

Report No.: TB-FCC141396 Page: 1 of 41

FCC Radio Test Report FCC ID: XMF-MID713

Original Grant

Report No.	:	TB-FCC141396
Applicant	:	Lightcomm Technology Co., Ltd.
Equipment Und	ler Test (EUT)
EUT Name	:	MID
Model No.	:	MID713-L
Series Model No.	:	MID721-L, DL701Q, DL701Q(B)
Brand Name	:	N/A
Receipt Date	:	2014-07-25
Test Date	:	2014-07-28 to 2014-08-05
Issue Date	:	2014-08-13
Standards	:	FCC Part 15, Subpart C (15.247:2012)
Test Method	:	ANSI C63.4:2003
Conclusions	:	PASS
		In the configuration tested, the FLIT complied with the standards specified abo

In the configuration tested, the EUT complied with the standards specified above, The EUT technically complies with the FCC and IC requirements

Test/Witness Engineer

Approved& Authorized

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

Contents

CONT	[ENTS	2
1.	GENERAL INFORMATION ABOUT EUT	4
	1.1 Client Information	4
	1.2 General Description of EUT (Equipment Under Test)	4
	1.3 Block Diagram Showing the Configuration of System Tested	5
	1.4 Description of Support Units	5
	1.5 Description of Test Mode	6
	1.6 Description of Test Software Setting	6
	1.7 Test Facility	7
2.	TEST SUMMARY	8
3.	CONDUCTED EMISSION TEST	9
	3.1 Test Standard and Limit	9
	3.2 Test Setup	9
	3.3 Test Procedure	
	3.4 Test Equipment Used	10
	3.5 EUT Operating Mode	10
	3.6 Test Data	10
4.	RADIATED EMISSION TEST	13
	4.1 Test Standard and Limit	13
	4.2 Test Setup	14
	4.3 Test Procedure	15
	4.4 EUT Operating Condition	15
	4.5 Test Equipment	16
	4.6 Test Data	16
5.	RESTRICTED BANDS REQUIREMENT	25
	5.1 Test Standard and Limit	25
	5.2 Test Setup	25
	5.3 Test Procedure	25
	5.4 EUT Operating Condition	26
	5.5 Test Equipment	26
	5.6 Test Data	26
6.	BANDWIDTH TEST	32
	6.1 Test Standard and Limit	32
	6.2 Test Setup	32
	6.3 Test Procedure	32
	6.4 EUT Operating Condition	
	6.5 Test Equipment	
	6.6 Test Data	
7.	PEAK OUTPUT POWER TEST	35

	7.1 Test Standard and Limit	35
	7.2 Test Setup	35
	7.3 Test Procedure	
	7.4 EUT Operating Condition	35
	7.5 Test Equipment	
	7.6 Test Data	
8.	POWER SPECTRAL DENSITY TEST	
	8.1 Test Standard and Limit	
	8.2 Test Setup	
	8.3 Test Procedure	
	8.4 EUT Operating Condition	
	8.5 Test Equipment	
	8.6 Test Data	
9.	ANTENNA REQUIREMENT	41
	9.1 Standard Requirement	41
	9.2 Antenna Connected Construction	
	9.2 Result	

1. General Information about EUT

1.1 Client Information

Applicant	:	Lightcomm Technology Co., Ltd.
Address	:	RM 1708-10, 17/F, PROSPERITY CENTRE, 25 CHONG YIP STREET, KWUN TONG, KOWLOON, HONG KONG
Manufacturer	:	Huizhou Hengdu Electronics Co., Ltd.
Address	:	DIP South Area, Huiao Highway, Huizhou, Guangdong, China

