

TEST REPORT

APPLICANT	:	MiMOMax Wireless Limited
PRODUCT NAME	:	700MHz Upper A Block TornadoXR Transceiver
MODEL NAME	:	MWL-TORNADOX-*H*A/B/C
BRAND NAME	:	MiMOMax Wireless
FCC ID	:	XMK-MMXTRNXB002
STANDARD(S)	:	47 CFR Part 2 47 CFR Part 27
RECEIPT DATE	:	2021-04-21
TEST DATE	:	2021-04-22 to 2021-06-10
ISSUE DATE	:	2021-07-01

Lingkeye

Tested by:

Ling Keye (Rapporteur)

Approved by:

Shen Junsheng (Supervisor)

NOTE: This document is issued by Shenzhen Morlab Communications Technology Co., Ltd., the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen ,GuangDong Province, P. R. China
 Tel: 86-755-36698555
 Fax: 86-755-36698525

 Http://www.morlab.cn
 E-mail: service@morlab.cn

DIRECTORY

1. Technical Information ······	1
1.1. Applicant and Manufacturer Information	1
1.2. Equipment Under Test (EUT) Description	1
1.3. Test Standards and Results ······	5
1.4. Environmental Conditions	3
2. 47 CFR Part 2 and Part 27 Requirements	7
2.1. Radio Frequency Power Output and E.R.P.	7
2.2. Occupied Bandwidth ······10)
2.3. Spurious Emissions At Antenna Terminals······2	1
2.4. Radiated Spurious Emissions ······62	2
2.5. Frequency Stability	•
Annex A Test Uncertainty73	3
Annex B Testing Laboratory Information74	1

Change History					
Issue Date Reason for change					
1.0	2021-07-01	First edition			

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen ,GuangDong Province, P. R. China

Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

1. Technical Information

Note: Provide by applicant.

1.1. Applicant and Manufacturer Information

Applicant: MiMOMax Wireless Limited			
Applicant Address:540 Wairakei Road, Christchurch 8053, New Zealand			
Manufacturer:	MiMOMax Wireless Limited		
Manufacturer Address:	540 Wairakei Road, Christchurch 8053, New Zealand		

1.2. Equipment Under Test (EUT) Description

Product Name:	700MHz Upper A Block TornadoXR Transceiver
EUT Serial No:	(N/A, marked 6# by test site)
Hardware Version:	P001
Software Version:	TRN_04.08.00.dev12
Operating Frequency Range:	757-758 MHz & 787-788 MHz, 2Tx/2Rx
Channel Bandwidth:	12.5kHz; 25kHz; 50kHz
Modulation Type:	QPSK; 16QAM; 64QAM; 256QAM
Operating Voltage:	10.5-60Vdc
Antenna Type & Gain:	Omni Antenna: 4.0dBi; Panel Antenna: 12.0dBi; Panel
	Antenna: 16.0dBi
Emission Designator:	12.5kHz:10K3W1W
	25.0kHz:21K1W1W
	50.0kHz:42K0W1W

1.3. Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 2 and Part 27 for the EUT FCC ID Certification:

No.	Identity	Document Title
1	47 CFR Part 2	Frequency Allocations and Radio Treaty Matters; General Rules and
I		Regulations
2	47 CFR Part 27	Miscellaneous Wireless Communications Services

Test detailed items/section required by FCC rules and results are listed as below:

No	Section	Description	Test Date	Test Engineer	Result
1	27.50 2.1046	Power and antenna height limits Radio frequency power output	April 23, 2021	Ling Keye	Complies
2	2.1049	Occupied bandwidth	April 26, 2021	Ling Keye	PASS
3	2.1051 27.53 27.53(c) 27.53(c)(1) 27.53(c)(2) 27.53(c)(3) 27.53(c)(5) 27.53(c)(6)	Conducted spurious emissions at antenna terminals with DUT Operations in the 746 - 758 MHz band 776 - 788 MHz band emissions in763 - 775 MHz and 793 - 805MHz band	May 9, 2021	Ling Keye	PASS
4	2.1053 27.53 27.53(c) 27.53(c)(1) 27.53(c)(2) 27.53(c)(3) 27.53(c)(5) 27.53(c)(6)	Field strength of radiated spurious emissions with DUT Operations in the 746 - 758 MHz band 776 - 788 MHz band Emissions in 763 - 775 MHz and 793 - 805MHz band	April 30, 2021	Gao Jianrou	PASS
5	27.53(f)	Additional emission requirement in 1559 - 1610	May 17, 2021 June 2, 2021	Gao Jianrou	PASS

		MHz band			
6	27.54 2.105	Frequency stability	May 15, 2021	Ling Keye	PASS

Note 1: The TornadoXR Transceiver complies with FCC 47 CFR Part 2 and Part 27 when tested in accordance with the test methods described in 47 CFR Part 2 and Part 27.

Note 2: The TornadoXR Transceiver supports 2 Tx antenna ports, which was defined as Channel H & Channel V separately.

Note 3: The path loss during the conducted RF test is calibrated to correct the results by the Ext Gain setting. The Ext Gain contains two parts that cable loss of 0.6dB and attenuator of 30.0dB.

1.4. Environmental Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15 - 35
Relative Humidity (%):	30 - 60
Atmospheric Pressure (kPa):	86 -106

2.47 CFR Part 2 and Part 27 Requirements

2.1. Radio Frequency Power Output and E.R.P.

2.1.1. Test result

Nominal Frequency: 757.050 MHz Tx Port: Channel H

Channel Bandwidth	Bandwidth Modulation Voltage Power		Rated Power	E.R.P. (ANT Gain = 4.0dBi)		E.R.P. (ANT Gain = 16.0dBi)		
(kHz)	51.5	(/	(dBm)	(Watt)	dBm	Watt	dBm	Watt
12.5	QPSK	24	34.02	2.51	35.87	3.864	47.87	61.235
12.5	16QAM	24	33.95	2.51	35.80	3.802	47.80	60.256
12.5	64QAM	24	34.03	2.51	35.88	3.873	47.88	61.376
12.5	256QAM	24	34.08	2.51	35.93	3.917	47.93	62.087
25.0	QPSK	24	33.97	2.51	35.82	3.819	47.82	60.534
25.0	16QAM	24	33.97	2.51	35.82	3.819	47.82	60.534
25.0	64QAM	24	33.98	2.51	35.83	3.828	47.83	60.674
25.0	256QAM	24	33.91	2.51	35.76	3.767	47.76	59.704
50.0	QPSK	24	33.98	2.51	35.83	3.828	47.83	60.674
50.0	16QAM	24	33.92	2.51	35.77	3.776	47.77	59.841
50.0	64QAM	24	33.96	2.51	35.81	3.811	47.81	60.395
50.0	256QAM	24	34.01	2.51	35.86	3.855	47.86	61.094

