RF TEST REPORT

Report No.: 16050025-FCC-R1

Supersede Repor	No.: N/A		
Applicant	Quectel Wireless Solutions Co., Ltd.		
Product Name	GSM/GPRS/GNSS M	odule	
Model No.	MC20		
Serial No.	N/A		
Test Standard	FCC Part 22(H):2015	;FCC Part 24(E):2	015; ANSI/TIA-603-D: 2010
Test Date	August 24 to September 26, 2016		
Issue Date	September 27, 2016		
Test Result	Pass Fail		
Equipment complied with the specification			
Equipment did not comply with the specification			
LOVER LUO David Huang			
Loren LuoDavid HuangTest EngineerChecked By			
This test report may be reproduced in full only Test result presented in this test report is applicable to the tested sample only			

Issued by:

SIEMIC (SHENZHEN-CHINA) LABORATORIES

Zone A, Floor 1, Building 2 Wan Ye Long Technology Park South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong China 518108 Phone: +86 0755 2601 4629801 Email: China@siemic.com.cn

 Test Report
 16050025-FCC-R1

 Page
 2 of 46

Laboratories Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Country/Region	Scope
USA	EMC, RF/Wireless, SAR, Telecom
Canada	EMC, RF/Wireless, SAR, Telecom
Taiwan	EMC, RF, Telecom, SAR, Safety
Hong Kong	RF/Wireless, SAR, Telecom
Australia EMC, RF, Telecom, SAR, Safety	
Korea	EMI, EMS, RF, SAR, Telecom, Safety
Japan	EMI, RF/Wireless, SAR, Telecom
Singapore	EMC, RF, SAR, Telecom
Europe EMC, RF, SAR, Telecom, Safety	

Accreditations for Conformity Assessment

 Test Report
 16050025-FCC-R1

 Page
 3 of 46

This page has been left blank intentionally.

 Test Report
 16050025-FCC-R1

 Page
 4 of 46

CONTENTS

1.	REPORT REVISION HISTORY
2.	CUSTOMER INFORMATION
3.	TEST SITE INFORMATION
4.	EQUIPMENT UNDER TEST (EUT) INFORMATION
5.	TEST SUMMARY8
6.	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS9
6.1 I	RF EXPOSURE (SAR)9
6.2 I	RF OUTPUT POWER
6.3 I	PEAK - AVERAGE RATIO
6.4 (DCCUPIED BANDWIDTH
6.5 \$	SPURIOUS EMISSIONS AT ANTENNA TERMINALS
6.6 \$	SPURIOUS RADIATED EMISSIONS
6.7 E	3AND EDGE
6.8 I	REQUENCY STABILITY
ANN	IEX A. TEST INSTRUMENT
ANN	IEX B. EUT AND TEST SETUP PHOTOGRAPHS
ANN	IEX C. TEST SETUP AND SUPPORTING EQUIPMENT42
ANN	IEX C.II. EUT OPERATING CONKITIONS44
ANN	IEX D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PARTLIST
	IEX E. DECLARATION OF SIMILARITY46

Test Report	16050025-FCC-R1
Page	5 of 46

1. Report Revision History

Report No.	Report Version	Description	Issue Date
16050025-FCC-R1	NONE	Original	September 27, 2016

2. Customer information

Applicant Name	Quectel Wireless Solutions Co., Ltd.
Applicant Add	RM501,Building 13,No.99 TianZhou Road,Xuhui District,Shanghai,China
Manufacturer	Quectel Wireless Solutions Co., Ltd.
Manufacturer Add	RM501,Building 13,No.99 TianZhou Road,Xuhui District,Shanghai,China

3. Test site information

Lab performing tests	SIEMIC (Shenzhen-China) LABORATORIES	
	Zone A, Floor 1, Building 2 Wan Ye Long Technology Park	
Lab Address	South Side of Zhoushi Road, Bao' an District, Shenzhen, Guangdong China	
	518108	
FCC Test Site No.	718246	
IC Test Site No.	4842E-1	
Test Software	Radiated Emission Program-To Shenzhen v2.0	