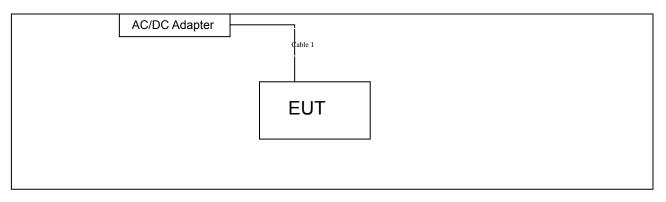
1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	MID		
Models No.	:	MID713-L, MID721-L, DL701Q, DL701Q(B)		
Model Difference	:	MID721-L with different shells of the same material, the other models are identical in the same PCB layout, interior structure and electrical circuits, The only difference is model name for commercial purpose.		
		Operation Frequency: 2402MHz~2480MHz		
		Number of Channel:	Bluetooth 4.0 (BLE): 40 channels see note(3)	
Product Description		RF Output Power:	-2.7 dBm Conducted Power	
Description	•	Antenna Gain:	0 dBi FPC Antenna	
		Modulation Type: GFSK		
		Bit Rate of Transmitter:	1Mbps(GFSK)	
Power Supply	:	DC power supplied by AC/DC Adapter		
		DC Voltage supplied from Li-Polymer battery.		
Power Rating	:	USB DC 5V form PC.		
		AC/DC Adapter(TEKA00	6-0501500UKU):	
		Input: AC 100~240V 50/60Hz 0.35A Max. Output: DC 5V 1.5A		
		DC 3.7V 2100mAh from Li-Polymer battery		
Connecting	:	The equipent have USB port for link with PC, so the equipment is		
I/O Port(S)		considered as a Computing Device Peripheral.		
		Please refer to the User's Manual		
Note: The equipme	ent	with Bluetooth and Wifi(802.1	1b/g/n) function, WiFi(802.11b/g/n) have test comply	
			es description, please refer to the manufacturer's	

specifications or the User's Manual.

- (1) This Test Report is FCC Part 15.247 for Bluetooth BLE, the test procedure follows the FCC KDB 558074 D01 DTS Meas Guidance v03r02.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or

the User's Manual.


(3) Antenna information provided by the applicant.

(4) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	14	2430	28	2458
01	2404	15	2432	29	2460
02	2406	16	2434	30	2462
03	2408	17	2436	31	2464
04	2410	18	2438	32	2466
05	2412	19	2440	33	2468
06	2414 Cable 1	20	2442	34	2470
07	2416	21	2444	35	2472
08	2418	22	2446	36	2474
09	2420	23	2448	37	2476
10	2422	24	2450	38	2478
11	2424	25	2452	39	2480
12	2426	26	2454		
13	2428	27	2456		

1.3 Block Diagram Showing the Configuration of System Tested

TX Mode

1.4 Description of Support Units

Equipment Information						
Name	NameModelS/NManufacturerUsed "\/"					
Cable Information						

Number	Shielded Type	Ferrite Core	Length	Note
Cable 1	NO	NO	1.0M	Accessories

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test			
Final Test Mode Description			
Mode 1 AC Charging with TX Mode			

For Radiated Test			
Final Test Mode Description			
Mode 2	AC Charging with TX Mode		
Mode 3	AC Charging with TX Mode (Channel 01/20/39)		

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.4 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

Bluetooth BLE Mode: GFSK Modulation Transmitting mode.

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a mobile unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

Test Software Version	Test Program: Mediatek Connectivity Combo Tool. apk				
Channel	CH 01	CH 20	СН 39		
BLE Mode	DEF	DEF	DEF		

1.7 Test Facility

The testing was performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at:

1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China.

At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

FCC List No.: (811562)

The Laboratory is listed in the United States of American Federal Communications Commission (FCC), and the registration number is 811562.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