Nominal Frequency: 757.050 MHz Tx Port: Channel V

Channel Bandwidth	Modulation Type	Voltage (Vdc)	Measured Rated Power Power		Power	•	NT Gain = dBi)	•	NT Gain = dBi)
(kHz)	, , , , , , , , , , , , , , , , , , ,	· · /	(dBm)	(Watt)	dBm	Watt	dBm	Watt	
12.5	QPSK	24	33.94	2.51	35.79	3.793	47.79	60.117	
12.5	16QAM	24	33.92	2.51	35.77	3.776	47.77	59.841	
12.5	64QAM	24	34.06	2.51	35.91	3.899	47.91	61.802	
12.5	256QAM	24	34.09	2.51	35.94	3.926	47.94	62.230	
25.0	QPSK	24	33.93	2.51	35.78	3.784	47.78	59.979	

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen ,GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

25.0	16QAM	24	33.98	2.51	35.83	3.828	47.83	60.674
25.0	64QAM	24	34.00	2.51	35.85	3.846	47.85	60.954
25.0	256QAM	24	34.05	2.51	35.90	3.890	47.90	61.660
50.0	QPSK	24	34.04	2.51	35.89	3.882	47.89	61.518
50.0	16QAM	24	33.95	2.51	35.80	3.802	47.80	60.256
50.0	64QAM	24	34.04	2.51	35.89	3.882	47.89	61.518
50.0	256QAM	24	34.02	2.51	35.87	3.864	47.87	61.235

Nominal Frequency: 787.950 MHz Tx Port: Channel H

Channel Bandwidth	Modulation Type	Voltage (Vdc)	Measured Power	Rated Power	E.R.P. (ANT Gain = 4.0dBi)		E.R.P. (ANT Gain = 12.0dBi)	
(kHz)	51.5		(dBm)	(Watt)	dBm	Watt	dBm	Watt
12.5	QPSK	24	33.90	2.51	35.75	3.758	43.75	23.714
12.5	16QAM	24	33.89	2.51	35.74	3.750	43.74	23.659
12.5	64QAM	24	33.94	2.51	35.79	3.793	43.79	23.933
12.5	256QAM	24	34.06	2.51	35.91	3.899	43.91	24.604
25.0	QPSK	24	33.96	2.51	35.81	3.811	43.81	24.044
25.0	16QAM	24	33.93	2.51	35.78	3.784	43.78	23.878
25.0	64QAM	24	34.03	2.51	35.88	3.873	43.88	24.434
25.0	256QAM	24	34.05	2.51	35.90	3.890	43.90	24.547
50.0	QPSK	24	34.03	2.51	35.88	3.873	43.88	24.434
50.0	16QAM	24	33.97	2.51	35.82	3.819	43.82	24.099
50.0	64QAM	24	34.04	2.51	35.89	3.882	43.89	24.491
50.0	256QAM	24	34.03	2.51	35.88	3.873	43.88	24.434

Nominal Frequency: 787.950 MHz Tx Port: Channel V

Channel Bandwidth	Modulation Type	Voltage (Vdc)	Power Power				E.R.P. (ANT Gain = 12.0dBi)	
(kHz)	51.5		(dBm)	(Watt)	dBm	Watt	dBm	Watt
12.5	QPSK	24	33.97	2.51	35.82	3.819	43.82	24.099
12.5	16QAM	24	33.96	2.51	35.81	3.811	43.81	24.044
12.5	64QAM	24	33.94	2.51	35.79	3.793	43.79	23.933

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen ,GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

256QAM	24	34.05	2.51	35.90	3.890	43.90	24.547
QPSK	24	33.92	2.51	35.77	3.776	43.77	23.823
16QAM	24	33.90	2.51	35.75	3.758	43.75	23.714
64QAM	24	33.96	2.51	35.81	3.811	43.81	24.044
256QAM	24	34.03	2.51	35.88	3.873	43.88	24.434
QPSK	24	33.97	2.51	35.82	3.819	43.82	24.099
16QAM	24	33.90	2.51	35.75	3.758	43.75	23.714
64QAM	24	33.91	2.51	35.76	3.767	43.76	23.768
256QAM	24	33.93	2.51	35.78	3.784	43.78	23.878
	QPSK 16QAM 64QAM 256QAM QPSK 16QAM 64QAM	QPSK 24 16QAM 24 64QAM 24 256QAM 24 QPSK 24 16QAM 24 256QAM 24 260QPSK 24 240QPSK 24 240QPSK 24 240QPSK 24 240QPSK 24 240QPSK 24	QPSK 24 33.92 16QAM 24 33.90 64QAM 24 33.96 256QAM 24 34.03 QPSK 24 33.97 16QAM 24 33.90 64QAM 24 33.97 256QAM 24 33.97 64QAM 24 33.90 64QAM 24 33.91	QPSK 24 33.92 2.51 16QAM 24 33.90 2.51 64QAM 24 33.96 2.51 256QAM 24 34.03 2.51 QPSK 24 33.97 2.51 16QAM 24 33.97 2.51 QPSK 24 33.90 2.51 64QAM 24 33.90 2.51 64QAM 24 33.90 2.51	QPSK 24 33.92 2.51 35.77 16QAM 24 33.90 2.51 35.75 64QAM 24 33.96 2.51 35.81 256QAM 24 34.03 2.51 35.88 QPSK 24 33.97 2.51 35.82 16QAM 24 33.97 2.51 35.82 16QAM 24 33.90 2.51 35.75 64QAM 24 33.90 2.51 35.75 64QAM 24 33.90 2.51 35.75	QPSK 24 33.92 2.51 35.77 3.776 16QAM 24 33.90 2.51 35.75 3.758 64QAM 24 33.96 2.51 35.81 3.811 256QAM 24 34.03 2.51 35.88 3.873 QPSK 24 33.97 2.51 35.82 3.819 16QAM 24 33.90 2.51 35.75 3.758 QPSK 24 33.97 2.51 35.82 3.819 16QAM 24 33.90 2.51 35.75 3.758 64QAM 24 33.90 2.51 35.75 3.758	QPSK 24 33.92 2.51 35.77 3.776 43.77 16QAM 24 33.90 2.51 35.75 3.758 43.75 64QAM 24 33.90 2.51 35.75 3.758 43.75 64QAM 24 33.96 2.51 35.81 3.811 43.81 256QAM 24 34.03 2.51 35.88 3.873 43.88 QPSK 24 33.97 2.51 35.82 3.819 43.82 16QAM 24 33.90 2.51 35.75 3.758 43.75 64QAM 24 33.91 2.51 35.75 3.758 43.75

Note 1: Measurements were carried out at the RF output terminals of the transmitter using spectrum analyzer. The path loss during the conducted RF test is calibrated to correct the results by the Ext Gain setting. The Ext Gain contains two parts that cable loss of 0.6dB and attenuator of 30.0dB.

Note 2: The transmitter has a rated output power of 2.51 Watt(34dBm). The measured power has been shown to be within +/- 1 dB of the rated power.

Note 3: E.I.R.P. (dBm) = Conducted Output Power (dBm) + Antenna Gain (dBi); E.R.P. (dBm) = E.I.R.P. (dBm) - 2.15.