 Test Report
 16050025-FCC-R1

 Page
 6 of 46

4. Equipment under Test (EUT) Information Description of EUT: GSM/GPRS/GNSS Module Main Model: MC20 Serial Model: N/A Date EUT received: August 23, 2016 Test Date(s): August 24 to September 26, 2016 Equipment Category : PCB GSM850: 1dBi PCS1900: 1dBi (Note: The GSM radio module will be sold without antenna, this Antenna Gain: antenna only used limited to ERP/EIRP or radiated spurious emission test.) Bluetooth:1dBi GSM : External antenna Antenna Type : BT: Chip antenna GSM / GPRS: GMSK Type of Modulation: Bluetooth: GFSK, π /4DQPSK, 8DPSK GSM850 TX: 824.2 ~ 848.8 MHz; RX: 869.2 ~ 893.8 MHz PCS1900 TX: 1850.2 ~ 1909.8 MHz; RX: 1930.2 ~ 1989.8 MHz RF Operating Frequency (ies): Bluetooth: 2402-2480 MHz GSM Vioce:GSM850: 31.38dBm PCS1900: 28.69dBm Maximum Conducted AV Power to Antenna: GPRS:GSM850: 31.37dBm PCS1900: 28.67dBm GSM 850: 124CH Number of Channels: PCS1900: 299CH Bluetooth: 79CH

 Test Report
 16050025-FCC-R1

 Page
 7 of 46

Port:	N/A
Input Power:	Spec: DC 4.0V
Trade Name :	Quectel
GPRS Multi-slot class	8/10/12
FCC ID:	XMR201609MC20

Note: Antenna gain including cable loss must not exceed 5.95dBi of 824.2 ~ 848.8 MHz and 3.50dBi of 1850.2 ~ 1909.8MHz.

Test Report	16050025-FCC-R1
Page	8 of 46

5. Test Summary

The product was tested in accordance with the following specifications.

All testing has been performed according to below product classification:

FCC Rules	Description of Test	Result
§ 1.1307; § 2.1093	RF Exposure (SAR)	Compliance
§2.1046; § 22.913(a); § 24.232(c);	RF Output Power	Compliance
§ 24.232 (d) ;	Peak-Average Ratio	Compliance
§ 2.1049; § 22.905; § 22.917;	00% & 26 dB Occurried Pendwidth	Compliance
§ 24.238;		Compliance
§ 2.1051; § 22.917(a);	Courieus Emissions et Antonne Terminel	Compliance
§ 24.238(a);	Spunous Emissions at Antenna Terminal	Compliance
§ 2.1053; § 22.917(a);	Field Strength of Spurious Dediction	Compliance
§ 24.238(a);	Field Strength of Spurious Radiation	Compliance
§ 22.917(a); § 24.238(a);	Out of band emission, Band Edge	Compliance
S 0 4055, S 00 255, S 04 025,	Frequency stability vs. temperature	Compliance
8 2.1000; 8 22.300; 8 24.235;	Frequency stability vs. voltage	Compliance

Note: Testing was performed by configuring EUT to maximum output power status, the declared output power class for different

Measurement Uncertainty

Emissions		
Test Item	Description	Uncertainty
Band Edge and Radiated Spurious Emissions	Confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2 (for EUTs < 0.5m X 0.5m X 0.5m)	+5.6dB/-4.5dB
-	-	-

 Test Report
 16050025-FCC-R1

 Page
 9 of 46

6. MEASUREMENTS, EXAMINATION AND DERIVED RESULTS

6.1 RF Exposure (SAR)

Test Result: Pass

The EUT is a Mobile device, thus requires MPE evaluation; Please refer to RF Exposure Evaluation Report: 16050025-FCC-H.

Test Report	16050025-FCC-R1
Page	10 of 46

6.2 RF Output Power

Temperature	24°C
Relative Humidity	52%
Atmospheric Pressure	1019mbar
Test date :	September 19, 2016
Tested By :	Loren Luo

Requirement(s):

Spec	Item	Requirement	Applicable	
§22.913 (a)	a)	ERP:38.45dBm	N	
§24.232 (c)	b)	EIRP:33dBm	2	
Test Setup				
	Fo	or Conducted Power:		
	-	The transmitter output port was connected to base stat	ion.	
	-	Set EUT at maximum power through base station.		
	- Select lowest, middle, and highest channels for each band and			
	different test mode.			
	For ERP/EIRP:			
	According with KDB 971168 v02r02			
	- The transmitter was placed on a wooden turntable, and it was			
Test Procedure	transmitting into a non-radiating load which was also placed on the			
		turntable.		
	- The measurement antenna was placed at a distance of 3 meters			
	from the EUT. During the tests, the antenna height and			
	polarization as well as EUT azimuth were varied in order to identify			
	the maximum level of emissions from the EUT. The test was			
	performed by placing the EUT on 3-orthogonal axis.			
	- The frequency range up to tenth harmonic of the fundamental			
frequency was investigated.				

