 28
	5.1.1	Test Band = WCDMA 1900	. 28
	5.1.2	Test Band = WCDMA 1700	. 30
	5.1.3	Test Band = WCDMA 850	. 32
6	SPURI	OUS EMISSION AT ANTENNA TERMINAL	34
6	6.1 F	OR WCDMA	34
	6.1.1	Test Band = WCDMA 1900	. 34
	6.1.2	Test Band = WCDMA 1700	. 43
	6.1.3	Test Band = WCDMA 850	. 52
7	FIELD	STRENGTH OF SPURIOUS RADIATION	58
7	7.1 F	OR WCDMA	. 58
	7.1.1	Test Band = WCDMA 1900	. 58
	7.1.2	Test Band = WCDMAband 1700	. 59
for ele	ctronic format d	Test Band = WCDMA band 850 ed by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u> ocuments, subject to Terms and Conditions for Electronic Documents at <u>http://www.sgs.com/en/Terms-e-Document.aspx</u> . Attention is drawn to the idemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the tii	and, e
its inte exercia alterat	ervention only ar sing all their rightion, forgery or fa	Idemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's fundings at the til di within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from its and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorize alsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results or trefer only to the sample(s) tested and such sample(s) are retained for 30 days only.	ed

Report No.: SZEM180500453501 Page: 3 of 66

63	FREQUENCY STABILITY	8
	8.1 FREQUENCY ERROR VS. VOLTAGE	8.1
	8.2 FREQUENCY ERROR VS. TEMPERATURE	8.2

Report No.: SZEM180500453501 Page: 4 of 66

1 Effective (Isotropic) Radiated Power Output Data

Part I - Test Results											
Test Band	est Band Test Mode		Measured [dBm]	EIRP[dBm]	Limit[dBm]	Verdict					
		LCH	23.29	25.29	33	PASS					
WCDMA1900	UMTS/TM1	MCH	23.32	25.32	33	PASS					
		HCH	23.29	25.29	33	PASS					
		LCH	23.34	25.34	30	PASS					
WCDMA1700	UMTS/TM1	MCH	23.23	25.23	30	PASS					
		HCH	23.17	25.17	30	PASS					

Test Band	Test Mode	Test Channel	Measured [dBm]	ERP[dBm]	Limit[dBm]	Verdict
	UMTS/TM1	LCH	23.36	24.21	38.45	PASS
WCDMA850		MCH	23.16	24.01	38.45	PASS
		HCH	23.26	24.11	38.45	PASS

Note:

a: For getting the ERP (Efficient Radiated Power) in substitution method, the following formula should be taken to calculate it,

EIRP [dBm] = SGP [dBm] - Cable Loss [dB] + Gain [dBi]

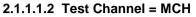
ERP [dBm] = SGP [dBm] – Cable Loss [dB] + Gain [dBd]

b: SGP=Signal Generator Level

Report No.: SZEM180500453501 Page: 5 of 66

2 Peak-to-Average Ratio

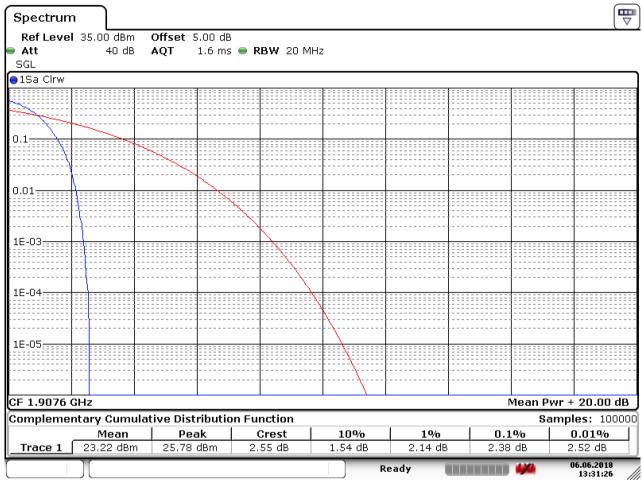
Part I - Test F	Results				
Test Band	Test Mode	Test Channel	Measured[dB]	Limit [dB]	Verdict
		LCH	2.78	13	PASS
WCDMA1900	UMTS/TM1	MCH	2.81	13	PASS
		НСН	2.38	13	PASS
		LCH	2.55	13	PASS
WCDMA1700	UMTS/TM1	MCH	2.78	13	PASS
		НСН	2.78	13	PASS
		LCH	2.81	13	PASS
WCDMA850	UMTS/TM1	MCH	2.75	13	PASS
		НСН	2.61	13	PASS


Report No.: SZEM180500453501 Page: 6 of 66

Part II - Test Plots 2.1 For WCDMA 2.1.1 Test Band = WCDMA 1900 2.1.1.1 Test Mode = UMTS/TM1 2.1.1.1.1 Test Channel = LCH ₹ Spectrum Ref Level 35.00 dBm Offset 5.00 dB Att 40 dB AQT 1.6 ms 🖷 RBW 20 MHz SGL ●1Sa Clrw 0.1-0.01-1E-03; 1E-04 1E-05₅ CF 1.8524 GHz Mean Pwr + 20.00 dB Samples: 100000 Complementary Cumulative Distribution Function 0.01% Mean Peak Crest 10%1% 0.1%2.38 dB Trace 1 L 23.69 dBm 26.69 dBm 3.00 dB 1.62 dB 2.78 dB 2.93 dB 06.06.2018 -----Ready 13:32:06

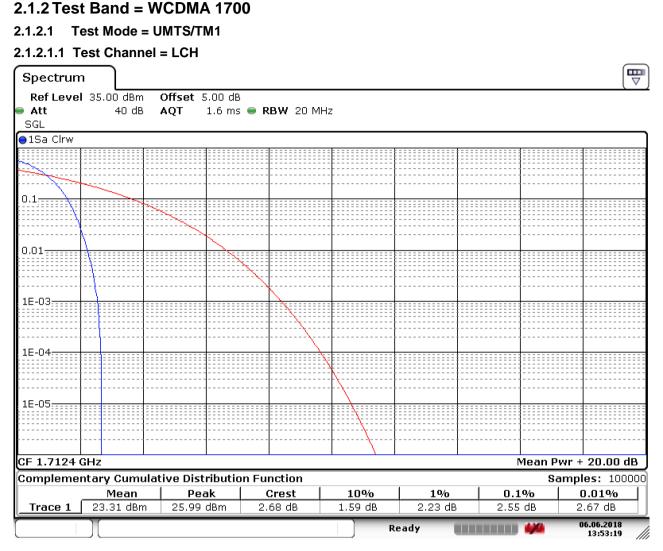
Date: 6.JUN.2018 13:32:06

Report No.: SZEM180500453501 Page: 7 of 66

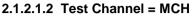


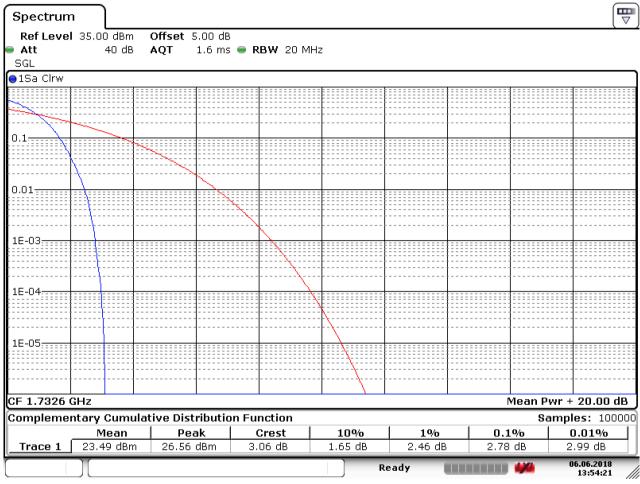
Date: 6.JUN.2018 13:31:46

Report No.: SZEM180500453501 Page: 8 of 66


2.1.1.1.3 Test Channel = HCH

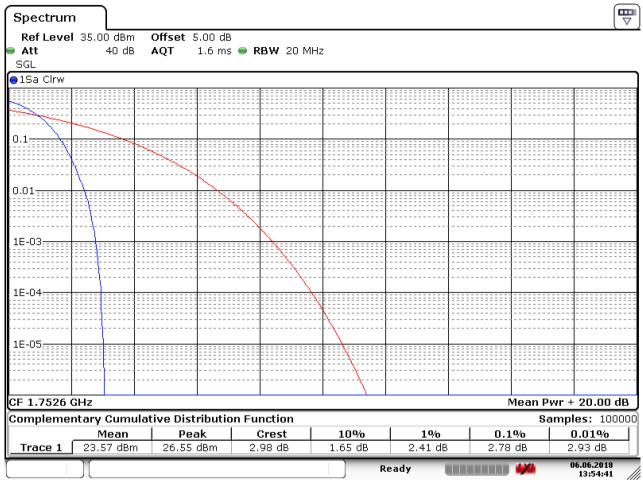
Date: 6.JUN.2018 13:31:26


Report No.: SZEM180500453501 Page: 9 of 66



Date: 6.JUN.2018 13:53:19

Report No.: SZEM180500453501 Page: 10 of 66



Date: 6.JUN.2018 13:54:21

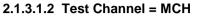
Report No.: SZEM180500453501 Page: 11 of 66