Note 4: Part 27 does not specify the transmitter output power.

Subpart C Section 27.50 (b)(1) states that fixed and base station transmitters in the 757-758 MHz band must not exceed 1000 watts ERP.

Subpart C Section 27.50 (b)(9) states that for control stations and mobile stations transmitting in the 746-757 MHz, 776-788 MHz, and 805-806 MHz bands and fixed stations transmitting in the 787-788 MHz and 805-806 MHz bands are limited to 30 watts ERP.

Note 5: The product's antenna is a special MIMO antenna with cross-polarization which is able to transmit and receive on both the vertical and horizontal polarizations at the same time, the MIMO antennas are essentially two antennas in one.

Note 6: According to KDB 662911, the MIMO directional gain is the gain of an individual antenna. **Note 7:** The DUT transmitter ports are completely uncorrelated. According to KDB 662911 the conducted power or E.R.P is measured on each port individually and it complies with the regulations.

Note 8: The product based on the interactive calculation of E.R.P limit value and conducted power, allows the use of an antenna with a maximum gain of 28.06dBi for 757-758MHz and 12.86dBi for 787-788MHz respectively, or an antenna of higher gain with the transmitter power tuned down so can meet the E.R.P requirement.

2.2. Occupied Bandwidth

2.2.1. Definition

The client has declared the following occupied bandwidths for each channel bandwidth:

Frequency(MHz)	Channel Bandwidth(kHz)	Occupied Bandwidth(kHz)		
757.050	12.5, 25.0, 50.0	10.3, 21.1, 42.0		
787.950	12.5, 25.0, 50.0	10.3, 21.1, 42.0		

Note: The above data combined with uncertainty and rounding calculations are consistent with the actual test data.

According to FCC section 2.1049, the occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission.

Occupied bandwidth is also known as the 99% emission bandwidth.

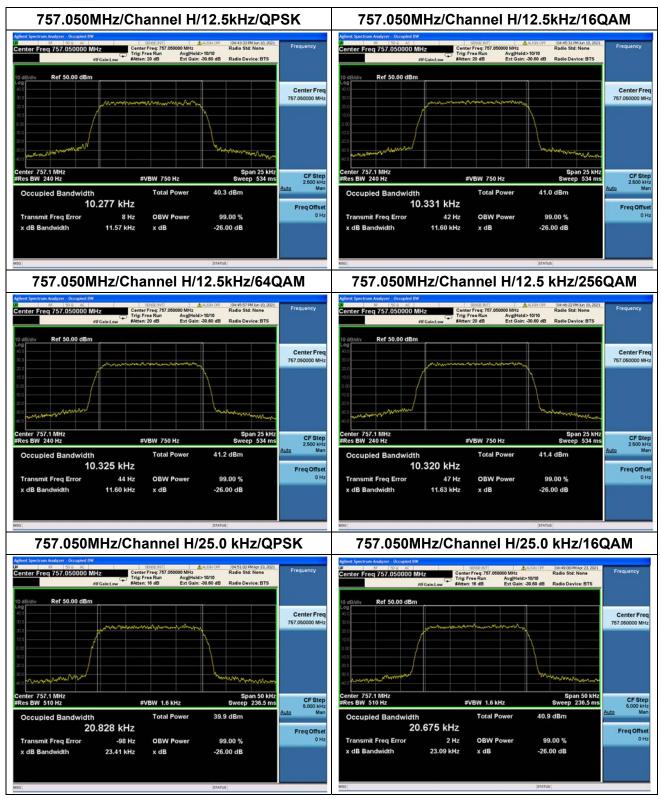
2.2.2. Test Description

Measurements have been made to verify these declared bandwidths using the generic frequencies that are listed in the table above.

The occupied bandwidth has been measured and compared against the occupied bandwidth declared by the client.

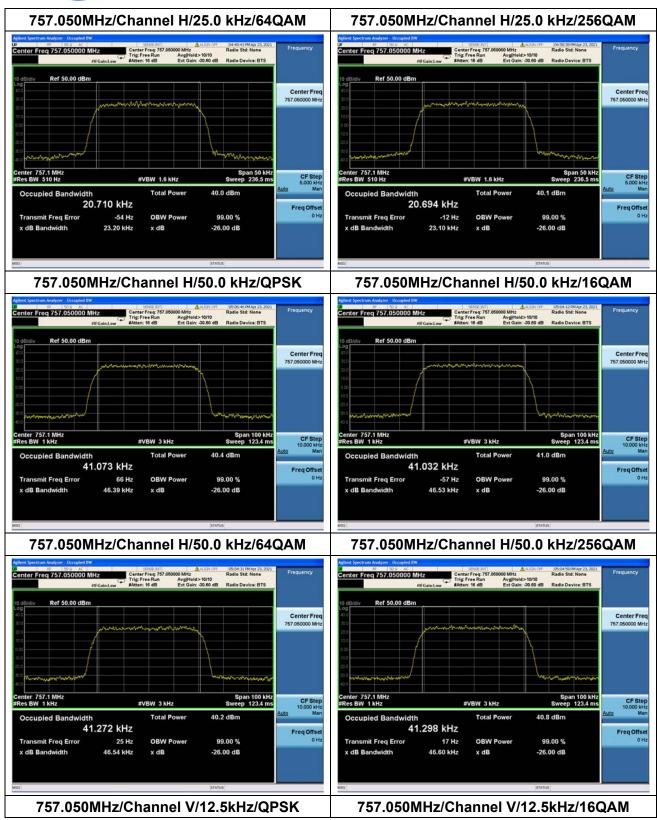
Measurements have been made of each modulation type using a spectrum analyzer operating in occupied bandwidth mode.

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen ,GuangDong Province, P. R. China


