Radio Frequency Hazard Information

As per FCC KDB 447498 D01 and Section 2.1091 radio frequency transmitters are required to be operated in a manner that ensures the public is not exposed to RF energy levels.

Calculations have been made using the General Public/Uncontrolled Exposure limits that are defined in Section 1.1310.

Minimum safe distances have been calculated below.

As this radio can operate over the range of 928 - 960 MHz the lowest frequency of operation in the USA, which will give the worst case result, would be 928 MHz.

Power density, $mW/cm^2 = E^2/3770$

- General Population / Uncontrolled exposure limit will be 0.619 mW/cm² (f/1500 = 928 MHz/1500)

The minimum distance from the antenna at which the MPE is met is calculated from the equation relating field strength in V/m, transmit power in watts, transmit antenna gain, transmitter duty cycle and separation distance in metres:

Power Density = $0.63 \text{ mW/cm}^2 = \text{E}^2/3770$ E = $\sqrt{0.619*3770}$ E = 48.3 V/m

The rated maximum transmitter power = 0.25 watts (+24 dBm).

A duty cycle of 100% as the transmitter is a base station could possibly be operated for long periods of time.

The client has declared that this transmitter can be operated using a range of antennas with various gains, as detailed in the table below.

Antenna	Gain	Max Gain	Safe Distance	Safe Distance
Туре	(dBi)	(G)	(Metres)	(cm)
Panel Antenna	16.0	39.8	0.359	35.8
	12.5	17.8	0.239	23.9
	10.0	10.0	0.179	17.9
Omni Directional	8.0	6.3	0.142	14.2
	5.0	3.2	0.101	10.1

A sample calculation for the safe distance would be:

 $d = \sqrt{(30 * P * G*DC) / E}$ d = $\sqrt{(30 * 0.25 * 39.8 * 1.0) / 48.3}$ d = 0.358 metres or 35.8 cm

Result: Complies if the safe distances defined above are applied.

20th August 2015