

EG95 Hardware Design

LTE Module Series

Rev. EG95_Hardware_Design_V1.2

Date: 2018-03-14

Status: Released

Our aim is to provide customers with timely and comprehensive service. For any assistance, please contact our company headquarters:

Quectel Wireless Solutions Co., Ltd.

7th Floor, Hongye Building, No.1801 Hongmei Road, Xuhui District, Shanghai 200233, China

Tel: +86 21 5108 6236 Email: info@quectel.com

Or our local office. For more information, please visit:

http://quectel.com/support/sales.htm

For technical support, or to report documentation errors, please visit:

http://quectel.com/support/technical.htm

Or email to: support@quectel.com

GENERAL NOTES

QUECTEL OFFERS THE INFORMATION AS A SERVICE TO ITS CUSTOMERS. THE INFORMATION PROVIDED IS BASED UPON CUSTOMERS' REQUIREMENTS. QUECTEL MAKES EVERY EFFORT TO ENSURE THE QUALITY OF THE INFORMATION IT MAKES AVAILABLE. QUECTEL DOES NOT MAKE ANY WARRANTY AS TO THE INFORMATION CONTAINED HEREIN, AND DOES NOT ACCEPT ANY LIABILITY FOR ANY INJURY, LOSS OR DAMAGE OF ANY KIND INCURRED BY USE OF OR RELIANCE UPON THE INFORMATION. ALL INFORMATION SUPPLIED HEREIN IS SUBJECT TO CHANGE WITHOUT PRIOR NOTICE.

COPYRIGHT

THE INFORMATION CONTAINED HERE IS PROPRIETARY TECHNICAL INFORMATION OF QUECTEL WIRELESS SOLUTIONS CO., LTD. TRANSMITTING, REPRODUCTION, DISSEMINATION AND EDITING OF THIS DOCUMENT AS WELL AS UTILIZATION OF THE CONTENT ARE FORBIDDEN WITHOUT PERMISSION. OFFENDERS WILL BE HELD LIABLE FOR PAYMENT OF DAMAGES. ALL RIGHTS ARE RESERVED IN THE EVENT OF A PATENT GRANT OR REGISTRATION OF A UTILITY MODEL OR DESIGN.

Copyright © Quectel Wireless Solutions Co., Ltd. 2018. All rights reserved.

About the Document

History

Revision	Date	Author	Description	
1.0	2017-03-22	Felix YIN/ Yeoman CHEN/ Jackie WANG	Initial	
1.1	2018-01-04	Yeoman CHEN/ Rex WANG	 Added band B28A. Updated the description of UMTS and GSM features in Table 2. Updated the functional diagram in Figure 1. Updated module operating frequencies in Table 21. Updated current consumption in Table 26. Updated the conducted RF receiving sensitivity in Table 28. Updated the GPRS multi-slot classes in Table 33. Added thermal consideration in Chapter 5.8 Added a GND pad in each of the four corners of the module's footprint in Chapter 6.2. Added packaging information in Chapter 7.3. 	
1.2	2018-03-14	Felix YIN/ Rex WANG	 Added the description of EG95-NA. Updated the functional diagram in Figure 1. Updated pin assignment in Figure 2. Updated GNSS function in Table 1. Updated GNSS Features in Table 2. Updated reference circuit of USB interface in Figure 21. Added description of GNSS receiver in Chapter 4. Updated pin definition of RF antenna in Table 21. 	

- 9. Updated module operating frequencies in Table 22.
- 10. Added description of GNSS antenna interface in Chapter 5.2.
- 11. Updated antenna requirements in Table 25.
- 12. Updated RF output power in Table 32.

Contents

Ab	bout the Document	2
Со	ontents	4
Tal	able Index	6
Fig	igure Index	7
1	Introduction	9
	1.1. Safety Information	
2	Product Concept	11
	2.1. General Description	
	2.2. Key Features	12
	2.3. Functional Diagram	14
	2.4. Evaluation Board	15
3	Application Interfaces	16
	3.1. General Description	16
	3.2. Pin Assignment	17
	3.3. Pin Description	18
	3.4. Operating Modes	24
	3.5. Power Saving	
	3.5.1. Sleep Mode	
	3.5.1.1. UART Application	
	3.5.1.2. USB Application with USB Remote Wakeup Fun	
	3.5.1.3. USB Application with USB Suspend/Resume an	
	3.5.1.4. USB Application without USB Suspend Function	
	3.5.2. Airplane Mode	
	3.6. Power Supply	
	3.6.1. Power Supply Pins	
	3.6.2. Decrease Voltage Drop	
	3.6.3. Reference Design for Power Supply	
	3.6.4. Monitor the Power Supply	
	3.7. Turn on and off Scenarios	
	3.7.1. Turn on Module Using the PWRKEY	
	3.7.2. Turn off Module	
	3.7.2.1. Turn off Module Using the PWRKEY Pin	
	3.7.2.2. Turn off Module Using AT Command	
	3.8. Reset the Module	
	3.9. (U)SIM Interfaces	
	3.10. USB Interface	
	3.11. UART Interfaces	
	3.12. PCM and I2C Interfaces	
	3.13. SPI Interface	
	3.14. Network Status Indication	45

	3.15.	STATUS	46
	3.16.	Behaviors of RI	47
4	GNSS F	Receiver	48
	4.1.	General Description	48
	4.2.	GNSS Performance	48
	4.3.	Layout Guidelines	49
5	Antenn	a Interfaces	50
	5.1.	Main/Rx-diversity Antenna Interfaces	50
	5.1	.1. Pin Definition	50
	5.1	.2. Operating Frequency	50
	5.1	.3. Reference Design of RF Antenna Interface	51
	5.1	.4. Reference Design of RF Layout	52
	5.2.	GNSS Antenna Interface	54
	5.3.	Antenna Installation	55
	5.3	.1. Antenna Requirement	55
	5.3	2.2. Recommended RF Connector for Antenna Installation	56
6	Electric	cal, Reliability and Radio Characteristics	58
	6.1.	Absolute Maximum Ratings	58
	6.2.	Power Supply Ratings	58
	6.3.	Operation and Storage Temperatures	59
	6.4.	Current Consumption	60
	6.5.	RF Output Power	63
	6.6.	RF Receiving Sensitivity	64
	6.7.	Electrostatic Discharge	65
	6.8.	Thermal Consideration	66
7		nical Dimensions	
	7.1.	Mechanical Dimensions of the Module	68
		Recommended Footprint	
	7.3.	Design Effect Drawings of the Module	71
8	_	e, Manufacturing and Packaging	
		Storage	
		Manufacturing and Soldering	
	8.3.	Packaging	74
9		dix A References	
10		dix B GPRS Coding Schemes	
11		dix C GPRS Multi-slot Classes	
12	Annend	dix D FDGF Modulation and Coding Schemes	81

Table Index

TABLE 1: FREQUENCY BANDS OF EG95 MODULE	11
TABLE 2: KEY FEATURES OF EG95 MODULE	12
TABLE 3: IO PARAMETERS DEFINITION	18
TABLE 4: PIN DESCRIPTION	18
TABLE 5: OVERVIEW OF OPERATING MODES	24
TABLE 6: VBAT AND GND PINS	28
TABLE 7: PIN DEFINITION OF PWRKEY	31
TABLE 8: PIN DEFINITION OF RESET_N	33
TABLE 9: PIN DEFINITION OF (U)SIM INTERFACES	35
TABLE 10: PIN DEFINITION OF USB INTERFACE	38
TABLE 11: PIN DEFINITION OF MAIN UART INTERFACE	40
TABLE 12: PIN DEFINITION OF DEBUG UART INTERFACE	40
TABLE 13: LOGIC LEVELS OF DIGITAL I/O	41
TABLE 14: PIN DEFINITION OF PCM AND I2C INTERFACES	44
TABLE 15: PIN DEFINITION OF SPI INTERFACE	45
TABLE 16: PIN DEFINITION OF NETWORK STATUS INDICATOR	46
TABLE 17: WORKING STATE OF THE NETWORK STATUS INDICATOR	46
TABLE 18: PIN DEFINITION OF STATUS	46
TABLE 19: DEFAULT BEHAVIORS OF RI	47
TABLE 20: GNSS PERFORMANCE	48
TABLE 21: PIN DEFINITION OF RF ANTENNA	50
TABLE 22: MODULE OPERATING FREQUENCIES	
TABLE 23: PIN DEFINITION OF GNSS ANTENNA INTERFACE	54
TABLE 24: GNSS FREQUENCY	54
TABLE 25: ANTENNA REQUIREMENTS	
TABLE 26: ABSOLUTE MAXIMUM RATINGS	58
TABLE 27: POWER SUPPLY RATINGS	58
TABLE 28: OPERATION AND STORAGE TEMPERATURES	59
TABLE 29: EG95-E CURRENT CONSUMPTION	
TABLE 30: EG95-NA CURRENT CONSUMPTION	
TABLE 31: GNSS CURRENT CONSUMPTION OF EG95-NA	
TABLE 32: RF OUTPUT POWER	
TABLE 33: EG95-E CONDUCTED RF RECEIVING SENSITIVITY	
TABLE 34: EG95-NA CONDUCTED RF RECEIVING SENSITIVITY	
TABLE 35: ELECTROSTATIC DISCHARGE CHARACTERISTICS	
TABLE 36: RELATED DOCUMENTS	
TABLE 37: TERMS AND ABBREVIATIONS	
TABLE 38: DESCRIPTION OF DIFFERENT CODING SCHEMES	
TABLE 39: GPRS MULTI-SLOT CLASSES	
TABLE 40: EDGE MODULATION AND CODING SCHEMES	81

Figure Index

FIGURE 2: PIN ASSIGNMENT (TOP VIEW)
FIGURE 3: SLEEP MODE APPLICATION VIA UART25
FIGURE 4 OFFER MODE ARRUNATION WITH HOR REMOTE WAYELD
FIGURE 4: SLEEP MODE APPLICATION WITH USB REMOTE WAKEUP
FIGURE 5: SLEEP MODE APPLICATION WITH RI
FIGURE 6: SLEEP MODE APPLICATION WITHOUT SUSPEND FUNCTION27
FIGURE 7: POWER SUPPLY LIMITS DURING BURST TRANSMISSION
FIGURE 8: STAR STRUCTURE OF THE POWER SUPPLY29
FIGURE 9: REFERENCE CIRCUIT OF POWER SUPPLY
FIGURE 10: TURN ON THE MODULE USING DRIVING CIRCUIT3 ⁷
FIGURE 11: TURN ON THE MODULE USING BUTTON3 ⁷
FIGURE 12: TIMING OF TURNING ON MODULE
FIGURE 13: TIMING OF TURNING OFF MODULE
FIGURE 14: REFERENCE CIRCUIT OF RESET_N BY USING DRIVING CIRCUIT34
FIGURE 15: REFERENCE CIRCUIT OF RESET_N BY USING BUTTON
FIGURE 16: TIMING OF RESETTING MODULE
FIGURE 17: REFERENCE CIRCUIT OF (U)SIM1 INTERFACE WITH AN 8-PIN (U)SIM CARD CONNECTOR
36
FIGURE 18: REFERENCE CIRCUIT OF (U)SIM1 INTERFACE WITH A 6-PIN (U)SIM CARD CONNECTOR36
FIGURE 19: REFERENCE CIRCUIT OF (U)SIM2 INTERFACE WITH AN 8-PIN (U)SIM CARD CONNECTOR
FIGURE 20: REFERENCE CIRCUIT OF (U)SIM2 INTERFACE WITH A 6-PIN (U)SIM CARD CONNECTOR37
· ,
FIGURE 20: REFERENCE CIRCUIT OF (U)SIM2 INTERFACE WITH A 6-PIN (U)SIM CARD CONNECTOR 37 FIGURE 21: REFERENCE CIRCUIT OF USB INTERFACE
FIGURE 21: REFERENCE CIRCUIT OF USB INTERFACE
FIGURE 21: REFERENCE CIRCUIT OF USB INTERFACE
FIGURE 21: REFERENCE CIRCUIT OF USB INTERFACE
FIGURE 21: REFERENCE CIRCUIT OF USB INTERFACE
FIGURE 21: REFERENCE CIRCUIT OF USB INTERFACE
FIGURE 21: REFERENCE CIRCUIT OF USB INTERFACE
FIGURE 21: REFERENCE CIRCUIT OF USB INTERFACE
FIGURE 21: REFERENCE CIRCUIT OF USB INTERFACE
FIGURE 21: REFERENCE CIRCUIT OF USB INTERFACE
FIGURE 21: REFERENCE CIRCUIT OF USB INTERFACE
FIGURE 21: REFERENCE CIRCUIT OF USB INTERFACE
FIGURE 21: REFERENCE CIRCUIT OF USB INTERFACE
FIGURE 21: REFERENCE CIRCUIT OF USB INTERFACE
FIGURE 21: REFERENCE CIRCUIT OF USB INTERFACE
FIGURE 21: REFERENCE CIRCUIT OF USB INTERFACE
FIGURE 21: REFERENCE CIRCUIT OF USB INTERFACE

IGURE 38: SPACE FACTOR OF MATED CONNECTOR (UNIT: MM)	57
IGURE 39: REFERENCED HEATSINK DESIGN (HEATSINK AT THE TOP OF THE MODULE)	66
IGURE 40: REFERENCED HEATSINK DESIGN (HEATSINK AT THE BOTTOM OF CUSTOMERS' PCB) .	67
IGURE 41: MODULE TOP AND SIDE DIMENSIONS	68
IGURE 42: MODULE BOTTOM DIMENSIONS (TOP VIEW)	69
IGURE 43: RECOMMENDED FOOTPRINT (TOP VIEW)	70
IGURE 44: TOP VIEW OF THE MODULE	71
IGURE 45: BOTTOM VIEW OF THE MODULE	71
IGURE 46: REFLOW SOLDERING THERMAL PROFILE	73
IGURE 47: TAPE DIMENSIONS	74
IGURE 48: REFL DIMENSIONS	74

1 Introduction

This document defines the EG95 module and describes its air interface and hardware interface which are connected with customers' applications.

This document can help customers quickly understand module interface specifications, electrical and mechanical details, as well as other related information of EG95 module. Associated with application note and user guide, customers can use EG95 module to design and set up mobile applications easily.

1.1. Safety Information

The following safety precautions must be observed during all phases of operation, such as usage, service or repair of any cellular terminal or mobile incorporating EG95 module. Manufacturers of the cellular terminal should send the following safety information to users and operating personnel, and incorporate these guidelines into all manuals supplied with the product. If not so, Quectel assumes no liability for customers' failure to comply with these precautions.

Full attention must be given to driving at all times in order to reduce the risk of an accident. Using a mobile while driving (even with a handsfree kit) causes distraction and can lead to an accident. You must comply with laws and regulations restricting the use of wireless devices while driving.

