

MPE TEST REPORT

Applicant Quectel Wireless Solutions Co., Ltd

FCC ID XMR201705BG96NA

Product LTE Cat M1 Module

Brand Quectel

Model BG96-NA

Report No. R1907A0353-M1

Issue Date August 2, 2019

TA Technology (Shanghai) Co., Ltd. tested the above equipment in accordance with the requirements in **FCC 47 CFR Part 1 1.1310**. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Performed by: Yu Wang

Approved by: Kai Xu

TA Technology (Shanghai) Co., Ltd.

No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China TEL: +86-021-50791141/2/3

FAX: +86-021-50791141/2/3-8000

Table of Contents

1 Te	est Laboratory	3
1.1	Notes of the Test Report	3
1.2	Test facility	3
1.3	Testing Location	4
1.4	Laboratory Environment	4
2 De	escription of Equipment under Test	5
3 Ma	aximum conducted output power (measured) and antenna Gain	6
ANNE	X A: The EUT Appearance	10
	EUT Appearance	
ANNE	X B: Product Change Description	11

MPE Test Report

Report No: R1907A0353-M1

Test Laboratory

1.1 **Notes of the Test Report**

This report shall not be reproduced in full or partial, without the written approval of TA technology

(shanghai) co., Ltd. The results documented in this report apply only to the tested sample, under the

conditions and modes of operation as described herein .Measurement Uncertainties were not taken

into account and are published for informational purposes only. This report is written to support

regulatory compliance of the applicable standards stated above. This report must not be used by the

client to claim product certification, approval, or endorsement by any government agencies.

1.2 Test facility

CNAS (accreditation number:L2264)

TA Technology (Shanghai) Co., Ltd. has obtained the accreditation of China National Accreditation

Service for Conformity Assessment (CNAS).

FCC (recognition number is 428261)

TA Technology (Shanghai) Co., Ltd. has been listed on the US Federal Communications Commission

list of test facilities recognized to perform electromagnetic emissions measurements.

IC (recognition number is 8510A)

TA Technology (Shanghai) Co., Ltd. has been listed by industry Canada to perform electromagnetic

emission measurement.

VCCI (recognition number is C-4595, T-2154, R-4113, G-766)

TA Technology (Shanghai) Co., Ltd. has been listed by industry Japan to perform electromagnetic

emission measurement.

A2LA (Certificate Number: 3857.01)

TA Technology (Shanghai) Co., Ltd. has been listed by American Association for Laboratory

Accreditation to perform electromagnetic emission measurement.

TA Technology (Shanghai) Co., Ltd.

Page 3 of 11

1.3 Testing Location

Company: TA Technology (Shanghai) Co., Ltd.

Address: No.145, Jintang Rd, Tangzhen Industry Park, Pudong Shanghai, China

City: Shanghai

Post code: 201201

P. R. China Country:

Contact: Xu Kai

Telephone: +86-021-50791141/2/3

Fax: +86-021-50791141/2/3-8000 Website: http://www.ta-shanghai.com

E-mail: xukai@ta-shanghai.com

1.4 Laboratory Environment

Temperature	Min. = 18°C, Max. = 25 °C	
Relative humidity	Min. = 30%, Max. = 70%	
Ground system resistance	< 0.5 Ω	

Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards.

2 Description of Equipment under Test

Client Information

Applicant Quectel Wireless Solutions Co., Ltd			
Applicant address	Building 5, Shanghai Business Park Phase III (Area B), No.1016		
Applicant address	Tianlin Road, Minhang District, Shanghai, China 200233		
Manufacturer	Quectel Wireless Solutions Co., Ltd		
Manufacturer address	Building 5, Shanghai Business Park Phase III (Area B), No.1016		
Manufacturer address	Tianlin Road, Minhang District, Shanghai, China 200233		

General Technologies

Model:	Quectel BG96-NA
IMEI:	864508030799925
Hardware Version:	R1.0
Software Version:	BG96NAMAR02A09M1G
Antenna Type:	The EUT don't have standard Antenna, The Antenna used for testing in this report is the after-market accessory (Dipole Antenna)
Antenna Gain:	The Maximum Antennea Gain(4dBi) is declared by manufacturer
Test Date:	May 15, 2017 ~ May 17, 2017 and July 10, 2019 ~ July 19, 2019

Accessory equipment				
Evaluation Board	RF Cable			
RS232-to-USB Cable	Antenna: Dipole Antenna			
Headset	USB Cable			

BG96-NA (Report No.:R1907A0353-M1) is a variant model of BG96-NA (Report No.: RXA1705-0129MPE01R1). This report adds LTE band 2 and LTE band 12. The detailed product change description please refers to the ANNEX B.

Maximum conducted output power (measured) and antenna Gain

the numeric gain (G) of the antenna with a gain specified in dB is determined by Numeric gain (G)=10^(antenna gain/10)

Band	Maximum Conducted Output Power (dBm)	Antenna Gain (dBi)	Numeric gain (dB)
LTE Band 2	25.7	4	2.512
LTE Band 4	25.7	4	2.512
LTE Band 12	25.7	4	2.512
LTE Band 13	25.7	4	2.512

MPE Test Report No: R1907A0353-M1

According to section 1.1310 of FCC 47 CFR Part 1, limits for maximum permissible exposure (MPE) are as following

TABLE 1 - LIMITS FOR MAXIMUN PERMISSIBLE EXPOSURE (MPE)