GLOBAL TESTING & CERTIFIC YOUR CHOICE FOR- TCR FCR CR MIN	ATIONS	Test Report Page	16050025-FCC-R1 11 of 46
	 Remove the generator ware meased of the absolution of	e EUT and rep was connected able. The abso sured by the su missions in dE te level ttenuation limi	place it with substitution antenna. A signal d to the substitution antenna by a non- plute levels of the spurious emissions ubstitution. B = 10 log (TX power in Watts/0.001) – t in dB = 43 + 10 Log10 (power out in
Remark			
Result	✓ Pass	Fail	
Test Data Ves		N/A	
Test Plot	(See below)	N/A	

Test Report	16050025-FCC-R1
Page	12 of 46

Conducted Power

GSM Mode:

Burst Average Power (dBm);								
Band	GSM850				PC	S1900		
Channel	128	190	251	Tune up Power tolerant	512	661	810	Tune up Power tolerant
Frequency (MHz)	824.2	836.6	848.8	/	1850.2	1880	1909.8	/
GSM Voice (1 uplink),GMSK	31.22	31.38	31.25	31.75±0.75	28.66	28.69	28.64	28.75±0.75
GPRS Multi-Slot Class 8 (1 uplink),GMSK	31.22	31.37	31.23	31.75±0.75	28.66	28.67	28.64	28.75±0.75
GPRS Multi-Slot Class 10 (2 uplink) GMSK	30.51	31.31	31.19	30.5±1	28.6	28.6	28.53	28.75±0.75
GPRS Multi-Slot Class 12 (4 uplink) GMSK	30.2	30.01	29.90	29.5±1	28.51	28.52	28.45	28.75±0.75

Remark :

GPRS, CS1 coding scheme.

Multi-Slot Class 8 , Support Max 4 downlink, 1 uplink , 5 working link

Multi-Slot Class 10 , Support Max 4 downlink, 2 uplink , 5 working link

Multi-Slot Class 12 , Support Max 4 downlink, 4 uplink , 5 working link

Test Report	16050025-FCC-R1
Page	13 of 46

6.3 Peak - Average Ratio

		24%		
Relative Humidity		52%		
Atmospheric Pressure 1019mbar				
Suic		Sentember 19, 2016		
ltem	Requirement		Applicable	
a) The peak-to-average ratio (PAR) of the transmission may not exceed 13 dB.				
Test Setup				
According with KDB 971168 v02r02 5.7.2 Alternate procedure for PAPR 5.1.2 Peak power measurements with a peak power meter The total peak output power may be measured using a broadband peal RF power meter. The power meter must have a video bandwidth that is greater than or equal to the emission bandwidth and utilize a fast-respondir diode detector. Procedure 5.2.3 Average power measurement with average power meter As an alternative to the use of a spectrum/signal analyzer or EMI received to perform a measurement of the total in-band average output power, a wideband RF average power meter with a thermocouple detector or equivalent can be used under certain conditions If the EUT can be configured to transmit continuously (i.e., the burst due to the COT)			band peak that is responding r EMI receiver wer, a or e burst duty num output	
power level, then a conventional wide-band RF power meter can be used				
	tem tem a) tem b) tem c) tem c) tem c) tem c) tem c) tem c) tem c) tem c) c) c) c) c) c) c) c) c) c)	tem Requirement a) The peak-to-average ratio (P exceed 13 dB. According with KDB 971168 5.7.2 Alternate procedure for 5.1.2 Peak power measurer The total peak output power RF power meter. The power measurer The total peak output power RF power meter. The power measurer Compared to the emiliation of the emiliation of the total of the emiliation of the total of total	24°C 52% sure 1019mbar September 19, 2016 Loren Luo tem Requirement a) The peak-to-average ratio (PAR) of the transmission may not exceed 13 dB. Image: Comparison of the transmission may not exceed 13 dB. According with KDB 971168 v02r02 5.7.2 Alternate procedure for PAPR 5.1.2 Peak power measurements with a peak power meter The total peak output power may be measured using a broad! RF power meter. The power meter must have a video bandwidth greater than or equal to the emission bandwidth and utilize a fast: diode detector. 5.2.3 Average power measurement with average power meter As an alternative to the use of a spectrum/signal analyzer or E to perform a measurement of the total in-band average output powideband RF average power meter with a thermocouple detector equivalent can be used under certain conditions If the EUT can be configured to transmit continuously (i.e., the cycle ≥ 98%) and at all times the EUT is transmitting at is maxim power level, then a conventional wide-band RF power meter can	