Switch off the cellular terminal or mobile before boarding an aircraft. Make sure it is switched off. The operation of wireless appliances in an aircraft is forbidden, so as to prevent interference with communication systems. Consult the airline staff about the use of wireless devices on boarding the aircraft, if your device offers an Airplane Mode which must be enabled prior to boarding an aircraft.

Switch off your wireless device when in hospitals, clinics or other health care facilities. These requests are designed to prevent possible interference with sensitive medical equipment.

Cellular terminals or mobiles operating over radio frequency signal and cellular network cannot be guaranteed to connect in all conditions, for example no mobile fee or with an invalid (U)SIM card. While you are in this condition and need emergent help, please remember using emergency call. In order to make or receive a call, the cellular terminal or mobile must be switched on and in a service area with adequate cellular signal strength.

Your cellular terminal or mobile contains a transmitter and receiver. When it is ON, it receives and transmits radio frequency energy. RF interference can occur if it is used close to TV set, radio, computer or other electric equipment.

In locations with potentially explosive atmospheres, obey all posted signs to turn off wireless devices such as your phone or other cellular terminals. Areas with potentially explosive atmospheres include fuelling areas, below decks on boats, fuel or chemical transfer or storage facilities, areas where the air contains chemicals or particles such as grain, dust or metal powders, etc.

2 Product Concept

2.1. General Description

EG95 module is an embedded 4G wireless communication module with receive diversity. It supports LTE-FDD/WCDMA/GSM wireless communication, and provides data connectivity on LTE-FDD, DC-HSDPA, HSPA+, HSDPA, WCDMA, EDGE and GPRS networks. It can also provide voice functionality¹⁾ to meet customers' specific application demands. The following table shows the frequency bands of EG95 module.

Table 1: Frequency Bands of EG95 Module

Module	LTE Bands (with Rx-diversity)	WCDMA (with Rx-diversity)	GSM	GNSS ²⁾
EG95-E	FDD: B1/B3/B7/B8/B20/B28A	B1/B8	900/1800MHz	Not supported
EG95-NA*	FDD: B2/B4/B5/B12/B13	B2/B4/B5	Not supported	GPS, GLONASS, BeiDou/Compass, Galileo, QZSS

NOTES

- 1. ¹⁾ EG91 contains **Telematics** version and **Data-only** version. **Telematics** version supports voice and data functions, while **Data-only** version only supports data function.
- 2. ²⁾ GNSS function is optional.
- 3. "*" means under development.

With a compact profile of 29.0mm × 25.0mm × 2.25mm, EG95 can meet almost all requirements for M2M applications such as automotive, smart metering, tracking system, security, router, wireless POS, mobile computing device, PDA phone, tablet PC, etc.

EG95 is an SMD type module which can be embedded into applications through its 106 LGA pads.

EG95 is integrated with internet service protocols like TCP, UDP and PPP. Extended AT commands have been developed for customers to use these internet service protocols easily.

2.2. Key Features

The following table describes the detailed features of EG95 module.

Table 2: Key Features of EG95 Module

Feature	Details		
Power Supply	Supply voltage: 3.3V~4.3V		
	Typical supply voltage: 3.8V		
	Class 4 (33dBm±2dB) for EGSM900		
	Class 1 (30dBm±2dB) for DCS1800		
Transmitting Power	Class E2 (27dBm±3dB) for EGSM900 8-PSK		
Transmitting Fower	Class E2 (26dBm±3dB) for DCS1800 8-PSK		
	Class 3 (24dBm+1/-3dB) for WCDMA bands		
	Class 3 (23dBm±2dB) for LTE-FDD bands		
	Support up to non-CA Cat 4 FDD		
LTE Features	Support 1.4MHz~20MHz RF bandwidth		
LIL I Galules	Support MIMO in DL direction		
	FDD: Max 150Mbps (DL)/50Mbps (UL)		
	Support 3GPP R8 DC-HSDPA, HSPA+, HSDPA, HSUPA and WCDMA		
	Support QPSK, 16-QAM and 64-QAM modulation		
UMTS Features	DC-HSDPA: Max 42Mbps (DL)		
	HSUPA: Max 5.76Mbps (UL)		
	WCDMA: Max 384Kbps (DL)/384Kbps (UL)		
	R99:		
	CSD: 9.6kbps		
	GPRS:		
	Support GPRS multi-slot class 33		
	Coding scheme: CS-1, CS-2, CS-3 and CS-4		
	Max 107Kbps (DL), Max 85.6Kbps (UL)		
GSM Features	EDGE:		
	Support EDGE multi-slot class 33		
	Support GMSK and 8-PSK for different MCS (Modulation and Coding		
	Scheme)		
	Downlink coding schemes: CS 1-4 and MCS 1-9		
	Uplink coding schemes: CS 1-4 and MCS 1-9		
	Max 296Kbps (DL)/Max 236.8Kbps (UL)		
	Support TCP/UDP/PPP/FTP/HTTP/NTP/PING/QMI/CMUX*/HTTPS*/		
Internet Protocol Features	SMTP*/MMS*/FTPS*/SMTPS*/SSL*/FILE* protocols		
miomot i rotocor i cataroc	Support PAP (Password Authentication Protocol) and CHAP (Challenge		
	Handshake Authentication Protocol) protocols which are usually used for		

	PPP connections	
SMS	Text and PDU mode Point-to-point MO and MT SMS cell broadcast SMS storage: ME by default	
(U)SIM Interfaces	Support 1.8V and 3.0V (U)SIM cards	
Audio Features	Support one digital audio interface: PCM interface GSM: HR/FR/EFR/AMR/AMR-WB WCDMA: AMR/AMR-WB LTE: AMR/AMR-WB Support echo cancellation and noise suppression	
PCM Interface	Used for audio function with external codec Support 16-bit linear data format Support long frame synchronization and short frame synchronization Support master and slave mode, but must be the master in long frame synchronization	
USB Interface	Compliant with USB 2.0 specification (slave only); the data transfer rate can reach up to 480Mbps Used for AT command communication, data transmission, GNSS NMEA sentences output, software debugging, firmware upgrade and voice over USB* Support USB serial drivers for Windows XP, Windows Vista, Windows 7/8/8.1/10, Windows CE 5.0/6.0/7.0*, Linux 2.6/3.x/4.1~4.14, Android 4.x/5.x/6.0/7.x	
UART Interface	Main UART: Used for AT command communication and data transmission Baud rate reach up to 921600bps, 115200bps by default Support RTS and CTS hardware flow control Debug UART: Used for Linux console and log output 115200bps baud rate	
Rx-diversity	Support LTE/WCDMA Rx-diversity	
GNSS Features Gen8C Lite of Qualcomm Protocol: NMEA 0183		
AT Commands Compliant with 3GPP TS 27.007, 27.005 and Quect commands		
Network Indication	NETLIGHT pin for network activity status indication	
Antenna Interface	Including main antenna interface (ANT_MAIN), Rx-diversity antenna (ANT_DIV) interface and GNSS antenna interface (ANT_GNSS) ¹⁾	
Physical Characteristics Size: (29.0±0.15)mm × (25.0±0.15)mm × (2.25±0.2)mm Package: LGA		

	Weight: approx. 3.8g
	Operation temperature range: -35°C ~ +75°C ²⁾
Temperature Range	Extended temperature range: -40°C ~ +85°C 3)
	Storage temperature range: -40°C ~ +90°C
Firmware Upgrade	USB interface and DFOTA*
RoHS	All hardware components are fully compliant with EU RoHS directive

NOTES

- 1. 1) GNSS antenna interface is only supported on EG95-NA.
- 2. ²⁾ Within operating temperature range, the module is 3GPP compliant.
- 3. ³⁾ Within extended temperature range, the module remains the ability to establish and maintain a voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction. There are also no effects on radio spectrum and no harm to radio network. Only one or more parameters like P_{out} might reduce in their value and exceed the specified tolerances. When the temperature returns to normal operating temperature levels, the module will meet 3GPP specifications again.
- 4. "*" means under development.

2.3. Functional Diagram

The following figure shows a block diagram of EG95 and illustrates the major functional parts.

- Power management
- Baseband
- DDR+NAND flash
- Radio frequency
- Peripheral interfaces

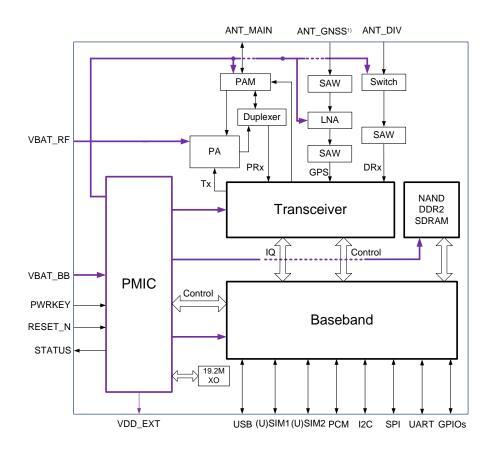


Figure 1: Functional Diagram

NOTE

¹⁾ GNSS antenna interface is only supported on EG95-NA.

2.4. Evaluation Board

In order to help customers develop applications conveniently with EG95, Quectel supplies an evaluation board (EVB), USB data cable, earphone, antenna and other peripherals to control or test the module.

3 Application Interfaces

3.1. General Description

EG95 is equipped with 62-pin 1.1mm pitch SMT pads plus 44-pin ground/reserved pads that can be connected to customers' cellular application platforms. Sub-interfaces included in these pads are described in detail in the following chapters:

- Power supply
- (U)SIM interfaces
- USB interface
- UART interfaces
- PCM and I2C interfaces
- SPI interface
- Status indication

3.2. Pin Assignment

The following figure shows the pin assignment of EG95 module.

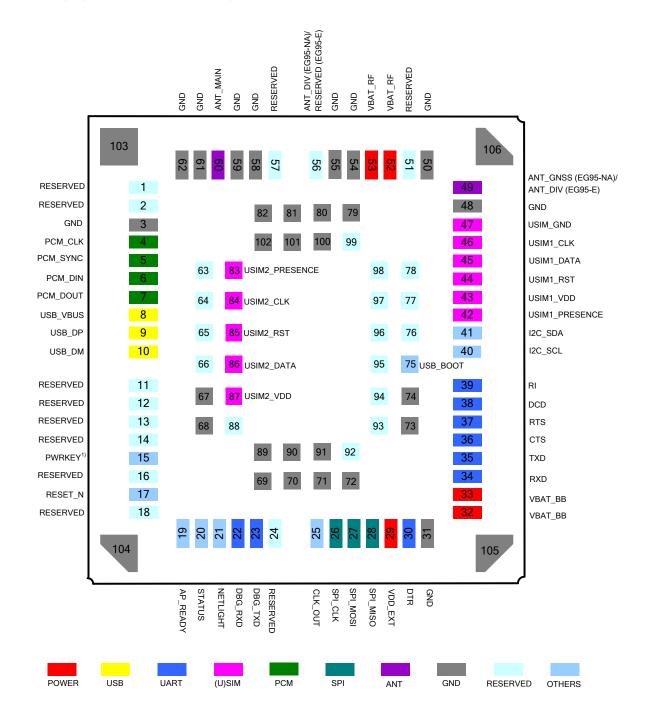


Figure 2: Pin Assignment (Top View)

NOTES

- 1. 1) PWRKEY output voltage is 0.8V because of the diode drop in the Qualcomm chipset.
- 2. Keep all RESERVED pins and unused pins unconnected.
- 3. GND pads should be connected to ground in the design.
- 4. Please note that the definition of pin 49 and 56 are different between EG95-E and EG95-NA.

3.3. Pin Description

The following tables show the pin definition and description of EG95.

Table 3: IO Parameters Definition

Туре	Description
Ю	Bidirectional
DI	Digital input
DO	Digital output
PI	Power input
РО	Power output
Al	Analog input
AO	Analog output
OD	Open drain

Table 4: Pin Description

Power Supply					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
VBAT_BB	32, 33	PI	Power supply for module's baseband part	Vmax=4.3V Vmin=3.3V Vnorm=3.8V	It must be able to provide sufficient current up to 0.8A.
VBAT_RF	52, 53	PI	Power supply for module's RF part	Vmax=4.3V Vmin=3.3V Vnorm=3.8V	It must be able to provide sufficient current up to 1.8A in a

					transmitting burst.
VDD_EXT	29	PO	Provide 1.8V for external circuit	Vnorm=1.8V I _O max=50mA	Power supply for external GPIO's pull up circuits.
GND	3, 31, 48, 50, 54, 55, 58, 59, 61, 62, 67~74, 79~82, 89~91, 100~106		Ground		
Turn on/off					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
PWRKEY	15	DI	Turn on/off the module	V _{IH} max=2.1V V _{IH} min=1.3V V _{IL} max=0.5V	The output voltage is 0.8V because of the diode drop in the Qualcomm chipset.
RESET_N	17	DI	Reset signal of the module	V _{IH} max=2.1V V _{IH} min=1.3V V _{IL} max=0.5V	
Status Indic	ation				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
STATUS	20	DO	Indicate the module's operation status	V _O in=1.35V V _{OL} max=0.45V	1.8V power domain. If unused, keep this pin open.
NETLIGHT	21	DO	Indicate the module'd network activity status	V _O in=1.35V V _{OL} max=0.45V	1.8V power domain. If unused, keep it open.
USB Interfac	ce				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
USB_VBUS	8	PI	USB detection	Vnorm=5.0V	
USB_DP	9	Ю	USB differential data bus (+)	Compliant with USB 2.0 standard specification.	Require differential impedance of 90Ω .
USB_DM	10	Ю	USB differential data bus (-)	Compliant with USB 2.0 standard specification.	Require differential impedance of 90Ω .

(U)SIM Interfaces						
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
USIM_GND	47		Specified ground for (U)SIM card			
USIM1_VDD	43	_	Power supply for	For 1.8V (U)SIM: Vmax=1.9V Vmin=1.7V		
USIM2_VDD	87	PO	(U)SIM card	For 3.0V (U)SIM: Vmax=3.05V Vmin=2.7V I _O max=50mA	supported by the module automatically.	
USIM1_DATA	45	_		For 1.8V (U)SIM: V_{IL} max=0.6V V_{IH} min=1.2V V_{OL} max=0.45V V_{O} in=1.35V		
USIM2_DATA	86	IO	Data signal of (U)SIM card	For 3.0V (U)SIM: V _{IL} max=1.0V V _{IH} min=1.95V V _{OL} max=0.45V V _O in=2.55V		
USIM1_CLK	46		Clock signal of	For 1.8V (U)SIM: V _{OL} max=0.45V V _O in=1.35V		
USIM2_CLK	84	DO	Clock signal of (U)SIM card	For 3.0V (U)SIM: V _{OL} max=0.45V V _O in=2.55V		
USIM1_RST	44		Reset signal of	For 1.8V (U)SIM: V_{OL} max=0.45V V_{O} in=1.35V		
USIM2_RST	85	DO	(U)SIM card	For 3.0V (U)SIM: V _{OL} max=0.45V V _O in=2.55V		
USIM1_ PRESENCE	42	- DI	(U)SIM card	V _{IL} min=-0.3V V _{IL} max=0.6V	1.8V power domain.	
USIM2_ PRESENCE	83	וט	insertion detection	V _{IH} min=1.2V V _{IH} max=2.0V	If unused, keep it open.	