Frequency Range Electric Field		Magnetic Field	Power Density	Averaging Time
(MHz)	Strength	Strength		100
	(V/m)	(A/m)	(mVV/cm2)	(minutes)
	(A) Limits for Occu	upational/Controlle	d Exposures	
0.3-3.0	614	1.63	*(100)	6
3-30	1842/f	4.89/f	*(900/f2)	6
30-300	61.4	0.163	1.0	6
300-1500			f/300	6
1500-100,000			5	6
(B)	Limits for General	Population/Uncont	rolled Exposure	
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	*(180/f2)	30
30-300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-100,000			1.0	30

f = frequency in MHz

- Note1. Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational / controlled limits apply provided he or she is made aware of the potential for exposure.
- Note2: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

^{* =} Plane-wave equivalent power density

MPE Test Report No: R1907A0353-M1
The maximum permissible exposure for 300~1500MHz is f/1500, 1500~100,000MHz is 1.0.So

Band	The maximum permissible exposure
LTE Band 2	1.0mW/cm ²
LTE Band 4	1.0mW/cm ²
LTE Band 12	0.470mW/cm ²
LTE Band 13	0.523mW/cm ²

Band	Maximum Conducted	EIRP	Margin1 (dB)	Power density Limit		Margin2	Final
Band	Output Power (dBm)	limit (dBm)		(mW/cm²)	(dBm)	(dB)	Margin (dB)
LTE Band 2	25.7	33.000	7.300	1.000	37.013	11.313	7.300
LTE Band 4	25.7	30.000	4.300	1.000	37.013	11.313	4.300
LTE Band 12	25.7	36.920	11.220	0.470	33.734	8.033	8.033
LTE Band 13	25.7	36.920	11.220	0.523	34.198	8.497	8.497

Note: 1. The Maximum allowed antenna gain per Band should be less than or equal to the **Final Margin** which is the allowable maximum gain value to comply with limits for maximum permissible exposure (MPE).

- 2. The Final Margin is determined and selected to the worst-case of Margin1 and Margin2.
- 3. Margin1=EIRP Limit(dBm)-Maximum Conducted Power (dBm). EIRP limit reference standard part22/ part24/part27and part90 for each band, EIRP = ERP + 2.15 (dB).
- 4. Margin2=Power density Limit(dBm)-Maximum Conducted Power (dBm). Power density Limit(dBm): The max. obtained by MPE with 20cm.

IMPORTANT NOTE: To comply with the FCC RF exposure compliance requirements, the antenna(s) used for this transmitter must be installed to provide a separation distance of at least 20 cm from all persons and must not be co-located or operating in conjunction with any other antenna or transmitter. No change to the antenna or the device is permitted. Any change to the antenna or the device could result in the device exceeding the RF exposure requirements and void user's authority to operate the device.

RF Exposure Calculations:

The following information provides the minimum separation distance for the highest gain antenna provided. This calculation is based on the conducted power, considering maximum power and antenna gain. The formula shown in KDB 447498 D01 is used in the calculation.

Equation from KDB 447498 D01 General RF Exposure Guidance v06 (10/23/2015) is:

$$S = PG / 4 \square R^2$$

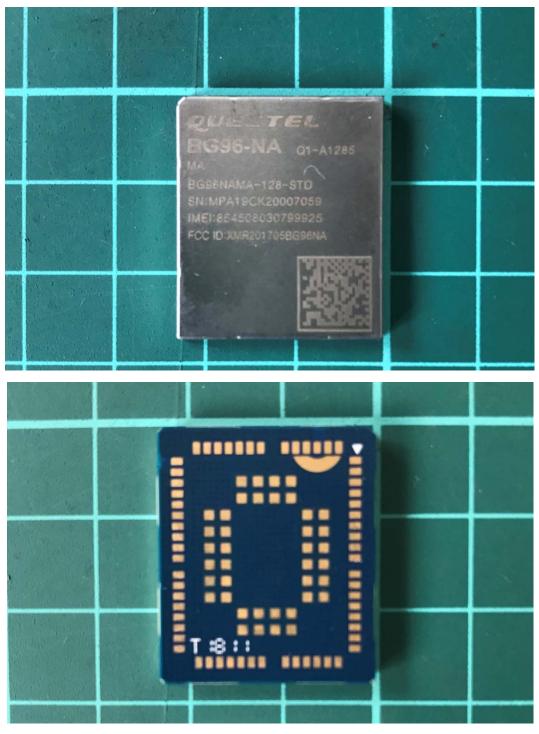
Where: S = power density (in appropriate units, e.g. mW/cm²)

P = Time-average maximum tune up procedure (in appropriate units, e.g., mW)

G = the numeric gain of the antenna

R = distance to the center of radiation of the antenna (20 cm = limit for MPE)

Band	PG (mW)	Test Result (mW/cm ²)	Limit Value (mW/cm ²)	Conclusion
LTE Band 2	1995.262	0.3969	1.000	Pass
LTE Band 4	1000.000	0.1989	1.000	Pass
LTE Band 12	2362.109	0.4699	0.470	Pass
LTE Band 13	2628.452	0.5229	0.523	Pass
Note: R = 20cm				
П= 3.1416				


Note: For transmitters, minimum separation distance is 20cm, even if calculations indicate MPE distance is less.

ANNEX A: The EUT Appearance

A.1 EUT Appearance

Picture 1 EUT

MPE Test Report No: R1907A0353-M1

ANNEX B: Product Change Description

Statement

We Quectel Wireless Solutions Co., Ltd declare the following models.

Product Name: LTE Cat M1 Module

Model Number:BG96-NA **Hardware Version**: R1.0

Module	Category	Supported Band
BG96-NA	CAT M1	B2/B4/B12/B13

The HW design of BG96-NA is exactly the same with before, it just increases B2/B12. Because B2 and B12 were disabled through software before and now be enabled. The hardware design and software feature are exactly the same.

The change will not impact RF performance for original frequency bands.

Your assistance on this matter is highly appreciated.

Sincerely,

Name:Jean Hu

Title:Certification Section