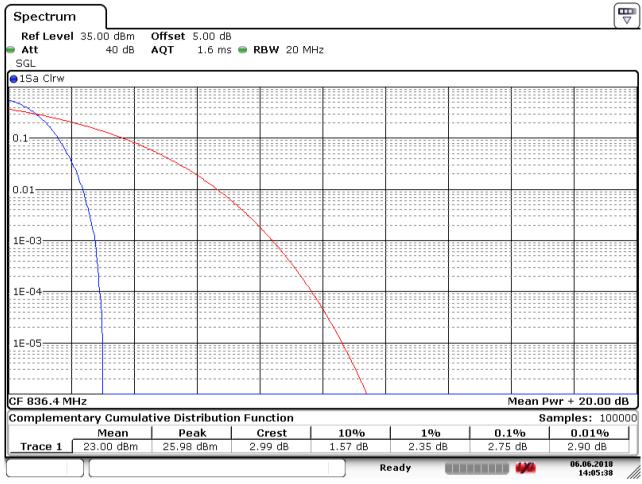
2.1.2.1.3 Test Channel = HCH

Date: 6.JUN.2018 13:54:41

2.1.3 Test Band = WCDMA 850

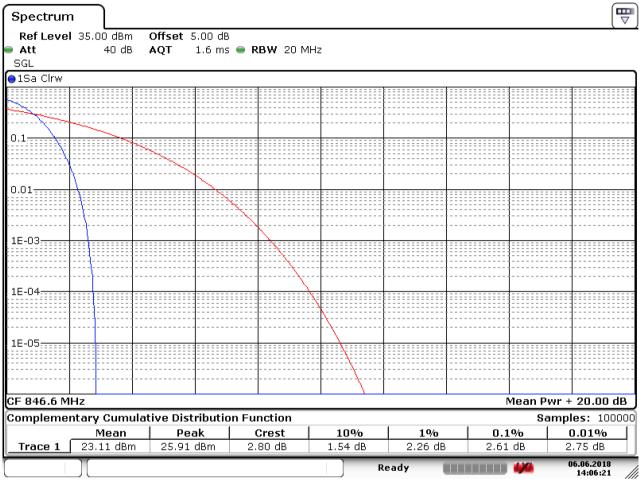
SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch


Report No.: SZEM180500453501 Page: 12 of 66


2.1.3.1 Test Mode = UMTS/TM1 2.1.3.1.1 Test Channel = LCH Ŧ Spectrum Ref Level 35.00 dBm Offset 5.00 dB Att 🛛 40 dB AQT 1.6 ms 👄 RBW 20 MHz SGL ⊖1Sa Clrw 0.1_{2} 0.01-1E-03; 1E-04-1E-05-CF 826.4 MHz Mean Pwr + 20.00 dB Complementary Cumulative Distribution Function Samples: 100000 0.01% Mean Peak Crest 10%1% 0.1%Trace 1 23.27 dBm 26.25 dBm 2.97 dB 1.71 dB 2.46 dB 2.81 dB 2.96 dB 06.06.2018 Ready 14:04:52

Date: 6.JUN.2018 14:04:53

Report No.: SZEM180500453501 Page: 13 of 66



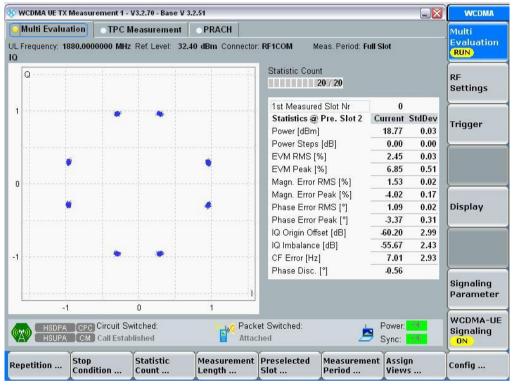
Date: 6.JUN.2018 14:05:39

Report No.: SZEM180500453501 Page: 14 of 66

Date: 6.JUN.2018 14:06:21

Report No.: SZEM180500453501 Page: 15 of 66

3 Modulation Characteristics

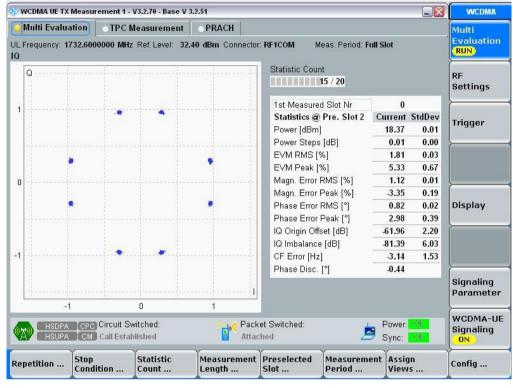

Part I - Test Plots

3.1 For WCDMA

3.1.1 Test Band = WCDMA 1900

3.1.1.1 Test Mode = UMTS/TM1

3.1.1.1.1 Test Channel = MCH

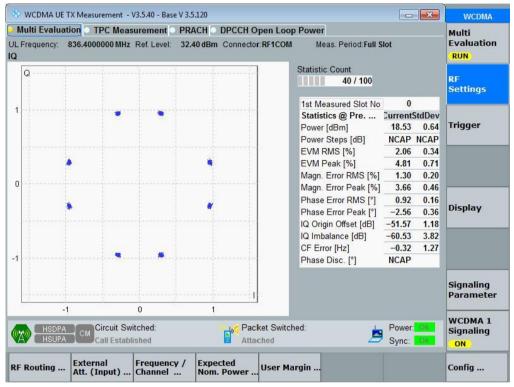


Report No.: SZEM180500453501 Page: 16 of 66

3.1.2 Test Band = WCDMA 1700

3.1.2.1 Test Mode = UMTS /TM1

3.1.2.1.1 Test Channel = MCH



Report No.: SZEM180500453501 Page: 17 of 66

3.1.3 Test Band = WCDMA 850

3.1.3.1 Test Mode = UMTS /TM1

3.1.3.1.1 Test Channel = MCH

Report No.: SZEM180500453501 Page: 18 of 66

4 Bandwidth

Part I - Test Results

Test Band	Test Mode	Test Channel	Occupied Bandwidth [MHz]	Emission Bandwidth [MHz]	Verdict
		LCH	4.17	4.72	PASS
WCDMA1900	UMTS/TM1	MCH	4.15	4.72	PASS
		HCH	4.17	4.77	PASS
		LCH	4.15	4.73	PASS
WCDMA1700	UMTS/TM1	MCH	4.14	4.71	PASS
		HCH	4.13	4.71	PASS
		LCH	4.14	4.71	PASS
WCDMA850	UMTS/TM1	MCH	4.13	4.73	PASS
		HCH	4.13	4.72	PASS

Report No.: SZEM180500453501 Page: 19 of 66

4.1 For WCDMA

4.1.1 Test Band = WCDMA 1900

4.1.1.1 Test Mode = UMTS/TM1

4.1.1.1.1 Test Channel = LCH

Spectrun	ı)								
	I 35.00 dBm			RBW 100 ki					
Att 1Rm View	40 dB	S 👄 SWT	10 ms 👄	VBW 300 ki	HZ Mode	Auto Swee	ep		
TKUL AIGM					D	1[1]			-3.96 dB
30 dBm						-[-]		4.	71500 MHz
						cc Bw		4.1658	34166 MHz
20 dBm	D1 18.110 (1[1]			-5.60 dBm
	DI 18.110 (ивш	manghorte	adatahingmana	an and the second have been been been been been been been be	+ Will white here	1	1.850	07200 GHz
10 dBm		T1	Name			"	12		
		/					1		
0 dBm									
		M							
-10 dBm	D2 -7.8	890 dBm					<u></u>		
							л		
-20 dBm	homewall	w W					Way May	uurdenhilmlichigh	barry all way
"doo dBm—									וויי
-40 dBm——									
-50 dBm									
-60 dBm									
-00 ubiii									
CF 1.8524	GHz			1001	pts			_	10.0 MHz
][]				Mea	suring		4/4)6.06.2018 13:28:30