2.2.3. Test Result

Nominal Frequency: 757.050 MHz

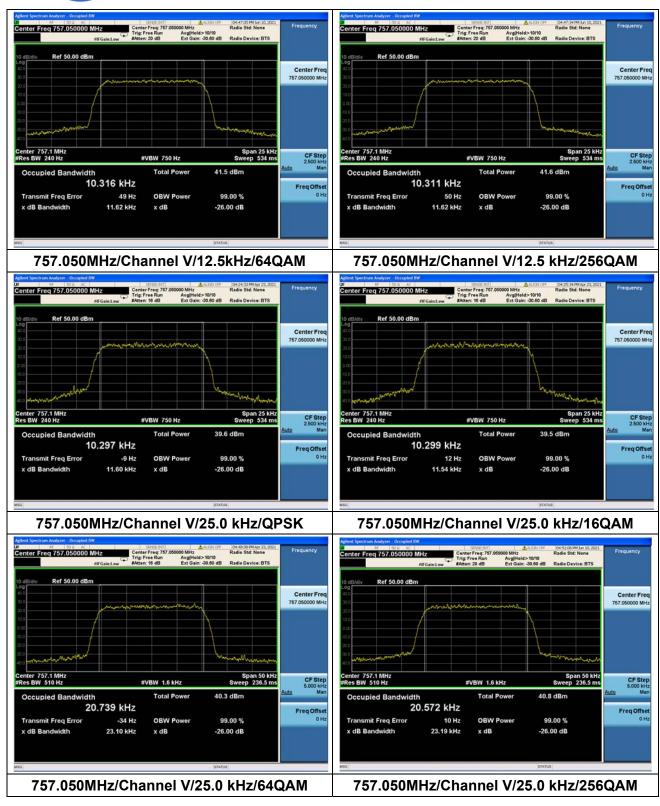
Tx Port	Channel Bandwidth(kHz)	Emission Type	Occupied Bandwidth(kHz)
		QPSK	10.277
	12.5	16QAM	10.331
	12.5	64QAM	10.325
		256QAM	10.320
		QPSK	20.828
Channel H	25.0	16QAM	20.675
	25.0	64QAM	20.710
		256QAM	20.694
		QPSK	41.073
	50.0	16QAM	41.032
		64QAM	41.272
		256QAM	41.298
	12.5	QPSK	10.316
		16QAM	10.311
		64QAM	10.297
		256QAM	10.299
		QPSK	20.739
Channel V	25.0	16QAM	20.572
Channel V	25.0	64QAM	20.606
		256QAM	20.717
		QPSK	41.306
	50.0	16QAM	41.257
	0.00	64QAM	41.259
		256QAM	41.292


MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen ,GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn


Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen ,GuangDong Province, P. R. China Tel: 86-755-36698555

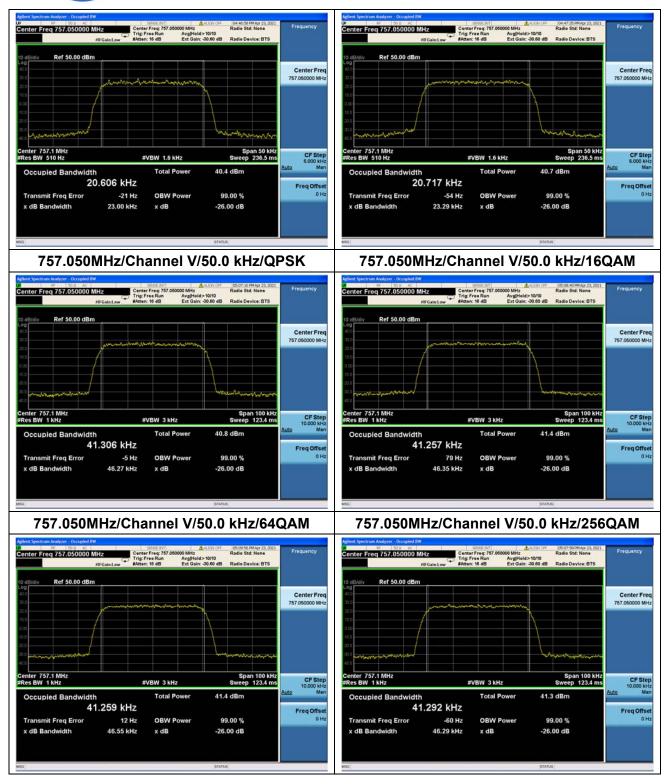
Fax: 86-755-36698525

Http://www.morlab.cn

MORLAB

REPORT No. : SZ21040239W01

MORLAB


Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen ,GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

MORLAB

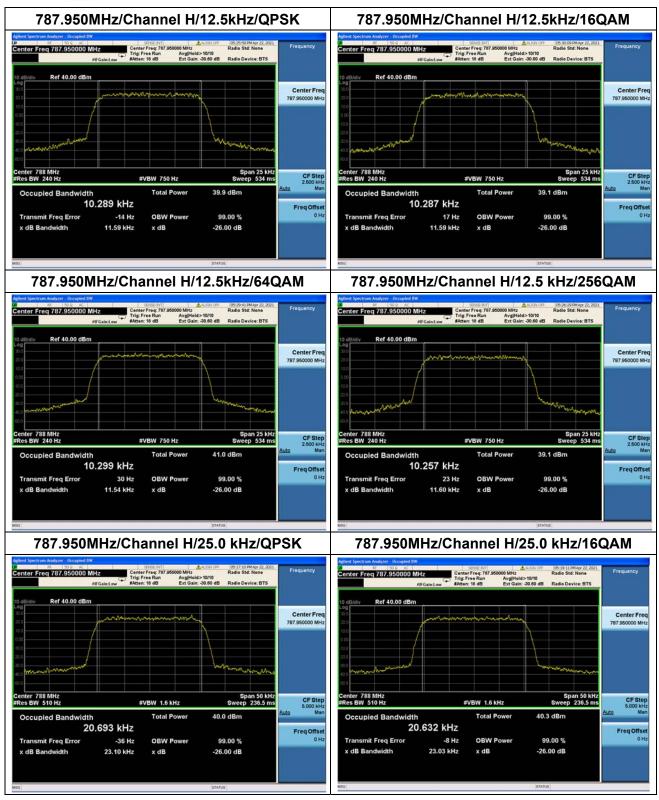
REPORT No. : SZ21040239W01

MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen ,GuangDong Province, P. R. China Tel: 86-755-36698555