 Test Report
 16050025-FCC-R1

 Page
 14 of 46

If the EUT cannot be configured to transmit continuously (i.e., the burst duty cycle < 98%), then there are two options for the use of an average power meter. First, a gated average power meter can be used to perform the measurement if the gating parameters can be adjusted such that the power is measured only over active transmission bursts at maximum output power levels. A conventional average power meter can also be used if the measured burst duty cycle is constant (i.e., duty cycle variations are less than ± 2 percent) by performing the measurement over the on/off burst cycles and then correcting (increasing) the measured level by a factor equal to 10log(1/duty cycle) Remark Pass Result Fail Yes N/A Test Data

Test Plot

Yes (See below)

N/A

 Test Report
 16050025-FCC-R1

 Page
 15 of 46

GSM : GSM 1900 PK-AV POWER (PART 24E)

Frequency	Conducted power(dBm)		Peak-Average
(MHz)	Peak	Average	Ratio(PAR)
1850.2	30.78	28.66	2.12
1880	30.96	28.69	2.27
1909.8	30.57	28.64	1.93

GPRS 1900 PK-AV POWER (PART 24E)

Frequency	Conducted power(dBm)		Peak-Average
(MHz)	Peak	Average	Ratio(PAR)
1850.2	29.85	28.66	1.19
1880	30.33	28.67	1.66
1909.8	30.12	28.64	1.48

Test Report	16050025-FCC-R1
Page	16 of 46

6.4 Occupied Bandwidth

Temperature	24°C
Relative Humidity	52%
Atmospheric Pressure	1019mbar
Test date :	September 19, 2016
Tested By :	Loren Luo

Requirement(s):

Spec	Item	Requirement	Applicable
§2.1049,	a)	E	
§22.917,			
§22.905	b)	26 dB Bandwidth(kHz)	
§24.238			V
Test Setup			
	-	The EUT was connected to Spectrum Analyzer and Base	Station via
Test		power divider.	
Procedure	-	The 99% and 26 dB occupied bandwidth (BW) of the mide	dle channel
		for the highest RF powers.	
Remark			
Result	🔽 Pa	ss 🗖 Fail	

□_{N/A}

Test Plot

Yes (See below)

Test Report	16050025-FCC-R1
Page	17 of 46

GSM Voice:

Cellular Band (Part 22H) result

Channel	Frequency	26 dB Bandwidth
Channel	(MHz)	(kHz)
128	824.2	317
190	836.6	318
251	848.8	317

PCS Band (Part 24E) result

Channel	Frequency	26 dB Bandwidth
Channer	(MHz)	(kHz)
512	1850.2	323
661	1880.0	323
810	1909.8	325

GPRS:

Cellular Band (Part 22H) result

Channel	Frequency (MHz)	26 dB Bandwidth (kHz)
128	824.2	318
190	836.6	317
251	848.8	320

PCS Band (Part 24E) result

Channel	Frequency	26 dB Bandwidth
Channel	(MHz)	(kHz)
512	1850.2	318
661	1880.0	323
810	1909.8	323

Test Report	16050025-FCC-R1
Page	18 of 46

Test Plots

GSM Voice:

Test Report	16050025-FCC-R1
Page	19 of 46

GPRS:

6.5 Spurious Emissions at Antenna Terminals

Temperature	24°C
Relative Humidity	52%
Atmospheric Pressure	1019mbar
Test date :	September 19, 2016
Tested By :	Loren Luo