Date: 6.JUN.2018 13:28:31

Report No.: SZEM180500453501 Page: 20 of 66

Spectrum	ı)								l □
Ref Level	l 35.00 dBm	Offset	5.00 dB 👄	RBW 100 k	Hz				('
🛛 Att	40 dB	🗉 SWT	10 ms 👄	VBW 300 k	Hz Mode	Auto Swee	ер		
⊖1Rm View									
30 dBm					D	1[1]		4	-1.39 dB 72500 MHz
					0	cc Bw			72300 MHZ 54146 MHz
20 dBm						1[1]			-7.58 dBm
20 0011	D1 17.260 (dBm	. In the st	Million day .	na na kulu UU nata	dha mulu tuan	1	1.877	64200 GHz
10 dBm		Т1	way by may m	uteleulum plan a	ellehandelehana, serve	HULAHUMAN	NT2		
TO ODIII		J J	,				7W		
0 dBm							N.		
		м							
10 10	D28 '	 740 dBm					d1		
-10 dBm—									
-20 dBm—									
-20 UBIII		M. A					- Mil Mi	ا بالمربق من ا	
oo lolub M	hadpah whallow why why	r yr					Y	allowershame	Will wanter the
-20 aBm									WHW
-40 dBm——									
-50 dBm—									
-60 dBm									
CF 1.88 GH	lz	·		1001	pts	I		Span	10.0 MHz
					Mea	suring		444	16.06.2018 13:30:25

Date: 6.JUN.2018 13:30:25

Report No.: SZEM180500453501 Page: 21 of 66

Spectrun	n								E
	ـــــــــــــــــــــــــــــــــــــ			RBW 100 kł VBW 300 kł		Auto Swe	ер		(*
⊖1Rm View							·		
30 dBm					D	1[1]			-1.24 dB 76500 MHz
20 dBm						cc Bw 1[1]			34166 MHz -8.32 dBm
	D1 17.260	dBm		Personality	h salad Minana a Asala Mi	laadka khin	1	1.905	21200 GHz
10 dBm			State of the state		d 100 - 11 o o to o o o	an array may have been been a	v <u>+</u> 2		
0 dBm							<u>ų</u>		
-10 dBm—		740 dBm <u></u>							
-20 dBrithe	ingentierererendenderenderendererendererendererendererendererendererendererendererendererendererendererenderere Erendererendererendererendererendererendererendererendererendererendererendererendererendererendererendererender						<u>եղկ</u> ի _{դի} ր/հվա	bar-rodalogoracia	Underlich hefer Herferhaut
-30 dBm——									
-40 dBm									
-50 dBm									
-60 dBm									
CF 1.9076	GHz			1001	pts			 Span	10.0 MHz
						suring		-	6.06.2018 13:31:08

A 4 4 4 2 Test Channel LICI

Date: 6.JUN.2018 13:31:08

Report No.: SZEM180500453501 Page: 22 of 66

4.1.2 Test Band = WCDMA 1700

4.1.2.1 Test Mode = UMTS/TM1

4.1.2.1.1 Test Channel = LCH

Spectrum	, J								
	35.00 dBm			RBW 100 k					
Att	40 dB	🛛 🔵 SWT	10 ms 😑	VBW 300 k	:Hz Mode	Auto Swee	p		
⊖1Pk View				1					
30 dBm					D	1[1]			-2.27 dB
00 00.					0	cc Bw			72500 MHz 54146 MHz
						1[1]		7.1700	-5.64 dBm
20 dBm	D1 19.240	dBm 	wowlm MP	my home mar	Lour martillan	han shakadi a		1.710	04200 GHz
		t T	J. WOOD WILL		aby Marthelina	and the second	T 2		
10 dBm		7	0		+		\\\\		
							1		
0 dBm							<u> </u>		
		M					1		
-10 dBm—	——D2 -6.1	760 dBm							
-10 dbiii									
	nt ak	HR.					La data	MHulwanylin	
-20 dBn	ALINATION AND A	1 ANN					Hall And	MAU	and and all
PARK HAPPING									
-30 dBm—									
-40 dBm——									
-50 dBm									
oo abiii									
-60 dBm									
CF 1.7124	GHz		I	100	1 pts			 Span	10.0 MHz
][] Mea	asuring		4)6.06.2018 13:52:50 //

Date: 6.JUN.2018 13:52:51

Report No.: SZEM180500453501 Page: 23 of 66

Spectrun	n								
Ref Leve Att	1 35.00 dBm 40 dB			RBW 100 ki VBW 300 ki		Auto Swee	ep		
⊖1Pk View									
30 dBm						1[1] cc Bw			-3.19 dB 70500 MHz 64136 MHz
-20 dBm	D1 19.690 (dBm 	aller and a start	allahidartartura	M	1[1]			-4.36 dBm 26200 GHz
10 dBm			w. C.				<u>v</u> 2		
0 dBm		- M							
-10 dBm—	D2 -6.:	310 dBm							
-20 dBm—	uudtu a	m					- Jody John	1	
lezquillem	Wayna Martha Martha	v					· · ·	tunnertunner	ly and followed may
-40 dBm									
-50 dBm									
-60 dBm									
CF 1.7326	i GHz			1001	pts			-	10.0 MHz
					Mea	suring		4/4	6.06.2018 13:52:04 //

A 4 9 4 9 Test Channel MCU

Date: 6.JUN.2018 13:52:04

Report No.: SZEM180500453501 Page: 24 of 66

Spectrum	ı)								
Ref Level Att	I 35.00 dBm 40 dB	Offset SWT		RBW 100 ki VBW 300 ki		Auto Swee	ep		
⊖1Pk View									
30 dBm						1[1]			-4.58 dB 70500 MHz 74126 MHz
-20 dBm	D1 19.440(dBm 		uhuwato waka	M	cc Bw 1[1]			-3.80 dBm 26200 GHz
10 dBm			pur date a construction of the construction of			a viewy	1 ²		
0 dBm		- mf					\square		
-10 dBm—	D2 -6.5	560 dBm							
-20 dBm		~ A					L. M. M.		
~39.48 ^{m-4}	and put young	Υ						how have	Lapulla .
-40 dBm									and the second
-+0 abiii									
-50 dBm									
-60 dBm									
CF 1.7526	GHz			1001	pts	·	1	Span	10.0 MHz
					Mea	suring		4/4 0	6.06.2018 13:51:10 //

4 1 2 1 2 Test Channel - UCU

Date: 6.JUN.2018 13:51:11

Report No.: SZEM180500453501 Page: 25 of 66

4.1.3 Test Band = WCDMA 850

4.1.3.1 Test Mode = UMTS/TM1

4.1.3.1.1 Test Channel = LCH

Spectrum	, J								
	35.00 dBm			RBW 100 k					
Att	40 dB	s 😑 SWT	10 ms 😑	VBW 300 k	Hz Mode	Auto Swee	p		
●1Pk View				-					
30 dBm					D	1[1]			-2.46 dB
					_	_			70500 MHz
						CC BW		4.1358	64136 MHz
20 dBm	D1 19.370 (dBm 			[¥] سر 10-ه م	1[1]			-5.01 dBm 06200 MHz
		т.	and month of the hash	Munopha	ry-runal mar	hardland allow he	.t2	024.	00200 MH2
10 dBm		Y	P.			, m	4 7		
		/					1.		
0 40							$ \lambda $		
0 dBm		MÍ							
		630 dBm					<u>d1</u>		
-10 dBm—							- <u>1</u>		
		al a							
-20 dBm	п., м.н. н.	m / V					M.		
-20 dBm	WAY IN HUNDRED	r w					(Mu	and de	
-30 dBm——							,		while on
-30 übili								- Aller	and the stand
-40 dBm——									
-50 dBm—									
-60 dBm									
-00 dbiii									
CF 826.4 M	IHz		-	1001	. pts	-		Span	10.0 MHz
					Mea	suring		444 ()6.06.2018 14:04:07 //

Date: 6.JUN.2018 14:04:07

Report No.: SZEM180500453501 Page: 26 of 66

Spectrun	n								l III □ □
Ref Leve Att	I 35.00 dBm 40 dB			RBW 100 ki VBW 300 ki		Auto Swee	эр		<u>`</u>
⊖1Pk View									
30 dBm						1[1]			-2.80 dB 72500 MHz
20 dBm	D1 19.440 (dBm====================================	المراقب المراجع والمراجع	Motororodaya	M.	CC BW 1[1]			74126 MHz -5.20 dBm 05200 MHz
10 dBm		T1				han a second	12 T		
0 dBm		M					\square		
-10 dBm	D2 -6.5	560 dBm							
-20 dBm	Marger Mally Marger	and the second s					- Charles	Muyoututurational	циа
hed dBm-	pholpethalledead								www. handyhany too
-40 dBm——									
-50 dBm									
-60 dBm									
CF 836.4 N	/IHz	·		1001	pts	·	·	-	10.0 MHz
					Mea	suring		444 0	6.06.2018 14:02:53