	Pin No. 39	I/O DO	Description	DC Characteristics	Comment
RI		DO			
	20		Ring indicator	V _{OL} max=0.45V V _O in=1.35V	1.8V power domain. If unused, keep it open.
DCD :	38	DO	Data carrier detection	V _{OL} max=0.45V V _O in=1.35V 1.8V power dor If unused, keep open.	
CTS	36	DO	Clear to send	V _{OL} max=0.45V V _O in=1.35V	1.8V power domain. If unused, keep it open.
RTS :	37	DI	Request to send	V_{IL} min=-0.3V V_{IL} max=0.6V V_{IH} min=1.2V V_{IH} max=2.0V	1.8V power domain. If unused, keep it open.
DTR :	30	DI	Data terminal ready. Sleep mode control.	V _{IL} min=-0.3V V _{IL} max=0.6V V _{IH} min=1.2V V _{IH} max=2.0V	1.8V power domain. Pull-up by default. Low level wakes up the module. If unused, keep it open.
TXD :	35	DO	Transmit data	V _{OL} max=0.45V V _O in=1.35V	1.8V power domain. If unused, keep it open.
RXD	34	DI	Receive data	V _{IL} min=-0.3V V _{IL} max=0.6V V _{IH} min=1.2V V _{IH} max=2.0V	1.8V power domain. If unused, keep it open.
Debug UART II	nterface				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
DBG_TXD	23	DO	Transmit data	V _{OL} max=0.45V V _O in=1.35V	1.8V power domain. If unused, keep it open.
DBG_RXD :	22	DI	Receive data	V _{IL} min=-0.3V V _{IL} max=0.6V V _{IH} min=1.2V V _{IH} max=2.0V	1.8V power domain. If unused, keep it open.
PCM Interface					
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment

PCM_DIN	6	DI	PCM data input	V _{IL} min=-0.3V V _{IL} max=0.6V V _{IH} min=1.2V V _{IH} max=2.0V	1.8V power domain. If unused, keep it open.
PCM_DOUT	7	DO	PCM data output	V _{OL} max=0.45V V _O in=1.35V	1.8V power domain. If unused, keep it open.
PCM_SYNC	5	Ю	PCM data frame synchronization signal	V_{OL} max=0.45 V V_{O} in=1.35 V V_{IL} min=-0.3 V V_{IL} max=0.6 V V_{IH} min=1.2 V V_{IH} max=2.0 V	1.8V power domain. In master mode, it is an output signal. In slave mode, it is an input signal. If unused, keep it open.
PCM_CLK	4	Ю	PCM clock	V _{OL} max=0.45V V _O in=1.35V V _{IL} min=-0.3V V _{IL} max=0.6V V _{IH} min=1.2V V _{IH} max=2.0V	1.8V power domain. In master mode, it is an output signal. In slave mode, it is an input signal. If unused, keep it open.
I2C Interface	1				
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment
100, 001			I2C serial clock.		An external pull-up resistor is required.
I2C_SCL	40	OD	Used for external codec		1.8V only. If unused, keep it open.
I2C_SCL	41	OD			If unused, keep it
	41		codec I2C serial data. Used		If unused, keep it open. An external pull-up resistor is required. 1.8V only. If unused, keep it
I2C_SDA	41		codec I2C serial data. Used	DC Characteristics	If unused, keep it open. An external pull-up resistor is required. 1.8V only. If unused, keep it
I2C_SDA SPI Interface	41	OD	I2C serial data. Used for external codec	DC Characteristics V _{OL} max=0.45V V _O in=1.35V	If unused, keep it open. An external pull-up resistor is required. 1.8V only. If unused, keep it open.
I2C_SDA SPI Interface Pin Name	41 Pin No.	OD	I2C serial data. Used for external codec Description Clock signal of SPI	V _{OL} max=0.45V	If unused, keep it open. An external pull-up resistor is required. 1.8V only. If unused, keep it open. Comment 1.8V power domain. If unused, keep it

RESERVED F	1113					
download mode V _{IH} max=2.0V RESERVED Pins						
USB_BOOT	75	DI	Force the module to enter into emergency download mode	V _{IL} min=-0.3V V _{IL} max=0.6V V _{IH} min=1.2V V _{IH} max=2.0V	1.8V power domain. If unused, keep it open.	
AP_READY	19	DI	Application processor sleep state detection	V _{IL} min=-0.3V V _{IL} max=0.6V V _{IH} min=1.2V V _{IH} max=2.0V	1.8V power domain. If unused, keep it open.	
CLK_OUT	25	DI	Clock output		Provide a digital clock output for an external audio codec. If unused, keep this pin open.	
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
Other Pins						
ANT_MAIN	60	Ю	Main antenna pad			
ANT_DIV	56 (EG95- NA)	AI	Receive diversity antenna pad		50Ω impedance. If unused, keep it open. Pin 56 is reserved on EG95-E.	
ANT_DIV	49 (EG95-E)	Al	Receive diversity antenna pad		50Ω impedance. If unused, keep it open.	
ANT_GNSS	49 (EG95- NA)	AI	GNSS antenna pad		50Ω impedance. If unused, keep it open. Pin 49 is defined as ANT_DIV on EG95-E.	
Pin Name	Pin No.	I/O	Description	DC Characteristics	Comment	
RF Interface				VIHITIAX-2.0V		
SPI_MISO	28	DI	Master input slave output of SPI interface	V_{IL} min=-0.3V V_{IL} max=0.6V V_{IH} min=1.2V V_{IH} max=2.0V	1.8V power domain. If unused, keep it open.	

RESERVED	1, 2, 11~14, 16, 18, 49, 51, 57, 63~66,	Reserved	Keep these pins unconnected.
	76~78,		
	88, 92~99		

3.4. Operating Modes

The table below briefly summarizes the various operating modes referred in the following chapters.

Table 5: Overview of Operating Modes

Mode	Details					
Normal Operation	Idle	Software is active. The module has registered on network, and it is ready to send and receive data.				
	Talk/Data	Network connection is ongoing. In this mode, the power consumption is decided by network setting and data transfer rate.				
Minimum Functionality Mode	AT+CFUN command can set the module to a minimum functionality mode without removing the power supply. In this case, both RF function and (U)SIM card will be invalid.					
Airplane Mode	AT+CFUN command or W_DISABLE# pin can set the module to airplane mode. In this case, RF function will be invalid.					
Sleep Mode	In this mode, the current consumption of the module will be reduced to the minimal level. During this mode, the module can still receive paging message, SMS, voice call and TCP/UDP data from the network normally.					
Power Down Mode	In this mode, the power management unit shuts down the power supply. Software is not active. The serial interface is not accessible. Operating voltage (connected to VBAT_RF and VBAT_BB) remains applied.					

3.5. Power Saving

3.5.1. Sleep Mode

EG95 is able to reduce its current consumption to a minimum value during the sleep mode. The following sections describe the power saving procedures of EG95 module.

3.5.1.1. UART Application

If the host communicates with the module via UART interface, the following preconditions can let the module enter into sleep mode.

- Execute AT+QSCLK=1 command to enable sleep mode.
- Drive DTR to high level.

The following figure shows the connection between the module and the host.

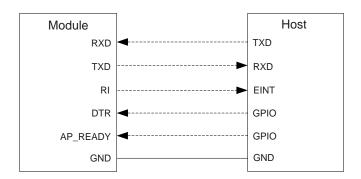


Figure 3: Sleep Mode Application via UART

Driving the host DTR to low level will wake up the module.

- When EG95 has a URC to report, RI signal will wake up the host. Refer to Chapter 3.16 for details about RI behavior.
- AP_READY will detect the sleep state of host (can be configured to high level or low level detection).
 Please refer to AT+QCFG="apready"* command for details.

"*" means under development.

3.5.1.2. USB Application with USB Remote Wakeup Function

If the host supports USB suspend/resume and remote wakeup functions, the following three preconditions must be met to let the module enter into sleep mode.

- Execute AT+QSCLK=1 command to enable the sleep mode.
- Ensure the DTR is held at high level or keep it open.
- The host's USB bus, which is connected with the module's USB interface, enters into suspended state.

The following figure shows the connection between the module and the host.

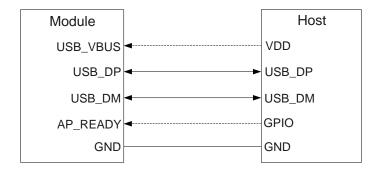


Figure 4: Sleep Mode Application with USB Remote Wakeup

- Sending data to EG95 through USB will wake up the module.
- When EG95 has a URC to report, the module will send remote wake-up signals via USB bus so as to wake up the host.

3.5.1.3. USB Application with USB Suspend/Resume and RI Function

If the host supports USB suspend/resume, but does not support remote wake-up function, the RI signal is needed to wake up the host.

There are three preconditions to let the module enter into the sleep mode.

- Execute **AT+QSCLK=1** command to enable sleep mode.
- Ensure the DTR is held at high level or keep it open.
- The host's USB bus, which is connected with the module's USB interface, enters into suspended state.

The following figure shows the connection between the module and the host.

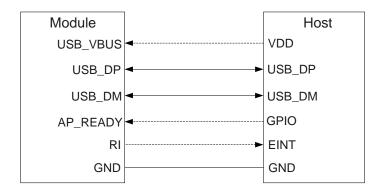


Figure 5: Sleep Mode Application with RI

- Sending data to EG95 through USB will wake up the module.
- When EG95 has a URC to report, RI signal will wake up the host.

3.5.1.4. USB Application without USB Suspend Function

If the host does not support USB suspend function, USB_VBUS should be disconnected with an external control circuit to let the module enter into sleep mode.

- Execute AT+QSCLK=1 command to enable the sleep mode.
- Ensure the DTR is held at high level or keep it open.
- Disconnect USB_VBUS.

The following figure shows the connection between the module and the host.

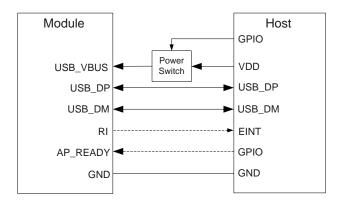


Figure 6: Sleep Mode Application without Suspend Function

Switching on the power switch to supply power to USB VBUS will wake up the module.

NOTE

Please pay attention to the level match shown in dotted line between the module and the host. Refer to **document [1]** for more details about EG95 power management application.

3.5.2. Airplane Mode

When the module enters into airplane mode, the RF function does not work, and all AT commands correlative with RF function will be inaccessible. This mode can be set via the following ways.

Hardware:

The W_DISABLE# pin is pulled up by default. Driving it to low level will let the module enter into airplane mode.

Software:

AT+CFUN command provides the choice of functionality levels as shown below:

- AT+CFUN=0: Minimum functionality mode. Both (U)SIM and RF functions are disabled.
- AT+CFUN=1: Full functionality mode (by default).
- AT+CFUN=4: Airplane mode. RF function is disabled.

NOTES

- 1. Airplane mode control via W_DISABLE# is disabled in firmware by default. It can be enabled by AT+QCFG="airplanecontrol" command and this command is under development.
- 2. The execution of **AT+CFUN** command will not affect GNSS function.

3.6. Power Supply

3.6.1. Power Supply Pins

EG95 provides four VBAT pins for connection with an external power supply. There are two separate voltage domains for VBAT.

- Two VBAT RF pins for module's RF part.
- Two VBAT_BB pins for module's baseband part.

The following table shows the details of VBAT pins and ground pins.

Table 6: VBAT and GND Pins

Pin Name	Pin No.	Description	Min.	Тур.	Max.	Unit
VBAT_RF	52, 53	Power supply for module's RF part.	3.3	3.8	4.3	V
VBAT_BB	32, 33	Power supply for module's baseband part.	3.3	3.8	4.3	V
GND	3, 31, 48, 50, 54, 55, 58, 59, 61, 62, 67~74, 79~82, 89~91, 100~106	Ground	-	0	-	V

3.6.2. Decrease Voltage Drop

The power supply range of the module is from 3.3V to 4.3V. Please make sure that the input voltage will never drop below 3.3V. The following figure shows the voltage drop during burst transmission in 2G network. The voltage drop will be less in 3G and 4G networks.

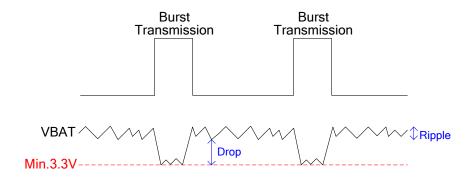
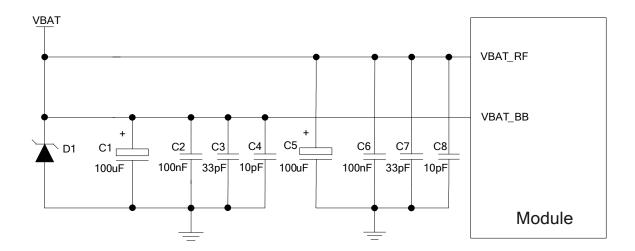
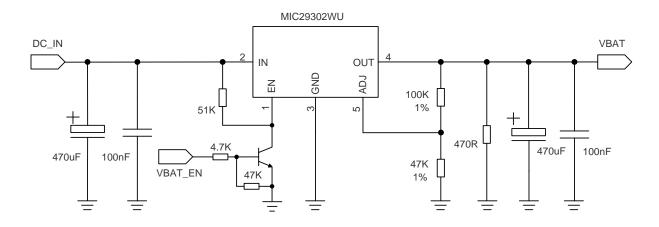


Figure 7: Power Supply Limits during Burst Transmission

To decrease voltage drop, a bypass capacitor of about $100\mu\text{F}$ with low ESR (ESR= 0.7Ω) should be used, and a multi-layer ceramic chip (MLCC) capacitor array should also be reserved due to its ultra-low ESR. It is recommended to use three ceramic capacitors (100nF, 33pF, 10pF) for composing the MLCC array, and place these capacitors close to VBAT_BB/VBAT_RF pins. The main power supply from an external application has to be a single voltage source and can be expanded to two sub paths with star structure. The width of VBAT_BB trace should be no less than 1mm, and the width of VBAT_RF trace should be no less than 2mm. In principle, the longer the VBAT trace is, the wider it will be.