Requirement(s):

Spec	Item	Requirement	Applicable
§2.1051, §22.917(a)& §24.238(a)	a)	The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least 43 + 10 log (P) dB	V
Test Setup]
Test Procedure	-	The EUT was connected to Spectrum Analyzer and Base via power divider. The Band Edges of low and high channels for the highes powers were measured. Setting RBW as roughly BW/100.	∍ Station st RF
Remark			
Result	Pa	ss Fail	
Test Data Yes Test Plot Yes (See below)			

Test Report	16050025-FCC-R1
Page	21 of 46

Test Plots

GSM Voice:

Cellular Band (Part 22H) result

Test Report	16050025-FCC-R1
Page	22 of 46

PCS Band (Part24E) result

Test Report	16050025-FCC-R1
Page	23 of 46

GPRS:

Cellular Band (Part 22H) result

Test Report	16050025-FCC-R1
Page	24 of 46

PCS Band (Part24E) result

6.6 Spurious Radiated Emissions

Temperature	23℃
Relative Humidity	55%
Atmospheric Pressure	1022mbar
Test date :	September 22, 2016
Tested By :	Loren Luo

Requirement(s):

Spec	Item	Requirement	Applicable				
§2.1053, §22.917 & §24.238	a)	The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power (P) by a factor of at least 43 + 10 log (P) dB. The spectrum is scanned from 30 MHz up to a frequency including its 10th harmonic.	X				
Test setup	EUT& Suppo	Ant. Tower 3m Turn Table Ground Plane Test Receiver	le				
Test Procedure	 The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution. Sample Calculation: EUT Field Strength = Raw Amplitude (dBμV/m) – Amplifier Gain (dB) + Antenna Factor (dB) + Cable Loss (dB) + Filter Attenuation (dB, if used) 						

SIEMIC GLOBAL TESTING & CERTIFICATIONS YOUR CHOICE FOR- TOR FOR CIL ME CAR ACR				Test Report Page	16050025-FCC-R1 26 of 46
Remark					
Result		Pass		Fail	
	_				
Test Data	Υ	es		N/A	
Test Plot	Γ _Υ	es (See below)	~	N/A	

Test Report	16050025-FCC-R1
Page	27 of 46

Cellular Band (Part 22H) result

Low channel

Frequency (MHz)	Substituted level (dBm)	Polarity (H/V)	Antenna Gain Correction (dB)	Cable Loss (dB)	Corrected Reading (dBm)	Limit (dBm)	Margin (dB)
1648.4	-43.44	V	7.95	0.78	-36.27	-13	-23.27
1648.4	-44.65	Н	7.95	0.78	-37.48	-13	-24.48
329.4	-52.37	V	6.4	0.26	-46.23	-13	-33.23
604.1	-53.02	н	6.8	0.37	-46.59	-13	-33.59

Middle channel

Frequency (MHz)	Substituted level (dBm)	Polarity (H/V)	Antenna Gain Correction (dB)	Cable Loss (dB)	Corrected Reading (dBm)	Limit (dBm)	Margin (dB)
1673.2	-43.87	V	7.95	0.78	-36.7	-13	-23.70
1673.2	-44.32	Н	7.95	0.78	-37.15	-13	-24.15
329.7	-52.87	V	6.4	0.26	-46.73	-13	-33.73
603.9	-53.02	Н	6.8	0.37	-46.59	-13	-33.59

High channel

Frequency (MHz)	Substituted level (dBm)	Polarity (H/V)	Antenna Gain Correction (dB)	Cable Loss (dB)	Corrected Reading (dBm)	Limit (dBm)	Margin (dB)
1697.6	-43.29	V	7.95	0.78	-36.12	-13	-23.12
1697.6	-43.87	Н	7.95	0.78	-36.7	-13	-23.70
328.8	-52.55	V	6.4	0.26	-46.41	-13	-33.41
604.3	-53.28	Н	6.8	0.37	-46.85	-13	-33.85

Note:

1, The testing has been conformed to 10*848.8MHz=8,488MHz

2, All other emissions more than 30 dB below the limit

 $3,\!GSM$ voice , GPRS mode were investigated. The results above show only the worse cases

4, X-Axis, Y-Axis and Z-Axis were investigated. The results above show only the worst case.

