

M95

Quectel Cellular Engine

Hardware Design
M95 HD V1.0

Document Title	M95 Hardware Design
Revision	1.0
Date	2012-02-06
Status	Released
Document Control ID	M95_HD_V1.0

General Notes

Quectel offers this information as a service to its customers, to support application and engineering efforts that use the products designed by Quectel. The information provided is based upon requirements specifically provided for customers of Quectel. Quectel has not undertaken any independent search for additional information, relevant to any information that may be in the customer's possession. Furthermore, system validation of this product designed by Quectel within a larger electronic system remains the responsibility of the customer or the customer's system integrator. All specifications supplied herein are subject to change.

Copyright

This document contains proprietary technical information of Quectel Co., Ltd. Copying this document, distribution to others, and communication of the contents thereof, are forbidden without permission. Offenders are liable to the payment of damages. All rights are reserved in the event of a patent grant or registration of a utility model or design. All specifications supplied herein are subject to change without notice at any time.

Copyright © Shanghai Quectel Wireless Solutions Ltd. 2012

M95_HD_V1.0 - 2 -

Contents

Contents	3
Table Index	5
Figure Index	6
0. Revision history	8
1. Introduction	9
1.1. Related documents	9
1.2. Terms and abbreviations	10
1.3. Directives and standards	12
1.3.1. FCC Statement	12
1.3.2. FCC Radiation exposure statement	12
1.3.3. Industry Canada licence	12
1.4. Safety cautions	13
2. Product concept	15
2.1. Key features	15
2.2. Functional diagram	17
2.3. Evaluation board	18
3. Application interface	19
3.1. Pin	20
3.1.1. Pin assignment	20
3.1.2. Pin description	21
3.2. Operating modes	26
3.3. Power supply	27
3.3.1. Feature of GSM power	27
3.3.2. Minimize supply voltage drop	27
3.3.3. Reference power design for the module	28
3.3.4. Monitor power supply	29
3.4. Power on and down scenarios	29
3.4.1. Power on	29
3.4.2. Power down	31
3.4.3. Restart	35
3.5. Power saving	36
3.5.1. Minimum functionality mode	36
3.5.2. Sleep mode	36
3.5.3. Wake up the module from SLEEP mode	37
3.6. Summary of state transitions	37
3.7. RTC backup	37
3.8. Serial interfaces	39
3.8.1. UART Port	40
3.8.2. Debug Port	44
3.8.3. UART Application	
3.9. Audio interfaces	48

3.9.1. Decrease TDD noise and other noise	49
3.9.2. Microphone interfaces design	50
3.9.3. Receiver interface design	50
3.9.4. Earphone interface design	51
3.9.5. Loud speaker interface design	51
3.9.6. Audio characteristics	52
3.10. SIM card interface	52
3.10.1. SIM card application	52
3.10.2. 6 Pin SIM cassette	54
3.12. Behaviors of the RI	55
3.13. Network status indication	57
3.14. Operating status indication	57
4. Antenna interface	59
4.1. RF reference design	59
4.2. RF output power	60
4.3. RF receiving sensitivity	60
4.4. Operating frequencies	60
4.5. RF cable soldering	60
5. Electrical, reliability and radio characteristics	62
5.1. Absolute maximum ratings	62
5.2. Operating temperature	62
5.3. Power supply ratings	62
5.4. Current consumption	63
5.5. Electro-static discharge	64
6. Mechanical dimensions	65
6.1. Mechanical dimensions of module	65
6.2. Footprint of recommendation	67
6.3. Top view of the module	68
6.4. Bottom view of the module	69
7. Storage and Manufacturing	70
7.1. Storage	70
7.3. Packaging	72
Appendix A: GPRS coding schemes	73
Appendix B: GPRS multi-slot classes	74

Table Index

TABLE 1: RELATED DOCUMENTS	9
TABLE 2: TERMS AND ABBREVIATIONS	10
TABLE 3: MODULE KEY FEATURES	15
TABLE 4: CODING SCHEMES AND MAXIMUM NET DATA RATES OVER AIR INTE	RFACE 17
TABLE 5: M95 PIN ASSIGNMENT	20
TABLE 6: PIN DESCRIPTION	21
TABLE 7: OVERVIEW OF OPERATING MODES	26
TABLE 8: SUMMARY OF STATE TRANSITION	37
TABLE 9: LOGIC LEVELS OF THE UART INTERFACE	40
TABLE 10: PIN DEFINITION OF THE UART INTERFACES	40
TABLE 11: PIN DEFINITION OF AUDIO INTERFACE	
TABLE 12: AOUT2 OUTPUT CHARACTERISTICS	49
TABLE 13: TYPICAL ELECTRET MICROPHONE CHARACTERISTICS	52
TABLE 14: TYPICAL SPEAKER CHARACTERISTICS	52
TABLE 15: PIN DEFINITION OF THE SIM INTERFACE	53
TABLE 16: PIN DESCRIPTION OF AMPHENOL SIM CARD HOLDER	54
TABLE 17: BEHAVIORS OF THE RI	55
TABLE 18: WORKING STATE OF THE NETLIGHT	57
TABLE 19: PIN DEFINITION OF THE STATUS	
TABLE 20: PIN DEFINITION OF THE ANTENNA INTERFACE	
TABLE 21: THE MODULE CONDUCTED RF OUTPUT POWER	60
TABLE 22: THE MODULE CONDUCTED RF RECEIVING SENSITIVITY	
TABLE 23: THE MODULE OPERATING FREQUENCIES	60
TABLE 24: ABSOLUTE MAXIMUM RATINGS	62
TABLE 25: OPERATING TEMPERATURE	62
TABLE 26: THE MODULE POWER SUPPLY RATINGS	62
TABLE 27: THE MODULE CURRENT CONSUMPTION	
TABLE 28: THE ESD ENDURANCE (TEMPERATURE:25 $^{\circ}\mathrm{C}$, HUMIDITY:45 %)	64
TABLE 29: DESCRIPTION OF DIFFERENT CODING SCHEMES	73
TADLE 20. CDDC MILLTI SLOT CLASSES	7.4

Figure Index

FIGURE 1: MODULE FUNCTIONAL DIAGRAM	18
FIGURE 2: PIN ASSIGNMENT	20
FIGURE 3: RIPPLE IN SUPPLY VOLTAGE DURING TRANSMITTING BURST	27
FIGURE 4: REFERENCE CIRCUIT OF THE VBAT INPUT	28
FIGURE 5: REFERENCE CIRCUIT OF THE SOURCE POWER SUPPLY INPUT	28
FIGURE 6: TURN ON THE MODULE USING DRIVING CIRCUIT	30
FIGURE 7: TURN ON THE MODULE USING KEYSTROKE	30
FIGURE 8: TIMING OF TURNING ON SYSTEM	31
FIGURE 9: TIMING OF TURNING OFF THE MODULE	32
FIGURE 10: REFERENCE CIRCUIT FOR EMERG_OFF BY USING DRIVING CIRCUIT	34
FIGURE 11: REFERENCE CIRCUIT FOR EMERG_OFF BY USING BUTTON	34
FIGURE 12: TIMING OF RESTARTING SYSTEM	35
FIGURE 13: TIMING OF RESTARTING SYSTEM AFTER EMERGENCY SHUTDOWN	35
FIGURE 14: RTC SUPPLY FROM NON-CHARGEABLE BATTERY	38
FIGURE 15: RTC SUPPLY FROM RECHARGEABLE BATTERY	38
FIGURE 16: RTC SUPPLY FROM CAPACITOR	38
FIGURE 17: SEIKO XH414H-IV01E CHARGE CHARACTERISTICS	39
FIGURE 18: CONNECTION OF ALL FUNCTIONAL UART PORT	42
FIGURE 19: CONNECTION OF THREE LINES UART PORT	42
FIGURE 20: CONNECTION OF UART PORT ASSOCIATED HARDWARE FLOW CONTROL	L43
FIGURE 21: CONNECTION OF SOFTWARE UPGRADE	43
FIGURE 22: CONNECTION OF SOFTWARE DEBUG	44
FIGURE 23: 3.3V LEVEL MATCH CIRCUIT	45
FIGURE 24: 5V LEVEL MATCH CIRCUIT	46
FIGURE 25: RS232 LEVEL MATCH CIRCUIT	47
FIGURE 26: MICROPHONE INTERFACE DESIGN OF AIN1&AIN2	50
FIGURE 27: RECEIVER INTERFACE DESIGN OF AOUT1	50
FIGURE 28: EARPHONE INTERFACE DESIGN	51
FIGURE 29: LOUD SPEAKER INTERFACE DESIGN	51
FIGURE 30: REFERENCE CIRCUIT OF THE 6 PINS SIM CARD	53
FIGURE 31: AMPHENOL C707 10M006 512 2 SIM CARD HOLDER	54
FIGURE 32: RI BEHAVIOR OF VOICE CALLING AS A RECEIVER	55
FIGURE 33: RI BEHAVIOR OF DATA CALLING AS A RECEIVER	56
FIGURE 34: RI BEHAVIOR AS A CALLER	56
FIGURE 35: RI BEHAVIOR OF URC OR SMS RECEIVED	56
FIGURE 36: REFERENCE CIRCUIT OF THE NETLIGHT	57
FIGURE 37: REFERENCE CIRCUIT OF THE STATUS	58
FIGURE 38: REFERENCE CIRCUIT OF RF	
FIGURE 39: RF SOLDERING SAMPLE	61
FIGURE 40: M95 TOP AND SIDE DIMENSIONS (UNIT: MM)	65
FIGURE 41: M95 BOTTOM DIMENSIONS (UNIT: MM)	66

M95 Hardware Design

FIGURE 42: FOOTPRINT ONE OF RECOMMENDATION (UNIT: MM)	67
FIGURE 43: TOP VIEW OF THE MODULE	68
FIGURE 44: BOTTOM VIEW OF THE MODULE	69
FIGURE 45: PASTE APPLICATION	71
FIGURE 46: RAMP-SOAK-SPIKE REFLOW PROFILE	72
FIGURE 47: MODULE TRAY	72
FIGURE 48: RADIO BLOCK STRUCTURE OF CS-1, CS-2 AND CS-3	73
FIGURE 40: RADIO BLOCK STRUCTURE OF CS-4	73

0. Revision history

I	Revision	Date	Author	Description of change
ı	1.0	2011-12-29	Luka WU	Initial

M95_HD_V1.0 -8-

1. Introduction

This document defines Module M95 and describes its hardware interface which are connected with the customer application and the air interface.

This document can help customers quickly understand the interface specifications, electrical and mechanical details of M95. Associated with application notes and user guide, customers can use M95 to design and set up mobile applications easily.

1.1. Related documents

Table 1: Related documents

SN	Document name	Remark
[1]	M95_ATC	AT commands set
[2]	ITU-T Draft new	Serial asynchronous automatic dialing and control
	recommendation V.25ter	
[3]	GSM 07.07	Digital cellular telecommunications (Phase 2+); AT
		command set for GSM Mobile Equipment (ME)
[4]	GSM 07.10	Support GSM 07.10 multiplexing protocol
[5]	GSM 07.05	Digital cellular telecommunications (Phase 2+); Use of
		Data Terminal Equipment – Data Circuit terminating
		Equipment (DTE – DCE) interface for Short Message
		Service (SMS) and Cell Broadcast Service (CBS)
[6]	GSM 11.14	Digital cellular telecommunications (Phase 2+);
		Specification of the SIM Application Toolkit for the
		Subscriber Identity module – Mobile Equipment (SIM –
		ME) interface
[7]	GSM 11.11	Digital cellular telecommunications (Phase 2+);
		Specification of the Subscriber Identity module – Mobile
		Equipment (SIM – ME) interface
[8]	GSM 03.38	Digital cellular telecommunications (Phase 2+);
		Alphabets and language-specific information
[9]	GSM 11.10	Digital cellular telecommunications (Phase 2); Mobile
		Station (MS) conformance specification; Part 1:
		Conformance specification
[10]	GSM_UART_AN	UART port application notes
[11]	GSM_FW_Upgrade_Tool_	GSM Firmware upgrade tool lite GS2 user guide
	Lite_GS2_UDG	
[12]	M95_EVB_UGD	M95 EVB user guide