In addition, in order to get a stable power source, it is suggested that a zener diode whose dissipation power is more than 0.5W should be used. The following figure shows the star structure of the power supply.




Figure 8: Star Structure of the Power Supply

3.6.3. Reference Design for Power Supply

Power design for the module is very important, as the performance of the module largely depends on the power source. The power supply should be able to provide sufficient current up to 2A at least. If the voltage drop between the input and output is not too high, it is suggested that an LDO should be used to supply power for the module. If there is a big voltage difference between the input source and the desired output (VBAT), a buck converter is preferred to be used as the power supply.

The following figure shows a reference design for +5V input power source. The typical output of the power supply is about 3.8V and the maximum load current is 3A.

Figure 9: Reference Circuit of Power Supply

NOTE

In order to avoid damaging internal flash, please do not switch off the power supply when the module works normally. Only after the module is shut down by PWRKEY or AT command, the power supply can be cut off.

3.6.4. Monitor the Power Supply

AT+CBC command can be used to monitor the VBAT_BB voltage value. For more details, please refer to **document [2]**.

3.7. Turn on and off Scenarios

3.7.1. Turn on Module Using the PWRKEY

The following table shows the pin definition of PWRKEY.

Table 7: Pin Definition of PWRKEY

Pin Name	Pin No.	Description	DC Characteristics	Comment
PWRKEY	15	Turn on/off the module	V _{IH} max=2.1V V _{IH} min=1.3V V _{IL} max=0.5V	The output voltage is 0.8V because of the diode drop in the Qualcomm chipset.

When EG95 is in power down mode, it can be turned on to normal mode by driving the PWRKEY pin to a low level for at least 500ms. It is recommended to use an open drain/collector driver to control the PWRKEY. After STATUS pin outputting a high level, PWRKEY pin can be released. A simple reference circuit is illustrated in the following figure.

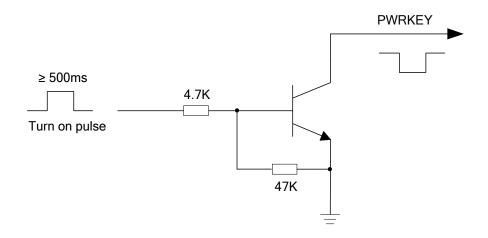


Figure 10: Turn on the Module Using Driving Circuit

Another way to control the PWRKEY is using a button directly. When pressing the key, electrostatic strike may generate from the finger. Therefore, a TVS component is indispensable to be placed nearby the button for ESD protection. A reference circuit is shown in the following figure.

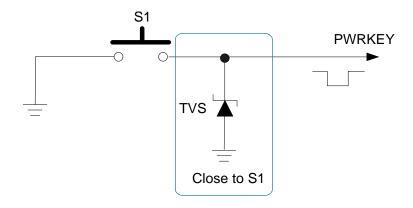


Figure 11: Turn on the Module Using Button

The turn on scenario is illustrated in the following figure.

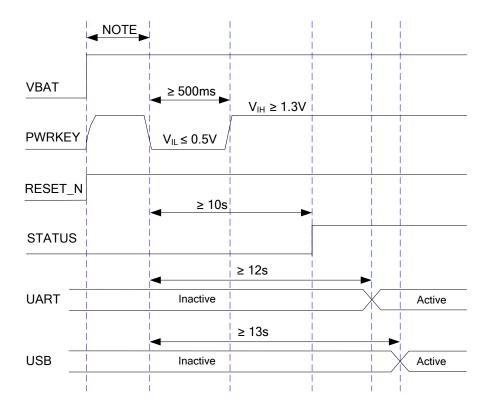


Figure 12: Timing of Turning on Module

NOTE

Please make sure that VBAT is stable before pulling down PWRKEY pin. The time between them is no less than 30ms.

3.7.2. Turn off Module

Either of the following methods can be used to turn off the module:

- Normal power down procedure: Turn off the module using the PWRKEY pin.
- Normal power down procedure: Turn off the module using AT+QPOWD command.

3.7.2.1. Turn off Module Using the PWRKEY Pin

Driving the PWRKEY pin to a low level voltage for at least 650ms, the module will execute power-down procedure after the PWRKEY is released. The power-down scenario is illustrated in the following figure.

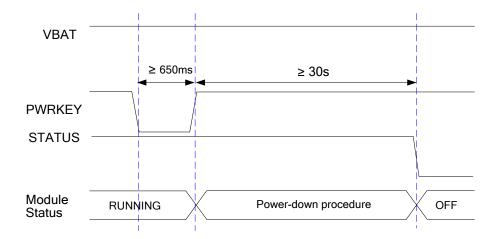


Figure 13: Timing of Turning off Module

3.7.2.2. Turn off Module Using AT Command

It is also a safe way to use **AT+QPOWD** command to turn off the module, which is similar to turning off the module via PWRKEY pin.

Please refer to document [2] for details about the AT+QPOWD command.

NOTE

In order to avoid damaging internal flash, please do not switch off the power supply when the module works normally. Only after the module is shut down by PWRKEY or AT command, the power supply can be cut off.

3.8. Reset the Module

The RESET_N pin can be used to reset the module. The module can be reset by driving RESET_N to a low level voltage for 150ms ~ 460ms.

Table 8: Pin Definition of RESET_N

Pin Name	Pin No.	Description	DC Characteristics	Comment
			V _{IH} max=2.1V	
RESET_N	17	Reset the module	V _{IH} min=1.3V	
			V _{IL} max=0.5V	

The recommended circuit is similar to the PWRKEY control circuit. An open drain/collector driver or button can be used to control the RESET_N.



Figure 14: Reference Circuit of RESET_N by Using Driving Circuit

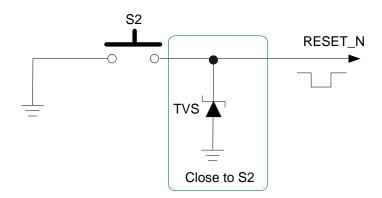


Figure 15: Reference Circuit of RESET_N by Using Button

The reset scenario is illustrated in the following figure.

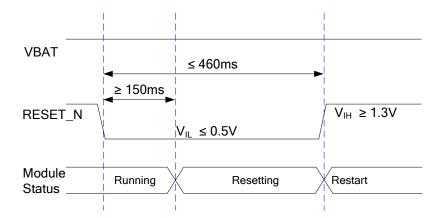


Figure 16: Timing of Resetting Module

NOTES

- 1. Use RESET_N only when turning off the module by **AT+QPOWD** command and PWRKEY pin failed.
- 2. Ensure that there is no large capacitance on PWRKEY and RESET_N pins.

3.9. (U)SIM Interfaces

EG95 provides two (U)SIM interfaces, and only one (U)SIM card can work at a time. The (U)SIM 1 and (U)SIM 2 cards can be switched by **AT+QDSIM** command. For more details, please refer to **document** [2].

The (U)SIM interfaces circuitry meet ETSI and IMT-2000 requirements. Both 1.8V and 3.0V (U)SIM cards are supported.

Table 9: Pin Definition of (U)SIM Interfaces

Pin Name	Pin No.	I/O	Description	Comment
USIM1_VDD	43	РО	Power supply for (U)SIM1 card	Either 1.8V or 3.0V is supported by the module automatically.
USIM1_DATA	45	Ю	Data signal of (U)SIM1 card	
USIM1_CLK	46	DO	Clock signal of (U)SIM1 card	
USIM1_RST	44	DO	Reset signal of (U)SIM1 card	
USIM1_ PRESENCE	42	DI	(U)SIM1 card insertion detection	
USIM_GND	47		Specified ground for (U)SIM card	
USIM2_VDD	87	РО	Power supply for (U)SIM2 card	Either 1.8V or 3.0V is supported by the module automatically.
USIM2_DATA	86	Ю	Data signal of (U)SIM2 card	
USIM2_CLK	84	DO	Clock signal of (U)SIM2 card	
USIM2_RST	85	DO	Reset signal of (U)SIM2 card	
USIM2_ PRESENCE	83	DI	(U)SIM2 card insertion detection	

EG95 supports (U)SIM card hot-plug via the USIM1_PRESENCE and USIM2_PRESENCE pins. The function supports low level and high level detections, and is disabled by default. Please refer to **document [2]** about **AT+QSIMDET** command for details.

The following figure shows a reference design for (U)SIM1 interface with an 8-pin (U)SIM card connector.

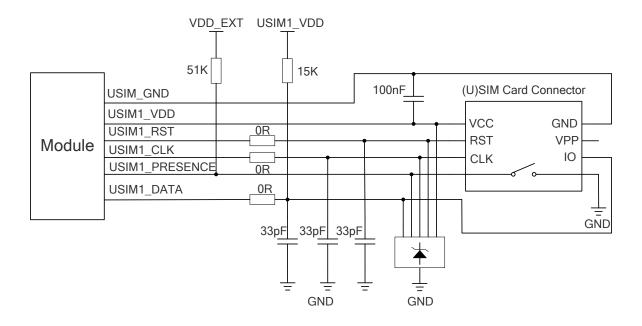


Figure 17: Reference Circuit of (U)SIM1 Interface with an 8-Pin (U)SIM Card Connector

If (U)SIM1 card detection function is not needed, please keep USIM1_PRESENCE unconnected. A reference circuit of (U)SIM1 interface with a 6-pin (U)SIM card connector is illustrated in the following figure.

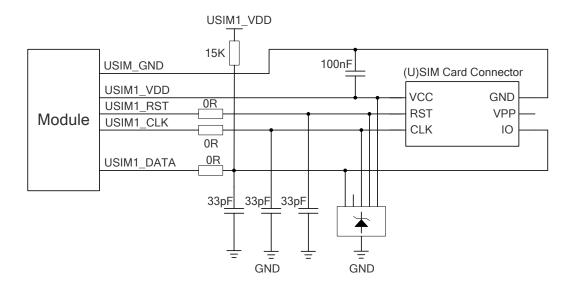


Figure 18: Reference Circuit of (U)SIM1 Interface with a 6-Pin (U)SIM Card Connector

The following figure shows a reference design of (U)SIM2 interface with an 8-pin (U)SIM card connector.

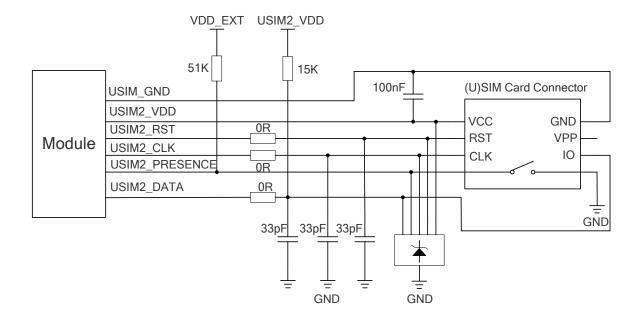


Figure 19: Reference Circuit of (U)SIM2 Interface with an 8-Pin (U)SIM Card Connector

If (U)SIM2 card detection function is not needed, please keep USIM2_PRESENCE unconnected. A reference circuit of (U)SIM2 interface with a 6-pin (U)SIM card connector is illustrated in the following figure.

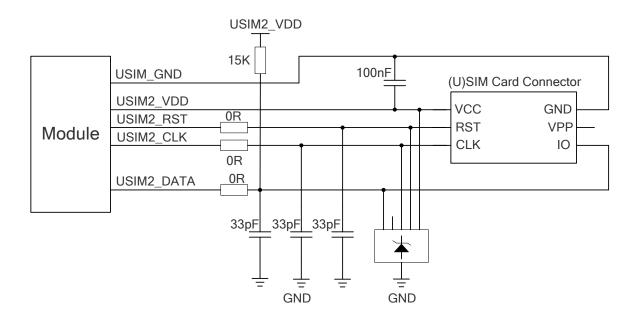


Figure 20: Reference Circuit of (U)SIM2 Interface with a 6-Pin (U)SIM Card Connector

In order to enhance the reliability and availability of the (U)SIM cards in customers' applications, please follow the criteria below in the (U)SIM circuit design:

- Keep placement of (U)SIM card connector to the module as close as possible. Keep the trace length as less than 200mm as possible.
- Keep (U)SIM card signals away from RF and VBAT traces.
- Assure the ground between the module and the (U)SIM card connector short and wide. Keep the trace width of ground and USIM VDD no less than 0.5mm to maintain the same electric potential.
- To avoid cross-talk between USIM_DATA and USIM_CLK, keep them away from each other and shield them with surrounded ground.
- In order to offer good ESD protection, it is recommended to add a TVS diode array whose parasitic capacitance should not exceed 15pF. The 0Ω resistors should be added in series between the module and the (U)SIM card so as to suppress EMI spurious transmission and enhance ESD protection. The 33pF capacitors are used for filtering interference of EGSM900. Please note that the (U)SIM peripheral circuit should be close to the (U)SIM card connector.
- The pull-up resistor on USIM_DATA line can improve anti-jamming capability when long layout trace
 and sensitive occasion are applied, and should be placed close to the (U)SIM card connector.

3.10. USB Interface

EG95 contains one integrated Universal Serial Bus (USB) interface which complies with the USB 2.0 specification and supports high-speed (480Mbps) and full-speed (12Mbps) modes. The USB interface is used for AT command communication, data transmission, GNSS NMEA sentences output, software debugging, firmware upgrade and voice over USB*. The following table shows the pin definition of USB interface.

Table 10: Pin Definition of USB Interface

Pin Name	Pin No.	I/O	Description	Comment
USB_DP	9	Ю	USB differential data bus (+)	Require differential impedance of 90Ω .
USB_DM	10	Ю	USB differential data bus (-)	Require differential impedance of 90Ω .
USB_VBUS	8	PI	USB detection	Typically 5.0V
GND	3		Ground	

More details about the USB 2.0 specifications, please visit http://www.usb.org/home.

The USB interface is recommended to be reserved for firmware upgrade in customers' design. The following figure shows a reference circuit of USB interface.

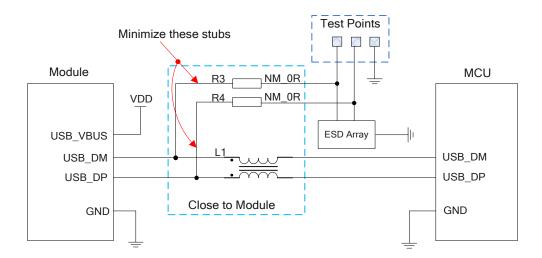


Figure 21: Reference Circuit of USB Interface

A common mode choke L1 is recommended to be added in series between the module and customer's MCU in order to suppress EMI spurious transmission. Meanwhile, the 0Ω resistors (R3 and R4) should be added in series between the module and the test points so as to facilitate debugging, and the resistors are not mounted by default. In order to ensure the integrity of USB data line signal, L1/R3/R4 components must be placed close to the module, and also these resistors should be placed close to each other. The extra stubs of trace must be as short as possible.

