

TEST REPORT

APPLICANT	:	MiMOMax Wireless Limited
PRODUCT NAME	:	900MHz TornadoXR Transceiver
MODEL NAME	:	MWL-TORNADOX-*G*A/B/C
BRAND NAME	:	Ubiik Mimomax
FCC ID	:	XMK-MMXTRNXB007
STANDARD(S)	:	47 CFR Part 2 47 CFR Part 24
RECEIPT DATE	:	2024-02-01
TEST DATE	:	2024-02-21 to 2024-02-28
ISSUE DATE	:	2024-03-14

Gan Jing Gan Jing (Rapporteur) Tested by: Approved by: Shen Junsheng(Supervisor)

NOTE: This document is issued by Shenzhen Morlab Communication Technology Co., Ltd., the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

Shenzhen Morlab Communication Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

 Tel: 86-755-36698555
 Fax: 86-755-36698525

 Http://www.morlab.cn
 E-mail: service@morlab.cn

DIRECTORY

1. Technical Information ······· 3
1.1. Applicant and Manufacturer Information ······ 3
1.2. Equipment Under Test (EUT) Description
1.3. Test Standards and Results ······ 4
1.4. Environmental Conditions 5
2. 47 CFR Part 2 and Part 24 Requirements ······ 6
2.1. Radio Frequency Power Output and E.R.P6
2.2. Occupied Bandwidth·······9
2.3. Spurious Emissions At Antenna Terminals······20
2.4. Radiated Spurious Emissions ······54
2.5. Frequency Stability ······57
Annex A Test Uncertainty ······61
Annex B Testing Laboratory Information ······62

Change History					
Issue	Date	Reason for change			
1.0	2024-03-14	First edition			

1. Technical Information

Note: Provide by applicant.

1.1. Applicant and Manufacturer Information

Applicant: MiMOMax Wireless Limited			
Applicant Address:	540 Wairakei Road, Christchurch 8053, New Zealand		
Manufacturer:	MiMOMax Wireless Limited		
Manufacturer Address:	540 Wairakei Road, Christchurch 8053, New Zealand		

1.2. Equipment Under Test (EUT) Description

Product Name:	900MHz Tornad	oXR Transceiver			
EUT Serial No:	(N/A, marked 1#	[±] by test site)			
Hardware Version:	P001				
Software Version:	TRN_04.08.04				
Operating Frequency Range:	930-931 MHz&9	40-941 MHz, 2Tx/2Rx			
Channel Bandwidth:	12.5kHz; 25kHz; 50kHz				
Modulation Type:	QPSK; 16QAM; 64QAM; 256QAM				
Operating Voltage:	10.5-60Vdc				
	Omni Antenna	2.5 dBi			
		4.0 dBi			
		6.0 dBi			
Antenna Gain:		8.0 dBi			
	Panel Antenna	10.0 dBi			
	Fallel Alterna	12.0 dBi			
		16.0 dBi			
	BW(kHz)	Designator			
Emission Designator:	12.5kHz	10K0W1W			
	25.0kHz	20K0W1W			
	50.0kHz	42K0W1W			

1.3. Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 2 and Part 24 for the EUT FCC ID Certification:

No.	Identity	Document Title
1	47 CFR Part 2	Frequency Allocations and Radio Treaty Matters; General Rules and Regulations
2	47 CFR Part 24	Personal Communications Services

Test detailed items/section required by FCC rules and results are listed as below:

Section	Description	Test Engineer	Result	Method Determination /Remark	
2.1046	Transmitter	Con ling	PASS	No deviation	
24.132	Conducted Output Power and ERP/EIRP	Gan Jing	FA33		
2.1049	Occupied Bandwidth	Gan Jing	PASS	No deviation	
2.1051	Conducted Spurious	Con ling	DASS	No deviation	
24.133	Emissions				
2.1053	Radiated Spurious	Li Hanbin	PASS	No deviation	
24.133	Emissions	LITIANDIN	1,400		
2.1055	Frequency stability	Gan Jing	PASS	No deviation	
24.135		Gair Jing	FAUU		

Note 1: The TornadoXR Transceiver complies with FCC 47 CFR Part 2 and Part 24 when tested in accordance with the test methods described in 47 CFR Part 2 and Part 24.

Note 2: The TornadoXR Transceiver supports 2 Tx antenna ports, which was defined as Channel H & Channel V separately.

Note 3: The path loss during the conducted RF test is calibrated to correct the results by the Ext Gain setting. The Ext Gain contains two parts that cable loss of 0.7dB and attenuator of 30.0dB.

Note 4: When the test result is a critical value, we will use the measurement uncertainty give the judgment result based on the 95% confidence intervals.