44242 Test Channel MCU

Date: 6.JUN.2018 14:02:53

Report No.: SZEM180500453501 Page: 27 of 66

Spectrun	n]								
Ref Leve Att	l 35.00 dBm 40 dB			RBW 100 ki VBW 300 ki		Auto Sweep	0		
●1Pk View									
30 dBm						1[1] cc Bw			-2.19 dB 71500 MHz 74126 MHz
20 dBm	D1 19.520 (Bm 	water Alera	apullitudiourietrice	M	1[1]	1		-5.51 dBm 25200 MHz
10 dBm		T1 7	4 Lor Martin				2		
0 dBm		M							
-10 dBm—		480 dBm							
-20 dBm	d Work and a start	property					Light and	A HAYAMAN CONTRACTION	Mar Charles and Charles
_മ ജ്ൾ/dBm—									
-40 dBm—									
-50 dBm—									
-60 dBm									
CF 846.6 M	MHz			1001	. pts			_	10.0 MHz

4 4 2 4 2 Test Channel LICI

Date: 6.JUN.2018 14:02:06

Report No.: SZEM180500453501 Page: 28 of 66

5 Band Edges Compliance

Part I - Test Plots

5.1 For WCDMA

5.1.1 Test Band = WCDMA 1900

5.1.1.1 Test Mode = UMTS/TM1

Date: 6.JUN.2018 13:33:13

Report No.: SZEM180500453501 Page: 29 of 66

₽ Spectrum Ref Level 35.00 dBm Offset 5.00 dB 👄 RBW 100 kHz Att 40 dB 🔵 SWT 1 s 👄 **VBW** 300 kHz Mode Auto Sweep ●1Rm Max M1[1] -17.25 dBm 30 dBm-1.91000000 GHz 20 dBm-10 dBm-0 dBm -1∮ dBm• D1 -13.000 dBm--20 dBm--30 dBm--40 dBm--50 dBm--60 dBm-1001 pts CF 1.91 GHz Span 10.0 MHz 06.06.2018 Measuring... 13:33:43 11

5.1.1.1.2 Test Channel = HCH

Date: 6.JUN.2018 13:33:43

Report No.: SZEM180500453501 Page: 30 of 66

5.1.2 Test Band = WCDMA 1700

5.1.2.1 Test Mode = UMTS/TM1

5.1.2.1.1 Test Channel = LCH ₽ Spectrum Ref Level 35.00 dBm Offset 5.00 dB 👄 RBW 100 kHz 40 dB 🔵 SWT Att 1 s 🔵 **VBW** 300 kHz Mode Auto Sweep ●1Rm Max M1[1] -17.82 dBm 30 dBm-1.71000000 GHz 20 dBm-10 dBm-0 dBm--10 dBm-D1 -13.000 dBm -20 dBm--30 dBm-فتحلفهم بعلماله يحق d, -40 dBm--50 dBm--60 dBm-1001 pts CF 1.71 GHz Span 10.0 MHz 06.06.2018 470 Measuring... lli 13:58:05

Date: 6.JUN.2018 13:58:05

Report No.: SZEM180500453501 Page: 31 of 66

₽ Spectrum Ref Level 35.00 dBm Offset 5.00 dB 👄 RBW 100 kHz Att 40 dB 🔵 SWT 1 s 👄 **VBW** 300 kHz Mode Auto Sweep ●1Rm Max M1[1] -19.58 dBm 30 dBm-1.75500000 GHz 20 dBm-10 dBm-أرد الراجب 0 dBm -10 dBm· D1 -13.000 dBm-∙**⊈**0 dBm• -30 dBm--40 dBm--50 dBm--60 dBm-1001 pts CF 1.755 GHz Span 10.0 MHz 06.06.2018 13:57:40 Measuring... 11

5.1.2.1.2 Test Channel = HCH

Date: 6.JUN.2018 13:57:41

Report No.: SZEM180500453501 Page: 32 of 66

5.1.3 Test Band = WCDMA 850

5.1.3.1 Test Mode = UMTS/TM1

5.1.3.1.1 Test Channel = LCH ₽ Spectrum Ref Level 35.00 dBm Offset 5.00 dB 🔵 RBW 100 kHz 40 dB 💿 SWT Att 1 s 🔵 **VBW** 300 kHz Mode Auto Sweep ●1Rm Max M1[1] -19.50 dBm 30 dBm-824.00000 MHz 20 dBm-10 dBm-0 dBm--10 dBm-D1 -13.000 dBm -20 dBm--30 dBm--40 dBm--50 dBm--60 dBm-1001 pts CF 824.0 MHz Span 10.0 MHz 06.06.2018 Measuring... 11 13:59:31

Date: 6.JUN.2018 13:59:32

Report No.: SZEM180500453501 Page: 33 of 66

₽ Spectrum Ref Level 35.00 dBm Offset 5.00 dB 👄 RBW 100 kHz Att 40 dB 🔵 SWT 1 s 👄 **VBW** 300 kHz Mode Auto Sweep ●1Rm Max M1[1] -18.78 dBm 30 dBm-849.00000 MHz 20 dBm-10 dBm-0 dBn -10 dBm· D1 -13.000 dBm--**2**0 dBm--30 dBmany -40 dBm--50 dBm-When -60 dBm-1001 pts CF 849.0 MHz Span 10.0 MHz 06.06.2018 14:07:56 Measuring... 11

5.1.3.1.2 Test Channel = HCH

Date: 6.JUN.2018 14:07:56

Report No.: SZEM180500453501 Page: 34 of 66

6 Spurious Emission at Antenna Terminal

NOTE: For the averaged unwanted emissions measurements, the measurement points in each sweep is greater than twice the Span/RBW in order to ensure bin-to-bin spacing of < RBW/2 so that narrowband signals are not lost between frequency bins. As to the present test item, the "Measurement Points = k * (Span / RBW)" with k between 4 and 5, which results in an acceptable level error of less than 0.5 dB.

Part I - Test Plots

6.1 For WCDMA

6.1.1 Test Band = WCDMA 1900

6.1.1.1 Test Mode = UMTS/TM1

6.1.1.1.1 Test Channel = LCH

Spectrun	n								
	l 25.00 dBn			RBW 100 kH					
Att	30 di	B 👄 SWT	1 s 👄	VBW 300 kH	lz Mode	Auto Swee	р		
⊖1Rm Max									
20 dBm					M	1[1]			60.17 dBm 5440 MHz
									.01101012
10 dBm									
0 dBm									
-10 dBm—	D1 -13.000								
	DI -13.000								
-20 dBm—									
-30 dBm—									
-40 dBm——									
-50 dBm									
								м	1
-60 dBm		الالاروي أتعرف حاسما							
-70 dBm		e sterisi dala _{da} bija da k	alipili kasin kerji kelinin.	an na patria na stituta n	And the difference of the second s	halan halan halan ya matu	ishi da Masha Jua pakang	a la seconda posta p	an a
Start 30.0	MHZ			20001	L pts				p 1.0 GHz
	П				Mea	suring		4/4 0	6.06.2018 13:34:53

Date: 6.JUN.2018 13:34:53

Report No.: SZEM180500453501 Page: 35 of 66

Spectrun	n									
Ref Leve					BRBW 1 MH					
Att 1Rm Max		30 dB	e swt	15 (● VBW 3 MH2	: Mode /	Auto Sweep			
20 dBm-						M	11[1]	1		-46.69 dBm /06390 GHz
10 dBm										
0 dBm										
-10 dBm—	D1 -1:	3.000	dBm							
-20 dBm—										
-30 dBm—										
-40 dBm—				M1						
-50 dBm—										
-60 dBm—			n= ·							
-70 dBm—										
Start 1.0 (GHz				2000	1 pts				0 10.0 GHz
						Mea	asuring		444	06.06.2018 13:35:27

Date: 6.JUN.2018 13:35:27

Report No.: SZEM180500453501 Page: 36 of 66

Spectrum	1)											
Ref Level	25.0							1 MHz	_				
Att 1Rm Max		30 dB	•	SWT	1	. s 😑	VBW	3 MHz	Mode	Auto Swee	p		
20 dBm										M1[1]	1		-47.28 dBm 955750 GHz
10 dBm													
0 dBm													
-10 dBm—	D1 -1	.3.000	dBm										
-20 dBm—													
-30 dBm													
-40 dBm													M
-50 dBm -60 dBm—				\sim									
-70 dBm													
Start 10.0	GHz						<u> </u>	20001	pts			Stop	20.0 GHz
										asuring		-	06.06.2018 13:37:20 //

Date: 6.JUN.2018 13:37:20

Report No.: SZEM180500453501 Page: 37 of 66

6.1.1.1.2 Test Channel = MCH ₽ Spectrum Ref Level 25.00 dBm Offset 5.00 dB 👄 RBW 100 kHz 30 dB 💿 SWT 1 s 👄 **VBW** 300 kHz Att Mode Auto Sweep ●1Rm Max M1[1] -60.55 dBm 20 dBm-955.9880 MHz 10 dBm-0 dBm--10 dBm-D1 -13.000 dBm--20 dBm--30 dBm--40 dBm· -50 dBm-M1 -60 dBm-L LL -70 dBm-20001 pts Start 30.0 MHz Stop 1.0 GHz 06.06.2018 13:34:30 Measuring... 11