The following principles should be complied with when design the USB interface, so as to meet USB 2.0 specification.

- It is important to route the USB signal traces as differential pairs with total grounding. The impedance
 of USB differential trace is 90Ω.
- Do not route signal traces under crystals, oscillators, magnetic devices and RF signal traces. It is
 important to route the USB differential traces in inner-layer with ground shielding on not only upper
 and lower layers but also right and left sides.
- Pay attention to the influence of junction capacitance of ESD protection component on USB data lines. Typically, the capacitance value should be less than 2pF.
- Keep the ESD protection components to the USB connector as close as possible.

NOTES

- 1. EG95 module can only be used as a slave device.
- 2. "*" means under development.

3.11. UART Interfaces

The module provides two UART interfaces: the main UART interface and the debug UART interface. The following shows their features.

- The main UART interface supports 9600bps, 19200bps, 38400bps, 57600bps, 115200bps, 230400bps, 460800bps, 921600bps and 3000000bps baud rates, and the default is 115200bps. The interface can be used for data transmission and AT command communication.
- The debug UART interface supports 115200bps baud rate. It is used for Linux console and log output.

The following tables show the pin definition of the two UART interfaces.

Table 11: Pin Definition of Main UART Interface

Pin Name	Pin No.	I/O	Description	Comment
RI	39	DO	Ring indicator	
DCD	38	DO	Data carrier detection	
CTS	36	DO	Clear to send	
RTS	37	DI	Request to send	1.8V power domain
DTR	30	DI	Sleep mode control	_
TXD	35	DO	Transmit data	
RXD	34	DI	Receive data	

Table 12: Pin Definition of Debug UART Interface

Pin Name	Pin No.	I/O	Description	Comment
DBG_TXD	23	DO	Transmit data	1.8V power domain
DBG_RXD	22	DI	Receive data	1.8V power domain

The logic levels are described in the following table.

Table 13: Logic Levels of Digital I/O

Parameter	Min.	Max.	Unit
V_{IL}	-0.3	0.6	V
V _{IH}	1.2	2.0	V
V _{OL}	0	0.45	V
Vон	1.35	1.8	V

The module provides 1.8V UART interface. A level translator should be used if customers' application is equipped with a 3.3V UART interface. A level translator TXS0108EPWR provided by *Texas Instruments* is recommended. The following figure shows a reference design.

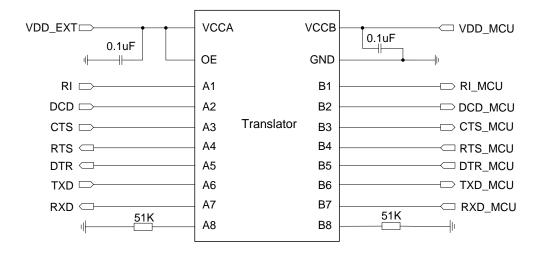


Figure 22: Reference Circuit with Translator Chip

Please visit http://www.ti.com for more information.

Another example with transistor translation circuit is shown as below. The circuit design of dotted line section can refer to the circuit design of solid line section, in terms of both module input and output circuit design. Please pay attention to the direction of connection.

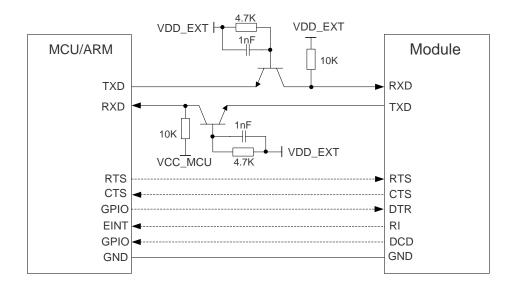


Figure 23: Reference Circuit with Transistor Circuit

NOTE

Transistor circuit solution is not suitable for applications with high baud rates exceeding 460Kbps.

3.12. PCM and I2C Interfaces

EG95 provides one Pulse Code Modulation (PCM) digital interface for audio design, which supports the following modes and one I2C interface:

- Primary mode (short frame synchronization, works as both master and slave)
- Auxiliary mode (long frame synchronization, works as master only)

In primary mode, the data is sampled on the falling edge of the PCM_CLK and transmitted on the rising edge. The PCM_SYNC falling edge represents the MSB. In this mode, the PCM interface supports 256kHz, 512kHz, 1024kHz or 2048kHz PCM_CLK at 8kHz PCM_SYNC, and also supports 4096kHz PCM_CLK at 16kHz PCM_SYNC.

In auxiliary mode, the data is also sampled on the falling edge of the PCM_CLK and transmitted on the rising edge. The PCM_SYNC rising edge represents the MSB. In this mode, the PCM interface operates with a 256kHz, 512kHz, 1024kHz or 2048kHz PCM_CLK and an 8kHz, 50% duty cycle PCM_SYNC.

EG95 supports 16-bit linear data format. The following figures show the primary mode's timing relationship with 8KHz PCM_SYNC and 2048KHz PCM_CLK, as well as the auxiliary mode's timing relationship with 8KHz PCM_SYNC and 256KHz PCM_CLK.

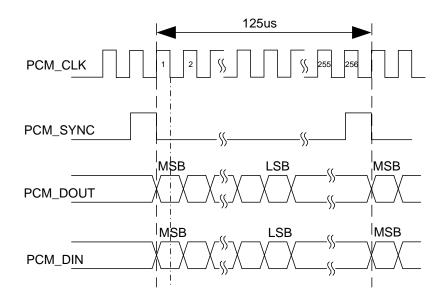
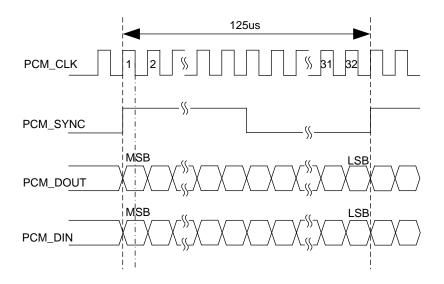



Figure 24: Primary Mode Timing

Figure 25: Auxiliary Mode Timing

The following table shows the pin definition of PCM and I2C interfaces which can be applied on audio codec design.

Table 14: Pin Definition of PCM and I2C Interfaces

Pin Name	Pin No.	I/O	Description	Comment
PCM_DIN	6	DI	PCM data input	1.8V power domain
PCM_DOUT	7	DO	PCM data output	1.8V power domain
PCM_SYNC	5	Ю	PCM data frame synchronization signal	1.8V power domain
PCM_CLK	4	Ю	PCM data bit clock	1.8V power domain
I2C_SCL	40	OD	I2C serial clock	Require an external pull-up to 1.8V
I2C_SDA	41	OD	I2C serial data	Require an external pull-up to 1.8V

Clock and mode can be configured by AT command, and the default configuration is master mode using short frame synchronization format with 2048KHz PCM_CLK and 8KHz PCM_SYNC. Please refer to **document [2]** about **AT+QDAI** command for details.

The following figure shows a reference design of PCM interface with external codec IC.

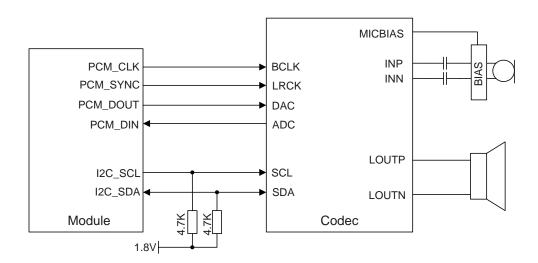


Figure 26: Reference Circuit of PCM Application with Audio Codec

NOTES

- 1. It is recommended to reserve RC (R=22 Ω , C=22pF) circuit on the PCM lines, especially for PCM_CLK.
- 2. EG95 works as a master device pertaining to I2C interface.

3.13. SPI Interface

SPI interface of EG95 acts as the master only. It provides a duplex, synchronous and serial communication link with the peripheral devices. It is dedicated to one-to-one connection, without chip select. Its operation voltage is 1.8V with clock rates up to 50MHz.

The following table shows the pin definition of SPI interface.

Table 15: Pin Definition of SPI Interface

Pin Name	Pin No.	I/O	Description	Comment
SPI_CLK	26	DO	Clock signal of SPI interface	1.8V power domain
SPI_MOSI	27	DO	Master output slave input of SPI interface	1.8V power domain
SPI_MISO	28	DI	Master input slave output of SPI interface	1.8V power domain

The following figure shows a reference design of SPI interface with peripherals.

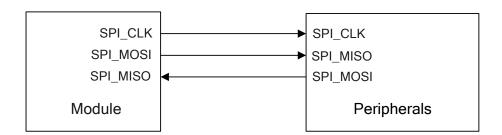


Figure 27: Reference Circuit of SPI Interface with Peripherals

3.14. Network Status Indication

The module provides one network indication pin: NETLIGHT. The pin is used to drive a network status indication LED.

The following tables describe the pin definition and logic level changes of NETLIGHT in different network status.

Table 16: Pin Definition of Network Status Indicator

Pin Name	Pin No.	I/O	Description	Comment
NETLIGHT	21	DO	Indicate the module's network activity status	1.8V power domain

Table 17: Working State of the Network Status Indicator

Pin Name	Logic Level Changes	Network Status
NETLIGHT	Flicker slowly (200ms High/1800ms Low)	Network searching
	Flicker slowly (1800ms High/200ms Low)	Idle
	Flicker quickly (125ms High/125ms Low)	Data transfer is ongoing
	Always High	Voice calling

A reference circuit is shown in the following figure.

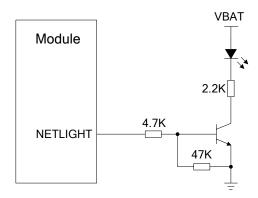


Figure 28: Reference Circuit of the Network Status Indicator

3.15. STATUS

The STATUS pin is set as the module status indicator. It will output high level when the module is powered on. The following table describes the pin definition of STATUS.

Table 18: Pin Definition of STATUS

Pin Name	Pin No.	I/O	Description	Comment
STATUS	20	DO	Indicate the module's operating status	1.8V power domain

A reference circuit is shown as below.

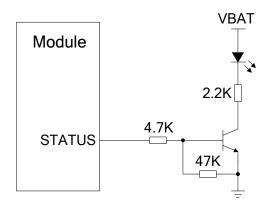


Figure 29: Reference Circuit of STATUS

3.16. Behaviors of RI

AT+QCFG="risignaltype","physical" command can be used to configure RI behavior.

No matter on which port URC is presented, URC will trigger the behavior of RI pin.

NOTE

URC can be outputted from UART port, USB AT port and USB modem port through configuration via **AT+QURCCFG** command. The default port is USB AT port.

In addition, RI behavior can be configured flexibly. The default behaviors of the RI are shown as below.

Table 19: Default Behaviors of RI

State	Response
Idle	RI keeps at high level
URC	RI outputs 120ms low pulse when a new URC returns

The default RI behaviors can be changed by **AT+QCFG="urc/ri/ring"** command. Please refer to **document [2]** for details.

4 GNSS Receiver

4.1. General Description

EG95 includes a fully integrated global navigation satellite system solution that supports Gen8C-Lite of Qualcomm (GPS, GLONASS, BeiDou, Galileo and QZSS).

EG95 supports standard NMEA-0183 protocol, and outputs NMEA sentences at 1Hz data update rate via USB interface by default.

By default, EG95 GNSS engine is switched off. It has to be switched on via AT command. For more details about GNSS engine technology and configurations, please refer to *document* [3].

4.2. GNSS Performance

The following table shows GNSS performance of EG95.

Table 20: GNSS Performance

Parameter	Description	Conditions	Тур.	Unit
	Cold start	Autonomous	TBD	dBm
Sensitivity (GNSS)	Reacquisition	Autonomous	TBD	dBm
(/	Tracking	Autonomous	TBD	dBm
	Cold start	Autonomous	TBD	S
	@open sky	XTRA enabled	TBD	S
TTFF (GNSS)	Warm start @open sky	Autonomous	TBD	S
		XTRA enabled	TBD	S
	Hot start	Autonomous	TBD	S

	@open sky	XTRA enabled	TBD	S
Accuracy (GNSS)	CEP-50	Autonomous @open sky	TBD	m

NOTES

- 1. Tracking sensitivity: the lowest GNSS signal value at the antenna port on which the module can keep on positioning for 3 minutes.
- 2. Reacquisition sensitivity: the lowest GNSS signal value at the antenna port on which the module can fix position again within 3 minutes after loss of lock.
- 3. Cold start sensitivity: the lowest GNSS signal value at the antenna port on which the module fixes position within 3 minutes after executing cold start command.

4.3. Layout Guidelines

The following layout guidelines should be taken into account in customers' design.

- Maximize the distance among GNSS antenna, main antenna and Rx-diversity antenna.
- Digital circuits such as (U)SIM card, USB interface, camera module and display connector should be kept away from the antennas.
- Use ground vias around the GNSS trace and sensitive analog signal traces to provide coplanar isolation and protection.
- Keep the characteristic impedance for ANT_GNSS trace as 50Ω.

Please refer to *Chapter 5* for GNSS reference design and antenna installation information.

5 Antenna Interfaces

EG95 antenna interfaces include a main antenna interface and an Rx-diversity antenna interface which is used to resist the fall of signals caused by high speed movement and multipath effect, and a GNSS antenna interface which is only supported on EG95-NA. The antenna ports have an impedance of 50Ω .

5.1. Main/Rx-diversity Antenna Interfaces

5.1.1. Pin Definition

The pin definition of main antenna and Rx-diversity antenna interfaces is shown below.

Table 21: Pin Definition of RF Antenna

Pin Name	Pin No.	I/O	Description	Comment
ANT_MAIN	60	Ю	Main antenna pad	50Ω impedance
ANT_DIV (EG95-E)	49	Al	Receive diversity antenna pad	50Ω impedance
ANT_DIV (EG95-NA)	56	Al	Receive diversity antenna pad	50Ω impedance

5.1.2. Operating Frequency

Table 22: Module Operating Frequencies

3GPP Band	Transmit	Receive	Unit
EGSM900	880~915	925~960	MHz
DCS1800	1710~1785	1805~1880	MHz
WCDMA B1	1920~1980	2110~2170	MHz
WCDMA B2	1850~1910	1930~1990	MHz
WCDMA B4	1710~1755	2110~2155	MHz

WCDMA B5	824~849	869~894	MHz
WCDMA B8	880~915	925~960	MHz
LTE-FDD B1	1920~1980	2110~2170	MHz
LTE FDD B2	1850~1910	1930~1990	MHz
LTE-FDD B3	1710~1785	1805~1880	MHz
LTE FDD B4	1710~1755	2110~2155	MHz
LTE FDD B5	824~849	869~894	MHz
LTE-FDD B7	2500~2570	2620~2690	MHz
LTE-FDD B8	880~915	925~960	MHz
LTE FDD B12	699~716	729~746	MHz
LTE FDD B13	777~787	746~756	MHz
LTE-FDD B20	832~862	791~821	MHz
LTE-FDD B28A	703~733	758~788	MHz

5.1.3. Reference Design of RF Antenna Interface

A reference design of ANT_MAIN and ANT_DIV antenna pads is shown as below. A π -type matching circuit should be reserved for better RF performance. The capacitors are not mounted by default.