M95_HD_V1.0

1.2. Terms and abbreviations

Table 2: Terms and abbreviations

Abbreviation	Description	
ADC	Analog-to-Digital Converter	
AMR	Adaptive Multi-Rate	
ARP	Antenna Reference Point	
ASIC	Application Specific Integrated Circuit	
BER	Bit Error Rate	
BOM	Bill Of Material	
BTS	Base Transceiver Station	
СНАР	Challenge Handshake Authentication Protocol	
CS	Coding Scheme	
CSD	Circuit Switched Data	
CTS	Clear To Send	
DAC	Digital-to-Analog Converter	
DRX	Discontinuous Reception	
DSP	Digital Signal Processor	
DCE	Data Communications Equipment (typically module)	
DTE	Data Terminal Equipment (typically computer, external controller)	
DTR	Data Terminal Ready	
DTX	Discontinuous Transmission	
EFR	Enhanced Full Rate	
EGSM	Enhanced GSM	
EMC	Electromagnetic Compatibility	
ESD	Electrostatic Discharge	
ETS	European Telecommunication Standard	
FCC	Federal Communications Commission (U.S.)	
FDMA	Frequency Division Multiple Access	
FR	Full Rate	
GMSK	Gaussian Minimum Shift Keying	
GPRS	General Packet Radio Service	
GSM	Global System for Mobile Communications	
HR	Half Rate	
I/O	Input/Output	
IC	Integrated Circuit	
IMEI	International Mobile Equipment Identity	
Imax	Maximum Load Current	
Inorm	Normal Current	
kbps	Kilo Bits Per Second	
LED	Light Emitting Diode	

M95_HD_V1.0 - 10 -

Li-Ion	Lithium-Ion	
Abbreviation	Description	
МО	Mobile Originated	
MS	Mobile Station (GSM engine)	
MT	Mobile Terminated	
PAP	Password Authentication Protocol	
РВССН	Packet Switched Broadcast Control Channel	
PCB	Printed Circuit Board	
PDU	Protocol Data Unit	
PPP	Point-to-Point Protocol	
RF	Radio Frequency	
RMS	Root Mean Square (value)	
RTC	Real Time Clock	
RX	Receive Direction	
SIM	Subscriber Identification Module	
SMS	Short Message Service	
TDMA	Time Division Multiple Access	
TE	Terminal Equipment	
TX	Transmitting Direction	
UART	Universal Asynchronous Receiver & Transmitter	
URC	Unsolicited Result Code	
USSD	Unstructured Supplementary Service Data	
VSWR	Voltage Standing Wave Ratio	
Vmax	Maximum Voltage Value	
Vnorm	Normal Voltage Value	
Vmin	Minimum Voltage Value	
VIHmax	Maximum Input High Level Voltage Value	
VIHmin	Minimum Input High Level Voltage Value	
VILmax	Maximum Input Low Level Voltage Value	
VILmin	Minimum Input Low Level Voltage Value	
VImax	Absolute Maximum Input Voltage Value	
VImin	Absolute Minimum Input Voltage Value	
VOHmax	Maximum Output High Level Voltage Value	
VOHmin	Minimum Output High Level Voltage Value	
VOLmax	Maximum Output Low Level Voltage Value	
VOLmin	Minimum Output Low Level Voltage Value	
Phonebook abbreviations		
FD	SIM Fix Dialing phonebook	
LD	SIM Last Dialing phonebook (list of numbers most recently dialed)	
MC	Mobile Equipment list of unanswered MT Calls (missed calls)	
ON	SIM (or ME) Own Numbers (MSISDNs) list	
RC	Mobile Equipment list of Received Calls	

M95_HD_V1.0 - 11 -

SM	SIM phonebook

1.3. Directives and standards

The M95 module is designed to comply with the FCC statements. FCC ID is XMR201202M95. The Host system using M95, should have label indicated FCC ID: XMR201202M95.

1.3.1. FCC Statement

- 1. This device complies with Part 15 of the FCC rules. Operation is subject to the following conditions:
 - a) This device may not cause harmful interference.
 - b) This device must accept any interference received, including interference that may cause undesired operation.
- 2. Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

1.3.2. FCC Radiation exposure statement

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20cm between the radiator and your body as well as kept minimum 20cm from radio antenna depending on the portable or Mobile status of this module usage.

The manual of the host system, which uses M95, must include RF exposure warning statement to advice user should keep minimum 20cm from the radio antenna of M95 module depending on portable or Mobile status.

Note: If a portable device (such as PDA) uses M95 module, the device needs to do permissive change and SAR testing.

1.3.3. Industry Canada licence

English version

This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions:

- a) This device may not cause harmful interference.
- b) This device must accept any interference, including interference that may cause undesired operation of the device.

M95_HD_V1.0 - 12 -

• The Host system using M95, should have label indicating "transmitter module IC:10064-201202M95.

French version

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autoris ée aux deux conditions suivantes :

- a) l'appareil ne doit pas produire de brouillage, et
- b) L'utilisateur de l'appareil doit accepter tout brouillage radio dectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

1.4. Safety cautions

The following safety precautions must be observed during all phases of the operation, such as usage, service or repair of any cellular terminal or mobile incorporating M95 module. Manufacturers of the cellular terminal should send the following safety information to users and operating personnel and to incorporate these guidelines into all manuals supplied with the product. If not so, Quectel does not take on any liability for customer failure to comply with these precautions.

When in a hospital or other health care facility, observe the restrictions about the use of mobile. Switch the cellular terminal or mobile off. Medical equipment may be sensitive to not operate normally for RF energy interference.

Switch off the cellular terminal or mobile before boarding an aircraft. Make sure it switched off. The operation of wireless appliances in an aircraft is forbidden to prevent interference with communication systems. Forget to think much of these instructions may lead to the flight safety or offend against local legal action, or both.

Do not operate the cellular terminal or mobile in the presence of flammable gas or fume. Switch off the cellular terminal when you are near petrol station, fuel depot, chemical plant or where blasting operations are in progress. Operation of any electrical equipment in potentially explosive atmosphere can constitute a safety hazard.

Your cellular terminal or mobile receives and transmits radio frequency energy while switched on. RF interference can occur if it is used close to TV set, radio, computer or other electric equipment.

M95_HD_V1.0 - 13 -

Road safety comes first! Do not use a hand-held cellular terminal or mobile while driving a vehicle, unless it is securely mounted in a holder for hands-free operation. Before making a call with a hand-held terminal or mobile, park the vehicle.

GSM cellular terminals or mobiles operate over radio frequency signal and cellular network and cannot be guaranteed to connect in all conditions, for example no mobile fee or an invalid SIM card. While you are in this condition and need emergent help, Please Remember using emergency call. In order to make or receive call, the cellular terminal or mobile must be switched on and in a service area with adequate cellular signal strength.

Some networks do not allow for emergency call if certain network services or phone features are in use (e.g. lock functions, fixed dialing etc.). You may have to deactivate those features before you can make an emergency call.

Also, some networks require that a valid SIM card be properly inserted in cellular terminal or mobile.

M95_HD_V1.0 - 14 -

2. Product concept

M95 is a Quad-band GSM/GPRS engine that works at frequencies of GSM850MHz, GSM900MHz, DCS1800MHz and PCS1900MHz. The M95 features GPRS multi-slot class 12 and supports the GPRS coding schemes CS-1, CS-2, CS-3 and CS-4. For more details about GPRS multi-slot classes and coding schemes, please refer to *Appendix A and Appendix B*.

With a tiny profile of $19.9 \text{mm} \times 23.6 \text{mm} \times 2.65 \text{mm}$, the module can meet the requirements of almost all M2M applications, including Tracking and Tracing, Industrial PDA, Wireless POS, Intelligent Measurement, Remote Controlling, etc.

M95 is an SMD type module with LCC package, which can be embedded in customer applications. It provides abundant hardware interfaces between the module and customer's host board.

Designed with power saving technique, the current consumption of M95 module is as low as 0.9 mA in SLEEP mode when DRX is 5.

M95 is integrated with Internet service protocols, which are TCP/IP, UDP, FTP and PPP. Extended AT commands have been developed for customer to use these Internet service protocols easily.

The module fully complies to FCC statements and RoHS directive of the European Union.

2.1. Key features

Table 3: Module key features

Feature	Implementation	
Power supply	Single supply voltage 3.3V ~ 4.6V	
	Typical supply voltage 4V	
Power saving	Typical power consumption in SLEEP mode: 0.9 mA@ DRX=5	
	0.7 mA@ DRX=9	
Frequency bands	 Quad-band: GSM850, GSM900, DCS1800, PCS1900. 	
	The module can search these frequency bands automatically	
	• The frequency bands can be set by AT command.	
	• Compliant with GSM Phase 2/2+	
GSM class	Small MS	
Transmitting power	• Class 4 (2W) at GSM850 and GSM900	
	• Class 1 (1W) at DCS1800 and PCS1900	
GPRS connectivity	GPRS multi-slot class 12 (default)	
	● GPRS multi-slot class 1~12 (configurable)	
	GPRS mobile station class B	

M95_HD_V1.0 - 15 -

Tamparatura ranga	• Normal operation: $-35 \text{°C} \sim +80 \text{°C}$
Temperature range	10.00
DATEA CODE	• Storage temperature: $-45 \text{C} \sim +90 \text{C}$
DATA GPRS:	• GPRS data downlink transfer: max. 85.6 kbps
	• GPRS data uplink transfer: max. 85.6 kbps
	• Coding schemes: CS-1, CS-2, CS-3 and CS-4
	Support the protocols PAP (Password Authentication Protocol)
	usually used for PPP connections
	Internet service protocols TCP/UDP/FTP/HTTP
	Support Packet Switched Broadcast Control Channel (PBCCH)
CSD:	• CSD transmission rates: 2.4, 4.8, 9.6, 14.4 kbps non-transparent
	Support Unstructured Supplementary Services Data (USSD)
SMS	Text and PDU mode
	SMS storage: SIM card
FAX	Group 3 Class 1 and Class 2
SIM interface	Support SIM card: 1.8V, 3V
Audio features	Speech codec modes:
	• Half Rate (ETS 06.20)
	• Full Rate (ETS 06.10)
	• Enhanced Full Rate (ETS 06.50 / 06.60 / 06.80)
	Adaptive Multi-Rate (AMR)
	Echo Cancellation
	Echo Suppression
	Noise Reduction
	Embedded one amplifier of class AB with maximum driving
	power up to 800mW
UART interface	UART Port:
	Seven lines on UART port interface
	Use for AT command, GPRS data and CSD data
	Multiplexing function
	Support autobauding from 4800 bps to 115200 bps
	Debug Port:
	Two lines on debug UART port interface DBG_TXD and
	DBG_RXD
	 Debug Port only used for software debugging
Phonebook management	Support phonebook types: SM, ME, FD, ON, MT
SIM Application Toolkit	Support SAT class 3, GSM 11.14 Release 99
Real time clock	Implemented
Physical characteristics	Size:
]	19.9±0.15 × 23.6±0.15 × 2.65±0.2mm
	Weight: 3g
Firmware upgrade	Firmware upgrade via UART Port
Antenna interface	Connected via 50 Ohm antenna pad
7 mema menace	Connected via 50 Onni antenna pad

M95_HD_V1.0 - 16 -

Table 4: Coding schemes and maximum net data rates over air interface

Coding scheme	1 Timeslot	2 Timeslot	4 Timeslot
CS-1:	9.05kbps	18.1kbps	36.2kbps
CS-2:	13.4kbps	26.8kbps	53.6kbps
CS-3:	15.6kbps	31.2kbps	62.4kbps
CS-4:	21.4kbps	42.8kbps	85.6kbps

2.2. Functional diagram

The following figure shows a block diagram of the M95 module and illustrates the major functional parts:

- Power management
- Baseband
- The GSM radio frequency part
- The Peripheral interface
 - —SIM interface
 - —Audio interface
 - —UART interface
 - —Power supply
 - -RF interface
 - -Turn on/off interface
 - -RTC interface

M95_HD_V1.0 - 17 -

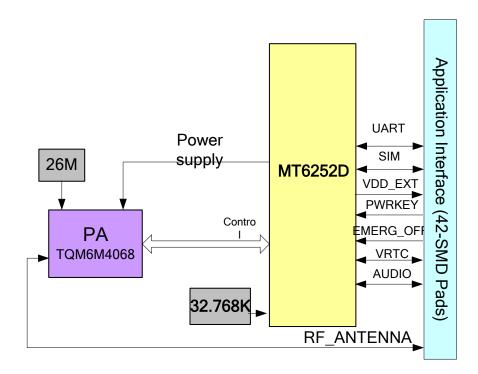


Figure 1: Module functional diagram

2.3. Evaluation board

In order to help customer to develop applications with M95, Quectel supplies an evaluation board (EVB), RS-232 to USB cable, power adapter, earphone, antenna and other peripherals to control or test the module. For details, please refer to *the document* [12].