Date: 6.JUN.2018 13:34:30

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.sep and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.sep and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx, Attention is drawn to the limitation of liability, indemnification and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM180500453501 Page: 38 of 66

Spectrun	n									
Ref Leve				t 5.00 dB 👄						`
e Att		30 dB	SWT	1 s 👄	VBW 3 MHz	Mode A	uto Sweep			
⊖1Rm Max					1					
20 dBm						M	1[1]			46.71 dBm
20 0011							1	I	3.7	'61740 GHz
10 -10										
10 dBm										
0 dBm										
-10 dBm—										
	-D1 -1:	3.000 (dBm							
-20 dBm—										
-30 dBm—										
-40 dBm										
10 0.0111				M1						
-50 dBm—				Ĭ			and the second			
-JU UBIII			ومعاداته والمعاصر والمر						and the second designed to the second designed to the second designed at the second designe	and the second division of the second divisio
-60 dBm—										
-70 dBm—										
Start 1.0 (L GHz				2000	1 pts	I	1	Stop	10.0 GHz
(1						suring			06.06.2018
(suring			13:35:45 //

Date: 6.JUN.2018 13:35:46

Report No.: SZEM180500453501 Page: 39 of 66

Spectrum	ı)											
Ref Level								1 MHz					
Att 1Rm Max		30 dB	-	SWT]	. S 😑	VBW	3 MHz	Mode	Auto Swee	p		
20 dBm									Γ	M1[1]	1		-47.34 dBm 948750 GHz
10 dBm													-
0 dBm													
-10 dBm	D1 -1	3.000	dBm										
-20 dBm													
-30 dBm													
-40 dBm													M.
-50 dBm		-		~~									
-60 dBm													
Start 10.0	GHz							20001	. pts			-	o 20.0 GHz
									Me	asuring		4/4	06.06.2018 13:36:48

Date: 6.JUN.2018 13:36:49

Report No.: SZEM180500453501 Page: 40 of 66

Spectrun	า)								
Ref Leve	I 25.0	0 dBm	Offset	5.00 dB 👄	RBW 100 k	Hz				
Att 🛛		30 dB	SWT	1 s 👄	VBW 300 k	Hz Mode	Auto Sweep			
⊖1Rm Max										
20 dBm						M	1[1] 			·60.24 dBn 3.5530 MH: I
10 dBm										
0 dBm										
-10 dBm—	-0.1 1	.3.000	d9m							
-20 dBm		.5,000								
-30 dBm——										
-40 dBm										
-50 dBm—										
-60 dBm	در رواند المراجع	all role dates	steamann barraithte	المراجعة والمراجعة والمراجعة	الديوار والإدعار	والمرجا وحمر وحمر المرجا	al day between a sure of the second party of the	lens att dage til des gedel	diging and any state	
-70 dBm	ong kana pana	alebhare	tedd Mittel tedage palaet	an a	n daa ahaa pilaa ay kasaa		na filo de calebra como de la construita y el	otyralmatisfatta a kuttju	nan hara dan tapan ke	
Start 30.0	MHz			I	2000	lnts			Str) p 1.0 GHz

Date: 6.JUN.2018 13:34:11

Report No.: SZEM180500453501 Page: 41 of 66

Spectrum	ı	٦										
Ref Level	25				5.00 dB (_				
Att 1Rm Max		30 dE	8 😑	SWT	1 S (∎ VBW	3 MHz	Mode	Auto Swee	p		
20 dBm								٩	M1[1]	1		•47.62 dBm 13480 GHz
10 dBm											-	
0 dBm												
-10 dBm—	D1 -	-13.000	dBr	n								
-20 dBm												
-30 dBm												
-40 dBm					М1							
-50 dBm												
-60 dBm				,								
-70 dBm												
Start 1.0 G	Hz		1				20001	pts			Stop) 10.0 GHz
								Me	asuring		4/4	D6.06.2018 13:36:09

Date: 6.JUN.2018 13:36:09

Report No.: SZEM180500453501 Page: 42 of 66

Spectrum	ı)												
Ref Level								1 MHz					
Att 1Rm Max		30 dB		SWT	1	. s 😑	VBW	3 MHz	Mode	Auto Swee	ep		
20 dBm									Γ	M1[1]		19	-47.42 dBm).958250 GHz
10 dBm													
0 dBm													
-10 dBm	D1 -10	3.000	dBm-										
-20 dBm													
-30 dBm													
-40 dBm													м
-50 dBm	-	-	-	\sim									
-60 dBm													
Start 10.0	GHz							20001	. pts			St	op 20.0 GHz
									Me	asuring		•••	06.06.2018 13:36:30

Date: 6.JUN.2018 13:36:30

Report No.: SZEM180500453501 Page: 43 of 66

6.1.2 Test Band = WCDMA 1700

6.1.2.1 Test Mode = UMTS/TM1 6.1.2.1.1 Test Channel = LCH

Spectrum	ı)								[₩
Ref Level Att		dBm Off)dB 🕳 SW	set 5.00 dB 🖷 T 1 s 🖷	RBW 100 k VBW 300 k		Auto Sweep)		
⊖1Rm Max									
20 dBm					M	1[1]	I		·60.58 dBm 3.6550 MHz I
10 dBm									
0 dBm									
-10 dBm—	D1 -13,	100 dBm							
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm									
-60 dBm	on between the		no second se					المتأفقا ساعي اختلا	
-70 dBm	1 <mark>1-1-1-1</mark> 11-1-1-1-1-1	terhalidi taki ^{tel} a Kalandar	render ander der der der der der der der der der	nije jadioni jegen čena čelika.	n saar hijarda halaa halaa hijarda	nino indu predo de entre L	ahinnya <mark>hi</mark> ndrakikadi	is _{the} survey of the second s	pedata da parte de la terra de poses
Start 30.0	MHz	I			1 pts	<u> </u>		Sto	p 1.0 GHz
][) Mea	suring		444	D6.06.2018 13:44:00

Date: 6.JUN.2018 13:44:00

Report No.: SZEM180500453501 Page: 44 of 66

Spectru	m									
Ref Lev					RBW 1 MHz	_				`
Att 1Rm Max		30 dB 😑	SWT	1 S 👄 '	VBW 3 MHz	Mode 4	luto Sweep			
20 dBm						M	1[1]			48.93 dBm 14730 GHz
10 dBm—–										
0 dBm										
-10 dBm	-D1 -13	3.000 dBm								
-20 dBm										
-30 dBm										
-40 dBm							M1			
-50 dBm-						-	NTL V			
-60 dBm—										
-70 dBm—										
Start 1.0	GHz				20001	pts				10.0 GHz
						Mea	asuring		4/4)6.06.2018 13:43:29

Date: 6.JUN.2018 13:43:29

Report No.: SZEM180500453501 Page: 45 of 66

Spectrun	n								
	l 25.00 dB		t 5.00 dB 👄		<u>.</u>				`
Att 1Rm Max	30	dB 🖷 SWT	1 S 👄	VBW 3 MHz	Mode Au	uto Sweep			
20 dBm					M1	[1]	1		•47.03 dBm 28760 GHz
10 dBm									
0 dBm									
-10 dBm—	D1 -13.00	00 dBm							
-20 dBm—									
-30 dBm									
-40 dBm									M1
-60 dBm									
-70 dBm									
Start 10.0	GHz			20001	pts		L	l Stop) 20.0 GHz
					Meas	suring		444	D6.06.2018 13:40:58

Date: 6.JUN.2018 13:40:58

Report No.: SZEM180500453501 Page: 46 of 66

Spectrum	ן ו							
Ref Level Att	I 25.00 dBm 30 dE	o Offset	RBW 100 ki VBW 300 ki		Auto Sweep	 D		
⊖1Rm Max								
20 dBm				M	1[1]	1		60.52 dBm 9.9170 MHz
10 dBm								
0 dBm								
-10 dBm—	D1 -13.000	dBm						
-20 dBm—								
-30 dBm								
-40 dBm								
-50 dBm								
-60 dBm		ath and the block in the	 Ballatoria and a state of the stat	at, an at an art of this	ملالي وروي الفازي في وروي بالم	lashiat saliyihita ada	an alah kacamatahan dinak	M1
-70 dBm	and a state of a [161] (from the second		n en staard finder plaam die oorde stader	inder and a second state of the		putters as estern big	and any officer of the second s	a trajuna transforma di a transforma
Start 30.0	MHz		2000	lnts			Sto	p 1.0 GHz
			2200		suring			06.06.2018 13:44:17