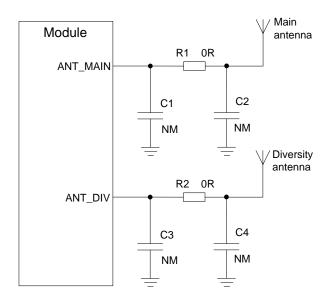


Figure 30: Reference Circuit of RF Antenna Interface

NOTES

- 1. Keep a proper distance between the main antenna and the Rx-diversity antenna to improve the receiving sensitivity.
- ANT_DIV function is enabled by default. AT+QCFG="diversity",0 command can be used to disable receive diversity.
- 3. Place the π -type matching components (R1/C1/C2, R2/C3/C4) as close to the antenna as possible.

5.1.4. Reference Design of RF Layout

For user's PCB, the characteristic impedance of all RF traces should be controlled as 50Ω . The impedance of the RF traces is usually determined by the trace width (W), the materials' dielectric constant, the distance between signal layer and reference ground (H), and the clearance between RF trace and ground (S). Microstrip line or coplanar waveguide line is typically used in RF layout for characteristic impedance control. The following are reference designs of microstrip line or coplanar waveguide line with different PCB structures.

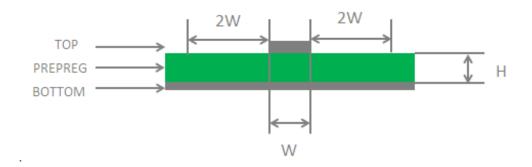


Figure 31: Microstrip Line Design on a 2-layer PCB

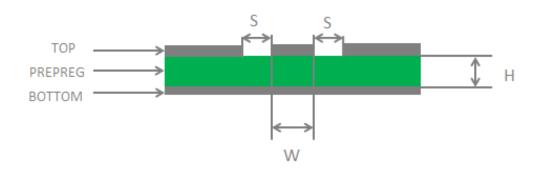


Figure 32: Coplanar Waveguide Line Design on a 2-layer PCB

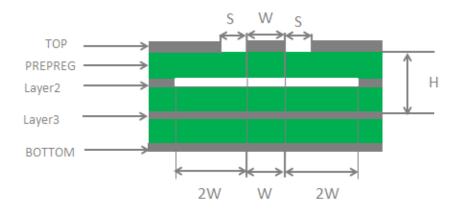


Figure 33: Coplanar Waveguide Line Design on a 4-layer PCB (Layer 3 as Reference Ground)

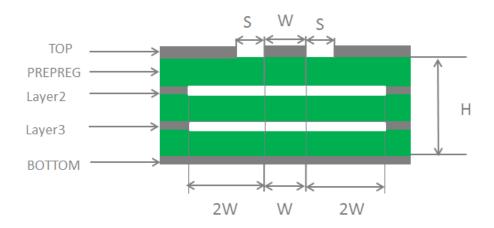


Figure 34: Coplanar Waveguide Line Design on a 4-layer PCB (Layer 4 as Reference Ground)

In order to ensure RF performance and reliability, the following principles should be complied with in RF layout design:

- Use impedance simulation tool to control the characteristic impedance of RF traces as 50Ω.
- The GND pins adjacent to RF pins should not be designed as thermal relief pads, and should be fully connected to ground.
- The distance between the RF pins and the RF connector should be as short as possible, and all the right angle traces should be changed to curved ones.
- There should be clearance area under the signal pin of the antenna connector or solder joint.
- The reference ground of RF traces should be complete. Meanwhile, adding some ground vias around RF traces and the reference ground could help to improve RF performance. The distance between the ground vias and RF traces should be no less than two times the width of RF signal traces (2*W).

For more details about RF layout, please refer to document [4].

5.2. GNSS Antenna Interface

The GNSS antenna interface is only supported on EG95-NA. The following tables show pin definition and frequency specification of GNSS antenna interface.

Table 23: Pin Definition of GNSS Antenna Interface

Pin Name	Pin No.	I/O	Description	Comment
ANT_GNSS (EG95-NA)	49	Al	GNSS antenna	50Ω impedance

Table 24: GNSS Frequency

Туре	Frequency	Unit
GPS/Galileo/QZSS	1575.42±1.023	MHz
GLONASS	1597.5~1605.8	MHz
BeiDou	1561.098±2.046	MHz

A reference design of GNSS antenna is shown as below.



Figure 35: Reference Circuit of GNSS Antenna

NOTES

- 1. An external LDO can be selected to supply power according to the active antenna requirement.
- 2. If the module is designed with a passive antenna, then the VDD circuit is not needed.

5.3. Antenna Installation

5.3.1. Antenna Requirement

The following table shows the requirements on main antenna, Rx-diversity antenna and GNSS antenna.

Table 25: Antenna Requirements

Туре	Requirements
	Frequency range: 1561MHz ~ 1615MHz
	Polarization: RHCP or linear
	VSWR: < 2 (Typ.)
GNSS ¹⁾	Passive antenna gain: > 0dBi
	Active antenna noise figure: < 1.5dB
	Active antenna gain: > 0dBi
	Active antenna embedded LNA gain: < 17dB
	VSWR: ≤ 2
	Efficiency: > 30%
	Max Input Power: 50 W
	Input Impedance: 50Ω
	Cable insertion loss: < 1dB
GSM/WCDMA/LTE	(EGSM900,WCDMA B5/B8,
	LTE B5/B8/B12/B13/B20/B28A)
	Cable Insertion Loss: < 1.5dB
	(DCS1800, WCDMA B1/B2/B4, LTE B1/B2/B3/B4)
	Cable insertion loss: < 2dB
	(LTE B7)

NOTE

¹⁾ It is recommended to use a passive GNSS antenna when LTE B13 or B14 is supported, as the use of active antenna may generate harmonics which will affect the GNSS performance.

5.3.2. Recommended RF Connector for Antenna Installation

If RF connector is used for antenna connection, it is recommended to use U.FL-R-SMT connector provided by HIROSE.

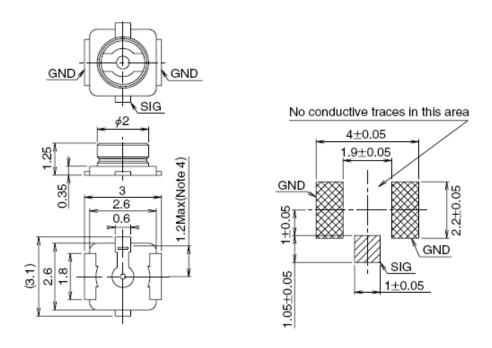


Figure 36: Dimensions of the U.FL-R-SMT Connector (Unit: mm)

U.FL-LP serial connectors listed in the following figure can be used to match the U.FL-R-SMT.

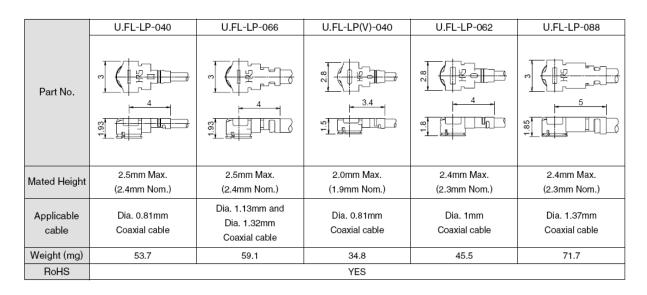


Figure 37: Mechanicals of U.FL-LP Connectors

The following figure describes the space factor of mated connector.

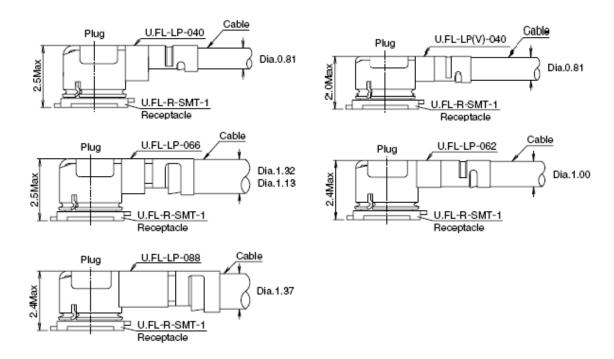


Figure 38: Space Factor of Mated Connector (Unit: mm)

For more details, please visit http://www.hirose.com.

6 Electrical, Reliability and Radio Characteristics

6.1. Absolute Maximum Ratings

Absolute maximum ratings for power supply and voltage on digital and analog pins of the module are listed in the following table.

Table 26: Absolute Maximum Ratings

Parameter	Min.	Max.	Unit
VBAT_RF/VBAT_BB	-0.3	4.7	V
USB_VBUS	-0.3	5.5	V
Peak Current of VBAT_BB	0	0.8	A
Peak Current of VBAT_RF	0	1.8	A
Voltage at Digital Pins	-0.3	2.3	V

6.2. Power Supply Ratings

Table 27: Power Supply Ratings

Parameter	Description	Conditions	Min.	Тур.	Max.	Unit
VBAT	VBAT_BB and VBAT_RF	The actual input voltages must stay between the minimum and maximum values.	3.3	3.8	4.3	V

	Voltage drop during burst transmission	Maximum power control level on EGSM900			400	mV
I _{VBAT}	Peak supply current (during transmission slot)	Maximum power control level on EGSM900		1.8	2.0	А
USB_VBUS	USB connection detection		3.0	5.0	5.25	V

6.3. Operation and Storage Temperatures

The operation and storage temperatures are listed in the following table.

Table 28: Operation and Storage Temperatures

Parameter	Min.	Тур.	Max.	Unit
Operation Temperature Range 1)	-35	+25	+75	°C
Extended Temperature Range 2)	-40		+85	°C
Storage Temperature Range	-40		+90	°C

NOTES

- 1. 1) Within operation temperature range, the module is 3GPP compliant.
- 2. ²⁾ Within extended temperature range, the module remains the ability to establish and maintain a voice, SMS, data transmission, emergency call, etc. There is no unrecoverable malfunction. There are also no effects on radio spectrum and no harm to radio network. Only one or more parameters like P_{out} might reduce in their value and exceed the specified tolerances. When the temperature returns to the normal operating temperature levels, the module will meet 3GPP specifications again.

6.4. Current Consumption

The values of current consumption are shown below.

Table 29: EG95-E Current Consumption

Parameter	Description	Conditions	Тур.	Unit
	OFF state	Power down	15	uA
		AT+CFUN=0 (USB disconnected)	1.3	mA
		GSM DRX=2 (USB disconnected)	2.3	mA
		GSM DRX=5 (USB suspend)	2.0	mA
		GSM DRX=9 (USB disconnected)	1.6	mA
	Sloop state	WCDMA PF=64 (USB disconnected)	1.8	mA
	Sleep state	WCDMA PF=64 (USB suspend)	2.1	mA
		WCDMA PF=512 (USB disconnected)	1.3	mA
		LTE-FDD PF=64 (USB disconnected)	2.3	mA
1		LTE-FDD PF=64 (USB suspend)	2.6	mA
I_{VBAT}		LTE-FDD PF=256 (USB disconnected)	1.5	mA
		GSM DRX=5 (USB disconnected)	21.0	mA
		GSM DRX=5 (USB connected)	31.0	mA
	Idle state	WCDMA PF=64 (USB disconnected)	21.0	mA
	idle state	WCDMA PF=64 (USB connected)	31.0	mA
		LTE-FDD PF=64 (USB disconnected)	21.0	mA
		LTE-FDD PF=64 (USB connected)	31.0	mA
		EGSM900 4DL/1UL @32.35dBm	268	mA
	GPRS data transfer	EGSM900 3DL/2UL @32.16dBm	459	mA
		EGSM900 2DL/3UL @30.57dBm	547	mA

	EGSM900 1DL/4UL @29.45dBm	631	mA
	DCS1800 4DL/1UL @29.14dBm	177	mA
	DCS1800 3DL/2UL @29.07dBm	290	mA
	DCS1800 2DL/3UL @28.97dBm	406	mA
	DCS1800 1DL/4UL @28.88dBm	517	mA
	EGSM900 4DL/1UL PCL=8 @26.88dBm	167	mA
	EGSM900 3DL/2UL PCL=8 @26.84dBm	278	mA
	EGSM900 2DL/3UL PCL=8 @26.76dBm	385	mA
EDGE data	EGSM900 1DL/4UL PCL=8 @26.54dBm	492	mA
transfer	DCS1800 4DL/1UL PCL=2 @25.66dBm	169	mA
	DCS1800 3DL/2UL PCL=2 @25.59dBm	256	mA
	DCS1800 2DL/3UL PCL=2 @25.51dBm	341	mA
	DCS1800 1DL/4UL PCL=2 @25.38dBm	432	mA
	WCDMA B1 HSDPA @22.48dBm	586	mA
WCDMA data	WCDMA B1 HSUPA @22.29dBm	591	mA
transfer	WCDMA B8 HSDPA @22.24dBm	498	mA
	WCDMA B8 HSUPA @21.99dBm	511	mA
	LTE-FDD B1 @23.37dBm	736	mA
	LTE-FDD B3 @22.97dBm	710	mA
LTE data	LTE-FDD B7 @23.17dBm	775	mA
transfer	LTE-FDD B8 @23.04dBm	651	mA
	LTE-FDD B20 @23.21dBm	699	mA
	LTE-FDD B28A @22.76dBm	714	mA
GSM	EGSM900 PCL=5 @32.36dBm	271	mA
voice call	DCS1800 PCL=0 @29.19dBm	181	mA

WCDMA	WCDMA B1 @22.91dBm	632	mA
voice call	WCDMA B8 @23.14dBm	546	mA

Table 30: EG95-NA Current Consumption

Parameter	Description	Conditions	Тур.	Unit
-	OFF state	Power down	TBD	uA
		AT+CFUN=0 (USB disconnected)	TBD	mA
		WCDMA PF=64 (USB disconnected)	TBD	mA
		WCDMA PF=64 (USB suspend)	TBD	mA
	Sleep state	WCDMA PF=512 (USB disconnected)	TBD	mA
		LTE-FDD PF=64 (USB disconnected)	TBD	mA
I _{VBAT} Idle state		LTE-FDD PF=64 (USB suspend)	TBD	mA
		LTE-FDD PF=256 (USB disconnected)	TBD	mA
		WCDMA PF=64 (USB disconnected)	TBD	mA
		WCDMA PF=64 (USB connected)	TBD	mA
	idle state	LTE-FDD PF=64 (USB disconnected)	TBD	mA
		LTE-FDD PF=64 (USB connected)	TBD	mA
		WCDMA B2 HSDPA @ TBD dBm	TBD	mA
		WCDMA B2 HSUPA @ TBD dBm	TBD	mA
	WCDMA data	WCDMA B4 HSDPA @ TBD dBm	TBD	mA
	transfer	WCDMA B4 HSUPA @ TBD dBm	TBD	mA
		WCDMA B5 HSDPA @ TBD dBm	TBD	mA
		WCDMA B5 HSUPA @ TBD dBm	TBD	mA
	LTE data transfer	LTE-FDD B2 @ TBD dBm	TBD	mA
		LTE-FDD B4 @ TBD dBm	TBD	mA

		LTE-FDD B5 @ TBD dBm	TBD	mA
		LTE-FDD B12 @ TBD dBm	TBD	mA
		LTE-FDD B13 @ TBD dBm	TBD	mA
	WCDMA voice call	WCDMA B2 @ TBD dBm	TBD	mA
		WCDMA B4 @ TBD dBm	TBD	mA
		WCDMA B5 @ TBD dBm	TBD	mA

Table 31: GNSS Current Consumption of EG95-NA

Parameter	Description	Conditions	Тур.	Unit
Searching	Searching	Cold start @Passive Antenna	TBD	mA
		Lost state @Passive Antenna	TBD	mA
I _{VBAT} (GNSS)		Instrument Environment	TBD	mA
,		Open Sky @Passive Antenna	TBD	mA
		Open Sky @Active Antenna	TBD	mA

6.5. RF Output Power

The following table shows the RF output power of EG95 module.