1.4. Environmental Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15 - 35
Relative Humidity (%):	30 -60

Shenzhen Morlab Communication Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

 Tel:
 86-755-36698555
 Fax

 Http://www.morlab.cn
 E-m

2.47 CFR Part 2 and Part 24 Requirements

2.1. Radio Frequency Power Output and E.R.P.

2.1.1. Test result

Nominal Frequency: 930.50 MHz Tx Port: Channel H

Channel			Measured		Rated	E.R.P. (ANT		E.R.P. (ANT	
Bandwidth	Modulation	Voltage	Power	Measured Power	Power	Gain =		Gain =	
(kHz)	Туре	(Vdc)	(dBm)	(Watt)	(Watt)	4.00	dBi)	16.0	0dBi)
(KTZ)			(ubiii)	(Wall)	(vvall)	dBm	n = IBi) Watt 3.899 3.581 3.750 3.802 3.639 3.758 3.776 3.936 3.936 3.581 3.581 3.648	dBm	Watt
12.5	QPSK	24	34.06	2.547	2.50	35.91	3.899	47.91	61.802
12.5	16QAM	24	33.69	2.339	2.50	35.54	3.581	47.54	56.754
12.5	64QAM	24	33.89	2.449	2.50	35.74	3.750	47.74	59.429
12.5	256QAM	24	33.95	2.483	2.50	35.80	3.802	47.80	60.256
25.0	QPSK	24	33.76	2.377	2.50	35.61	3.639	47.61	57.677
25.0	16QAM	24	33.90	2.455	2.50	35.75	3.758	47.75	59.566
25.0	64QAM	24	33.92	2.466	2.50	35.77	3.776	47.77	59.841
25.0	256QAM	24	34.10	2.570	2.50	35.95	3.936	47.95	62.373
50.0	QPSK	24	33.75	2.371	2.50	35.60	3.631	47.60	57.544
50.0	16QAM	24	33.69	2.339	2.50	35.54	3.581	47.54	56.754
50.0	64QAM	24	33.77	2.382	2.50	35.62	3.648	47.62	57.810
50.0	256QAM	24	33.89	2.449	2.50	35.74	3.750	47.74	59.429

Nominal Frequency: 930.50 MHz Tx Port: Channel V

Channel Bandwidth	Modulation Type	Voltage (Vdc)	Measured Power	Measured Power	Rated Power (Watt)	E.R.P. (ANT Gain = 4.0dBi)		E.R.P. (ANT Gain = 16.0dBi)	
(KПZ)	(kHz) (dBn	(dBm)	Bm) (Watt)	(vvall)	dBm	Watt	dBm	Watt	
12.5	QPSK	24	34.04	2.535	2.50	35.89	3.882	47.89	61.518
12.5	16QAM	24	33.87	2.438	2.50	35.72	3.733	47.72	59.156
12.5	64QAM	24	33.89	2.449	2.50	35.74	3.750	47.74	59.429
12.5	256QAM	24	34.10	2.570	2.50	35.95	3.936	47.95	62.373

Shenzhen Morlab Communication Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

E-mail: service@morlab.cn

25.0	QPSK	24	34.00	2.512	2.50	35.85	3.846	47.85	60.954
25.0	16QAM	24	33.86	2.432	2.50	35.71	3.724	47.71	59.020
25.0	64QAM	24	34.09	2.564	2.50	35.94	3.926	47.94	62.230
25.0	256QAM	24	34.05	2.541	2.50	35.90	3.890	47.90	61.660
50.0	QPSK	24	34.01	2.518	2.50	35.86	3.855	47.86	61.094
50.0	16QAM	24	33.75	2.371	2.50	35.60	3.631	47.60	57.544
50.0	64QAM	24	34.05	2.541	2.50	35.90	3.890	47.90	61.660
50.0	256QAM	24	34.11	2.576	2.50	35.96	3.945	47.96	62.517

Nominal Frequency: 940.50 MHz Tx Port: Channel H

Channel Bandwidth (kHz)	Modulation Voltage Type (Vdc) Power		Measured Power	Rated Power	E.R.P. (ANT Gain = 4.0dBi)		E.R.P. (ANT Gain = 16.0dBi)		
(KHZ)			(dBm)	(Watt)	(Watt)	dBm	Watt	Ga 16. dBm 47.87 47.77 48.00 48.03 47.90 47.82 47.85 47.85 47.98	Watt
12.5	QPSK	24	34.02	2.523	2.50	35.87	3.864	47.87	61.235
12.5	16QAM	24	33.92	2.466	2.50	35.77	3.776	47.77	59.841
12.5	64QAM	24	34.15	2.600	2.50	36.00	3.981	48.00	63.096
12.5	256QAM	24	34.18	2.618	2.50	36.03	4.009	48.03	63.533
25.0	QPSK	24	34.05	2.541	2.50	35.90	3.890	47.90	61.660
25.0	16QAM	24	33.97	2.495	2.50	35.82	3.819	47.82	60.534
25.0	64QAM	24	34.00	2.512	2.50	35.85	3.846	47.85	60.954
25.0	256QAM	24	34.13	2.588	2.50	35.98	3.963	47.98	62.806
50.0	QPSK	24	33.91	2.460	2.50	35.76	3.767	47.76	59.704
50.0	16QAM	24	33.83	2.415	2.50	35.68	3.698	47.68	58.614
50.0	64QAM	24	33.96	2.489	2.50	35.81	3.811	47.81	60.395
50.0	256QAM	24	34.13	2.588	2.50	35.98	3.963	47.98	62.806