M95_HD_V1.0 - 18 -

3. Application interface

The module is equipped with 42 pin SMT pad and it adopts LCC package. Detailed descriptions on Sub-interfaces included in these pads are given in the following chapters:

- Power supply
- Turn on/off
- Power saving
- RTC
- UART interfaces
- Audio interfaces
- SIM interface

3.1. Pin

3.1.1. Pin assignment

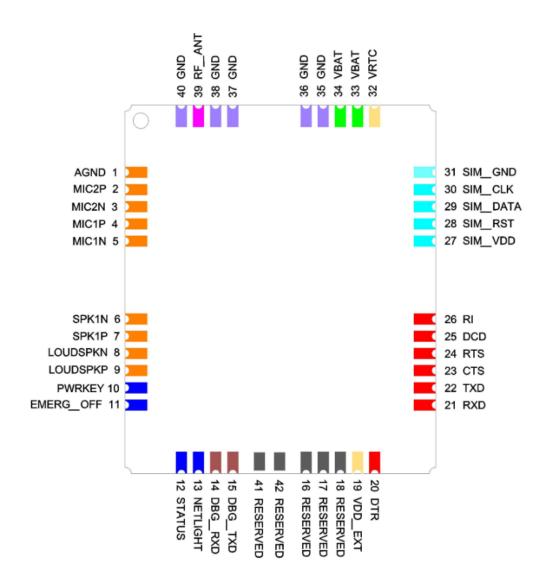


Figure 2: Pin assignment

Table 5: M95 pin assignment

PIN NO.	PIN NAME	I/O	PIN NO.	PIN NAME	I/O
1	AGND		2	MIC2P	I
3	MIC2N	I	4	MIC1P	I
5	MIC1N	I	6	SPK1N	О
7	SPK1P	О	8	LOUDSPKN	О
9	LOUDSPKP	О	10	PWRKEY	I
11	EMERG_OFF	I	12	STATUS	О

M95_HD_V1.0 - 20 -

13	NETLIGHT	О	14	DBG_RXD	I
15	DBG_TXD	О	16	RESERVED	
17	RESERVED		18	RESERVED	
19	VDD_EXT	О	20	DTR	I
21	RXD	I	22	TXD	О
23	CTS	О	24	RTS	I
25	DCD	О	26	RI	О
27	SIM_VDD	О	28	SIM_RST	О
29	SIM_DATA	I/O	30	SIM_CLK	О
31	SIM_GND		32	VRTC	I/O
33	VBAT	I	34	VBAT	I
35	GND		36	GND	
37	GND		38	GND	
39	RF_ANT	I/O	40	GND	
41	RESERVED		42	RESERVED	

3.1.2. Pin description

Table 6: Pin description

Power supply	Power supply						
PIN NAME	PIN	I/	DESCRIPTION	DC	COMMENT		
	NO.	О		CHARACTERISTICS			
VBAT	33,	I	Main power supply of	Vmax= 4.6V	Make sure that supply		
	34		module:	Vmin=3.3V	sufficient current in a		
			VBAT=3.3V~4.6V	Vnorm=4.0V	transmitting burst		
					which typically rises		
					to 1.6A.		
VRTC	32	I/	Power supply for RTC	VImax=VBAT	If unused, keep this		
		О	when VBAT is not	VImin=2.6V	pin open.		
			supplied for the	VInorm=2.8V			
			system.	VOmax=2.85V			
			Charging for backup	VOmin=2.6V			
			battery or golden	VOnorm=2.8V			
			capacitor when the	Iout(max) = 730uA			
			VBAT is supplied.	Iin=2.6~5 uA			
VDD_EXT	19	0	Supply 2.8V voltage	Vmax=2.9V	1. If unused, keep this		
			for external circuit.	Vmin=2.7V	pin open.		
				Vnorm=2.8V	2. Recommended to		
				Imax=20mA	add a 2.2~4.7uF		

M95_HD_V1.0 - 21 -

	1				
					bypass capacitor,
					when using this pin
					for power supply.
GND	35,		Ground		
	36,				
	37,				
	38,				
	40				
TT / 66					
Turn on/off	DD.	T .	DEG CD VDETCOV	n.a	GOLD GIVE
PIN NAME	PIN	I/	DESCRIPTION	DC	COMMENT
	NO.	О		CHARACTERISTICS	
PWRKEY	10	I	Power on/off key.	VILmax=	Pulled up to VBAT
			PWRKEY should be	0.1*VBAT	internally.
			pulled down for a	VIHmin=	
			moment to turn on or	0.6*VBAT	
			turn off the system.	VImax=VBAT	
Emergency sh	utdown				
PIN NAME	PIN	I/	DESCRIPTION	DC	COMMENT
	NO.	О		CHARACTERISTICS	
EMERG_	11	I	Emergency off. Pulled	VILmax=0.4V	Open drain/collector
OFF			down for at least	VIHmin=2.2V	driver required in
OIT			20ms, which will turn		cellular device
				V _{open} max=2.8V	
			off the module in case		application.
			of emergency. Use it		If unused, keep this
			only when normal		pin open.
			shutdown through		
			PWRKEY or AT		
			command cannot		
			perform well.		
Module indica	tor		•		
PIN NAME	PIN	I/	DESCRIPTION	DC	COMMENT
	NO.	О		CHARACTERISTICS	
STATUS	12	0	Indicate module	VOHmin=	If unused, keep this
5111105	12		operating status. High	0.85*VDD_EXT	pin open.
			level indicates module	VOLmax=	pin open.
			is power-on and low	0.15*VDD_EXT	
			level indicates		
A 30 A			power-down.		
Audio interfac	1				
PIN NAME	PIN	I/	DESCRIPTION	DC	COMMENT
	1111				
	NO.	О		CHARACTERISTICS	
MIC1P			Channel one of	CHARACTERISTICS	If unused, keep these

M95_HD_V1.0 - 22 -

			voice-band input		
MIC2P	2,	Ι	Channel two of		1
MIC2N	3	1	positive and negative		
1,11021			voice-band input		
SPK1N	6,	0	Channel one of		If unused, keep these
SPK1P	7		positive and negative		pins open.
STRII	,		voice-band output		pins open.
AGND	1		Cooperate with		If unused, keep this
None	1		LOUDSPKP		pin open.
LOUDSPKN	8, 9	О	Channel two of		1. If unused, keep
LOODSI KIV	0,)		positive and negative		these pins open.
LOUDSPKP			voice-band output		2. Embedded
LOODSI KI			voice-band output		amplifier of class AB
					internally.
					3. Support both Voice
					and ring.
Net status ind	icator	1			
PIN NAME	PIN	I/	DESCRIPTION	DC	COMMENT
	NO.	О		CHARACTERISTICS	
NETLIGHT	13	0	Network status	VOHmin=	If unused, keep this
			indication	0.85*VDD_EXT	pin open.
				VOLmax=	
				0.15*VDD_EXT	
Main UART I	ort				
PIN NAME	PIN	I/	DESCRIPTION	DC	COMMENT
	NO.	О		CHARACTERISTICS	
DTR	20	I	Data terminal ready	VILmin=-0.3V	If only use TXD,
RXD	21	I	Receiving data	VILmax=	RXD and GND to
TXD	22	О	Transmitting data	0.25*VDD_EXT	communicate,
CTS	23	О	Clear to send	VIHmin=	recommended keeping
RTS	24	I	Request to send	0.75*VDD_EXT	other pins open,
DCD	25	О	Data carrier detection	VIHmax=	except RTS. Pull
RI	26	О	Ring indicator	VDD_EXT+0.3V	down RTS.
				VOHmin=	
				0.85*VDD_EXT	
				VOLmax=	
				0.15*VDD_EXT	
Debug UART	Î	I			
PIN NAME	PIN	I/	DESCRIPTION	DC	COMMENT
	NO.	О		CHARACTERISTICS	

M95_HD_V1.0 - 23 -

DBG_RXD	14	I	UART interface for	VILmin=-0.3V	If unused, keep these
DDG_RAD	17		debugging only.	VILmax=	pins open.
			debugging omy.	0.25*VDD_EXT	pins open.
				VIHmin=	
				0.75*VDD_EXT	
DBG_TXD	15	0		VIHmax=	
<i>DD</i> 0_111D	13			VDD_EXT+0.3V	
				VOHmin=	
				0.85*VDD_EXT	
				VOLmax=	
				0.15*VDD_EXT	
SIM interfac	ce			0110 \DZ_BIT	
PIN NAME	PIN	I/	DESCRIPTION	DC	COMMENT
	NO.	О		CHARACTERISTICS	
SIM_ VDD	27	О	Power supply for SIM	The voltage can be	1. All signals of SIM
			card	selected by software	interface should be
İ				automatically. Either	protected against ESD
				1.8V or 3V.	with a TVS diode
SIM_RST	28	О	SIM reset	3V:	array.
İ				VOLmax=0.36V	2. Maximum trace
				VOHmin=	length is 200mm from
				0.9*SIM_VDD	the module pad to
				1.8V:	SIM card holder.
İ				VOLmax=	
				0.2*SIM_VDD	
				VOHmin=	
				0.9*SIM_VDD	
SIM_	29	I/	SIM data	3V:	
DATA		O		VOLmax=0.4V	
				VOHmin=	
				SIM_VDD-0.4V	
				1.8V:	
				VOLmax=	
				0.15*SIM_VDD	
				VOHmin=	
				SIM1_VDD-0.4V	
SIM_CLK	30	О	SIM clock	3V:	
1				VOLmax=0.4V	
				VOHmin=	
				0.9*SIM_VDD	
				1.8V:	
İ				VOLmax=	
				0.12*SIM_VDD	

M95_HD_V1.0 - 24 -

				VOHmin=		
				0.9*SIM_VDD		
SIM_GND	31		SIM ground			
RF interface	RF interface					
PIN NAME	PIN	I/	DESCRIPTION	DC	COMMENT	
	NO.	О		CHARACTERISTICS		
RF_ANT	39	I/	RF antenna pad	Impedance of 50Ω		
		О				

M95_HD_V1.0 - 25 -

3.2. Operating modes

The table below briefly summarizes the various operating modes in the following chapters.

Table 7: Overview of operating modes

Mode	Function			
Normal operation	GSM/GPRS	The module will automatically go into SLEEP mode if		
	SLEEP	DTR is set to high level and there is no interrupt (such as		
		GPIO interrupt or data on UART port).		
		In this case, the current consumption of module will reduce		
		to the minimal level.		
		During SLEEP mode, the module can still receive paging		
		message and SMS from the system normally.		
	GSM IDLE	Software is active. The module has registered to the GSM		
		network, and the module is ready to send and receive GSM		
		data.		
	GSM TALK	GSM connection is ongoing. In this mode, the power		
		consumption is decided by the configuration of Power		
		Control Level (PCL), dynamic DTX control and the		
		working RF band.		
	GPRS IDLE	The module is not registered to GPRS network. The		
		module is not reachable through GPRS channel.		
	GPRS	The module is registered to GPRS network, but no GPRS		
	STANDBY	PDP context is active. The SGSN knows the Routing Area		
		where the module is located at.		
	GPRS	The PDP context is active, but no data transfer is going on.		
	READY	The module is ready to receive or send GPRS data. The		
		SGSN knows the cell where the module is located at.		
	GPRS DATA	There is GPRS data in transfer. In this mode, power		
		consumption is decided by the PCL, working RF band and		
		GPRS multi-slot configuration.		
POWER DOWN	Normal shutdown by sending the "AT+QPOWD=1" command, using the			
		the EMERG_OFF ¹⁾ pin. The power management ASIC		
		power supply from the base band part of the module, and		
	_	supply for the RTC is remained. Software is not active. The		
	UART interfaces are not accessible. Operating voltage (connected to			
M	VBAT) remains			
Minimum		command can set the module to a minimum functionality		
functionality		emoving the power supply. In this case, the RF part of the		
mode (without		work or the SIM card will not be accessible, or both RF part		
removing power		will be disabled, but the UART port is still accessible. The		
supply)	power consump	tion in this case is very low.		

M95_HD_V1.0 - 26 -

1) Use the EMERG_OFF pin only while failing to turn off the module by the command "AT+QPOWD=1" and the PWRKEY pin. Please refer to *Section 3.4.2.2*.

3.3. Power supply

3.3.1. Feature of GSM power

The unit of GSM transmit in the wireless path is pulse string which is constructed by GSMK bit string and we call it burst. The period of burst is 4.16ms and the last time of burst is 577us. The burst current will reach 1.6A while idle current is as low as tens of milliampere. This sudden change of current will produce large ripple of VBAT or pull the VBAT down to 3.3V, while the module will shut down when VBAT drops to 3.3V. Due to these features, the power design for the module is crucial.