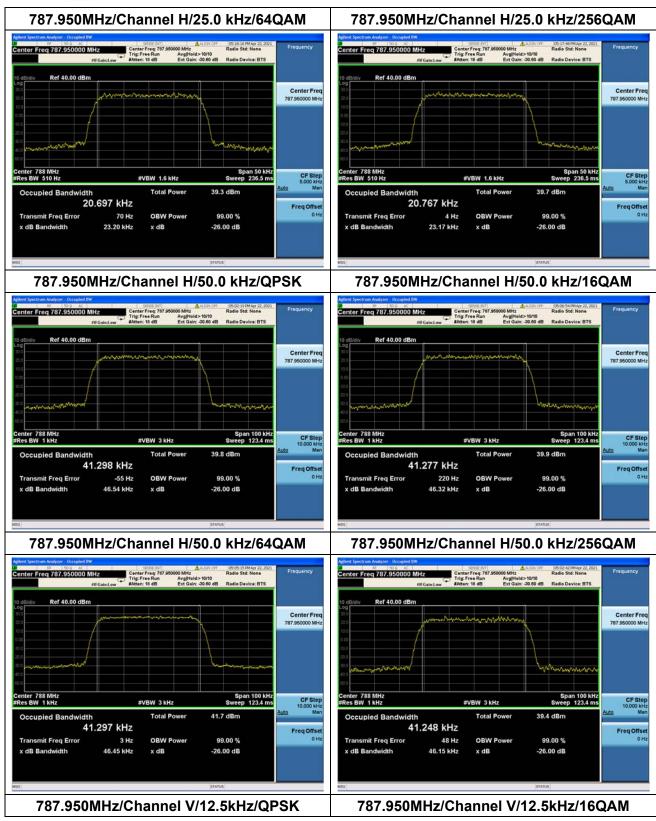
Fax: 86-755-36698525

Http://www.morlab.cn



Nominal Frequency: 787.950 MHz

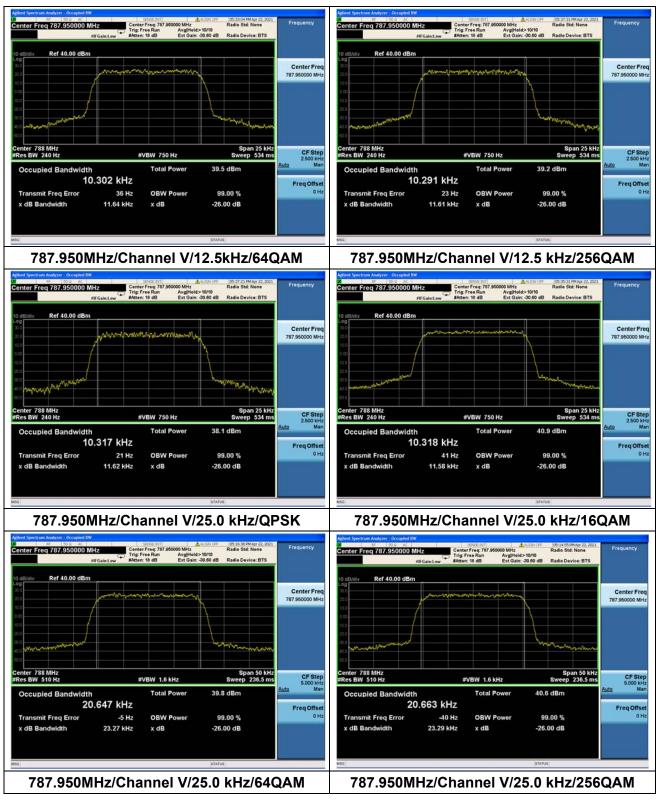
Tx Port	Channel Bandwidth(kHz)	Emission Type	Occupied Bandwidth(kHz)
		QPSK	10.289
	40.5	16QAM	10.287
	12.5	64QAM	10.299
		256QAM	10.257
		QPSK	20.693
Channel H	25.0	16QAM	20.632
	25.0	64QAM	20.697
		256QAM	20.767
		QPSK	41.298
	50.0	16QAM	41.277
		64QAM	41.297
		256QAM	41.248
		QPSK	10.302
	40.5	16QAM	10.291
	12.5	64QAM	10.317
		256QAM	10.318
		QPSK	20.647
Channel V	25.0	16QAM	20.663
Channel V	25.0	64QAM	20.780
		256QAM	20.567
ļ		QPSK	41.260
	50.0	16QAM	41.204
	0.00	64QAM	41.264
		256QAM	41.256



Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen ,GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

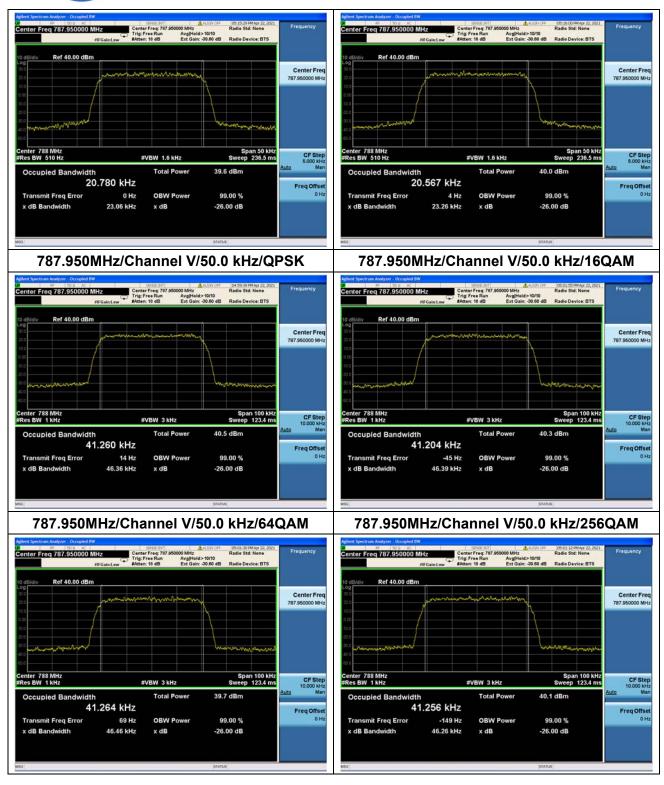
Http://www.morlab.cn E-r


MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen ,GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn


Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen ,GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn E-mail: service@morlab.cn

MORLAB

REPORT No. : SZ21040239W01

MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen ,GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

2.3. Spurious Emissions At Antenna Terminals

2.3.1. Test Requirement

According to FCC section 2.1051 and section 27.53(c). For operations in the 746-758 MHz band and the 776-788 MHz band, the power of any emission outside the licensee's frequency band(s) of operation shall be attenuated below the transmitter power within the licensed band(s) of operation, measured in watts, in accordance with the following:

(1) On any frequency outside the 746-758 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
 (2) On any frequency outside the 776-788 MHz band, the power of any emission shall be attenuated outside the band below the transmitter power (P) by at least 43 + 10 log (P) dB;
 (3) On all frequencies between 763-775 MHz and 793-805 MHz, by a factor not less than 76 + 10 log (P) dB in a 6.25 kHz band segment, for base and fixed stations;

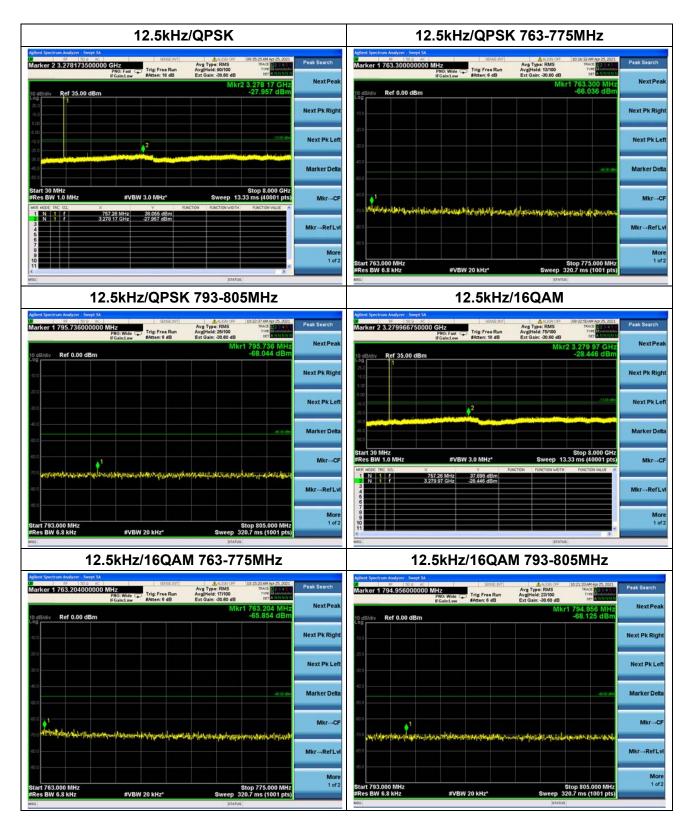
(5) Compliance with the provisions of paragraphs (c)(1) and (c)(2) of this section is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. However, in the 100 kHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 30 kHz may be employed;

(6) Compliance with the provisions of paragraphs (c)(3) and (c)(4) of this section is based on the use of measurement instrumentation such that the reading taken with any resolution bandwidth setting should be adjusted to indicate spectral energy in a 6.25 kHz segment.