Nominal Frequency: 940.50 MHz Tx Port: Channel V

Channel Bandwidth (kHz)	Modulation Type	Voltage (Vdc)	Measured Power (dBm)	Measured Power (Watt)	Rated Power (Watt)	E.R.P. Gai 4.00 dBm	n =	Ga	P. (ANT in = DdBi) Watt
12.5	QPSK	24	34.07	2.553	2.50	35.92	3.908	47.92	61.944

Shenzhen Morlab Communication Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

E-mail: service@morlab.cn

400.444								
16QAM	24	33.85	2.427	2.50	35.70	3.715	47.70	58.884
12.5 64QAM		34.15	2.600	2.50	36.00	3.981	48.00	63.096
256QAM	24	34.16	2.606	2.50	36.01	3.990	48.01	63.241
QPSK	24	34.06	2.547	2.50	35.91	3.899	47.91	61.802
16QAM	24	33.87	2.438	2.50	35.72	3.733	47.72	59.156
64QAM	24	34.06	2.547	2.50	35.91	3.899	47.91	61.802
256QAM	24	34.10	2.570	2.50	35.95	3.936	47.95	62.373
QPSK	24	34.08	2.559	2.50	35.93	3.917	47.93	62.087
16QAM	24	33.52	2.249	2.50	35.37	3.443	47.37	54.576
64QAM	24	33.92	2.466	2.50	35.77	3.776	47.77	59.841
256QAM	24	34.21	2.636	2.50	36.06	4.036	48.06	63.973
	64QAM 256QAM QPSK 16QAM 64QAM 256QAM QPSK 16QAM 64QAM	64QAM 24 256QAM 24 QPSK 24 16QAM 24 64QAM 24 256QAM 24 QPSK 24 16QAM 24 16QAM 24	64QAM 24 34.15 256QAM 24 34.16 256QAM 24 34.06 QPSK 24 34.06 16QAM 24 33.87 64QAM 24 34.06 256QAM 24 34.06 256QAM 24 34.06 256QAM 24 34.06 256QAM 24 34.08 16QAM 24 33.52 64QAM 24 33.92	64QAM 24 34.15 2.600 256QAM 24 34.16 2.606 256QAM 24 34.06 2.547 QPSK 24 33.87 2.438 64QAM 24 34.06 2.547 16QAM 24 34.06 2.547 256QAM 24 34.06 2.547 256QAM 24 34.06 2.547 QPSK 24 34.08 2.559 16QAM 24 33.52 2.249 64QAM 24 33.92 2.466	64QAM 24 34.15 2.600 2.50 256QAM 24 34.16 2.606 2.50 256QAM 24 34.16 2.606 2.50 QPSK 24 34.06 2.547 2.50 16QAM 24 33.87 2.438 2.50 64QAM 24 34.06 2.547 2.50 256QAM 24 34.06 2.547 2.50 256QAM 24 34.06 2.547 2.50 256QAM 24 34.08 2.570 2.50 256QAM 24 34.08 2.570 2.50 QPSK 24 34.08 2.559 2.50 16QAM 24 33.52 2.249 2.50 64QAM 24 33.92 2.466 2.50	64QAM 24 34.15 2.600 2.50 36.00 256QAM 24 34.16 2.606 2.50 36.01 256QAM 24 34.16 2.606 2.50 36.01 QPSK 24 34.06 2.547 2.50 35.91 16QAM 24 33.87 2.438 2.50 35.72 64QAM 24 34.06 2.547 2.50 35.91 256QAM 24 34.06 2.547 2.50 35.91 256QAM 24 34.06 2.547 2.50 35.91 256QAM 24 34.06 2.570 2.50 35.95 QPSK 24 34.08 2.559 2.50 35.93 16QAM 24 33.52 2.249 2.50 35.37 64QAM 24 33.92 2.466 2.50 35.77	64QAM 24 34.15 2.600 2.50 36.00 3.981 256QAM 24 34.16 2.606 2.50 36.01 3.990 QPSK 24 34.06 2.547 2.50 35.91 3.899 16QAM 24 33.87 2.438 2.50 35.72 3.733 64QAM 24 34.06 2.547 2.50 35.91 3.899 16QAM 24 34.06 2.547 2.50 35.91 3.899 256QAM 24 34.06 2.547 2.50 35.91 3.899 256QAM 24 34.06 2.547 2.50 35.95 3.936 QPSK 24 34.06 2.547 2.50 35.95 3.936 QPSK 24 34.08 2.570 2.50 35.93 3.917 16QAM 24 33.52 2.249 2.50 35.37 3.443 64QAM 24 33.92 2.466 2.50 35.77 3.776	64QAM2434.152.6002.5036.003.98148.00256QAM2434.162.6062.5036.013.99048.01QPSK2434.062.5472.5035.913.89947.9116QAM2433.872.4382.5035.723.73347.7264QAM2434.062.5472.5035.913.89947.91256QAM2434.062.5472.5035.913.89947.91256QAM2434.062.5702.5035.953.93647.95QPSK2434.082.5592.5035.933.91747.9316QAM2433.522.2492.5035.373.44347.3764QAM2433.922.4662.5035.773.77647.77