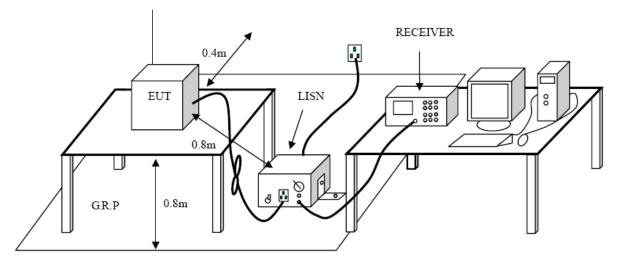
2. Test Summary

FCC Part 15 Subpart C(15.247)/RSS-210: 2010				
Standard Section		Test Item		Remark
FCC	IC	rest item	Judgment	Rellark
15.203	/	Antenna Requirement	PASS	N/A
15.207	RSS-GEN 7.2.4	Conducted Emission	PASS	N/A
15.205	RSS-GEN 7.2.2	Restricted Bands	PASS	N/A
15.247(a)(2)	RSS-210 A.8.2(a)	6dB Bandwidth	PASS	N/A
15.247(b)	RSS-210 A.8.4(4)	Peak Output Power	PASS	N/A
15.247(e) RSS-210 A.8.2(b)		Power Spectral Density	PASS	N/A
15.247(d)RSS-210 Annex 8 (A8.5)Transmitter Radiated Spurious EmissionPASSN/A				N/A
Note: "/" for no requirement for this test item. N/A is an abbreviation for Not Applicable.				

3. Conducted Emission Test

- 3.1 Test Standard and Limit
 - 3.1.1Test Standard FCC Part 15.207
 - 3.1.2 Test Limit

Frequency	Maximum RF Line Voltage (dBμV)					
Frequency	Quasi-peak Level	Average Level				
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *				
500kHz~5MHz	56	46				
5MHz~30MHz	60	50				


Notes:

(1) *Decreasing linearly with logarithm of the frequency.

(2) The lower limit shall apply at the transition frequencies.

(3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

3.2 Test Setup

3.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

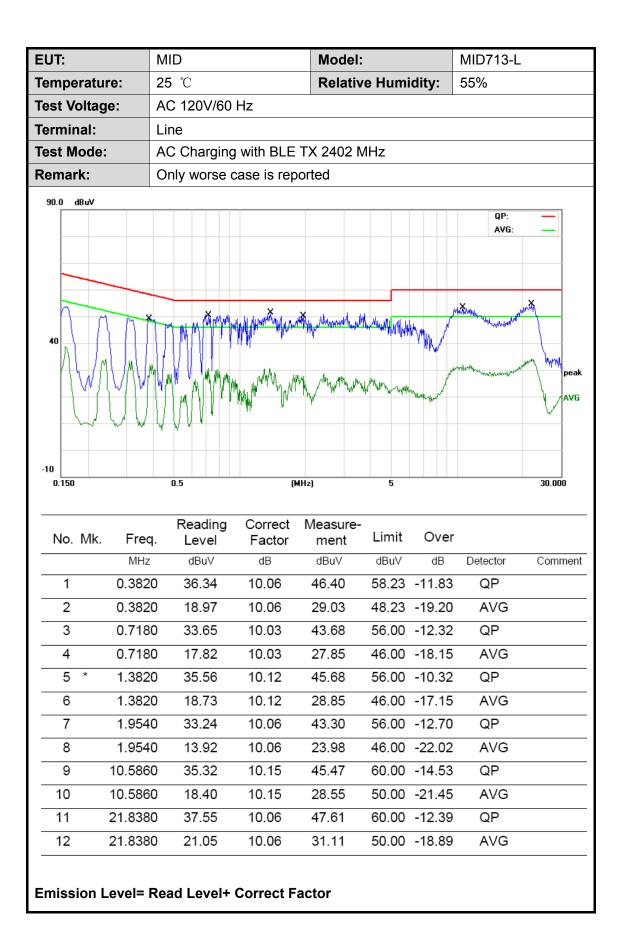
I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