Date: 6.JUN.2018 13:44:18

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sas.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sas.com/en/Terms-and-Conditions/Terms-eDocument.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

6.1.2.1.2 Test Channel = MCH

Report No.: SZEM180500453501 Page: 47 of 66

Spectru	ım	ך									
Ref Lev	el 25.					RBW 1 MH		_			· · · ·
Att 1Rm Ma:	,	30 de	s 😑 SW	Т	1 s 👄	VBW 3 MH	iz Mod	le Auto Swe	ep		
20 dBm—								M1[1]	1		-46.53 dBm 67000 GHz
10 dBm—											
0 dBm—											
-10 dBm-		13.000	dBm								
-20 dBm-											
-30 dBm-											
-40 dBm-				M1							
-50 dBm-									Mary Mary Market		
-60 dBm—											
-70 dBm—											
Start 1.0	GHz					200	D1 pts				0 10.0 GHz
								Measuring		. 44	06.06.2018 13:43:09

Date: 6.JUN.2018 13:43:09

Report No.: SZEM180500453501 Page: 48 of 66

Spectrum	ι									
Ref Level				5.00 dB 👄						`
e Att	3	O dB 🧉	∎ SWT	1 s 👄	VBW 3 MH	z Mode A	luto Swee	р		,
⊖1Rm Max				1	1	1				
20 dBm						M	1[1]			46.95 dBm
20 abiii							I	1	19.9	57250 GHz
10 dBm										
0 dBm										
-10 dBm—										
	D1 -13.	.000 de	3m							
-20 dBm										
-30 dBm										
-40 dBm										
10 abiii										М
-50 dBm	-		\sim	(marked and the second						~~
-60 dBm—										
-70 dBm—										
Start 10.0	GHz				2000	 1 pts	1		Ston	20.0 GHz
	1						asuring		-	06.06.2018
(1301 My			13:41:56

Date: 6.JUN.2018 13:41:56

Report No.: SZEM180500453501 Page: 49 of 66

Att	30 de	B 👄 SWT	1 s 👄	VBW 300 k	Hz Mode	Auto Swee	р		
1Rm Max	1								
20 dBm——					M	1[1]	1		·60.21 dB 4.9700 MF
10 dBm									
) dBm									
-10 dBm—	D1 -13.000	dBm							
-20 dBm—									
-30 dBm—									
-40 dBm—									
-50 dBm—									
			و يعرون فارتقا بين المانية.						
and the part of the	and the state of the second	- Hulio od sovietno so po	eð að Alfrig Stættars (ba	dent option hot stylet.	and the provide state of the p	ban ng shakaban an	n lift generation for the state	pedas titung kalakan gulat	i in addithion in the late

6.1.2.1.3 Test Channel = HCH

Date: 6.JUN.2018 13:44:53

Report No.: SZEM180500453501 Page: 50 of 66

Spectru	n								
Ref Leve					RBW 1 MHz				
Att 1Rm Max		3U AB 1	SWT	15 📟	VBW 3 MHz	Mode	Auto Sweep		
20 dBm-							M1[1]	1	48.58 dBm 11580 GHz
10 dBm									
0 dBm									
-10 dBm—	-D1 -1:	3.000 d	Bm						
-20 dBm—									
-30 dBm									
-40 dBm—							M1		
-50 dBm-					and the second s				
-60 dBm—									
-70 dBm—									
Start 1.0	GHz				2000				 0 10.0 GHz
L						Me	easuring		13:42:50

Date: 6.JUN.2018 13:42:51

Report No.: SZEM180500453501 Page: 51 of 66

Spectrum											
Ref Level				5.00 dB 👄							
Att 1Rm Max	30	dB 😑	SWT	1 s 👄	VBW 3 N	1Hz	Mode A	uto Sweep	0		
20 dBm							M	1[1]	1		•47.47 dBm •49750 GHz
10 dBm											
0 dBm											
-10 dBm	D1 -13.00	DO dB	m								
-20 dBm						_					
-30 dBm						_					
-40 dBm											M
-50 dBm		*	\sim					\sim			
-60 dBm						_					
-70 dBm											
Start 10.0 (GHz				20	001 pt	S				20.0 GHz
							Mea	suring		444	06.06.2018 13:42:17

Date: 6.JUN.2018 13:42:17

Report No.: SZEM180500453501 Page: 52 of 66

6.1.3 Test Band = WCDMA 850

6.1.3.1 Test Mode = UMTS/TM1

6.1.3.1.1 Test Channel = LCH

Spectrum	ı)								
	25.00 dBm		5.00 dB 👄						
Att	30 dE	B 👄 SWT	1 s 👄	VBW 300 kł	Hz Mode	Auto Swee	эр		
●1Rm Max			-						
20 dBm—					M	1[1]			11.09 dBm
20 uBiii-						I	1	1	27.0330 MHz
								M1	
10 dBm									
0 dBm									
-10 dBm—									
	D1 -13.000	dBm							
-20 dBm—									
-30 dBm—									
-40 dBm—									
-50 dBm									
								11 1	
-60 dBm			n and tell and the other data					n lindlar	فاريته أردائه المتله المعم أعم
	period of the second second	and the string has a disk pro-	ⁱⁿ p ^{artit} le the physical second second	- House the state of the state of the physical state of the	لدامة ويطود الأحرسيان	and he has a start of the solid	de la probabilitation de	And And	the plant in the second second
-70 dBm—									
Start 30.0	MHz	I		2000:	1 pts	I		St	op 1.0 GHz
)(suring		4444	06.06.2018
L						suring			14:11:04

Date: 6.JUN.2018 14:11:04

Report No.: SZEM180500453501 Page: 53 of 66

Spectrum	ı)										
Ref Level				5.00 dB 👄							
Att	30	dB 🧉	SWT	1 s 👄	VBW	3 MHz	Mode /	Auto Sweep			
⊖1Rm Max				T	-						
20 dBm							N	11[1]			47.27 dBm 54040 GHz
10 dBm											
0 dBm											
-10 dBm—	D1 100										
	D1 -13.0	оо ив 	111								
-20 dBm—											
-30 dBm											
40 dB											
-40 dBm											
-50 dBm							مرب المراجع المراجع المراجع				
SO abin	and the second data				s hanner				A APPLICATION OF A		
-60 dBm—											
-70 dBm—											
Start 1.0 G	<u> </u>					20001	nte			Stor	10.0 GHz
						20001) 10.0 GHZ
							Mea	asuring			14:11:46

Date: 6.JUN.2018 14:11:47

Report No.: SZEM180500453501 Page: 54 of 66

Spectrum	i]									
Ref Level	25.00 dBm	Offset	5.00 dB 😑	RBW 100 k	:Hz					
🕨 Att	30 dB	🛛 👄 SWT	1 s 😑	VBW 300 k	Hz Mode	Auto Sweep	D			
●1Rm Max										
20 dBm					M	1[1]			835	12.27 dBn 5.6660 MH:
10 dBm								м	1	
0 dBm										
-10 dBm	D1 -13.000	dBm								
-20 dBm										
-30 dBm										
-40 dBm								+		
-50 dBm										
-60 dBm	deal conduction	en en ser se la communitación de la	n andillar taka sa a mas	la koharren er	والمراجعة والمروجع القور	and the second second second	11	M		والمعروف والمعرفين والمراجع
الاطاراني ويستخبرونيا الالالا والانتزامية سويستخدا			a tradicional de la companya de la c	a state of the second					and the second second	alfore the states of the
-70 dBm										
Start 30.0	MHz			2000	1 pts		I		Sto	p 1.0 GHz

Date: 6.JUN.2018 14:10:36

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sas.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sas.com/en/Terms-and-Conditions/Terms-eDocument.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction form exercising all their rights and obligations under the transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

61312 Test Channel - MCH

Report No.: SZEM180500453501 Page: 55 of 66

Spectrum	ı)									
Ref Level					RBW 1 MH					
Att	30	dB 😑	SWT	1 s 👄	УВЖ З МН	Z Mode /	Auto Sweep)		
●1Rm Max				1			11[1]			46.72 dBm
20 dBm						11				70690 GHz
10 dBm										
0 dBm										
-10 dBm	D1 -13.0									
-20 dBm	01 -13.0									
-30 dBm										
-40 dBm										
-50 dBm										
-60 dBm										
-70 dBm										
Start 1.0 G	Hz				2000	1 pts	1		lStop	10.0 GHz
)[asuring)6.06.2018 14:12:42