Note1: Measurements were carried out at the RF output terminals of the transmitter using spectrum analyzer. The path loss during the conducted RF test is calibrated to correct the results by the Ext Gain setting. The Ext Gain contains two parts that cable loss of 0.7dB and attenuator of 30.0dB.

Note 2: The transmitter has a rated output power of 2.512 Watt (34dBm). The measured power has been shown to be within +/- 1 dB of the rated power.

Note3:E.I.R.P. (dBm) = Conducted Output Power (dBm) + Antenna Gain (dBi); E.R.P. (dBm) = E.I.R.P. (dBm) - 2.15.

Note4: Part 24 does not specify the transmitter output power.

Base stations transmitting in the 930-931 MHz and 940-941 MHz bands are limited to 3500 watts e.r.p. per authorized channel and are unlimited in antenna height except as provided in paragraph (d) of this section.

Note 5: The product's antenna is a special MIMO antenna with cross-polarization which is able to transmit and receive on both the vertical and horizontal polarizations at the same time, the MIMO antennas are essentially two antennas in one.

Note 6: According to KDB 662911, the MIMO directional gain is the gain of an individual antenna. **Note7:** The DUT transmitter ports are completely uncorrelated. According to KDB 662911 the conducted power or E.R.P is measured on each port individually and it complies with the regulations.

2.2. Occupied Bandwidth

2.2.1. Definition

Emission Designator:

Frequency (MHz)	BW(kHz)	Designator
020.024 MUL	12.5kHz	10K0W1W
930-931MHz 940-941MHz	25.0kHz	20K0W1W
940-94 110112	50.0kHz	42K0W1W

Note: The above data combined with uncertainty and rounding calculations are consistent with the actual test data.

According to FCC section 2.1049, the occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission.

Occupied bandwidth is also known as the 99% emission bandwidth.

2.2.2. Test Description

Measurements have been made of each modulation type using a spectrum analyzer operating in occupied bandwidth mode.

2.2.3. Test Result

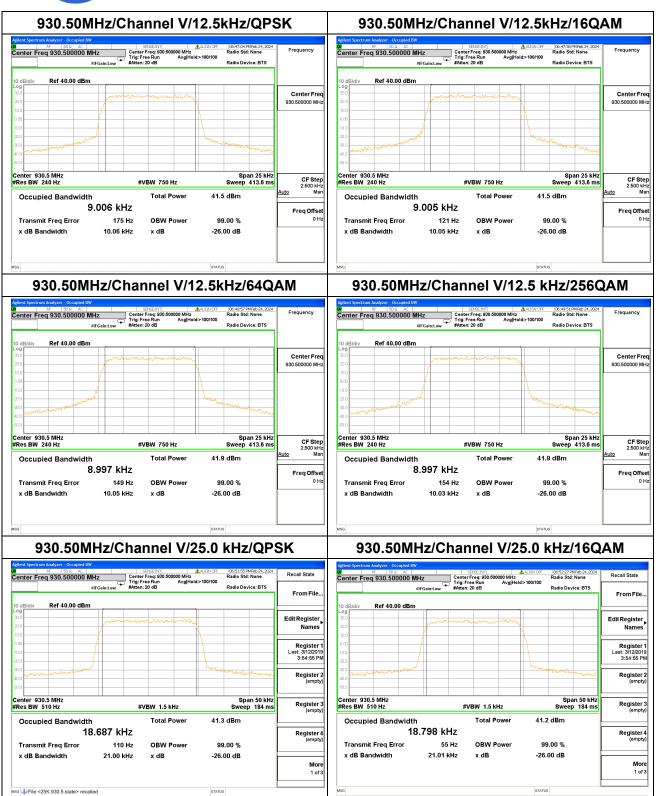
Nominal Frequency: 930.50 MHz

Tx Port	Channel Bandwidth(kHz)	Emission Type	Occupied Bandwidth(kHz)
		QPSK	9.028
	40.5	16QAM	8.995
	12.5	64QAM	9.029
		256QAM	9.025
		QPSK	18.790
н	25.0	16QAM	18.712
п	25.0	64QAM	18.562
		256QAM	18.743
		QPSK	41.531
	50.0	16QAM	41.518
	50.0	64QAM	41.236
		256QAM	41.372
	1		
		QPSK	8.006
	12.5	16QAM	9.005
	12.0	64QAM	8.997
		256QAM	8.997
		QPSK	18.687
v	25.0	16QAM	18.798
v	25.0	64QAM	18.833
		256QAM	18.721
		QPSK	41.407
	50.0	16QAM	41.453
	50.0	64QAM	41.409
		256QAM	41.156