Frequency	Tx Port	Measurement	Spurious Span	Limit	Verdict
(MHz)		Bandwidth	(MHz)	(dBm)	Veralet
757.050	Channel H	1MHz	30 - 8000	-13	Pass
	Channel V	6.25kHz	763-775 & 793-805	-46	Pass
	Channel H	30kHz	Adjacent 100kHz Lower edge	-13	Pass
757.050	Channel V	30kHz	Adjacent 100kHz Lower edge	-13	Pass
	Channel H	30kHz	Adjacent 100kHz Upper edge	-13	Pass
	Channel V	30kHz	Adjacent 100kHz Upper edge	-13	Pass
	Channel H	1MHz	30 - 8000	-13	Pass
	Channel V	6.25kHz	763-775 & 793-805	-46	Pass
787.950	Channel H	30kHz	Adjacent 100kHz Lower edge	-13	Pass
	Channel V	30kHz	Adjacent 100kHz Lower edge	-13	Pass
	Channel H	30kHz	Adjacent 100kHz Upper edge	-13	Pass
	Channel V	30kHz	Adjacent 100kHz Upper edge	-13	Pass

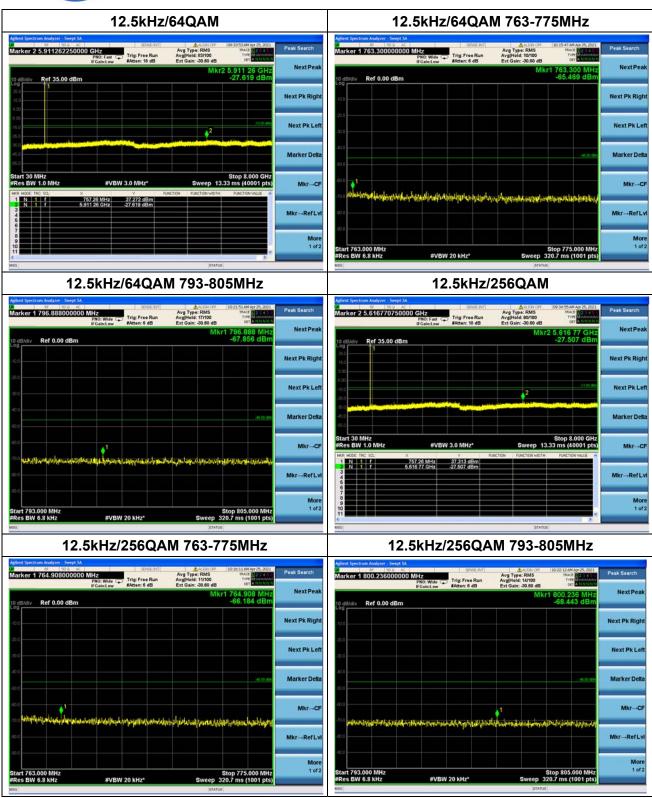
2.3.2. Test Result

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen ,GuangDong Province, P. R. China


Tel: 86-755-36698555

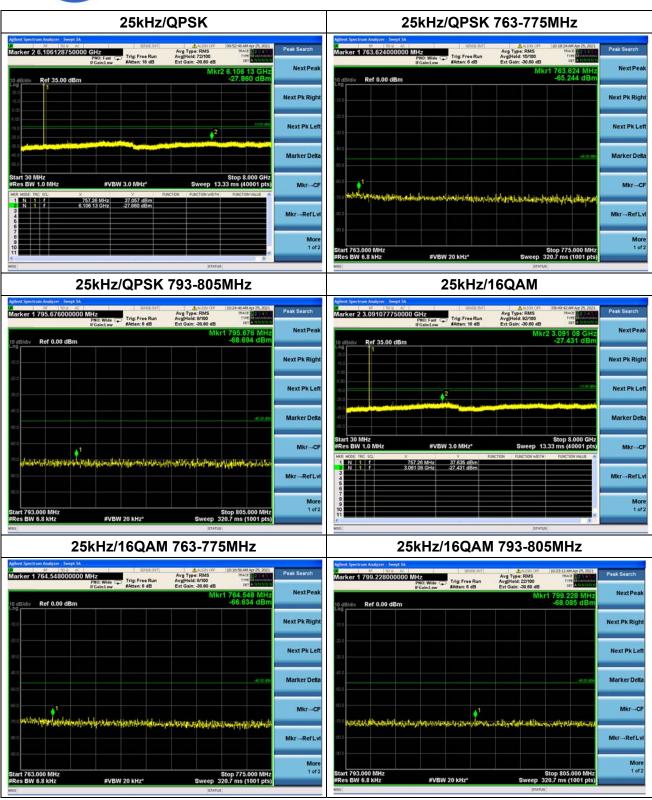
Fax: 86-755-36698525

Http://www.morlab.cn


Nominal Frequency: 757.050 MHz Tx Port: Channel H

MORLAB

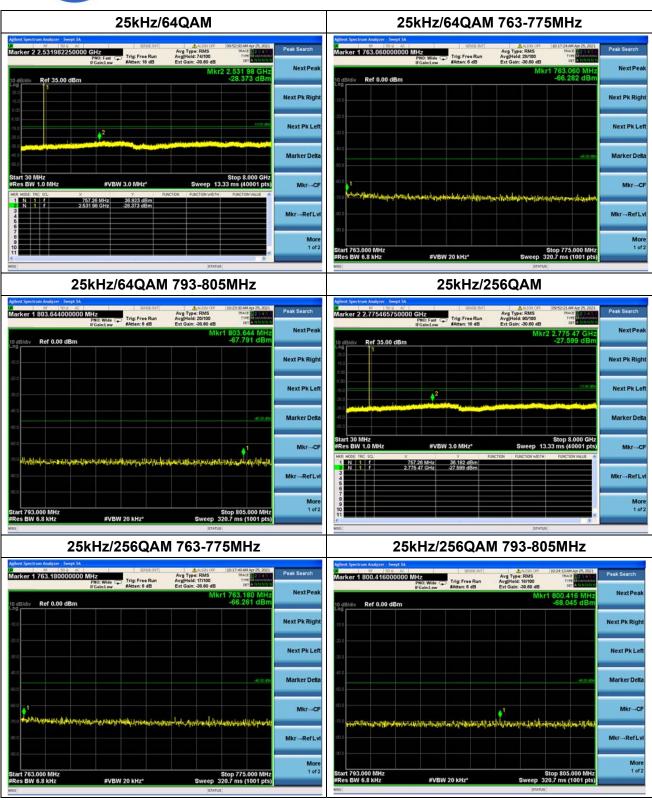
Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen ,GuangDong Province, P. R. China Tel: 86-755-36698555 Fax: 86-755-36698525 E-mail: service@morlab.cn Http://www.morlab.cn


MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen ,GuangDong Province, P. R. China Tel: 86-755-36698555 Fa:

Fax: 86-755-36698525

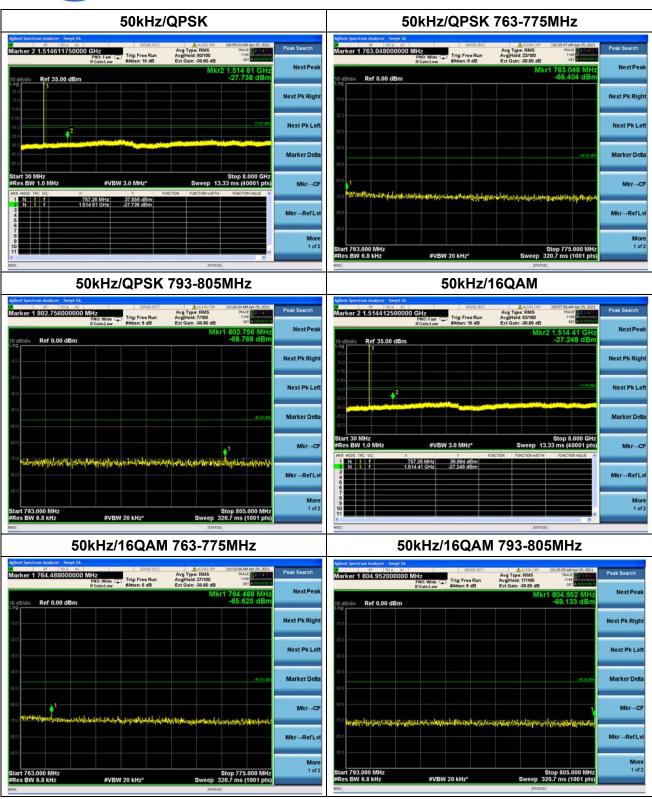
Http://www.morlab.cn


MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen ,GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

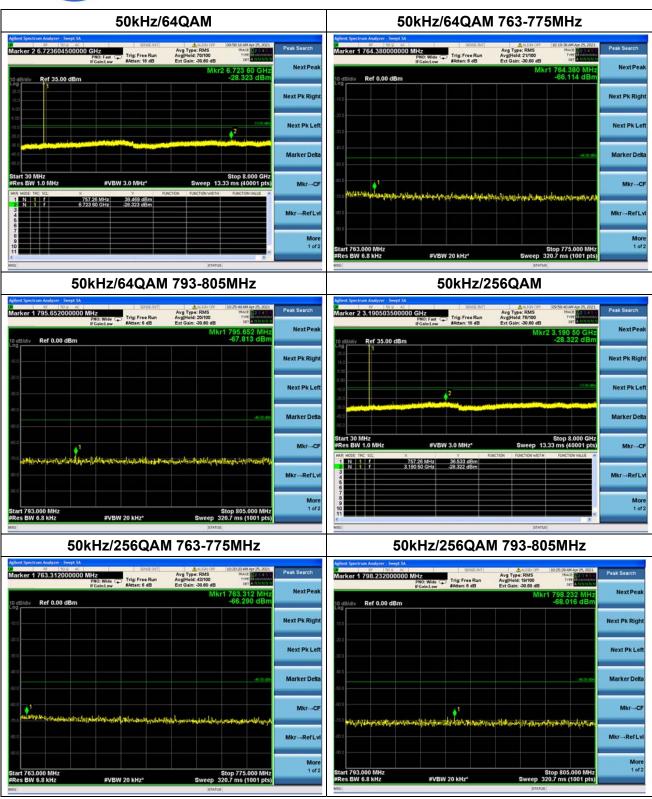
Http://www.morlab.cn


MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen ,GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

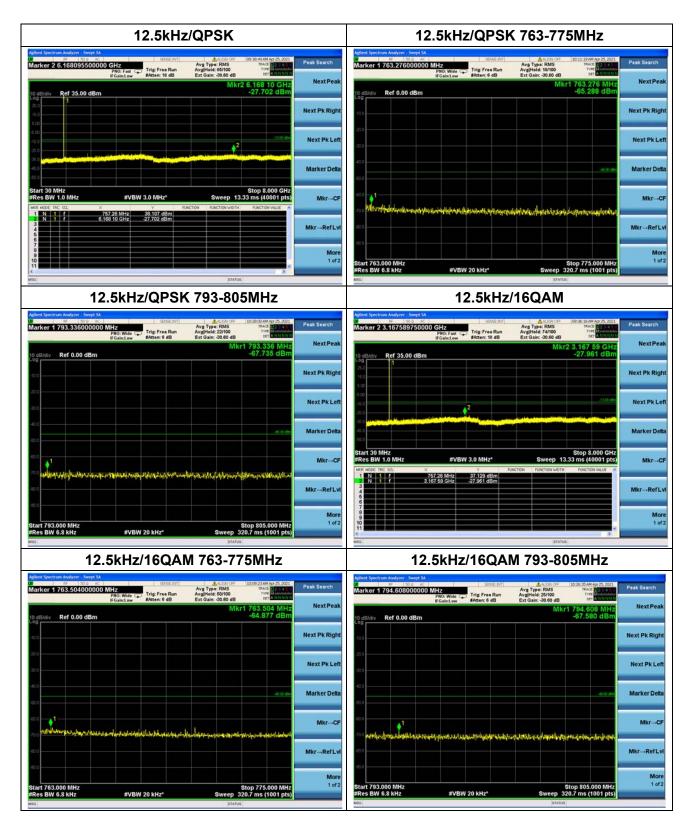

MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen ,GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