The following figure is the VBAT voltage and current ripple at the maximum power transmitting phase, the test condition is VBAT=4.0V, VBAT maximum output current =2A, C1=100 μ F tantalum capacitor (ESR=0.7 Ω) and C2=1 μ F.

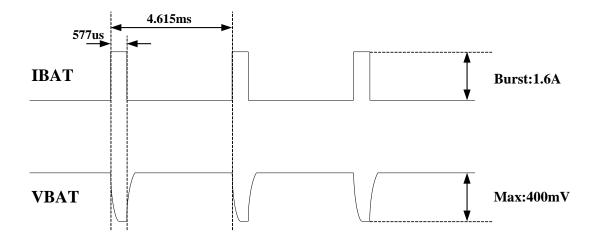


Figure 3: Ripple in supply voltage during transmitting burst

3.3.2. Minimize supply voltage drop

The power supply of the module is from a single voltage source of VBAT= 3.3V~4.6V. The GSM transmitting burst can cause obvious voltage drop at the supply voltage thus the power supply must be carefully designed and is capable of providing sufficient current up to 2A. For the VBAT input, a bypass capacitor of about 100 µF with low ESR is recommended. Multi-layer ceramic chip (MLCC) capacitor can provide the best combination of low ESR but small size may not be economical. A lower cost choice could be a 100 µF tantalum capacitor with low ESR. A small

M95_HD_V1.0 - 27 -

 $(0.1\,\mu F$ to $1\,\mu F)$ ceramic capacitor should be in parallel with the $100\,\mu F$ capacitor, which is illustrated in Figure 4. The capacitors should be placed close to the M95 VBAT pins.

The PCB traces from the VBAT pads to the power source must be wide enough to ensure that there is not too much voltage drop occurring in the transmitting burst mode. The width of trace should be no less than 2mm and the principle of the VBAT trace is the longer, the wider. The VBAT voltage drop can be measured by oscilloscope.

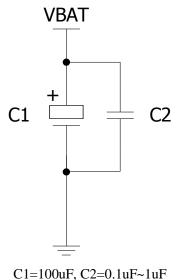


Figure 4: Reference circuit of the VBAT input

3.3.3. Reference power design for the module

The power design for the module is very important and the circuit design of the power supply for the module largely depends on the power source. Figure 5 shows a reference design of +5V input power source. The part number of this LDO IC is MIC29302WU. The designed output for the power supply is 4.16V and the maximum load current is 3A, in order to prevent outputting abnormal voltage, a zener voltage regulator is employed at the point of the output nearby the pin of VBAT. Some elements have to be taken into account in the component select, such as reserve zener voltage is recommend 5.1V and the total dissipation is more than 1Watt.

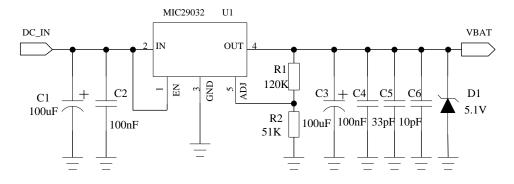


Figure 5: Reference circuit of the source power supply input

M95_HD_V1.0 - 28 -

3.3.4. Monitor power supply

To monitor the supply voltage, the "AT+CBC" command can be used which includes three parameters: charging status, remaining battery capacity and voltage value (in mV). It returns the 0-100 percent of battery capacity and actual value measured between VBAT and GND. The voltage is automatically measured in period of 5s. The displayed voltage (in mV) is averaged over the last measuring period before the "AT+CBC" command is executed.

For details, please refer to document [1].

3.4. Power on and down scenarios

3.4.1. Power on

The module can be turned on by PWRKEY pin.

The module is set to autobauding mode (AT+IPR=0) in default configuration. In the autobauding mode, the URC "RDY" after powering on is not sent to host controller. When the module receives AT command, it will be powered on after a delay of 2 or 3 seconds. Host controller should firstly send an "AT" or "at" string in order that the module can detect baud rate of host controller, and it should send the second or the third "AT" or "at" string until receiving "OK" string from module. Then an "AT+IPR=x;&W" should be sent to set a fixed baud rate for module and save the configuration to flash memory of module. After these configurations, the URC "RDY" would be received from the UART Port of module every time when the module is powered on. Refer to section "AT+IPR" in *document* [1].

The hardware flow control is disabled in default configuration. In the simple UART port which means that only TXD, RXD, GND of the module is connected to host. CTS is pulled down internally. In this condition, the module can transmit and receive data freely. On the other side, if RTS, CTS are connected to the host together with TXD, RXD, GND, whether or not to transmit and receive data depends on the level of RTS and CTS. Then whenever hardware flow is present or not, the URC "RDY" is sent to host controller in the fixed band rate.

3.4.1.1. Power on the module using the PWRKEY pin

Customer's application can turn on the module by driving the pin PWRKEY to a low level voltage and after STATUS pin outputs a high level, PWRKEY pin can be released. Customer may monitor the level of the STATUS pin to judge whether the module is power-on or not. An open collector driver circuit is suggested to control the PWRKEY. A simple reference circuit is illustrated in Figure 6.

M95_HD_V1.0 - 29 -

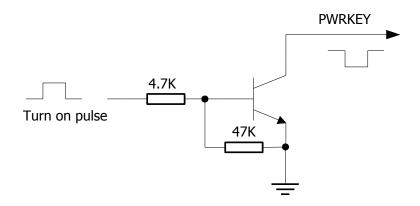


Figure 6: Turn on the module using driving circuit

The other way to control the PWRKEY is using a button directly. A TVS component is indispensable to be placed nearby the button for ESD protection. When pressing the key, electrostatic strike may generate from finger. A reference circuit is showed in Figure 7.

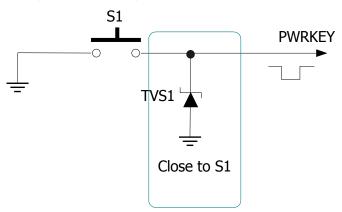


Figure 7: Turn on the module using keystroke

The power-on scenarios is illustrated as the following figure.

M95_HD_V1.0 - 30 -

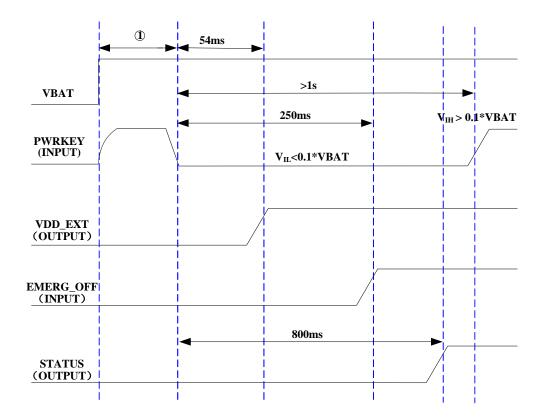


Figure 8: Timing of turning on system

① Make sure that VBAT is stable before pulling down PWRKEY pin. The time between them is recommended 30ms.

Note: Customer can monitor the voltage level of the STATUS pin to judge whether the module is power-on. After the STATUS pin goes to high level, PWRKEY can be released. If the STATUS pin is ignored, pull the PWRKEY pin to low level for more than 1 second to turn on the module.

3.4.2. Power down

The following procedures can be used to turn off the module:

- Normal power down procedure: Turn off module using the PWRKEY pin
- Normal power down procedure: Turn off module using command "AT+QPOWD"
- Over-voltage or under-voltage automatic shutdown: Take effect when over-voltage or under-voltage is detected
- Emergent power down procedure: Turn off module using the EMERG_OFF pin
- Emergent power down procedure: Turn off module using command "AT+QPOWD"

3.4.2.1. Power down module using the PWRKEY pin

Customer's application can turn off the module by driving the PWRKEY to a low level voltage for certain time. The power-down scenarios is illustrated in Figure 9.

M95_HD_V1.0 - 31 -

The power-down procedure causes the module to log off from the network and allows the software to save important data before completely disconnecting the power supply, thus it is a safe way.

Before the completion of the power-down procedure, the module sends out the result code shown as below:

NORMAL POWER DOWN

Note: This result code does not appear when autobauding is active and DTE and DCE are not correctly synchronized after start-up. The module is recommended to set a fixed baud rate.

After that moment, no further AT commands can be executed. Then the module enters the POWER DOWN mode, only the RTC is still active. The POWER DOWN mode can also be indicated by the STATUS pin, which is a low level voltage in this mode.

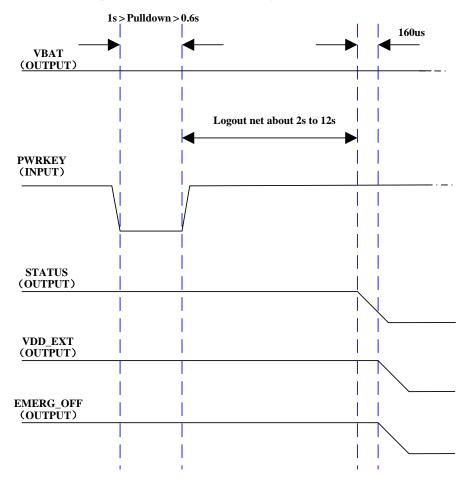


Figure 9: Timing of turning off the module

M95_HD_V1.0 - 32 -

3.4.2.2. Power down the module using AT command

Customer's application can turn off the module via AT command "AT+QPOWD=1". This command will let the module to log off from the network and allow the software to save important data before completely disconnecting the power supply, thus it is a safe way.

Before the completion of the power-down procedure the module sends out the result code shown as below:

NORMAL POWER DOWN

After that moment, no further AT commands can be executed. And then the module enters the POWER DOWN mode, only the RTC is still active. The POWER DOWN mode can also be indicated by STATUS pin, which is a low level voltage in this mode.

Please refer to *document* [1] for details about the AT command "AT+QPOWD".

3.4.2.3. Over-voltage or under-voltage automatic shutdown

The module will constantly monitor the voltage applied on the VBAT, if the voltage is \leq 3.5V, the following URC will be presented:

UNDER_VOLTAGE WARNING

If the voltage is ≥ 4.5 V, the following URC will be presented:

OVER_VOLTAGE WARNING

The uncritical voltage range is 3.3V to 4.6V. If the voltage is > 4.6V or <3.3V, the module would automatically shutdown itself.

If the voltage is <3.3V, the following URC will be presented:

UNDER_VOLTAGE POWER DOWN

If the voltage is >4.6V, the following URC will be presented:

OVER_VOLTAGE POWER DOWN

Note: These result codes don't appear when autobauding is active and DTE and DCE are not correctly synchronized after start-up. The module is recommended to set to a fixed baud rate.

After that moment, no further AT commands can be executed. The module logs off from network and enters POWER DOWN mode, and only RTC is still active. The POWER DOWN mode can also be indicated by the pin STATUS, which is a low level voltage in this mode.

M95_HD_V1.0 - 33 -

3.4.2.4. Emergency shutdown using EMERG_OFF pin

The module can be shut down by driving the pin EMERG_OFF to a low level voltage over 20ms and then releasing it. The EMERG_OFF line can be driven by an Open Drain / Collector driver or a button. The circuit is illustrated as the following figures.

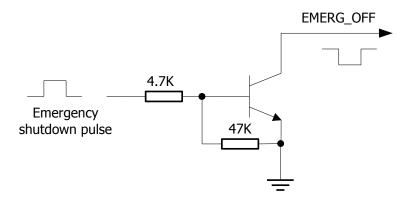


Figure 10: Reference circuit for EMERG_OFF by using driving circuit

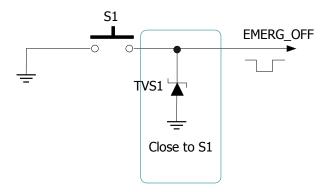


Figure 11: Reference circuit for EMERG_OFF by using button

3.4.2.5. Emergency shutdown using AT command

Using an AT command "AT+QPOWD=0" can achieve emergency shutdown of the module. In this situation, No URC returns back to the host no matter in the fixed band rate or auto band rate.

Be cautious to use the pin EMERG_OFF. It should only be used under emergent situation. For instance, if the module is unresponsive or abnormal, the pin EMERG_OFF could be used to shut down the system. Although turning off the module by EMERG_OFF is fully tested and nothing wrong detected, this operation is still a big risk as it could cause destroying of the code or data area of the NOR flash memory in the module. Therefore, it is recommended that PWRKEY or AT command should always be the preferential way to turn off the system.