Date: 6.JUN.2018 14:12:42

Report No.: SZEM180500453501 Page: 56 of 66

Spectrun	n]									
Ref Leve			t 5.00 dB 👄							`
Att	30	dB 🔵 SWT	1 s 👄	VBW 300 k	Hz Mode	Auto Swee	C			
😑 1 Rm Max										
					M	1[1]				11.55 dBm
20 dBm——										5.9470 MHz
								M	1	
10 dBm										
0 dBm										
-10 dBm—										
-10 uBiii—	D1 -13.0	00 dBm								
-20 dBm—										
-30 dBm										
-40 dBm										
-50 dBm										
-50 aBm										
-60 dBm	المتفاصلية بالبري وبرو	فيحربونهم المصادر واراله مرا	و و او از اینامه در الخانا آمو ه	and and much	فرارين أطريق ورواري	al ta colut i dat filo do	adarili dil ada a barriera di	1. ¹	ال والمر م	الأورسانة الأسر موتاية
	and plants and the	and and a dama and a	والمؤدم بالمؤمان والأكأ كالأوعار	and the state of the	ومعالي والباد ومروك	and the state of the state of the	-		ang taket	and the second
-70 dBm										
				00000						
Start 30.0	MHz			2000	1 pts			_		p 1.0 GHz
[Л				Mea	suring		476		D6.06.2018 14:09:37

6.1.3.1.3 Test Channel = HCH

Date: 6.JUN.2018 14:09:38

Report No.: SZEM180500453501 Page: 57 of 66

Spectrum	ī										
Ref Level				5.00 dB 👄							· · · ·
e Att	3	IO dB	e swt	1 s 👄	VBW 3	8 MHz	Mode A	uto Sweep			
⊖1Rm Max				1	1						
20 dBm							M	1[1]			46.01 dBm
20 0011								1	1	1.6	91390 GHz
10 dBm											
0 dBm											
-10 dBm—											
	D1 -13	.000 c	IBm								
-20 dBm											
-30 dBm											
00 00											
-40 dBm											
-40 uBm M1											
Ĭ											
-50 dBm-					-	-	A CONTRACTOR OF STREET				No. of Concession, and
and the second											
-60 dBm											
-70 dBm—											
Start 1.0 G					L	20001	ptc			Pton	10.0 GHz
						1000					10.0 GHZ
Ĺ							Mea	isuring		444	14:15:20

Date: 6.JUN.2018 14:15:21

Report No.: SZEM180500453501 Page: 58 of 66

7 Field Strength of Spurious Radiation

Part I - Test Plots

7.1 For WCDMA

7.1.1 Test Band = WCDMA 1900

7.1.1.1.1 Test Chan				
Frequency (MHz)	Level (dBm)	Limit Line (dBm)	Over Limit (dB)	Polarization
64.300000	-81.71	-13.00	68.71	Vertical
142.750000	-83.30	-13.00	70.30	Vertical
180.550000	-80.39	-13.00	67.39	Vertical
2653.500000	-57.58	-13.00	44.58	Vertical
3704.437500	-66.28	-13.00	53.28	Vertical
6055.650000	-64.97	-13.00	51.97	Vertical
62.400000	-77.72	-13.00	64.72	Horizontal
179.750000	-71.85	-13.00	58.85	Horizontal
620.454167	-79.43	-13.00	66.43	Horizontal
1504.000000	-57.29	-13.00	44.29	Horizontal
3704.437500	-63.59	-13.00	50.59	Horizontal
7820.400000	-63.95	-13.00	50.95	Horizontal

7.1.1.1.2 Test Channel = MCH

Frequency (MHz)	Level (dBm)	Limit Line (dBm)	Over Limit (dB)	Polarization
63.350000	-81.88	-13.00	68.88	Vertical
131.400000	-82.87	-13.00	69.87	Vertical
178.650000	-81.35	-13.00	68.35	Vertical
1210.000000	-61.51	-13.00	48.51	Vertical
3759.525000	-65.54	-13.00	52.54	Vertical
9287.287500	-63.43	-13.00	50.43	Vertical
63.300000	-78.06	-13.00	65.06	Horizontal
182.500000	-71.53	-13.00	58.53	Horizontal
620.270833	-80.17	-13.00	67.17	Horizontal
1210.000000	-62.26	-13.00	49.26	Horizontal
3759.525000	-62.32	-13.00	49.32	Horizontal
9258.525000	-63.39	-13.00	50.39	Horizontal

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.sep and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.sep and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx, Attention is drawn to the limitation of liability, indemnification and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM180500453501 Page: 59 of 66

Frequency (MHz)	Level (dBm)	Limit Line (dBm)	Over Limit (dB)	Polarization
64.250000	-81.61	-13.00	68.61	Vertical
141.900000	-83.91	-13.00	70.91	Vertical
181.700000	-82.45	-13.00	69.45	Vertical
1279.500000	-61.56	-13.00	48.56	Vertical
3815.100000	-63.90	-13.00	50.90	Vertical
6480.262500	-64.72	-13.00	51.72	Vertical
62.150000	-77.62	-13.00	64.62	Horizontal
181.600000	-72.68	-13.00	59.68	Horizontal
621.554167	-79.85	-13.00	66.85	Horizontal
1462.500000	-61.03	-13.00	48.03	Horizontal
3815.100000	-65.57	-13.00	52.57	Horizontal
7852.575000	-63.69	-13.00	50.69	Horizontal

7.1.1.1.3 Test Channel = HCH

7.1.2 Test Band = WCDMAband 1700

7.1.2.1.1 Test Channel = LCH

Frequency (MHz)	Level (dBm)	Limit Line (dBm)	Over Limit (dB)	Polarization
64.700000	-81.66	-13.00	68.66	Vertical
141.850000	-82.89	-13.00	69.89	Vertical
176.850000	-82.06	-13.00	69.06	Vertical
3426.562500	-66.24	-13.00	53.24	Vertical
6053.212500	-64.99	-13.00	51.99	Vertical
9277.537500	-63.38	-13.00	50.38	Vertical
61.900000	-78.51	-13.00	65.51	Horizontal
185.400000	-72.14	-13.00	59.14	Horizontal
621.554167	-79.47	-13.00	66.47	Horizontal
1364.500000	-52.79	-13.00	39.79	Horizontal
3426.562500	-59.65	-13.00	46.65	Horizontal
5140.125000	-66.00	-13.00	53.00	Horizontal

Report No.: SZEM180500453501 Page: 60 of 66

7.1.2.1.2 Test Channel = MCH										
Frequency (MHz)	Level (dBm)	Limit Line (dBm)	Over Limit (dB)	Polarization						
64.200000	-81.73	-13.00	68.73	Vertical						
139.050000	-82.21	-13.00	69.21	Vertical						
179.700000	-80.70	-13.00	67.70	Vertical						
1383.500000	-61.78	-13.00	48.78	Vertical						
3463.125000	-64.95	-13.00	51.95	Vertical						
7803.825000	-63.91	-13.00	50.91	Vertical						
63.350000	-77.75	-13.00	64.75	Horizontal						
183.500000	-71.28	-13.00	58.28	Horizontal						
1384.000000	-53.14	-13.00	40.14	Horizontal						
3463.125000	-55.99	-13.00	42.99	Horizontal						
5007.037500	-66.34	-13.00	53.34	Horizontal						
7939.837500	-63.61	-13.00	50.61	Horizontal						

7.1.2.1.2 Test Channel = MCH

7.1.2.1.3 Test Channel = HCH

Frequency (MHz)	Level (dBm)	Limit Line (dBm)	Over Limit (dB)	Polarization
64.650000	-81.40	-13.00	68.40	Vertical
132.500000	-83.41	-13.00	70.41	Vertical
178.900000	-82.21	-13.00	69.21	Vertical
1403.000000	-61.73	-13.00	48.73	Vertical
3505.050000	-65.38	-13.00	52.38	Vertical
7866.225000	-63.61	-13.00	50.61	Vertical
62.900000	-77.95	-13.00	64.95	Horizontal
182.700000	-73.89	-13.00	60.89	Horizontal
620.958333	-79.87	-13.00	66.87	Horizontal
1403.500000	-55.25	-13.00	42.25	Horizontal
3507.000000	-58.66	-13.00	45.66	Horizontal
7962.262500	-63.57	-13.00	50.57	Horizontal

Report No.: SZEM180500453501 Page: 61 of 66

7.1.3 Test Band = WCDMA band 850

7.1.3.1.1 Test Channel = LCH

Frequency (MHz)	Level (dBm)	Limit Line (dBm)	Over Limit (dB)	Polarization
64.100000	-81.76	-13.00	68.76	Vertical
179.000000	-83.22	-13.00	70.22	Vertical
1654.500000	-64.83	-13.00	51.83	Vertical
3305.175000	-67.96	-13.00	54.96	Vertical
3485.550000	-63.30	-13.00	50.30	Vertical
7833.562500	-63.86	-13.00	50.86	Vertical
62.150000	-77.98	-13.00	64.98	Horizontal
185.600000	-74.11	-13.00	61.11	Horizontal
1651.000000	-64.37	-13.00	51.37	Horizontal
3305.175000	-66.90	-13.00	53.90	Horizontal
3485.550000	-60.14	-13.00	47.14	Horizontal
7950.562500	-63.62	-13.00	50.62	Horizontal