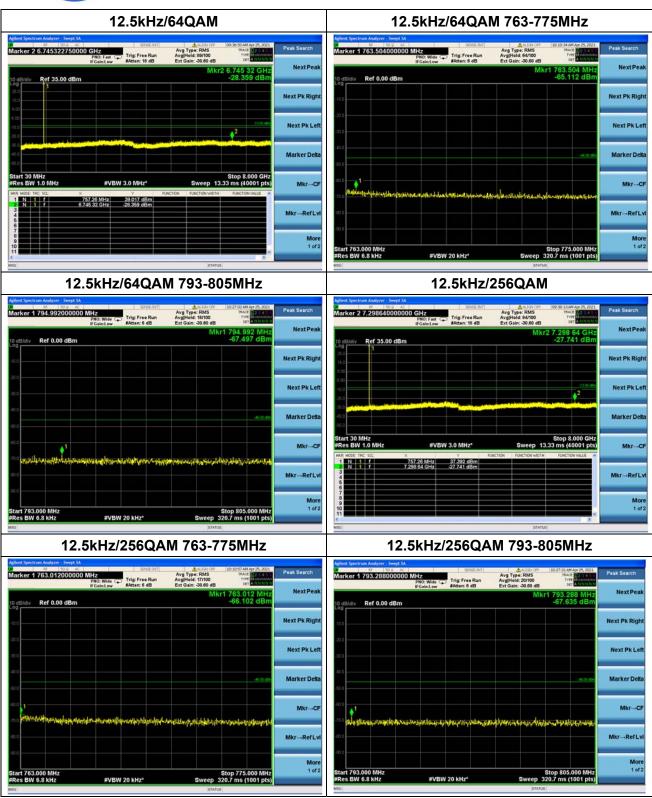
MORLAB


Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen ,GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

Nominal Frequency: 757.050 MHz Tx Port: Channel V



MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen ,GuangDong Province, P. R. China Tel: 86-755-36698555 E-mail: service@morlab.cn Http://www.morlab.cn

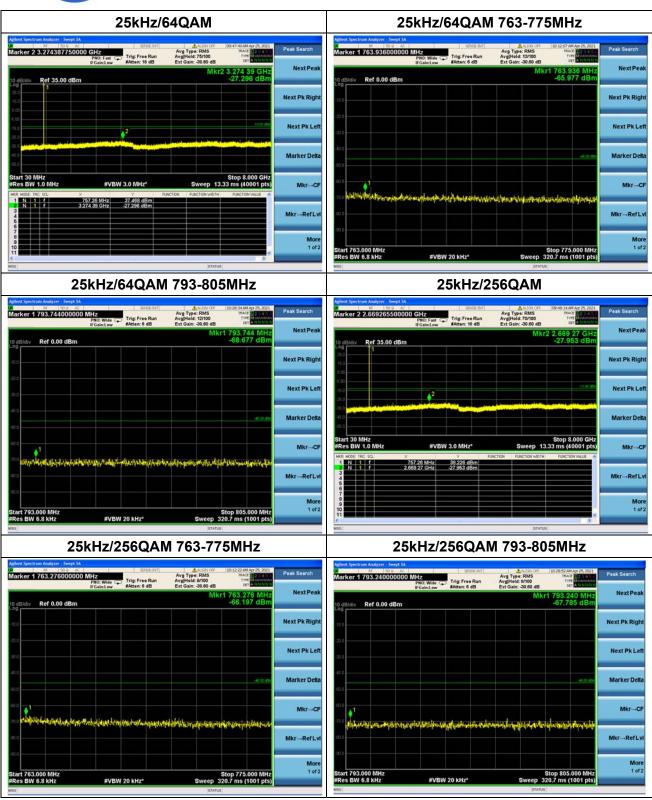
Fax: 86-755-36698525

MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen ,GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

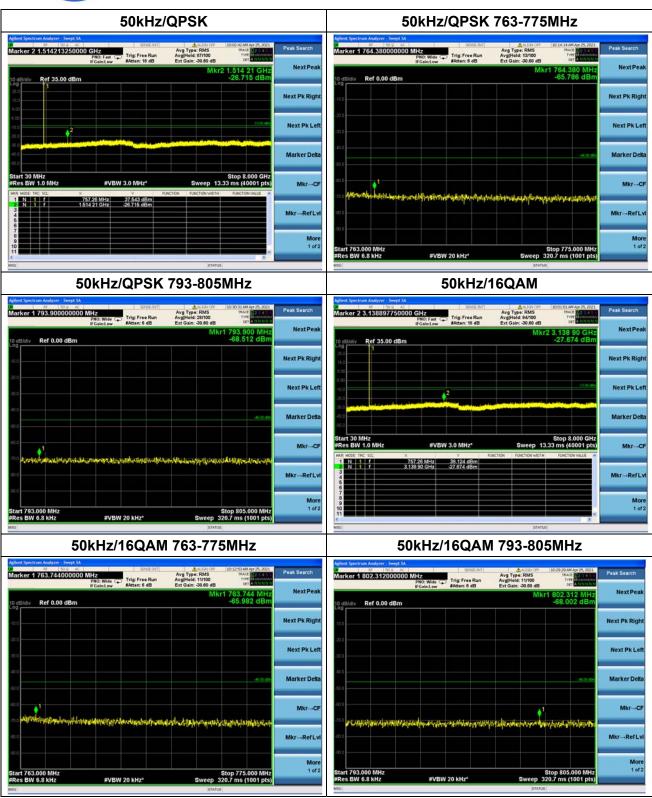
Http://www.morlab.cn


MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen ,GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

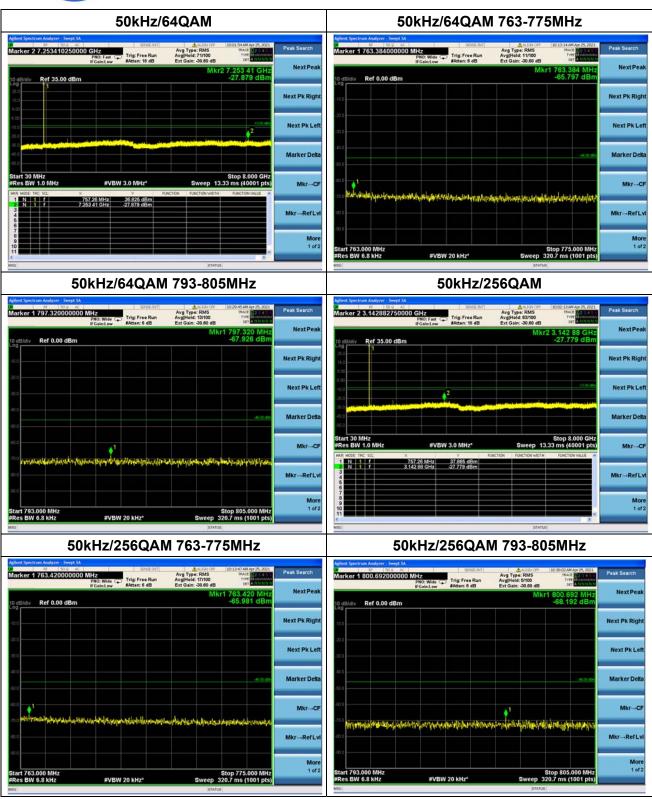
Http://www.morlab.cn


MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen ,GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn



Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen ,GuangDong Province, P. R. China Tel: 86-755-36698555

Fax: 86-755-36698525

Http://www.morlab.cn

MORLAB

Shenzhen Morlab Communications Technology Co., Ltd. FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen ,GuangDong Province, P. R. China Tel: 86-755-36698555 Http://www.morlab.cn

Fax: 86-755-36698525