M95_HD_V1.0 - 34 -

3.4.3. Restart

3.4.3.1. Restart the module using the PWRKEY pin

Customer's application can restart the module by driving the PWRKEY to a low level voltage for certain time, which is similar to the way of turning on module. Before restarting the module, at least 500ms should be delayed after detecting the low level of STATUS. The restart timing is illustrated as the following figure.

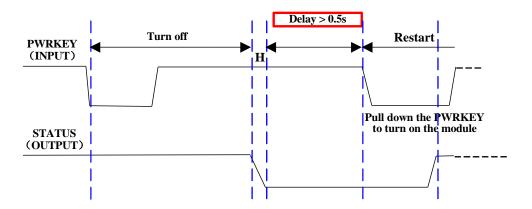


Figure 12: Timing of restarting system

The module can also be restarted by the PWRKEY after emergency shutdown.

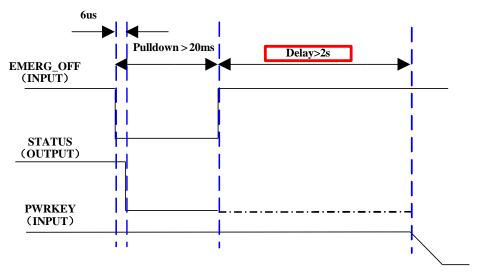


Figure 13: Timing of restarting system after emergency shutdown

3.4.3.2. Restart the module using AT command

Using an AT command "AT+QPOWD=2" can achieve restart of the module. Please refer to *document* [1] for the details.

M95_HD_V1.0 - 35 -

3.5. Power saving

Upon system requirement, there are several actions to drive the module to enter low current consumption status. For example, "AT+CFUN" can be used to set module into minimum functionality mode and DTR hardware interface signal can be used to lead system to SLEEP mode.

3.5.1. Minimum functionality mode

Minimum functionality mode reduces the functionality of the module to minimum level, thus minimize the current consumption when the slow clocking mode is activated at the same time. This mode is set with the "AT+CFUN" command which provides the choice of the functionality levels <fun>=0, 1, 4.

- 0: minimum functionality
- 1: full functionality (default)
- 4: disable both transmitting and receiving of RF part

If the module is set to minimum functionality by "AT+CFUN=0", the RF function and SIM card function would be disabled. In this case, the UART port is still accessible, but all AT commands correlative with RF function or SIM card function will not be accessible.

If the module has been set by "AT+CFUN=4", the RF function will be disabled, but the UART port is still active. In this case, all AT commands correlative with RF function will not be accessible.

After the module is set by "AT+CFUN=0" or "AT+CFUN=4", it can return to full functionality by "AT+CFUN=1".

For detailed information about "AT+CFUN", please refer to document [1].

3.5.2. Sleep mode

The SLEEP mode is disabled in default software configuration. Customer's application can enable this mode by "AT+QSCLK=1". On the other hand, the default setting is "AT+QSCLK=0" and in this mode, the module cannot enter SLEEP mode.

When "AT+QSCLK=1" is sent to the module, customer's application can control the module to enter or exit from the SLEEP mode through pin DTR. When DTR is set to high level, and there is no on-air or hardware interrupt such as GPIO interrupt or data on UART port, the module will enter SLEEP mode automatically. In this mode, the module can still receive voice, SMS or GPRS paging from network but the UART port is not accessible.

M95_HD_V1.0 - 36 -

3.5.3. Wake up the module from SLEEP mode

When the module is in the SLEEP mode, the following methods can wake up the module.

- If the DTR Pin is set low, it would wake up the module from the SLEEP mode. The UART port will be active within 20ms after DTR is changed to low level.
- Receiving a voice or data call from network wakes up module.
- Receiving an SMS from network wakes up module.

Note: DTR pin should be held low level during communication between the module and DTE.

3.6. Summary of state transitions

Table 8: Summary of state transition

Current mode	Next mode				
	Power down	Normal mode	Sleep mode		
Power down		Use PWRKEY			
Normal mode	AT+QPOWD, use		Use AT command		
	PWRKEY pin, or use		"AT+QSCLK=1" and pull		
	EMERG_OFF pin		DTR up		
Sleep mode	Use PWRKEY pin, or	Pull DTR down or			
	use EMERG_OFF pin	incoming call or			
		SMS or GPRS			

3.7. RTC backup

The RTC (Real Time Clock) can be supplied by an external capacitor or battery (rechargeable or non-chargeable) through the pin VRTC. A 1.5 K resistor has been integrated in the module for current limiting. A coin-cell battery or a super-cap can be used to backup power supply for RTC.

The following figures show various sample circuits for RTC backup.

M95_HD_V1.0 - 37 -

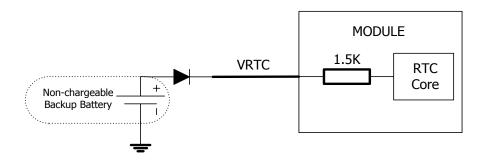


Figure 14: RTC supply from non-chargeable battery

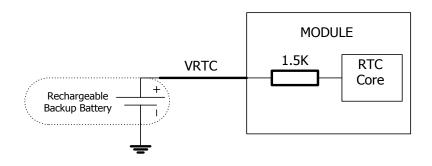


Figure 15: RTC supply from rechargeable battery

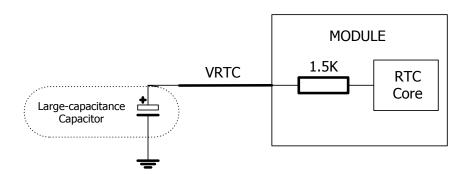


Figure 16: RTC supply from capacitor

Coin-type rechargeable capacitor such as XH414H-IV01E from Seiko can be used.

M95_HD_V1.0 - 38 -

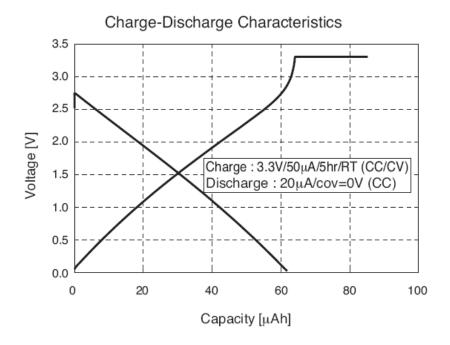


Figure 17: Seiko XH414H-IV01E Charge Characteristics

3.8. Serial interfaces

The module provides two serial ports: UART and Debug Port. The module is designed as a DCE (Data Communication Equipment), following the traditional DCE-DTE (Data Terminal Equipment) connection. Autobauding function supports baud rate from 4800bps to 115200bps.

The UART Port:

- TXD: Send data to RXD of DTE
- RXD: Receive data from TXD of DTE
- RTS: Requests to send
- CTS: Clear to send
- DTR: DTE is ready and inform DCE (this pin can wake the module up)
- RI: Ring indicator (when the call, SMS, data of the module are coming, the module will output signal to inform DTE)
- DCD: Data carrier detection (the valid of this pin demonstrates the communication link is set up)

The module disables hardware flow control in default. When hardware flow control is required, RTS and CTS should be connected to the host. AT command "AT+IFC=2,2" is used to enable hardware flow control. AT command "AT+IFC=0,0" is used to disable the hardware flow control. For more details, please refer to document [1].

The Debug Port

- DBG_TXD: Send data to the COM port of a debugging computer
- DBG_RXD: Receive data from the COM port of a debugging computer

M95_HD_V1.0 - 39 -

The logic levels are described in the following table.

Table 9: Logic levels of the UART interface

Parameter	Min	Max	Unit
V_{IL}	0	0.25*VDD_EXT	V
V_{IH}	0.75*VDD_EXT	VDD_EXT +0.3	V
V_{OL}	0	0.15*VDD_EXT	V
V_{OH}	0.85*VDD_EXT	VDD_EXT	V

Table 10: Pin definition of the UART interfaces

Interface	Name	Pin	Function
Dahara Daut	DBG_RXD	14	Receive data of the debug port
Debug Port	DBG_TXD	15	Transmit data of the debug port
	DTR	20	Data terminal ready
	RXD	21	Receive data of the UART port
	TXD	22	Transmit data of the UART port
UART Port	CTS	23	Clear to send
	RTS	24	Request to send
	DCD	25	Data carrier detection
	RI	26	Ring indicator

3.8.1. UART Port

3.8.1.1 The features of UART Port.

- Seven lines on UART interface
- Contain data lines TXD and RXD, hardware flow control lines RTS and CTS, other control lines DTR, DCD and RI
- Used for AT command, GPRS data, CSD FAX, etc. Multiplexing function is supported on the UART Port. So far only the basic mode of multiplexing is available.
- Support the communication baud rates as the following: 300,600,1200,2400,4800,9600,14400,19200,28800,38400,57600,115200.
- The default setting is autobauding mode. Support the following baud rates for autobauding function:

4800, 9600, 19200, 38400, 57600, 115200.

The module disables hardware flow control in default, AT command "AT+IFC=2,2" is used to enable hardware flow control

After setting a fixed baud rate or autobauding, please send "AT" string at that rate. The UART port is ready when it responds "OK".

M95_HD_V1.0 - 40 -

Autobauding allows the module to detect the baud rate by receiving the string "AT" or "at" from the host or PC automatically, which gives module flexibility without considering which baud rate is used by the host controller. Autobauding is enabled in default. To take advantage of the autobauding mode, special attention should be paid according to the following requirements:

Synchronization between DTE and DCE:

When DCE (the module) powers on and the autobauding is enabled, it is recommended to wait 2 to 3 seconds before sending the first AT character. After receiving the "OK" response, DTE and DCE are correctly synchronized.

If the host controller needs URC in the mode of autobauding, it must be synchronized firstly. Otherwise the URC will be discarded.

Restrictions on autobauding operation

- The UART port has to be operated at 8 data bits, no parity and 1 stop bit (factory setting).
- The A/ and a/ commands can't be used.
- Only the strings "AT" or "at" can be detected (neither "At" nor "aT").
- The Unsolicited Result Codes like "RDY", "+CFUN: 1" and "+CPIN: READY" will not be indicated when the module is turned on with autobauding enabled and not be synchronized.
- Any other Unsolicited Result Codes will be sent at the previous baud rate before the module detects the new baud rate by receiving the first "AT" or "at" string. The DTE may receive unknown characters after switching to new baud rate.
- It is not recommended to switch to autobauding from a fixed baud rate.
- If autobauding is active it is not recommended to switch to multiplex mode

Note: To assure reliable communication and avoid any problems caused by undetermined baud rate between DCE and DTE, it is strongly recommended to configure a fixed baud rate and save it instead of using autobauding after start-up. For more details, please refer to Section "AT+IPR" in document [1].

3.8.1.2. The connection of UART

The connection between module and host via UART port is very flexible. Three connection styles are illustrated as below.

UART Port connection is shown as below when it is applied in modulation-demodulation.

M95_HD_V1.0 - 41 -

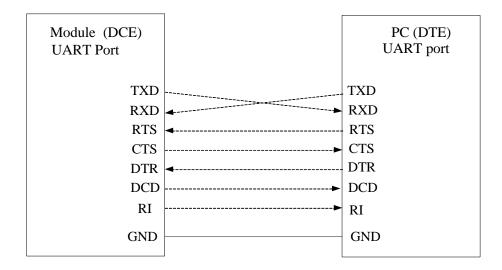


Figure 18: Connection of all functional UART port

Three lines connection is shown as below.

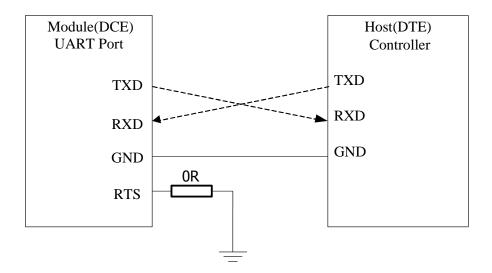


Figure 19: Connection of three lines UART port

UART Port with hardware flow control is shown as below. This connection will enhance the reliability of the mass data communication.

M95_HD_V1.0 - 42 -

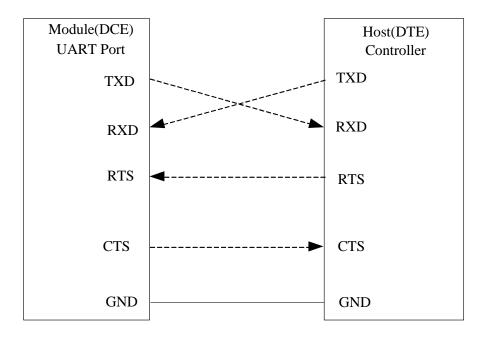


Figure 20: Connection of UART port associated hardware flow control

3.8.1.3. Software upgrade

The TXD, RXD can be used to upgrade software. The PWRKEY pin must be pulled down before the software upgrades. Please refer to the following figures for software upgrade.