7.1.3.1.2 Test Channel = MCH

Frequency (MHz)	Level (dBm)	Limit Line (dBm)	Over Limit (dB)	Polarization
65.150000	-80.97	-13.00	67.97	Vertical
141.050000	-83.89	-13.00	70.89	Vertical
178.000000	-82.95	-13.00	69.95	Vertical
1671.000000	-64.84	-13.00	51.84	Vertical
3525.525000	-66.09	-13.00	53.09	Vertical
8000.287500	-63.62	-13.00	50.62	Vertical
62.900000	-77.56	-13.00	64.56	Horizontal
184.600000	-73.09	-13.00	60.09	Horizontal
1671.000000	-64.28	-13.00	51.28	Horizontal
3345.637500	-68.64	-13.00	55.64	Horizontal
3525.525000	-66.66	-13.00	53.66	Horizontal
7937.887500	-63.60	-13.00	50.60	Horizontal

Report No.: SZEM180500453501 Page: 62 of 66

Frequency (MHT)									
Frequency (MHz)	Levei (abm)			Polarization					
65.350000	-82.02	-13.00	69.02	Vertical					
139.100000	-83.31	-13.00	70.31	Vertical					
185.500000	-82.59	-13.00	69.59	Vertical					
1695.000000	-64.25	-13.00	51.25	Vertical					
3565.987500	-66.38	-13.00	53.38	Vertical					
7819.912500	-63.92	-13.00	50.92	Vertical					
62.300000	-77.85	-13.00	64.85	Horizontal					
182.700000	-73.17	-13.00	60.17	Horizontal					
1691.500000	-63.90	-13.00	50.90	Horizontal					
3386.100000	-68.94	-13.00	55.94	Horizontal					
3565.987500	-67.68	-13.00	54.68	Horizontal					
7962.262500	-63.59	-13.00	50.59	Horizontal					

7.1.3.1.3 Test Channel = HCH

NOTE:

1) The disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

2) We have tested all modulation and channels, but only the worst case data was displayed in this report.

Report No.: SZEM180500453501 Page: 63 of 66

8 Frequency Stability

8.1 Frequency Error VS. Voltage

Test Band	Test Mode	Test Channel	Test Temp.	Test Volt.	Freq. Error [Hz]	Freq. vs. rated [ppm]	Verdict
				VL	3.81	0.00205	PASS
		LCH	TN	VN	-9.18	-0.00495	PASS
				VH	6.75	0.00365	PASS
WCDMA			MCH TN	VL	-8.53	-0.00453	PASS
1900	UMTS/TM1	MCH		VN	-1.83	-0.00097	PASS
1900				VH	-9.38	-0.00499	PASS
		нсн		VL	2.95	0.00155	PASS
			TN	VN	-7.44	-0.00390	PASS
				VH	5.09	0.00267	PASS

Test Band	Test Mode	Test Channel	Test Temp.	Test Volt.	Freq. Error [Hz]	Freq. vs. rated [ppm]	Verdict
				VL	1.58	0.00092	PASS
		LCH	ΤN	VN	-8.12	-0.00472	PASS
				VH	-9.00	-0.00523	PASS
WCDMA		1 MCH	TN	VL	-6.35	-0.00366	PASS
1700	UMTS/TM1			VN	5.45	0.00315	PASS
1700				VH	8.84	0.00510	PASS
		нсн		VL	5.47	0.00313	PASS
			ΤN	VN	4.56	0.00261	PASS
				VH	-5.61	-0.00322	PASS

Test Band	Test Mode	Test Channel	Test Temp.	Test Volt.	Freq. Error [Hz]	Freq. vs. rated [ppm]	Verdict
				VL	-7.77	-0.00940	PASS
		LCH	ΤN	VN	5.32	0.00644	PASS
			-	VH	8.44	0.01022	PASS
			TN	VL	3.26	0.00390	PASS
WCDMA 850	UMTS/TM1	MCH		VN	-9.62	-0.01150	PASS
000				VH	-9.94	-0.01188	PASS
		НСН		VL	7.68	0.00907	PASS
			TN	VN	-5.27	-0.00623	PASS
				VH	-0.42	-0.00049	PASS

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.sep and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.sep and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx, Attention is drawn to the limitation of liability, indemnification and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction document. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM180500453501 Page: 64 of 66

8.2 Frequency Error VS. Temperature

Test Band	Test Mode	Test Channel	Test Volt.	Test Temp.	Freq. Error [Hz]	Freq. vs. rated [ppm]	Verdict		
				-30	-3.76	-0.00203	PASS		
				-20	-6.69	-0.00361	PASS		
				-10	-4.32	-0.00233	PASS		
				0	9.76	0.00527	PASS		
		LCH	VN	10	1.90	0.00103	PASS		
				20	7.99	0.00431	PASS		
				30	7.08	0.00382	PASS		
				40	0.41	0.00022	PASS		
				50	-3.86	-0.00209	PASS		
				-30	-0.14	-0.00007	PASS		
		МСН		-20	0.92	0.00049	PASS		
				-10	-4.38	-0.00233	PASS		
WCDMA				0	-5.02	-0.00267	PASS		
1900	UMTS/TM1		MCH	MCH	VN	10	-9.51	-0.00506	PASS
1900								20	-8.78
				30	3.22	0.00172	PASS		
				40	5.27	0.00280	PASS		
				50	-6.59	-0.00351	PASS		
				-30	2.00	0.00105	PASS		
				-20	7.95	0.00417	PASS		
				-10	0.70	0.00036	PASS		
				0	-4.75	-0.00249	PASS		
		HCH	VN	10	5.29	0.00277	PASS		
				20	-2.17	-0.00114	PASS		
				30	-2.47	-0.00129	PASS		
				40	-1.19	-0.00062	PASS		
				50	-6.31	-0.00331	PASS		

Report No.: SZEM180500453501 Page: 65 of 66

Test Band	Test Mode	Test Channel	Test Volt.	Test Temp.	Freq. Error [Hz]	Freq. vs. rated [ppm]	Verdict
				-30	4.22	0.00245	PASS
				-20	-8.58	-0.00499	PASS
				-10	3.74	0.00217	PASS
				0	-1.96	-0.00114	PASS
		LCH	VN	10	-7.04	-0.00409	PASS
				20	-1.48	-0.00086	PASS
				30	-8.04	-0.00467	PASS
				40	2.30	0.00133	PASS
				50	-8.05	-0.00468	PASS
				-30	5.32	0.00307	PASS
				-20	7.47	0.00431	PASS
				-10	0.87	0.00050	PASS
WCDMA		МСН		0	-7.98	-0.00460	PASS
1700	UMTS/TM1		VN	10	-3.09	-0.00178	PASS
1700				20	-4.19	-0.00242	PASS
				30	-7.75	-0.00447	PASS
				40	8.58	0.00495	PASS
				50	-7.53	-0.00434	PASS
				-30	8.05	0.00461	PASS
				-20	-3.13	-0.00179	PASS
				-10	-9.62	-0.00551	PASS
				0	4.41	0.00253	PASS
		HCH	VN	10	0.91	0.00052	PASS
				20	5.84	0.00335	PASS
				30	9.95	0.00570	PASS
				40	4.71	0.00270	PASS
				50	-0.27	-0.00016	PASS

Report No.: SZEM180500453501 Page: 66 of 66

Test Band	Test Mode	Test Channel	Test Volt.	Test Temp.	Freq. Error [Hz]	Freq. vs. rated [ppm]	Verdict	
				-30	6.07	0.00734	PASS	
				-20	2.99	0.00362	PASS	
				-10	-6.73	-0.00815	PASS	
				0	-7.42	-0.00898	PASS	
		LCH	VN	10	-4.43	-0.00536	PASS	
				20	-3.23	-0.00391	PASS	
				30	-1.81	-0.00219	PASS	
				40	-9.81	-0.01187	PASS	
				50	-0.71	-0.00086	PASS	
				-30	8.58	0.01026	PASS	
				-20	-5.81	-0.00695	PASS	
				-10	-0.88	-0.00106	PASS	
WCDMA		M1 MCH		0	-1.79	-0.00214	PASS	
850	UMTS/TM1		VN	10	-0.48	-0.00057	PASS	
000				20	5.70	0.00681	PASS	
					30	9.50	0.01136	PASS
				40	-5.78	-0.00691	PASS	
				50	3.89	0.00466	PASS	
				-30	9.96	0.01177	PASS	
				-20	8.15	0.00962	PASS	
				-10	1.49	0.00176	PASS	
				0	-5.63	-0.00666	PASS	
		HCH	VN	10	-8.00	-0.00945	PASS	
				20	-4.71	-0.00556	PASS	
				30	-4.24	-0.00500	PASS	
				40	0.61	0.00072	PASS	
				50	9.99	0.01180	PASS	

The End