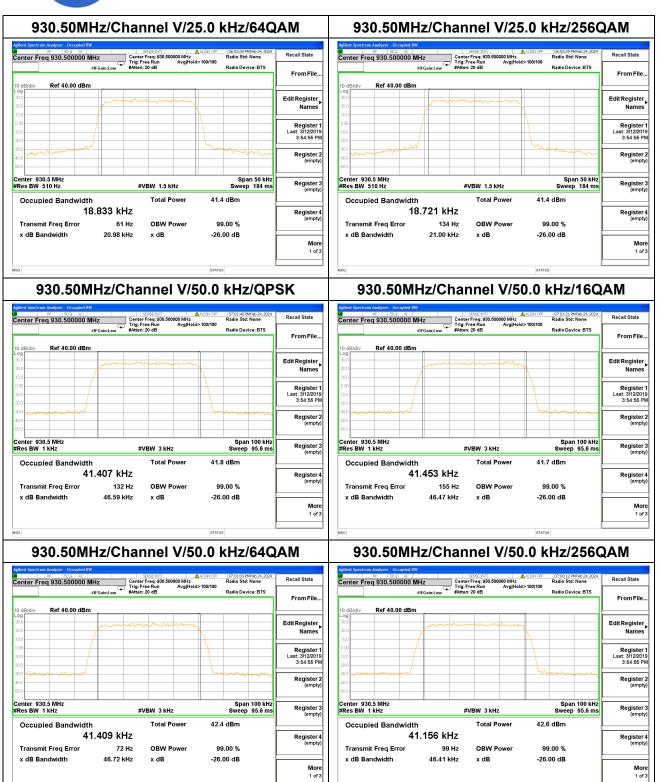
Nominal Frequency: 940.50 MHz

Tx Port	Channel Bandwidth(kHz)	Emission Type	Occupied Bandwidth(kHz)
		QPSK	8.972
	10 F	16QAM	8.973
	12.5	64QAM	9.022
		256QAM	9.011
		QPSK	18.880
н	25.0	16QAM	18.770
п	25.0	64QAM	18.669
		256QAM	18.932
		QPSK	41.668
	F0 0	16QAM	41.340
	50.0	64QAM	41.430
		256QAM	41.383
		QPSK	8.978
	12.5	16QAM	9.028
	12.5	64QAM	8.952
		256QAM	9.034
		QPSK	18.750
v	25.0	16QAM	18.705
v	25.0	64QAM	18.707
		256QAM	18.728
		QPSK	41.279
	50.0	16QAM	41.265
	50.0	64QAM	41.275
		256QAM	41.144

Shenzhen Morlab Communication Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Fa Http://www.morlab.cn Ea



Shenzhen Morlab Communication Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 F Http://www.morlab.cn E



Shenzhen Morlab Communication Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 F Http://www.morlab.cn E



Shenzhen Morlab Communication Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

Fax: 86-755-36698525 E-mail: service@morlab.cn

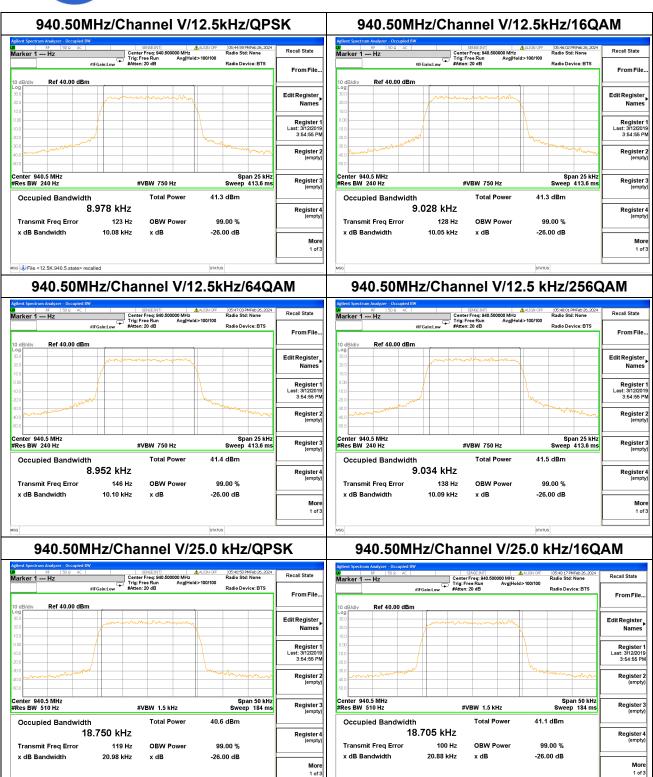
STATUS

File <25K.940.5.state> recalled

Shenzhen Morlab Communication Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