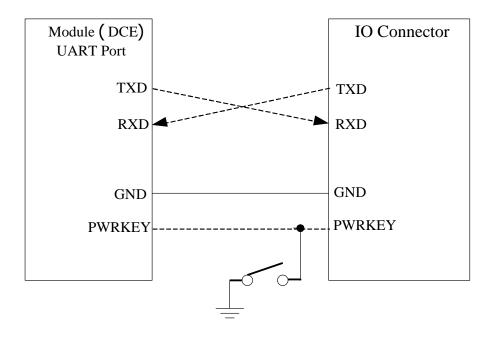


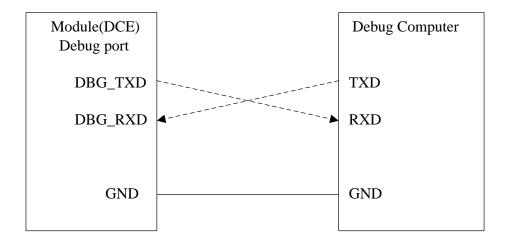
Figure 21: Connection of software upgrade

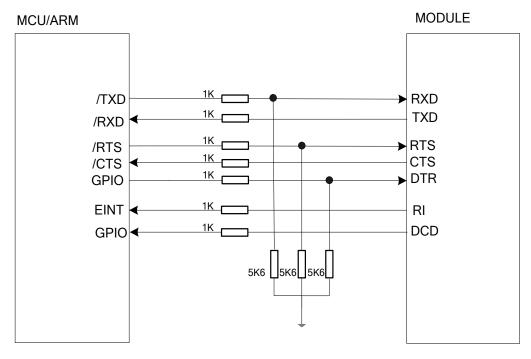
M95_HD_V1.0 - 43 -

3.8.2. Debug Port

Debug Port

- Two lines: DBG_TXD and DBG_RXD
- It outputs log information automatically.
- Debug Port is only used for software debugging and its baud rate must be configured as 460800bps.



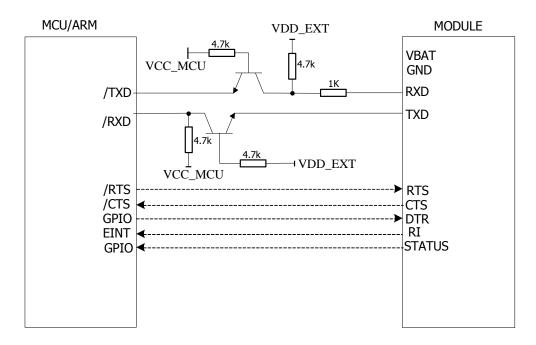

Figure 22: Connection of software debug

3.8.3. UART Application

The reference design of 3.3V level match is shown as below. 1K and 5.6K resistors among the following diagram are used to decrease the output voltage of MCU/ARM.

M95_HD_V1.0 - 44 -

voltage level: 3.3V


Figure 23: 3.3V level match circuit

Note: 5.6K resistors among the above diagram need to be changed to 15K resistors for 3V system.

M95_HD_V1.0 - 45 -

The reference design of 5V level match is shown as below. The construction of dotted line can refer to the construction of solid line. Please pay attention to direction of connection. Input dotted line of module should refer to input solid line of the module. Output dotted line of module should refer to output solid line of the module.

voltage level: 5V

Figure 24: 5V level match circuit

M95_HD_V1.0 - 46 -

The following picture is an example of connection between module and PC. A RS_232 level shifter IC or circuit must be inserted between module and PC, since these three UART ports don't support the RS_232 level, while support the CMOS level only.

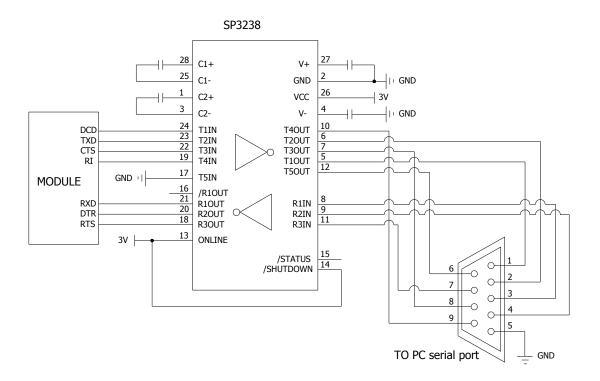


Figure 25: RS232 level match circuit

M95_HD_V1.0 - 47 -

3.9. Audio interfaces

The module provides two analogy input channels and three analogy output channels.

Table 11: Pin definition of Audio interface

Interface	Name	Pin	Function
	MIC1P	4	Channel one of Microphone positive input
AIN1/AOUT1	MIC1N	5	Channel one of Microphone negative input
AINI/AOUTI	SPK1N	6	Channel one of Audio negative output
	SPK1P	7	Channel one of Audio positive output
	MIC2P	2	Channel two of Microphone positive input
	MIC2N	3	Channel two of Microphone negative input
AIN2/AOUT2	AGND	1	Cooperate with LOUDSPKP
	LOUDSPKP	9	Channel two of Audio positive output
	LOUDSPKN	8	Channel two of Audio negative output

AIN1 and AIN2 can be used for input of microphone and line. An electret microphone is usually used. AIN1 and AIN2 are both differential input channels.

AOUT1 is used for output of the receiver and speaker. This channel is typically used for a receiver built into a handset. AOUT1 channel is a differential channel. It only supports voice path. If it is used as a speaker, an amplifier should be employed.

AOUT2 is used for loud speaker output as it is embedded an amplifier of class AB whose maximum drive power is 800mW. AOUT2 is a differential channel. Immediately playing Melody or Midi ring tone for incoming call is available in AOUT2.

AOUT2 also can be used for output of earphone, which can be used as a single-ended channel. LOUDSPKP and AGND can establish a pseudo differential mode.

These two audio channels can be swapped by "AT+QAUDCH" command. For more details, please refer to *document* [1].

Use AT command "AT+QAUDCH" to select audio channel:

- 0--AIN1/AOUT1, the default value is 0.
- 2--AIN2/AOUT2

For each channel, customer can use AT+QMIC to adjust the input gain level of microphone. Customer can also use "AT+CLVL" to adjust the output gain level of receiver and speaker. "AT+QECHO" is used to set the parameters for echo cancellation control. "AT+QSIDET" is used to set the side-tone gain level. For more details, please refer to *document* [1].

M95_HD_V1.0 - 48 -

Table 12: AOUT2 output characteristics

Item	Condition	min	type	max	unit
RMS power	8ohm load		800		mW
	VBAT=4.3V				
	THD+N=1%				
	80hm load		700		mW
	VBAT=3.7V				
	THD+N=1%				
	8ohm load		500		mW
	VBAT=3.3V				
	THD+N=1%				
Gain adjustment range		0		18	dB
Gain adjustment steps			3		dB

3.9.1. Decrease TDD noise and other noise

The 33pF capacitor is applied for filtering out 900MHz RF interference when the module is transmitting at GSM900MHz. Without placing this capacitor, TDD noise could be heard. Moreover, the 10pF capacitor here is for filtering out 1800MHz RF interference. However, the resonant frequency point of a capacitor largely depends on the material and production technique. Therefore, customer would have to discuss with its capacitor vendor to choose the most suitable capacitor for filtering out GSM850MHz, GSM900MHz, DCS1800MHz and PCS1900MHz separately.

The severity degree of the RF interference in the voice channel during GSM transmitting period largely depends on the application design. In some cases, GSM900 TDD noise is more severe; while in other cases, DCS1800 TDD noise is more obvious. Therefore, customer can have a choice based on test results. Sometimes, even no RF filtering capacitor is required.

The capacitor which is used for filtering out RF noise should be close to RJ11 or other audio interfaces. Audio alignment should be as short as possible.

In order to decrease radio or other signal interference, the position of RF antenna should be kept away from audio interface and audio alignment. Power alignment and audio alignment should not be parallel, and power alignment should be far away from audio alignment.

The differential audio traces have to be placed according to the differential signal layout rule.

M95_HD_V1.0 - 49 -

3.9.2. Microphone interfaces design

AIN1/IN2 channels come with internal bias supply for external electret microphone. A reference circuit is shown in Figure 26.

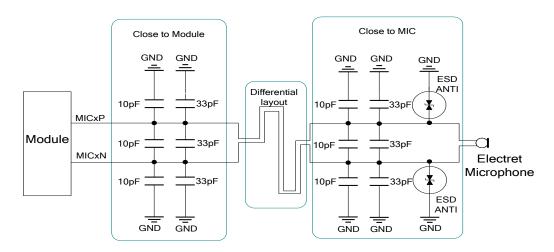


Figure 26: Microphone interface design of AIN1&AIN2

3.9.3. Receiver interface design

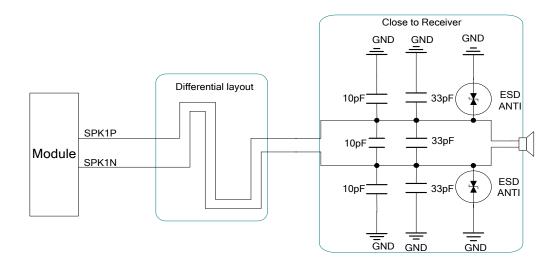


Figure 27: Receiver interface design of AOUT1

M95_HD_V1.0 - 50 -

3.9.4. Earphone interface design

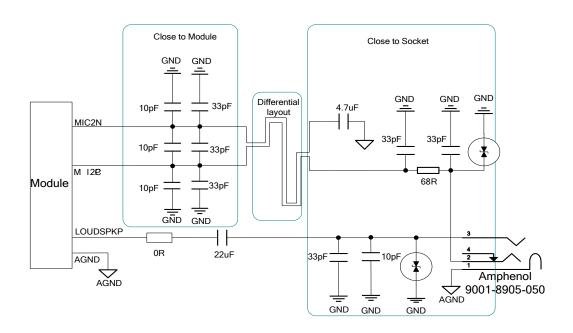


Figure 28: Earphone interface design

3.9.5. Loud speaker interface design

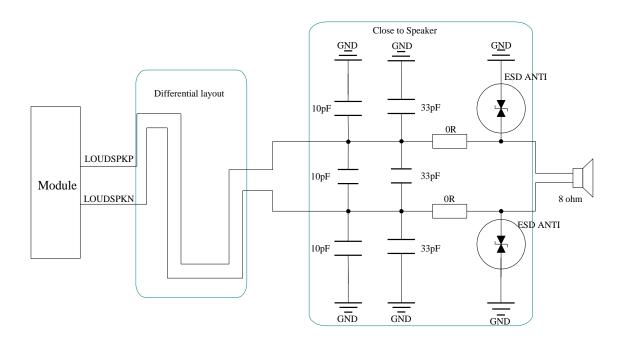


Figure 29: Loud speaker interface design

M95_HD_V1.0 - 51 -

3.9.6. Audio characteristics

Table 13: Typical electret microphone characteristics

Parameter	Min	Тур	Max	Unit
Working	1.2	1.5	2.0	V
Voltage				
Working	200		500	uA
Current				
External		2.2		k Ohm
Microphone				
Load Resistance				

Table 14: Typical speaker characteristics

Parameter			Min	Тур	Max	Unit
Normal	Single	Load	28	32		Ohm
Output	Ended	Resistance				
(AOUT1)		Ref level	0		2.4	Vpp
	Differential	Load Resistance	28	32		Ohm
		Ref level	0		4.8	Vpp
Auxiliary	Single	Load		8		Load
Output	Ended	Resistance				Resistance
(AOUT2)		Ref level	0		VBAT	Vpp
		Load		8		Load
	Differential	Resistance				Resistance
		Ref level	0		2*VBAT	Vpp

3.10. SIM card interface

3.10.1. SIM card application

The SIM interface supports the functionality of the GSM Phase 1 specification and also supports the functionality of the new GSM Phase 2+ specification for FAST 64 kbps SIM card, which is intended for use with a SIM application Tool-kit.

M95_HD_V1.0 - 52 -

The SIM interface is powered from an internal regulator in the module. Both 1.8V and 3.0V SIM Cards are supported.

Table 15: Pin definition of the SIM interface

Name	Pin	Function
SIM_VDD	27	Supply power for SIM Card. Automatic detection
		of SIM card voltage. 3.0V ±10% and 1.8V ±10%.
		Maximum supply current is around 10mA.
SIM_RST	28	SIM Card reset
SIM_DATA	29	SIM Card data I/O
SIM_CLK	30	SIM Card clock
SIM_GND	31	SIM Card ground

The reference circuit using a 6-pin SIM card holder is illustrated as the following figure.