Test Report	16050025-FCC-R1
Page	28 of 46

PCS Band (Part24E) result

Frequency (MHz)	Substituted level (dBm)	Polarity (H/V)	Antenna Gain Correction (dB)	Cable Loss (dB)	Corrected Reading (dBm)	Limit (dBm)	Margin (dB)
3700.4	-48.49	V	10.25	2.73	-40.97	-13	-27.97
3700.4	-49.36	Н	10.25	2.73	-41.84	-13	-28.84
328.7	-53.68	V	6.4	0.26	-47.54	-13	-34.54
604.5	-54.01	Н	6.8	0.37	-47.58	-13	-34.58

Low channel

Middle channel

Frequency (MHz)	Substituted level (dBm)	Polarity (H/V)	Antenna Gain Correction (dB)	Cable Loss (dB)	Corrected Reading (dBm)	Limit (dBm)	Margin (dB)
3760	-48.45	V	10.25	2.73	-40.93	-13	-27.93
3760	-49.37	Н	10.25	2.73	-41.85	-13	-28.85
327.4	-53.19	V	6.4	0.26	-47.05	-13	-34.05
603.2	-53.64	Н	6.8	0.37	-47.21	-13	-34.21

High channel

Frequency (MHz)	Substituted level (dBm)	Polarity (H/V)	Antenna Gain Correction (dB)	Cable Loss (dB)	Corrected Reading (dBm)	Limit (dBm)	Margin (dB)
3819.6	-48.44	V	10.36	2.73	-40.81	-13	-27.81
3819.6	-49.29	Н	10.36	2.73	-41.66	-13	-28.66
327.8	-53.72	V	6.4	0.26	-47.58	-13	-34.58
604.6	-54.21	Н	6.8	0.37	-47.78	-13	-34.78

Note:

1, *The testing has been conformed to* 10*1909.8MHz=19,098MHz

2, All other emissions more than 30 dB below the limit

3,GSM voice, GPRS mode were investigated. The results above show only the worse cases

4, X-Axis, Y-Axis and Z-Axis were investigated. The results above show only the worst case.

Test Report	16050025-FCC-R1
Page	29 of 46

6.7 Band Edge

Temperature	22°C
Relative Humidity	54%
Atmospheric Pressure	1021mbar
Test date :	September 21, 2016
Tested By :	Loren Luo

Requirement(s):

Spec	Item	Requirement	Applicable
§22.917(a) §24.238(a)	a)	The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least 43 + 10 log (P) dB.	۲
Test setup			
Procedure	 The EUT was connected to Spectrum Analyzer and Base Station via power divider. The Band Edges of low and high channels for the highest RF powers were measured. Setting RBW as roughly BW/100. 		
Remark			
Result	🔽 Pa	ss 🗖 Fail	
Test Data	Yes Yes (S	ee below)	

Test Report	16050025-FCC-R1
Page	30 of 46

GSM Voice:

Cellular Band (Part 22H) result

Frequency (MHz)	Emission (dBm)	Limit (dBm)
823.997	-16.83	-13
849.015	-17.33	-13

PCS Band (Part24E) result

Frequency (MHz)	Emission (dBm)	Limit (dBm)
1849.998	-14.83	-13
1910.007	-16.00	-13

GPRS:

Cellular Band (Part 22H) result

Frequency (MHz)	Emission (dBm)	Limit (dBm)
823.992	-16.67	-13
849.022	-17.00	-13

PCS Band (Part24E) result

Frequency (MHz)	Emission (dBm)	Limit (dBm)
1849.978	-16.17	-13
1910.012	-13.83	-13

Test Report	16050025-FCC-R1
Page	31 of 46

GSM Voice:

Test Report	16050025-FCC-R1
Page	32 of 46

GPRS:

Test Plots

Test Report	16050025-FCC-R1
Page	33 of 46

6.8 Frequency Stability

Temperature	22°C
Relative Humidity	54%
Atmospheric Pressure	1021mbar
Test date :	September 21, 2016
Tested By :	Loren Luo

Requirement(s):