Fax: 86-755-36698525 E-mail: service@morlab.cn

STATUS



MORLAB

Shenzhen Morlab Communication Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

Shenzhen Morlab Communication Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn Fax: 86-755-36698525 E-mail: service@morlab.cn

STATUS

MORLAB

Shenzhen Morlab Communication Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

2.3. Spurious Emissions At Antenna Terminals

2.3.1. Test Requirement

According to FCC section 2.1051, 24.131 and 24. 133(a) section

The authorized bandwidth of narrowband PCS channels will be 10 kHz for 12.5 kHz channels and 45 kHz for 50 kHz channels. For aggregated adjacent channels, a maximum authorized bandwidth of 5 kHz less than the total aggregated channel width is permitted.

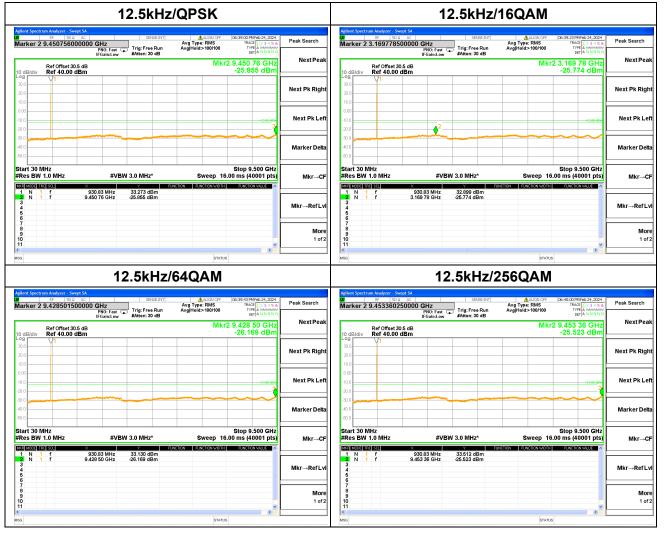
For transmitters authorized a bandwidth greater than 10 kHz:

1. On any frequency outside the authorized bandwidth and removed from the edge of the authorized bandwidth by a displacement frequency (fd in kHz) of up to and including 40 kHz: at least 116 Log10 ((fd + 10)/6.1) decibels or 50 plus 10 Log10 (P) decibels or 70 decibels, whichever is the lesser attenuation;

2. On any frequency outside the authorized bandwidth and removed from the edge of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 40 kHz: at least 43 + 10 Log10 (P) decibels or 80 decibels, whichever is the lesser attenuation;

For transmitters authorized a bandwidth of 10 kHz:

1. On any frequency outside the authorized bandwidth and removed from the edge of the authorized bandwidth by a displacement frequency (fd in kHz) of up to and including 20 kHz: at least 116 × Log10 ((fd + 5)/3.05) decibels or 50 + 10 × Log10 (P) decibels or 70 decibels, whichever is the lesser attenuation;


2. On any frequency outside the authorized bandwidth and removed from the edge of the authorized bandwidth by a displacement frequency (fd in kHz) of more than 20 kHz: at least 43 + 10 Log10 (P) decibels or 80 decibels, whichever is the lesser attenuation.

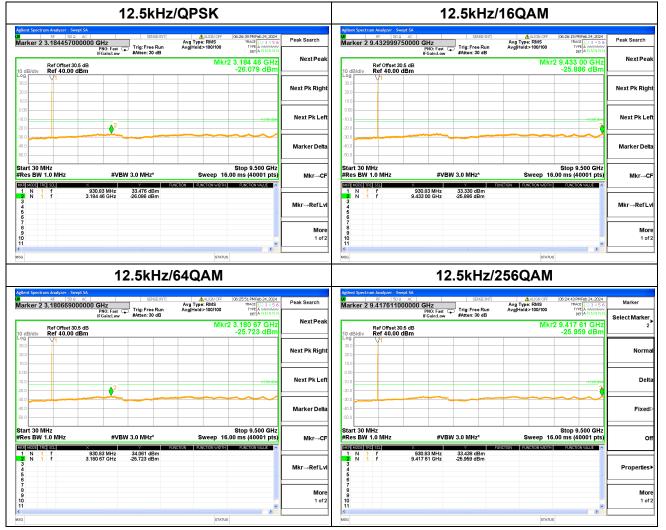
2.3.2. Test Result

Nominal Frequency: 930.50 MHz Tx Port: Channel H



Shenzhen Morlab Communication Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China
 Tel:
 86-755-36698555
 Fa

 Http://www.morlab.cn
 E



Shenzhen Morlab Communication Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn Fax: 86-755-36698525 E-mail: service@morlab.cn O W O