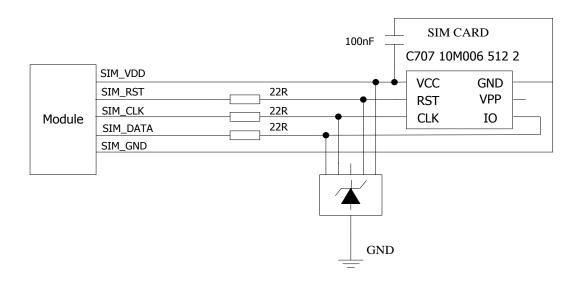


Figure 30: Reference circuit of the 6 pins SIM card

The following design rules can optimize the SIM interface performance and protect the SIM card effectively. The rules should be taken into account in designing the circuit.

- Place the SIM card holder close to module as close as possible. Ensure the trace length of SIM signals keeps less than 200mm.
- Keep the SIM signals far away from VBAT power and RF trace.
- The width of SIM_VDD and SIM_GND trace is not less than 0.5mm. Place a bypass capacitor close to SIM card power pin. The value of capacitor is less than 1uF.

M95_HD_V1.0 - 53 -

- To avoid possible cross-talk from the SIM_CLK signal to the SIM_DATA signal be careful that both traces are not placed closely next to each other. The traces of SIM_CLK, SIM_DATA and SIM_RST are recommended to be around with GND independently.
- All signals of SIM interface should be protected against ESD with a TVS diode array. It is recommended to add TVS diode such as WILL (http://www.willsemi.com) ESDA6V8AV6. The parasitic capacitance of TVS diode is less than 50pF.
- The 22Ω resistors should be added in series between the module and the SIM card so as to suppress the EMI spurious transmission and enhance the ESD protection.
- All the peripheral components are recommended to place near the SIM card holder.

3.10.2. 6 Pin SIM cassette

For 6-pin SIM card holder, it is recommended to use Amphenol C707 10M006 512 2. Please visit http://www.amphenol.com for more information.

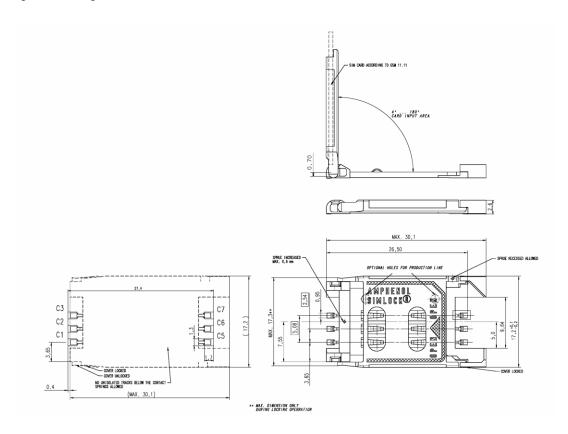


Figure 31: Amphenol C707 10M006 512 2 SIM card holder

Table 16: Pin description of Amphenol SIM card holder

Name	Pin	Function
SIM_VDD	C1	SIM Card Power Supply
SIM_RST	C2	SIM Card Reset
SIM_CLK	C3	SIM Card Clock
GND	C5	Ground

M95_HD_V1.0 - 54 -

VPP	C6	Not Connect
SIM_DATA	C7	SIM Card data I/O

3.12. Behaviors of the RI

Table 17: Behaviors of the RI

State	RI respond			
Standby	HIGH			
Voice calling	Change to LOW, then:			
	(1) Change to HIGH when call is established.			
	(2) Use ATH to hang up the call, change to HIGH.			
	(3) Calling part hangs up, change to HIGH first, and change to LOW for			
	120ms indicating "NO CARRIER" as an URC, then change to HIGH			
	again.			
	(4) Change to HIGH when SMS is received.			
Data calling	Change to LOW, then:			
	(1) Change to HIGH when data connection is established.			
	(2) Use ATH to hang up the data calling, change to HIGH.			
	(3) Calling part hangs up, change to HIGH first, and change to LOW for			
	120ms indicating "NO CARRIER" as an URC, then change to HIGH			
	again.			
	(4) Change to HIGH when SMS is received.			
SMS	When a new SMS comes, the RI changes to LOW and holds low level for			
	about 120 ms, then changes to HIGH.			
URC	Certain URCs can trigger 120ms low level on RI. For more details, please			
	refer to the document [10].			

If the module is used as a caller, the RI would maintain high except the URC or SMS is received. On the other hand, when it is used as a receiver, the timing of the RI is shown below.

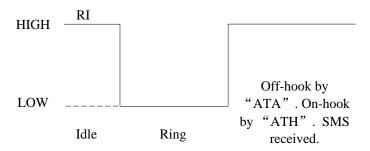


Figure 32: RI behavior of voice calling as a receiver

M95_HD_V1.0 - 55 -

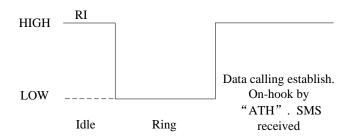


Figure 33: RI behavior of data calling as a receiver

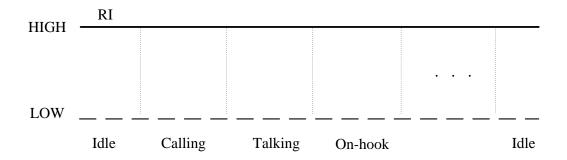


Figure 34: RI behavior as a caller

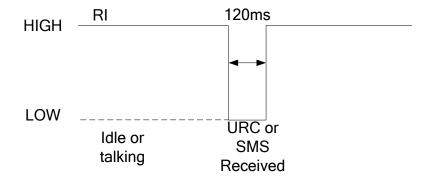


Figure 35: RI behavior of URC or SMS received

M95_HD_V1.0 - 56 -

3.13. Network status indication

The NETLIGHT signal can be used to drive a network status indication LED. The working state of this pin is listed in Table 18.

Table 18: Working state of the NETLIGHT

State	Module function
Off	The module is not running.
64ms On/ 800ms Off	The module is not synchronized with network.
64ms On/ 2000ms Off	The module is synchronized with network.
64ms On/ 600ms Off	GPRS data transfer is ongoing.

A reference circuit is shown in Figure 36.

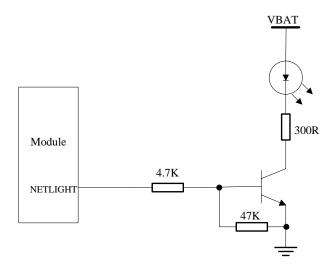


Figure 36: Reference circuit of the NETLIGHT

3.14. Operating status indication

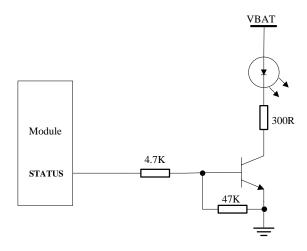

The STATUS pin is set as an output pin and can be used to judge whether module is power-on. In customer's design, this pin can be connected to a GPIO of DTE or be used to drive an LED in order to judge the module's operation status. A reference circuit is shown in Figure 37.

Table 19: Pin definition of the STATUS

Name	Pin	Function
STATUS	12	Indication of module operating status

M95_HD_V1.0 - 57 -

Figure 37: Reference circuit of the STATUS

M95_HD_V1.0 - 58 -

4. Antenna interface

The Pin 39 is the RF antenna pad. The RF interface has an impedance of 50Ω .

Table 20: Pin definition of the Antenna interface

Name	Pin	Function
GND	37	ground
GND	38	ground
RF_ANT	39	RF antenna pad
GND	40	ground

4.1. RF reference design

The RF external circuit is recommended as below:

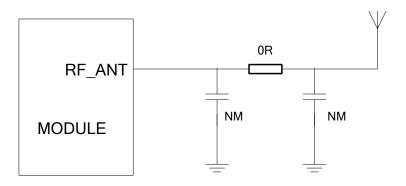


Figure 38: Reference circuit of RF

M95 provides an RF antenna PAD for customer's antenna connection. The RF trace in host PCB connected to the module RF antenna pad should be micro-strip line or other types of RF trace, whose characteristic impendence should be close to 50Ω . M95 comes with grounding pads which are next to the antenna pad in order to give a better grounding.

To minimize the loss on the RF trace and RF cable, take design into account carefully. It is recommended that the insertion loss should meet the following requirements:

- GSM850/EGSM900 is <1dB.
- DCS1800/PCS1900 is <1.5dB.

M95_HD_V1.0 - 59 -

4.2. RF output power

Table 21: The module conducted RF output power

Frequency	Max	Min
GSM850	33dBm ±2dB	5dBm±5dB
EGSM900	33dBm ±2dB	5dBm±5dB
DCS1800	30dBm ±2dB	0dBm±5dB
PCS1900	30dBm ±2dB	0dBm±5dB

Note: In GPRS 4 slots TX mode, the max output power is reduced by 2.5dB. This design conforms to the GSM specification as described in section 13.16 of 3GPP TS 51.010-1.

4.3. RF receiving sensitivity

Table 22: The module conducted RF receiving sensitivity

Frequency	Receive sensitivity
GSM850	<-108.5dBm
EGSM900	<-108.5dBm
DCS1800	<-108.5dBm
PCS1900	<-108.5dBm

4.4. Operating frequencies

Table 23: The module operating frequencies

Frequency	Receive	Transmit	ARFCH
GSM850	869~894MHz	824~849MHz	128~251
EGSM900	925~960MHz	880~915MHz	0~124, 975~1023
DCS1800	1805~1880MHz	1710~1785MHz	512~885
PCS1900	1930~1990MHz	1850~1910MHz	512~810

4.5. RF cable soldering

Soldering the RF cable to RF pad of module correctly will reduce the loss on the path of RF, refer to the following example of RF soldering.

M95_HD_V1.0 - 60 -

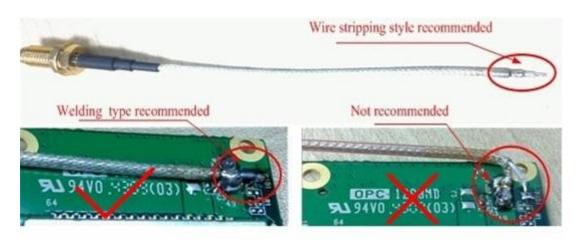


Figure 39: RF soldering sample

M95_HD_V1.0 - 61 -

5. Electrical, reliability and radio characteristics

5.1. Absolute maximum ratings

Absolute maximum ratings for power supply and voltage on digital and analog pins of module are listed in the following table:

Table 24: Absolute maximum ratings

Parameter	Min	Max	Unit
VBAT	-0.3	+4.73	V
Peak current of power supply	0	2	A
RMS current of power supply (during one TDMA- frame)	0	0.7	A
Voltage at digital pins	-0.3	3.3	V
Voltage at analog pins	-0.3	3.0	V
Voltage at digital/analog pins in POWER DOWN mode	-0.25	0.25	V

5.2. Operating temperature

The operating temperature is listed in the following table:

Table 25: Operating temperature

Parameter	Min	Тур	Max	Unit
Normal Temperature	-35	25	80	$^{\circ}\!\mathbb{C}$
Restricted Operation ¹⁾	-40 ~ -35		80 ~ 85	$^{\circ}\!\mathbb{C}$
Storage Temperature	-45		+90	$^{\circ}$

1) When the module works above temperature range, the deviations from the GSM specification may occur. For example, the frequency error or the phase error will be increased.

5.3. Power supply ratings

Table 26: The module power supply ratings

Parameter	Description	Conditions	Min	Тур	Max	Unit
VBAT	Supply	Voltage must stay within the	3.3	4.0	4.6	V
	voltage	min/max values, including				
		voltage drop, ripple, and spikes.				

M95_HD_V1.0 - 62 -

	Voltage drop	Maximum power control level		400	mV
	during	on GSM850 and GSM900.			
	transmitting				
	burst				
	Voltage	Maximum power control level			
	ripple	on GSM850 and GSM900			
		@ f<200kHz		50	mV
		@ f>200kHz		2	mV
$I_{ m VBAT}$	Average	POWER DOWN mode	30		uA
ZVBAT	supply	SLEEP mode @ DRX=5	0.9		mA
	current	IDLE mode			
		GSM850/EGSM 900	13		mA
		DCS1800/PCS1900	13		mA
		TALK mode			
		GSM850/EGSM 900 ¹⁾	206/214		mA
		DCS1800/PCS1900 ²⁾	153/152		mA
	Peak supply	Maximum power control level	1.5	2	A
	current	on GSM850 and GSM900.			
	(during				
	transmission				
	slot)				

¹⁾ Power control level PCL 5

5.4. Current consumption

The values of current consumption are shown in Table 27.