Table 32: RF Output Power

Frequency	Max.	Min.
EGSM900	33dBm±2dB	5dBm±5dB
DCS1800	30dBm±2dB	0dBm±5dB
EGSM900 (8-PSK)	27dBm±3dB	5dBm±5dB
DCS1800 (8-PSK)	26dBm±3dB	0dBm±5dB
WCDMA B1/B2/B4/B5/B8	24dBm+1/-3dB	<-49dBm

LTE-FDD B1/B2/B3/B4/B5/B7/
B8/B12/B13/B20/B28A

23dBm±2dB

<-39dBm

NOTE

In GPRS 4 slots TX mode, the maximum output power is reduced by 3.0dB. The design conforms to the GSM specification as described in *Chapter 13.16* of *3GPP TS 51.010-1*.

6.6. RF Receiving Sensitivity

The following tables show the conducted RF receiving sensitivity of EG95 module.

Table 33: EG95-E Conducted RF Receiving Sensitivity

Frequency	Primary	Diversity	SIMO	3GPP
EGSM900	-108.6dBm	NA	NA	-102dBm
DCS1800	-109.4 dBm	NA	NA	-102dbm
WCDMA B1	-109.5dBm	-110dBm	-112.5dBm	-106.7dBm
WCDMA B8	-109.5dBm	-110dBm	-112.5dBm	-103.7dBm
LTE-FDD B1 (10M)	-97.5dBm	-98.3dBm	-101.4dBm	-96.3dBm
LTE-FDD B3 (10M)	-98.3dBm	-98.5dBm	-101.5dBm	-93.3dBm
LTE-FDD B7 (10M)	-96.3dBm	-98.4dBm	-101.3dBm	-94.3dBm
LTE-FDD B8 (10M)	-97.1dBm	-99.1dBm	-101.2dBm	-93.3dBm
LTE-FDD B20 (10M)	-97dBm	-99dBm	-101.3dBm	-93.3dBm
LTE-FDD B28A (10M)	-98.3dBm	-99dBm	-101.4dBm	-94.8dBm

Table 34: EG95-NA Conducted RF Receiving Sensitivity

Frequency	Primary	Diversity	SIMO	3GPP
WCDMA B2	TBD	TBD	TBD	-104.7dBm
WCDMA B4	TBD	TBD	TBD	-106.7dBm
WCDMA B5	TBD	TBD	TBD	-104.7dBm
LTE-FDD B2 (10M)	TBD	TBD	TBD	-94.3dBm
LTE-FDD B4 (10M)	TBD	TBD	TBD	-96.3dBm
LTE-FDD B5 (10M)	TBD	TBD	TBD	-94.3dBm
LTE-FDD B12 (10M)	TBD	TBD	TBD	-93.3dBm
LTE-FDD B13 (10M)	TBD	TBD	TBD	-93.3dBm

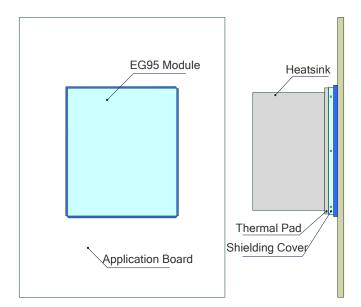
6.7. Electrostatic Discharge

The module is not protected against electrostatic discharge (ESD) in general. Consequently, it is subject to ESD handling precautions that typically apply to ESD sensitive components. Proper ESD handling and packaging procedures must be applied throughout the processing, handling and operation of any application that incorporates the module.

The following table shows the module's electrostatic discharge characteristics.

Table 35: Electrostatic Discharge Characteristics

Tested Points	Contact Discharge	Air Discharge	Unit
VBAT, GND	±5	±10	KV
All Antenna Interfaces	±4	±8	KV
Other Interfaces	±0.5	±1	KV



6.8. Thermal Consideration

In order to achieve better performance of the module, it is recommended to comply with the following principles for thermal consideration:

- On customers' PCB design, please keep placement of the module away from heating sources, especially high power components such as ARM processor, audio power amplifier, power supply, etc.
- Do not place components on the opposite side of the PCB area where the module is mounted, in order to facilitate adding of heatsink when necessary.
- Do not apply solder mask on the opposite side of the PCB area where the module is mounted, so as
 to ensure better heat dissipation performance.
- The reference ground of the area where the module is mounted should be complete, and add ground vias as many as possible for better heat dissipation.
- Make sure the ground pads of the module and PCB are fully connected.
- According to customers' application demands, the heatsink can be mounted on the top of the module, or the opposite side of the PCB area where the module is mounted, or both of them.
- The heatsink should be designed with as many fins as possible to increase heat dissipation area.
 Meanwhile, a thermal pad with high thermal conductivity should be used between the heatsink and module/PCB.
- The size of the heatsink should be larger than that of the module's shielding cover to avoid the deformation of the shielding cover.

The following shows two kinds of heatsink designs for reference and customers can choose one or both of them according to their application structure.

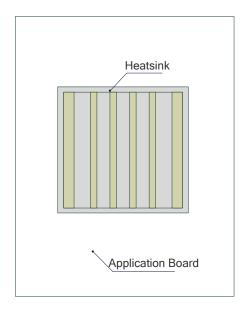


Figure 39: Referenced Heatsink Design (Heatsink at the Top of the Module)

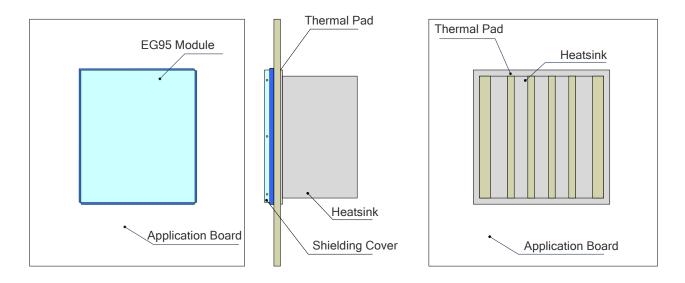


Figure 40: Referenced Heatsink Design (Heatsink at the Bottom of Customers' PCB)

NOTE

The module offers the best performance when the internal BB chip stays below 105°C. When the maximum temperature of the BB chip reaches or exceeds 105°C, the module works normal but provides reduced performance (such as RF output power, data rate, etc.). When the maximum BB chip temperature reaches or exceeds 115°C, the module will disconnect from the network, and it will recover to network connected state after the maximum temperature falls below 115°C. Therefore, the thermal design should be maximally optimized to make sure the maximum BB chip temperature always maintains below 105°C. Customers can execute **AT+QTEMP** command and get the maximum BB chip temperature from the first returned value.

7 Mechanical Dimensions

This chapter describes the mechanical dimensions of the module. All dimensions are measured in mm. The tolerances for dimensions without tolerance values are ±0.05mm.

7.1. Mechanical Dimensions of the Module

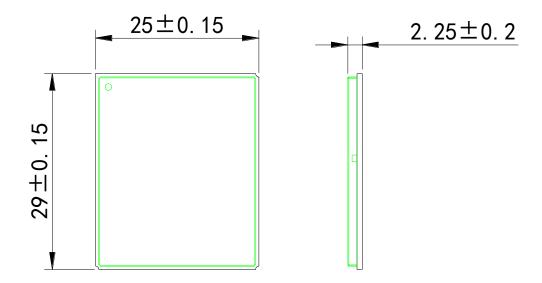


Figure 41: Module Top and Side Dimensions

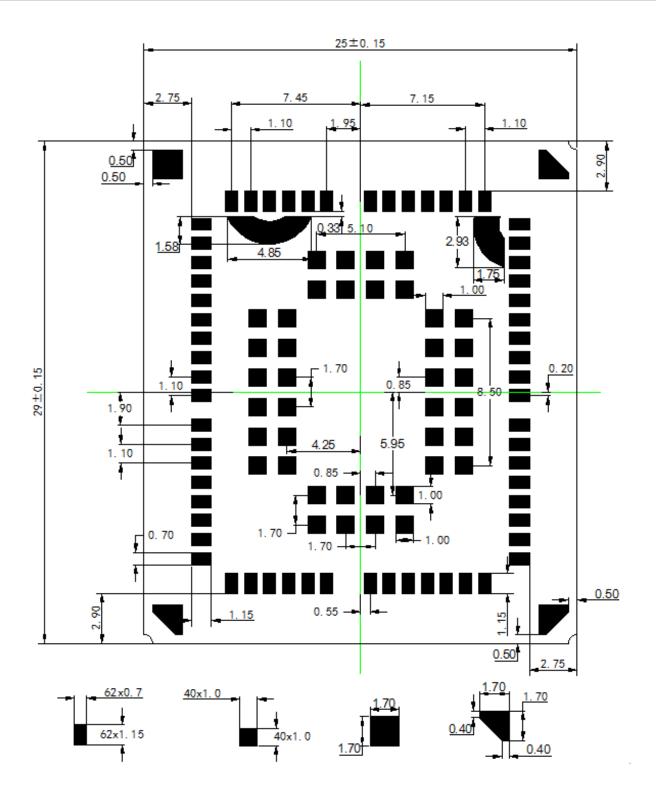


Figure 42: Module Bottom Dimensions (Top View)

7.2. Recommended Footprint

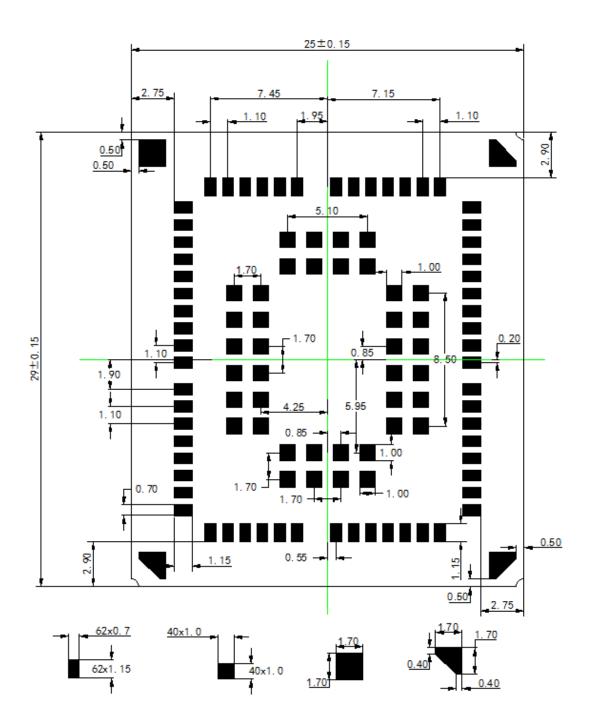


Figure 43: Recommended Footprint (Top View)

NOTE

For easy maintenance of the module, please keep about 3mm between the module and other components in the host PCB.

7.3. Design Effect Drawings of the Module

Figure 44: Top View of the Module

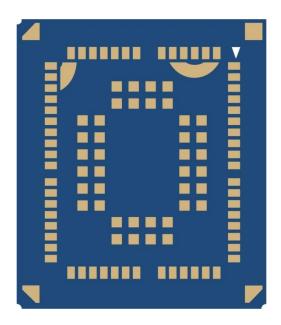


Figure 45: Bottom View of the Module

NOTE

These are design effect drawings of EG95 module. For more accurate pictures, please refer to the module that you get from Quectel.

8 Storage, Manufacturing and Packaging

8.1. Storage

EG95 is stored in a vacuum-sealed bag. The storage restrictions are shown as below.

- 1. Shelf life in the vacuum-sealed bag: 12 months at <40°C/90%RH.
- 2. After the vacuum-sealed bag is opened, devices that will be subjected to reflow soldering or other high temperature processes must be:
- Mounted within 168 hours at the factory environment of ≤30°C/60%RH.
- Stored at <10%RH.
- 3. Devices require baking before mounting, if any circumstance below occurs.
- When the ambient temperature is 23°C±5°C and the humidity indication card shows the humidity is >10% before opening the vacuum-sealed bag.
- Device mounting cannot be finished within 168 hours at factory conditions of ≤30°C/60%RH.
- 4. If baking is required, devices may be baked for 8 hours at 120°C±5°C.

NOTE

As the plastic package cannot be subjected to high temperature, it should be removed from devices before high temperature (120°C) baking. If shorter baking time is desired, please refer to *IPC/JEDECJ-STD-033* for baking procedure.

8.2. Manufacturing and Soldering

Push the squeegee to apply the solder paste on the surface of stencil, thus making the paste fill the stencil openings and then penetrate to the PCB. The force on the squeegee should be adjusted properly so as to produce a clean stencil surface on a single pass. To ensure the module soldering quality, the thickness of stencil for the module is recommended to be 0.18mm. For more details, please refer to **document [3]**.