	50.0kHz /256QAM							50.0kHz /64QAM							
Peak Search	06:33:10 PMFeb 24, 2024 TRACE 1 2 3 4 5 6 TYPE A WWWWWW	Auton OFF Avg Type: RMS Avg Hold: 83/100	SENSE:INT		Analyzer Swept SA RF 50 Ω AC .18706125000 AC	100	Peak Search	06:34:00 PM Feb 24, 2024 TRACE 12 3 4 5 6 TYPE A WARMAN	ALIGN OFF Avg Type: RMS Avg Hold>100/100	SENSE:INT	0 GHz PN0: Fast	Analyzer Swept SA RF 50 Ω AC 454070500000 AC AC			
Next Pea	2 3.187 06 GHz -25.106 dBm	Mkr	#Atten: 30 dB	IFGain:Low	Ref Offset 30.5 dB Ref 40.00 dBm	10 dB/div	Next Peak	2 9.454 07 GHz -25.723 dBm	Mkr	#Atten: 30 dB	IFGain:Low	tef Offset 30.5 dB Ref 40.00 dBm	dB/div		
Next Pk Rig					V1	20.0	Next Pk Right						99 0.0 0.0		
Next Pk Le				2		-10.0	Next Pk Left	-1900 dDm -20					00		
Marker De						-30.0	Marker Delta						3.0 3.0 3.0		
Mkr→G	Stop 9.500 GHz 5.00 ms (40001 pts)	Sweep 16.	3.0 MHz*	#VBW	0 MHz	Start 30 M #Res BW	Mkr→CF	Stop 9.500 GHz .00 ms (40001 pts)	Sweep 16.	W 3.0 MHz*	#VB	0 MHz	tart 30 M Res BW		
Mkr→RefL			33.824 dBm -25.106 dBm	930.83 MHz 3.187 06 GHz	1	1 N 1 2 N 1 3 4 5	Mkr→RefLvl			32.762 dBm -25.723 dBm	930.83 MHz 454 07 GHz	f 93	1 N 1 2 N 1 3 4 5		
Мс 1 о						6 7 8 9 10 11	More 1 of 2						6 7 8 9 0		
	8	STATUS				< MSG		3	STATUS	11		1	3		

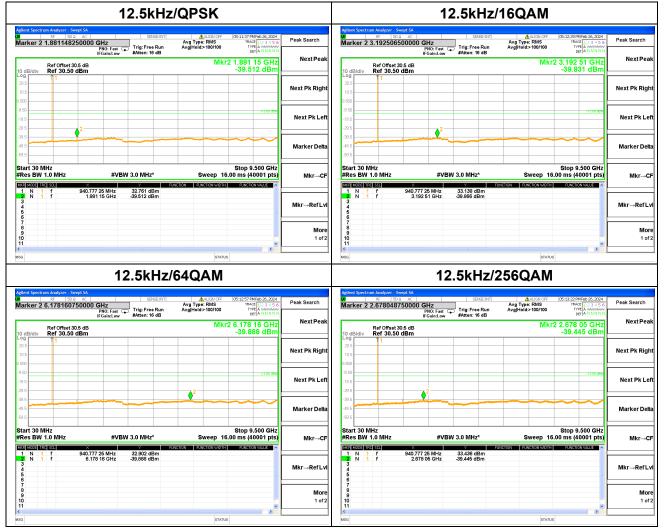
Nominal Frequency: 930.50 MHz Tx Port: Chan nel V

Shenzhen Morlab Communication Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

E-mail: service@morlab.cn

\В ific


4L S

Shenzhen Morlab Communication Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 F Http://www.morlab.cn E

	50.0kHz /256QAM						50.0kHz /64QAM							
Peak Search	06:32:27 PMFeb 24, 2024 TRACE 1 2 3 4 5 6 TYPE A VMANN N N	ALIGN OFF Avg Type: RMS Avg Hold:>100/100	SEVSE:INT		m Analyzer - Swept SA RF 50 Ω AC 9.42968525000	LXI	Peak Search	06:32:05 PM Feb 24, 2024 TRACE 1 2 3 4 5 6 TYPE A VINN N N OET A NN N N N	Aug Type: RMS Avg Hold>100/100	SENSE:INT	GHz PNO: Fast G	Analyzer - Swept SA RF 50 ລ AC 140339000000		
NextPeal	2 9.429 69 GHz -25.050 dBm	Mkr		3	Ref Offset 30.5 dB Ref 40.00 dBm	10 dB/div	NextPeak	2 9.440 34 GHz -25.485 dBm	Mkr		IF Galit. LOW	ef Offset 30.5 dB ef 40.00 dBm) dB/div	
Next Pk Righ					¥1	30.0 20.0 10.0	Next Pk Right					/1	99 0.0 0.0	
Next Pk Le						0.00 -10.0 -20.0	Next Pk Left						0.0	
Marker Del	'					-30.0 -40.0	Marker Delta						0.0	
Mkr→C	Stop 9.500 GHz 5.00 ms (40001 pts)	Sweep 16		×	1.0 MHz	Start 30 #Res BW	Mkr→CF	Stop 9.500 GHz .00 ms (40001 pts)	Sweep 16.			MHz	tart 30 M Res BW	
Mkr→RefL			34.619 dBm -25.050 dBm	930.83 MHz 9.429 69 GHz	f f 9	1 N 2 N 3 4 5	Mkr→RefLvl			34.160 dBm -25.569 dBm	30.83 MHz 40 34 GHz	f 93 F 9.44	1 N 1 2 N 1 3 4 5 6	
Mo 1 of						8 9 10	More 1 of 2						6 7 8 9 0 1	
	s	STATU	B			MSG			STATUS				G	