Table 27: The module current consumption

Condition	Current Consumption
Voice Call	
GSM850	@power level #5 <300mA,Typical 206mA
	@power level #12,Typical 95mA
	@power level #19,Typical 73mA
GSM900	@power level #5 <300mA,Typical 214mA
	@power level #12,Typical 74mA
	@power level #19,Typical 73mA
DCS1800	@power level #0 <250mA,Typical 153mA
	@power level #7,Typical 82mA

M95_HD_V1.0 - 63 -

²⁾ Power control level PCL 0

	@power level #15,Typical 69mA
PCS1900	@power level #0 <250mA,Typical 153mA @power level #7,Typical 82mA @power level #15,Typical 70mA

5.5. Electro-static discharge

Although the GSM engine is generally protected against Electrostatic Discharge (ESD), ESD protection precautions should still be emphasized. Proper ESD handling and packaging procedures must be applied throughout the processing, handling and operation of any applications using the module.

The measured ESD values of module are shown as the following table:

Table 28: The ESD endurance (Temperature:25°C, Humidity:45 %)

Tested point	Contact discharge	Air discharge
VBAT,GND	±5KV	±10KV
RF_ANT	±5KV	±10KV
TXD, RXD	±4KV	±8KV
Others	±0.5KV	±1KV

M95_HD_V1.0 - 64 -

6. Mechanical dimensions

This chapter describes the mechanical dimensions of the module.

6.1. Mechanical dimensions of module

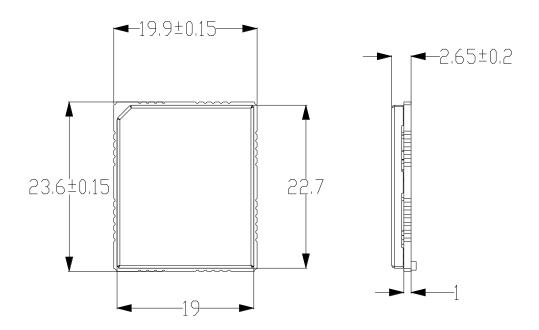


Figure 40: M95 top and side dimensions (Unit: mm)

M95_HD_V1.0 - 65 -

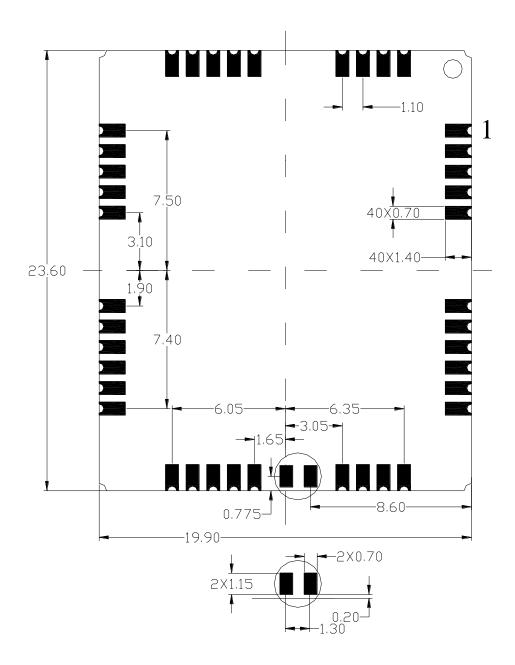


Figure 41: M95 bottom dimensions (Unit: mm)

M95_HD_V1.0 - 66 -

6.2. Footprint of recommendation

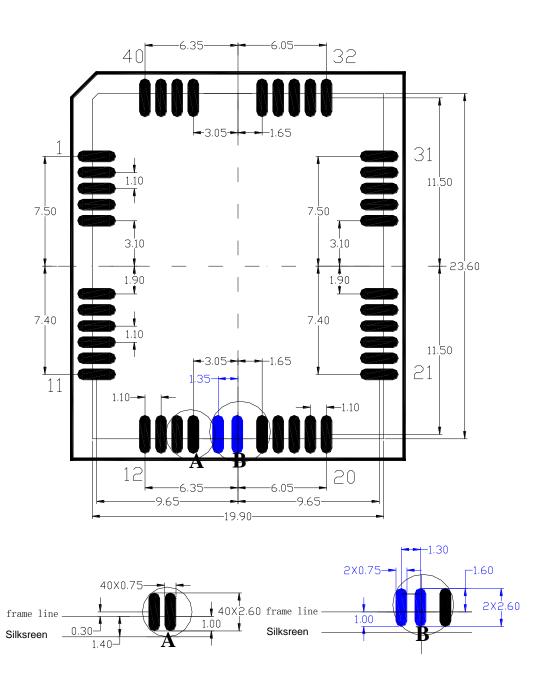


Figure 42: Footprint one of recommendation (Unit: mm)

Note:

- 1. The blue pads are used for reserved pins customs can design the PCB decal without them.
- 2. To maintain the module, keep about 3mm away between the module and other components in host PCB.

M95_HD_V1.0 - 67 -

6.3. Top view of the module

Figure 43: Top view of the module

M95_HD_V1.0 - 68 -

6.4. Bottom view of the module

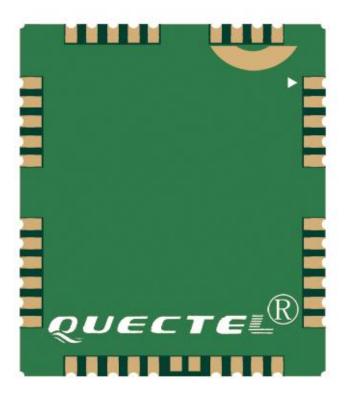


Figure 44: Bottom view of the module

M95_HD_V1.0 - 69 -

7. Storage and Manufacturing

7.1. Storage

M95 is distributed in vacuum-sealed bag. The restriction of storage condition is shown as below.

Shelf life in sealed bag: 12 months at <40 ℃ / 90% RH

After this bag is opened, devices that will be subjected to reflow solder or other high temperature process must be:

- Mounted within 72 hours at factory conditions of $\leq 30 \text{ C} / 60\% \text{ RH}$
- Stored at <10% RH

Devices require bake, before mounting, if:

- Humidity indicator card is >10% when read 23 $\mathbb{C}\pm 5$ \mathbb{C}
- Mounted for more than 72 hours at factory conditions of \leq 30 °C /60% RH

If baking is required, devices may be baked for 48 hours at 125 $\,^{\circ}$ C ± 5 $\,^{\circ}$ C

Note: As plastic container cannot be subjected to high temperature, devices must be removed prior to high temperature (125 °C) bake. If shorter bake times are desired, please refer to IPC/JEDECJ-STD-033 for bake procedure.

M95_HD_V1.0 - 70 -

7.2. Soldering

The squeegee should push the paste on the surface of the stencil that makes the paste fill the stencil openings and penetrate to the PCB. The force on the squeegee should be adjusted so as to produce a clean stencil surface on a single pass. To ensure the module soldering quality, the thickness of stencil at the hole of the module pads should be 0.2mm for M95.

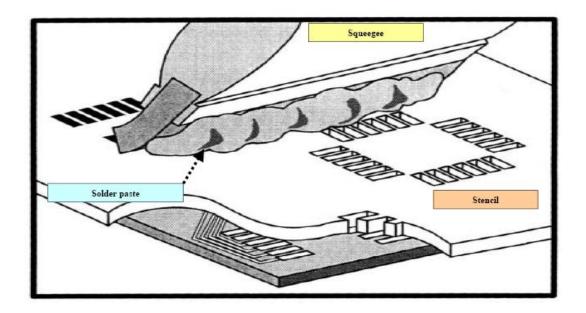


Figure 45: Paste application

Suggest peak reflow temperature is from 235 $\,^{\circ}$ C to 245 $\,^{\circ}$ C (for SnAg3.0Cu0.5 alloy). Absolute max reflow temperature is 260 $\,^{\circ}$ C. To avoid damage to the module when it was repeatedly heated, it is suggested that the module should be mounted after the first panel has been reflowed. The following picture is the actual diagram which we have operated.

M95_HD_V1.0 - 71 -

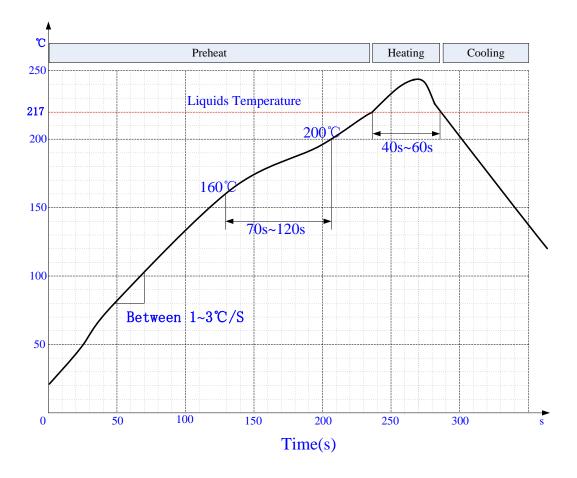


Figure 46: Ramp-Soak-Spike reflow profile

7.3. Packaging

M95 modules are distributed in trays of 25 pieces each. This is especially suitable for the M95 according to SMT processes requirements.

The trays are stored inside a vacuum-sealed bag which is ESD protected. It should not be opened until the devices are ready to be soldered onto the application.

Figure 47: Module tray

M95_HD_V1.0 - 72 -

Appendix A: GPRS coding schemes

Four coding schemes are used in GPRS protocol. The differences between them are shown in Table 29.

Table 29: Description of different coding schemes

Scheme	Code rate	USF	Pre-coded USF	Radio Block excl.USF and BCS	BCS	Tail	Coded bits	Punctured bits	Data rate Kb/s
CS-1	1/2	3	3	181	40	4	456	0	9.05
CS-2	2/3	3	6	268	16	4	588	132	13.4
CS-3	3/4	3	6	312	16	4	676	220	15.6
CS-4	1	3	12	428	16	-	456	-	21.4

Radio block structure of CS-1, CS-2 and CS-3 is shown as Figure 48:

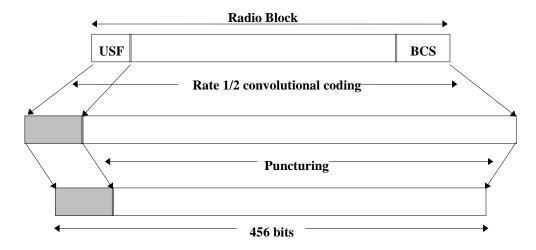


Figure 48: Radio block structure of CS-1, CS-2 and CS-3

Radio block structure of CS-4 is shown as Figure 49:

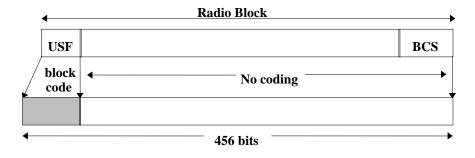


Figure 49: Radio block structure of CS-4

M95_HD_V1.0 - 73 -

Appendix B: GPRS multi-slot classes

Twenty-nine classes of GPRS multi-slot modes are defined for MS in GPRS specification. Multi-slot classes are product dependant, and determine the maximum achievable data rates in both the uplink and downlink directions. Written as 3+1 or 2+2, the first number indicates the amount of downlink timeslots, while the second number indicates the amount of uplink timeslots. The active slots determine the total number of slots the GPRS device can use simultaneously for both uplink and downlink communications. The description of different multi-slot classes is shown in Table 30.

Table 30: GPRS multi-slot classes

Multislot class	Downlink slots	Uplink slots	Active slots
1	1	1	2
2	2	1	3
3	2	2	3
4	3	1	4
5	2	2	4
6	3	2	4
7	3	3	4
8	4	1	5
9	3	2	5
10	4	2	5
11	4	3	5
12	4	4	5
13	3	3	NA
14	4	4	NA
15	5	5	NA
16	6	6	NA
17	7	7	NA
18	8	8	NA
19	6	2	NA
20	6	3	NA
21	6	4	NA
22	6	4	NA
23	6	6	NA
24	8	2	NA
25	8	3	NA
26	8	4	NA
27	8	4	NA
28	8	6	NA
29	8	8	NA

M95_HD_V1.0 - 74 -

Shanghai Quectel Wireless Solutions Co., Ltd.

Room 501, Building 13, No.99 Tianzhou Road, Shanghai, China 200233

Tel: +86 21 5108 6236

Mail: info@quectel.com