It is suggested that the peak reflow temperature is 235°C~245°C (for SnAg3.0Cu0.5 alloy). The absolute maximum reflow temperature is 260°C. To avoid damage to the module caused by repeated heating, it is suggested that the module should be mounted after reflow soldering for the other side of PCB has been completed. Recommended reflow soldering thermal profile is shown below:

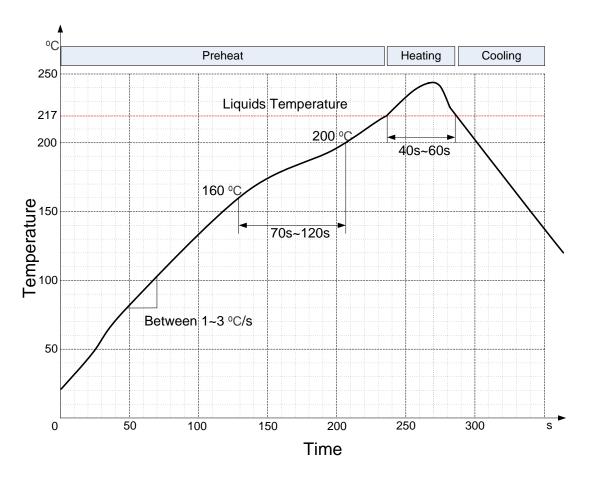


Figure 46: Reflow Soldering Thermal Profile

8.3. Packaging

EG95 is packaged in a vacuum-sealed bag which is ESD protected. The bag should not be opened until the devices are ready to be soldered onto the application.

The reel is 330mm in diameter and each reel contains 250pcs modules. The following figures show the packaging details, measured in mm.

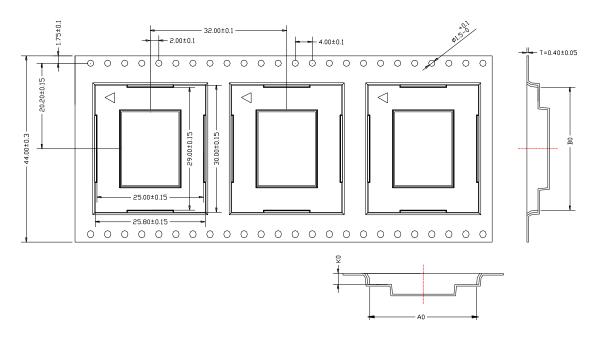


Figure 47: Tape Dimensions

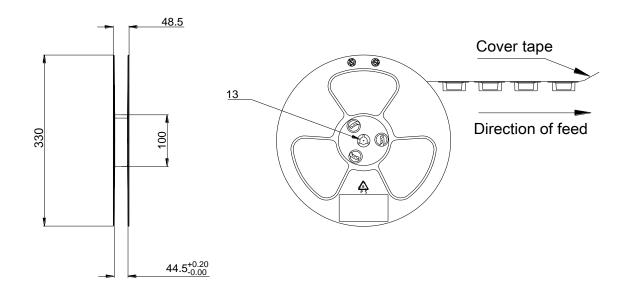


Figure 48: Reel Dimensions

9 Appendix A References

Table 36: Related Documents

SN	Document Name	Remark
[1]	Quectel_EC2x&EG9x&EM05_Power_Management_ Application_Note	Power Management Application Note for EC25, EC21, EC20 R2.0, EC20 R2.1, EG95, EG91 and EM05
[2]	Quectel_EG9x_AT_Commands_Manual	AT Commands Manual for EG95 and EG91
[3]	Quectel_Module_Secondary_SMT_User_Guide	Module Secondary SMT User Guide
[4]	Quectel_RF_Layout_Application_Note	RF Layout Application Note

Table 37: Terms and Abbreviations

Abbreviation	Description
AMR	Adaptive Multi-rate
bps	Bits Per Second
CHAP	Challenge Handshake Authentication Protocol
CS	Coding Scheme
CSD	Circuit Switched Data
CTS	Clear To Send
DC-HSPA+	Dual-carrier High Speed Packet Access
DFOTA	Delta Firmware Upgrade Over The Air
DL	Downlink
DTR	Data Terminal Ready
DTX	Discontinuous Transmission

EFR	Enhanced Full Rate
ESD	Electrostatic Discharge
FDD	Frequency Division Duplex
FR	Full Rate
GMSK	Gaussian Minimum Shift Keying
GSM	Global System for Mobile Communications
HR	Half Rate
HSPA	High Speed Packet Access
HSDPA	High Speed Downlink Packet Access
HSUPA	High Speed Uplink Packet Access
I/O	Input/Output
Inorm	Normal Current
LED	Light Emitting Diode
LNA	Low Noise Amplifier
LTE	Long Term Evolution
MIMO	Multiple Input Multiple Output
MO	Mobile Originated
MS	Mobile Station (GSM engine)
MT	Mobile Terminated
PAP	Password Authentication Protocol
PCB	Printed Circuit Board
PDU	Protocol Data Unit
PPP	Point-to-Point Protocol
QAM	Quadrature Amplitude Modulation
QPSK	Quadrature Phase Shift Keying

RF	Radio Frequency
RHCP	Right Hand Circularly Polarized
Rx	Receive
SMS	Short Message Service
TDD	Time Division Duplexing
TX	Transmitting Direction
UL	Uplink
UMTS	Universal Mobile Telecommunications System
URC	Unsolicited Result Code
(U)SIM	(Universal) Subscriber Identity Module
Vmax	Maximum Voltage Value
Vnorm	Normal Voltage Value
Vmin	Minimum Voltage Value
V _{IH} max	Maximum Input High Level Voltage Value
V _{IH} min	Minimum Input High Level Voltage Value
V _{IL} max	Maximum Input Low Level Voltage Value
V _{IL} min	Minimum Input Low Level Voltage Value
V _I max	Absolute Maximum Input Voltage Value
V _I min	Absolute Minimum Input Voltage Value
V _o ax	Maximum Output High Level Voltage Value
Voin	Minimum Output High Level Voltage Value
V _{OL} max	Maximum Output Low Level Voltage Value
V _{OL} min	Minimum Output Low Level Voltage Value
VSWR	Voltage Standing Wave Ratio
WCDMA	Wideband Code Division Multiple Access

10 Appendix B GPRS Coding Schemes

Table 38: Description of Different Coding Schemes

Scheme	CS-1	CS-2	CS-3	CS-4
Code Rate	1/2	2/3	3/4	1
USF	3	3	3	3
Pre-coded USF	3	6	6	12
Radio Block excl.USF and BCS	181	268	312	428
BCS	40	16	16	16
Tail	4	4	4	-
Coded Bits	456	588	676	456
Punctured Bits	0	132	220	-
Data Rate Kb/s	9.05	13.4	15.6	21.4

11 Appendix C GPRS Multi-slot Classes

Twenty-nine classes of GPRS multi-slot modes are defined for MS in GPRS specification. Multi-slot classes are product dependent, and determine the maximum achievable data rates in both the uplink and downlink directions. Written as 3+1 or 2+2, the first number indicates the amount of downlink timeslots, while the second number indicates the amount of uplink timeslots. The active slots determine the total number of slots the GPRS device can use simultaneously for both uplink and downlink communications.

The description of different multi-slot classes is shown in the following table.

Table 39: GPRS Multi-slot Classes

Multislot Class	Downlink Slots	Uplink Slots	Active Slots
1	1	1	2
2	2	1	3
3	2	2	3
4	3	1	4
5	2	2	4
6	3	2	4
7	3	3	4
8	4	1	5
9	3	2	5
10	4	2	5
11	4	3	5
12	4	4	5
13	3	3	NA
14	4	4	NA

15	5	5	NA	
16	6	6	NA	
17	7	7	NA	
18	8	8	NA	
19	6	2	NA	
20	6	3	NA	
21	6	4	NA	
22	6	4	NA	
23	6	6	NA	
24	8	2	NA	
25	8	3	NA	
26	8	4	NA	
27	8	4	NA	
28	8	6	NA	
29	8	8	NA	
30	5	1	6	
31	5	2	6	
32	5	3	6	
33	5	4	6	

12 Appendix D EDGE Modulation and Coding Schemes

Table 40: EDGE Modulation and Coding Schemes

Coding Scheme	Modulation	Coding Family	1 Timeslot	2 Timeslot	4 Timeslot
CS-1:	GMSK	1	9.05kbps	18.1kbps	36.2kbps
CS-2:	GMSK	/	13.4kbps	26.8kbps	53.6kbps
CS-3:	GMSK	1	15.6kbps	31.2kbps	62.4kbps
CS-4:	GMSK	1	21.4kbps	42.8kbps	85.6kbps
MCS-1	GMSK	С	8.80kbps	17.60kbps	35.20kbps
MCS-2	GMSK	В	11.2kbps	22.4kbps	44.8kbps
MCS-3	GMSK	A	14.8kbps	29.6kbps	59.2kbps
MCS-4	GMSK	С	17.6kbps	35.2kbps	70.4kbps
MCS-5	8-PSK	В	22.4kbps	44.8kbps	89.6kbps
MCS-6	8-PSK	A	29.6kbps	59.2kbps	118.4kbps
MCS-7	8-PSK	В	44.8kbps	89.6kbps	179.2kbps
MCS-8	8-PSK	A	54.4kbps	108.8kbps	217.6kbps
MCS-9	8-PSK	A	59.2kbps	118.4kbps	236.8kbps

FCC Certification Requirements.

According to the definition of mobile and fixed device is described in Part 2.1091(b), this

device is a mobile device.

And the following conditions must be met:

1. This Modular Approval is limited to OEM installation for mobile and fixed applications

only. The antenna installation and operating configurations of this transmitter, including

any applicable source-based time- averaging duty factor, antenna gain and cable loss

must satisfy MPE categorical Exclusion Requirements of 2.1091.

2. The EUT is a mobile device; maintain at least a 20 cm separation between the EUT and

the user's body and must not transmit simultaneously with any other antenna or

transmitter.

3.A label with the following statements must be attached to the host end product: This

device contains FCC ID: XMR201Ì 0Ï EÕJÍ ÞA.

4.To comply with FCC regulations limiting both maximum RF output power and human

exposure to RF radiation, maximum antenna gain (including cable loss) must not

exceed:

WCDMA/LTE: <4dBi

5. This module must not transmit simultaneously with any other antenna or

transmitter

6. The host end product must include a user manual that clearly defines operating

requirements and conditions that must be observed to ensure compliance with current

FCC RF exposure guidelines.

For portable devices, in addition to the conditions 3 through 6 described above, a

separate approval is required to satisfy the SAR requirements of FCC Part 2.1093

If the device is used for other equipment that separate approval is required for all other operating configurations, including portable configurations with respect to 2.1093 and different antenna configurations.

For this device, OEM integrators must be provided with labeling instructions of finished products. Please refer to KDB784748 D01 v07, section 8. Page 6/7 last two paragraphs:

A certified modular has the option to use a permanently affixed label, or an electronic label. For a permanently affixed label, the module must be labelled withan FCC ID - Section 2.926 (see 2.2 Certification (labelling requirements) above). The OEM manual must provide clear instructions explaining to the OEM the labelling requirements, options and OEM user manual instructions that are required (see next paragraph).

For a host using a certified modular with a standard fixed label, if (1) the module's FCC ID is notvisible when installed in the host, or (2) if the host is marketed so that end users do not havestraightforward commonly used methods for access to remove the module so that the FCC ID ofthe module is visible; then an additional permanent label referring to the enclosed module: "Contains Transmitter Module FCC ID: ÝT ÜGEFÌ EÏ ÒÕJÍ ÞŒ or "Contains FCC ID: XMR201807EG95NA" mustbe used. The host OEM user manual must also contain clear instructions on how end users can find and/or access the module and the FCC ID.

The final host / module combination may also need to be evaluated against the FCC Part 15B criteria for unintentional radiators in order to be properly authorized for operation as a Part 15 digital device.

The user's manual or instruction manual for an intentional or unintentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment. In cases where the manual is provided only in a form other than paper, such as on a

computer disk or over the Internet, the information required by this section may be included in the manual in that alternative form, provided the user can reasonably be expected to have the capability to access information in that form.

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the manufacturer could void the user's authority to operate the equipment.

To ensure compliance with all non-transmitter functions the host manufacturer is responsible for ensuring compliance with the module(s) installed and fully operational. For example, if a host was previously authorized as an unintentional radiator under the Declaration of Conformity procedure without a transmitter certified module and a module is added, the host manufacturer is responsible for ensuring that the after the module is installed and operational the host continues to be compliant with the Part 15B unintentional radiator requirements.

The host product shall be properly labelled to identify the modules within the host product.

The Innovation, Science and Economic Development Canada certification label of a module shall be clearly visible at all times when installed in the host product; otherwise, the host product must be labelled to display the Innovation, Science and Economic Development Canada certification number for the module, preceded by the word "Contains" or similar wording expressing the same meaning, as follows: "Contains IC: 10224A-2018EG95NA" or "where: 10224A-2018EG95NA is the module's certification number".

Le produit hôte doit être correctement étiqueté pour identifier les modules dans le produit hôte. L'étiquette de certification d'Innovation, Sciences et Développement économique Canada d'un module doit être clairement visible en tout temps lorsqu'il est installé dans le produit hôte; sinon, le produit hôte doit porter une étiquette indiquant le numéro de certification d'Innovation, Sciences et Développement économique Canada pour le module, précédé du mot «Contient» ou d'un libellé semblable exprimant la même signification, comme suit:

"Contient IC: 10224A-2018EG95NA" ou "où: 10224A-2018EG95NA est le numéro de certification du module".

A label with the following statements must be attached to the host end product: This device contains IC:10224A-2018EG95NA.

The manual provides guidance to the host manufacturer will be included in the documentation that will be provided to the OEM.

The module is limited to installation in mobile or fixed applications.

The separate approval is required for all other operating configurations, including portable configurations and different antenna configurations.

The OEM integrators are responsible for ensuring that the end-user has no manual or instructions to remove or install module.

The module is limited to OEM installation ONLY.

Une étiquette avec les instructions suivantes doit être attachée au produit final hôte:

Cet appareil contient IC: 10224A-2018EG95NA.

Le manuel fournit des conseils au fabricant hôte sera inclus dans la documentation qui sera fournie à l'OEM.

Le module est limité à l'installation dans des applications mobiles ou fixes.

L'approbation distincte est requise pour toutes les autres configurations de fonctionnement, y compris les configurations portables et différentes configurations d'antenne.

Les intégrateurs OEM sont responsables de s'assurer que l'utilisateur n'a pas de manuel ou d'instructions pour retirer ou installer le module.

Le module est limité à l'installation OEM SEULEMENT.