Spec	Item	Requirement	Requirement				
§2.1055, §22.355 & §24.235	a)	According to §22.3 the Public Mobile S tolerances given in Frequency Toleran Services Frequency Range (MHz) 25 to 50 50 to 450 45 to 512 821 to 896 928 to 29. 929 to 960. 2110 to 2220 According to §24.2 ensure that the fun frequency block.	55, the carrie Services mus Table below ce for Trans Base, fixed (ppm) 20.0 5.0 2.5 1.5 5.0 1.5 5.0 1.5 35, the frequ damental en	er frequency of ea t be maintained w /: mitters in the Publ Mobile ≤ 3 watts (pm) 20.0 5.0 5.0 2.5 N/A N/A N/A N/A ency stability shall hissions stay within	ch transmitter in ithin the ic Mobile Mobile ≤ 3 watts (ppm) 50.0 50.0 .0 2.5 N/A N/A N/A N/A I be sufficient to n the authorized	K	
Test setup							

 Test Report
 16050025-FCC-R1

 Page
 34 of 46

Procedure	A communication link was established between EUT and base station. The				
	frequency error was monitored and measured by base station under variation				
	of ambient temperature and variation of primary supply voltage.				
	Limit: The frequency stability of the transmitter shall be maintained within				
	±0.00025% (±2.5ppm) of the center frequency.				
Remark					
Result	Pass Fail				

Test Data	Yes	□ _{N/A}
Test Plot	Yes (See below)	✓ N/A

Test Report	16050025-FCC-R1
Page	35 of 46

GSM Voice:

Cellular Band (Part 22H) result

Middle Channel, f₀ = 836.6 MHz						
Temperature (°C)	Power Supplied (V _{DC})	Frequency Error (Hz)	Frequency Error (ppm)	Limit (ppm)		
-10		20	0.0239	2.5		
0	3.7	20	0.0239	2.5		
10		14	0.0167	2.5		
20		15	0.0179	2.5		
30		13	0.0155	2.5		
40		19	0.0227	2.5		
50		20	0.0239	2.5		
55		21	0.0251	2.5		
25	4.2	19	0.0227	2.5		
20	3.5	20	0.0239	2.5		

PCS Band (Part 24E) result

Middle Channel, f _o = 1880 MHz						
Tomporaturo	Dewer Supplied	Frequency	Frequency	Limit		
		Error	Error			
(0)	(VDC)	(Hz)	(ppm)	(ppin)		
-10		10	0.0053	2.5		
0		13	0.0069	2.5		
10	3.7	14	0.0074	2.5		
20		11	0.0059	2.5		
30		15	0.0080	2.5		
40		16	0.0085	2.5		
50		14	0.0074	2.5		
55		15	0.0080	2.5		
25	4.2	16	0.0085	2.5		
	3.5	20	0.0106	2.5		

Test Report	16050025-FCC-R1
Page	36 of 46

GPRS:

Cellular Band (Part 22H) result

Middle Channel, f₀ = 836.6 MHz						
Temperature (°C)	Power Supplied (V _{DC})	Frequency Error (Hz)	Frequency Error (ppm)	Limit (ppm)		
-10		21	0.0251	2.5		
0	3.7	16	0.0191	2.5		
10		13	0.0155	2.5		
20		13	0.0155	2.5		
30		12	0.0143	2.5		
40		14	0.0167	2.5		
50	-	14	0.0167	2.5		
55		20	0.0239	2.5		
25	4.2	19	0.0227	2.5		
	3.5	21	0.0251	2.5		

PCS Band (Part 24E) result

Middle Channel, f _o = 1880 MHz					
Temperature	Power Supplied	Frequency	Frequency	Limit	
(°C)		Error	Error	(ppm)	
(0)	(VDC)	(Hz)	(ppm)	(ppin)	
-10		18	0.0096	2.5	
0		15	0.0080	2.5	
10	3.7	16	0.0085	2.5	
20		11	0.0059	2.5	
30		13	0.0069	2.5	
40		15	0.0080	2.5	
50		16	0.0085	2.5	
55		15	0.0080	2.5	
25	4.2	21	0.0112	2.5	
	3.5	20	0.0106	2.5	

