Radio Frequency Hazard Information

As per FCC KDB 447498 D01 and Section 2.1091 radio frequency transmitters are required to be operated in a manner that ensures the public is not exposed to RF energy levels.

Calculations have been made using the General Public/Uncontrolled Exposure limits that are defined in Section 1.1310.

Minimum safe distances have been calculated below.
As this radio can operate over the range of $928-960 \mathrm{MHz}$ the lowest frequency of operation in the USA, which will give the worst case result, would be 928 MHz .

Power density, $\mathrm{mW} / \mathrm{cm}^{2}=\mathrm{E}^{2} / 3770$

- General Population / Uncontrolled exposure limit will be $0.619 \mathrm{~mW} / \mathrm{cm}^{2}$
(f/1500 = $928 \mathrm{MHz} / 1500$)
The minimum distance from the antenna at which the MPE is met is calculated from the equation relating field strength in V / m, transmit power in watts, transmit antenna gain, transmitter duty cycle and separation distance in metres:

Power Density $=0.63 \mathrm{~mW} / \mathrm{cm}^{2}=\mathrm{E}^{2} / 3770$
$\mathrm{E}=\sqrt{ } 0.619 * 3770$
$\mathrm{E}=48.3 \mathrm{~V} / \mathrm{m}$

The rated maximum transmitter power $=0.25$ watts $(+24 \mathrm{dBm})$.
A duty cycle of 100% as the transmitter is a base station could possibly be operated for long periods of time.

The client has declared that this transmitter can be operated using a range of antennas with various gains, as detailed in the table below.

Antenna Type	Gain $(\mathbf{d B i})$	Max Gain $\mathbf{(G)}$	Safe Distance (Metres)	Safe Distance $(\mathbf{c m})$
Panel Antenna	16.0	39.8	0.359	35.8
	12.5	17.8	0.239	23.9
	10.0	10.0	0.179	17.9
	8.0	6.3	0.142	14.2
	5.0	3.2	0.101	10.1

A sample calculation for the safe distance would be:
$\mathrm{d}=\sqrt{ }\left(30 * P * G^{*} \mathrm{DC}\right) / \mathrm{E}$
$\mathrm{d}=\sqrt{ }(30 * 0.25 * 39.8 * 1.0) / 48.3$
$\mathrm{d}=0.358$ metres or 35.8 cm
Result: Complies if the safe distances defined above are applied.