Nominal Frequency: 940.50 MHz Tx Port: Channel H

Shenzhen Morlab Communication Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 8 Http://www.morlab.cn E-mai

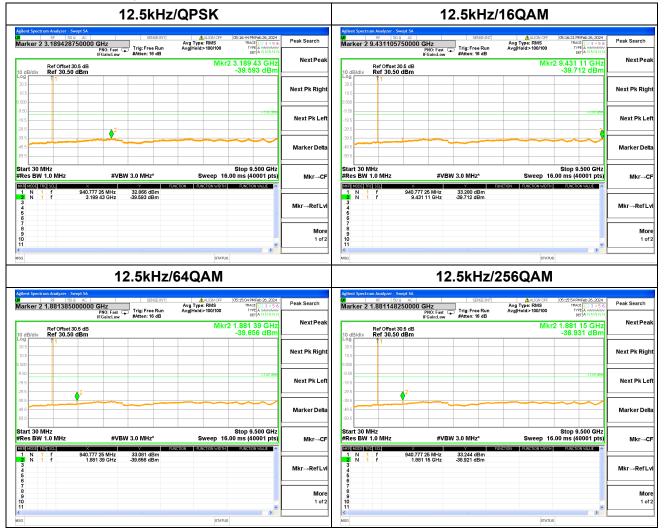
Fax: 86-755-36698525 E-mail: service@morlab.cn GR

atio

RNC

Shenzhen Morlab Communication Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

Fax: 86-755-36698525 E-mail: service@morlab.cn


Page 26 of 64

AND H

		256QAM	50.0kHz /2	50.0kHz /64QAM								
Peak Search	05:25:37 PMFeb 26, 2024 TRACE 1 2 3 4 5 6 TYPE A VMONTO DET A N N N N N	ALIGN OFF Avg Type: RMS Avg[Hold:>100/100	0: Fast 😱 Trig: Free Run	Analyzer - Swept SA RF 50 Q AC 8881148250000 GHz PNO: Fast IFGain:Lo	CXI	Peak Search	05:25:14 PM Feb 26, 2024 TRACE 1 2 3 4 5 6 TYPE A WARDOWN OFT A NN N N	ALIGN OFF Avg Type: RMS Avg Hold>100/100	SENSE:INT	AC	sctrum Analyzer - S RF 50 2 1.881148	í i
NextPea	2 1.881 15 GHz -38.471 dBm	Mkr2	ain:Low #Atten. 10 dB	ef Offset 30.5 dB ef 30.50 dBm	10 dB/div R	NextPeak	(r2 1.881 15 GHz -38.983 dBm	Mkr	watten. 10 dB	5 dB	Ref Offset: Ref 30.50	0 dB/c
Next Pk Rig				1	20.5 10.5	Next Pk Right					1	20.5 10.5
Next Pk Le	-13.00 dBm			2	-9.50	Next Pk Left	-15.00 dBm			2		9.50
Marker De	~~~~				-39.5 -49.5 -59.5	Marker Delta						39.5 49.5
Mkr→C	Stop 9.500 GHz 00 ms (40001 pts)	Sweep 16.0) MHz #V	Start 30 MHz #Res BW 1.0	Mkr→CF	Stop 9.500 GHz 16.00 ms (40001 pts)	Sweep 16		×) MHz W 1.0 MHz	Res
Mkr→RefL			MHz 33.903 dBm GHz -38.471 dBm		1 N 1 2 N 1 3 4 5	Mkr→RefLvl			33.637 dBm -38.983 dBm	940.777 25 MHz 1.881 15 GHz	1 f 1 f	2 N 3 4 5
					6 7 8 9 10 11	More 1 of 2						6 7 8 9 10
<u> </u>	>	STATUS			MSG		rus	STATU	LI			sg

Nominal Frequency: 940.50 MHz Tx Port: Channel V

Shenzhen Morlab Communication Technology Co., Ltd. FL.1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 86-755-36698525 Http://www.morlab.cn

E-mail: service@morlab.cn