 Test Report
 16050025-FCC-R1

 Page
 37 of 46

Annex A. TEST INSTRUMENT

Instrument	Model	Serial #	Cal Date	Cal Due	In use
RF Conducted Test			L	1	
Agilent ESA-E SERIES SPECTRUM ANALYZER	E4407B	MY45108319	09/15/2016	09/14/2017	V
Power Splitter	1#	1#	08/31/2016	08/30/2017	•
Universal Radio Communication Tester	CMU200	121393	09/25/2015	09/24/2016	V
Temperature/Humidity Chamber	UHL-270	001	10/09/2015	10/08/2016	K
DC Power Supply	E3640A	MY40004013	09/16/2016	09/15/2017	•
RF Power Sensor	Dare RPR3006C/P/W	AY554013	09/16/2016	09/15/2017	V
Radiated Emissions					
EMI test receiver	ESL6	100262	09/16/2016	09/15/2017	•
OPT 010 AMPLIFIER (0.1-1300MHz)	8447E	2727A02430	08/31/2016	08/30/2017	V
Microwave Preamplifier (1 ~ 26.5GHz)	8449B	3008A02402	03/24/2016	03/23/2017	V
Bilog Antenna (30MHz~6GHz)	JB6	A110712	09/20/2016	09/19/2017	K
Bilog Antenna (30MHz~2GHz)	JB1	A112017	09/20/2016	09/19/2017	L
Double Ridge Horn Antenna (1 ~18GHz)	AH-118	71259	09/24/2015	09/23/2016	V
Double Ridge Horn Antenna (1 ~18GHz)	AH-118	71283	09/24/2015	09/23/2016	K
SYNTHESIZED SIGNAL GENERATOR	8665B	3744A01293	09/16/2016	09/15/2017	٢
Power Amplifier	SMC150D	R1553-0313	03/09/2016	03/08/2017	•
Power Amplifier	S41-25D	R1553-0314	05/27/2016	05/26/2017	•
Tunable Notch Filter	3NF-800/1000- S	AA4	08/31/2016	08/30/2017	

Test Report	16050025-FCC-R1
Page	38 of 46

Tunable Notch Filter	3NF-	AM 4	08/31/2016	08/30/2017	•
	1000/2000-S				

 Test Report
 16050025-FCC-R1

 Page
 39 of 46

Annex B. EUT And Test Setup Photographs

Annex B.i. Photograph: EUT External Photo

Test Report	16050025-FCC-R1
Page	40 of 46

Annex B.ii. Photograph: EUT Internal Photo

Test Report	16050025-FCC-R1
Page	41 of 46

Annex B.iii. Photograph: Test Setup Photo

 Test Report
 1605002

 Page
 42 of 46

16050025-FCC-R1

Annex C. TEST SETUP AND SUPPORTING EQUIPMENT

Annex C.ii. TEST SET UP BLOCK

Block Configuration Diagram for Radiated Emissions

 Test Report
 16050025-FCC-R1

 Page
 43 of 46

Annex C. il. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Supporting Equipment:

Manufacturer	Equipment Description	Model	Serial No
DCA	Adaptor	E2164A	DCN026423

Supporting Cable:

Cable type	Shield Type	Ferrite Core	Length	Serial No
USB Cable	Un-shielding	No	1.5m	DCN026423

 Test Report
 16050025-FCC-R1

 Page
 44 of 46

Annex C.ii. EUT OPERATING CONKITIONS

N/A

 Test Report
 16050025-FCC-R1

 Page
 45 of 46

Annex D. User Manual / Block Diagram / Schematics / Partlist

Please see the attachments

Test Report 16050025-FCC-R1 Page

46 of 46

Annex E. DECLARATION OF SIMILARITY

Quectel Wireless Solutions Co., Ltd

Statement

We Quectel Wireless Solutions Co., Ltd declare the following models as series application.

Name: GSM/GPRS/GNSS Module

Model number:MC60, MC20

MC60 and MC20 Module are GSM/GPRS/GNSS modules. They have different name for marketing. We hereby state that two models are identical in interior structure and components, expect the below difference.

NO.	MC20	MC60
C421	-	22pF
C422	91kΩ	22pF
X402	-	32kHZ
R401	120 k Ω	-

C422		
	[2] GNSS_32K_IN [4] GNSS_32K_OUT NM_32.768KHZ 120K	
C421	GNSS_32K_0UT [[4]]	

Your assistance on this matter is highly appreciated.

Sincerely, Name: Jean HU **Title: Certification engineer**

Signature: Jean Hu