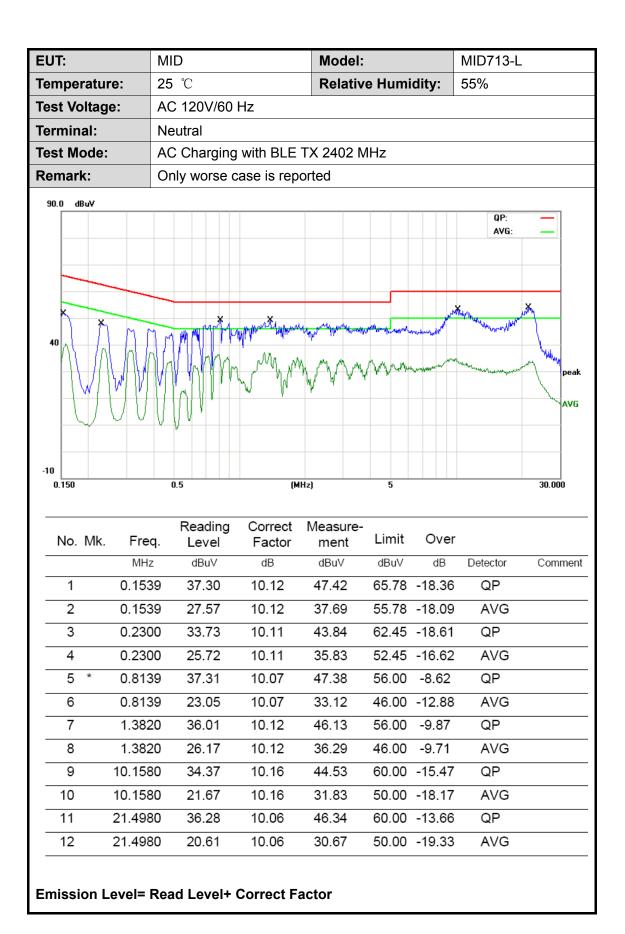
The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

3.4 Test Equipment Used

Description	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due Date	
EMI Test	ROHDE&		100321	2013-08-10	2014-08-09	
Receiver	SCHWARZ	ESCI	100321	2013-00-10	2014-00-09	
50ΩCoaxial	Anritsu	MP59B	X10321	2013-08-10	2014-08-09	
Switch	Annisu	WF 39B	×10321	2013-00-10	2014-00-09	
L.I.S.N	Rohde & Schwarz	ENV216	101131	2013-08-10	2014-08-09	
L.I.S.N	SCHWARZBECK	NNBL 8226-2	8226-2/164	2013-08-10	2014-08-09	


3.5 EUT Operating Mode

Please refer to the description of test mode.


3.6 Test Data

Please see the next page.

4. Radiated Emission Test

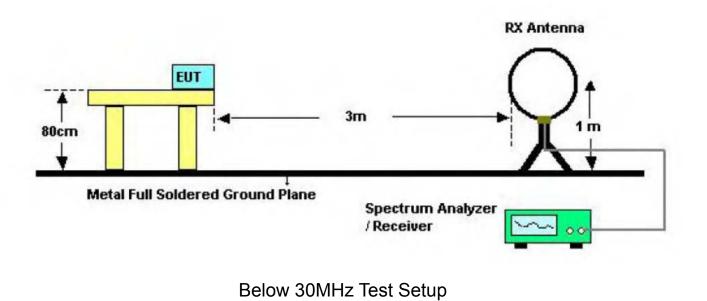
- 4.1 Test Standard and Limit
 - 4.1.1 Test Standard
 - FCC Part 15.209
 - 4.1.2 Test Limit

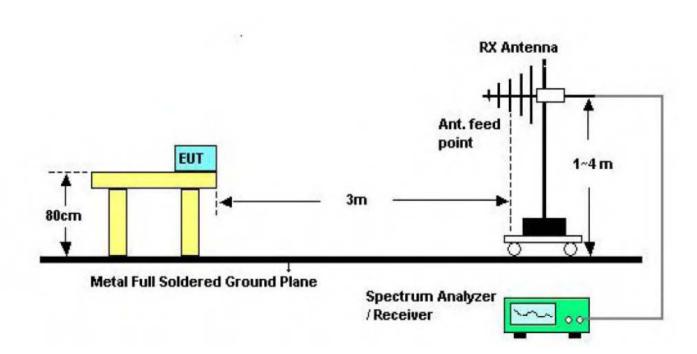
Radiated Emission Limits (9kHz~1000MHz)

Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

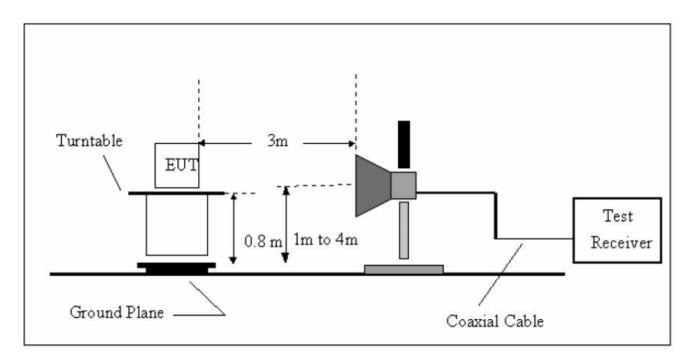
Radiated Emission Limit (Above 1000MHz)

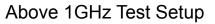
Frequency	equency Class A (dBuV/m)(at 3 M)			//m)(at 3 M)
(MHz)	Peak	Average	Peak	Average
Above 1000	80	60	74	54


Note:


(1) The tighter limit applies at the band edges.

(2) Emission Level(dBuV/m)=20log Emission Level(uV/m)


4.2 Test Setup



Below 1000MHz Test Setup

4.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above the ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (3) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (4) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (5) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (6) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (7) For the actual test configuration, please see the test setup photo.

4.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

4.5 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Mar. 20, 2014	Mar. 19, 2015
Spectrum Analyzer	Rohde & Schwarz	FSP30	DE25181	Aug. 10, 2013	Aug.09, 2014
EMI Test Receiver	Rohde & Schwarz	ESCI	101165	Aug. 10, 2013	Aug.09, 2014
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar. 07, 2014	Mar.06, 2015
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Mar. 07, 2014	Mar.06, 2015
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar. 07, 2014	Mar.06, 2015
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar. 07, 2014	Mar.06, 2015
Pre-amplifier	HP	11909A	185903	Mar. 07, 2014	Mar.06, 2015
Pre-amplifier	HP	8447B	3008A00849	Mar. 07, 2014	Mar.06, 2015
Cable	HUBER+SUHNE R	100	SUCOFLEX	Mar. 07, 2014	Mar.06, 2015
Signal Generator	Rohde & Schwarz	SML03	IKW682-054	Feb. 11, 2014	Feb.10, 2015
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A

4.6 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Test data please refer the following pages.

EUT:	MID	Model:		MID713-L	
emperature:	25 ℃	Relative H	Humidity:	55%	
est Voltage:	AC 120V/60 Hz	L			
Ant. Pol.	Horizontal				
est Mode:	BLE TX 2402 Mo	de			
Remark:	Only worse case	is reported			
80.0 dBu∀/m					
30		M M M	(RF)F(C 15C 3M Radiatio Margin - E	- I d
-20 30.000 40 50	60 70 80	(MHz)	300 400	500 600 700	1000.00
	Reading req. Level	Correct Measu Factor men	_{it} Limit	Over	
	/Hz dBuV	dB/m dBuV			Detector
1 ! 30.8	5305 50.89	-14.28 36.6	61 40.0	0 -3.39	peak
2 * 69.1	1140 60.44	-23.69 36.7	⁷ 5 40.0	0 -3.25	peak
3 108.	.2667 56.01	-21.86 34.1	5 43.5	0 -9.35	peak
4 ! 149.	.4857 61.46	-21.22 40.2	4 43.5	0 -3.26	peak
5 280.	.0237 55.91	-17.48 38.4	3 46.0	0 -7.57	peak
		-15.54 42.2	.8 46.0	0 -3.72	peak

Emission Level= Read Level+ Correct Factor

EUT:	MID	Model:		MID713-L									
Temperature:	25 ℃	Relative Hun	Relative Humidity: 55										
Test Voltage:	AC 120V/60 Hz	AC 120V/60 Hz											
Ant. Pol.	/ertical												
Test Mode:	BLE TX 2402 Mode												
Remark:	Only worse case is re	ported											
80.0 dBuV/m		6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Z X MMMMMM	C 15C 3M Radiation Margin -6	dB pertyanethalt								
	00 70 00	(1112) 300	U 4UU	300 000 100	1000.00								
	Reading Co	orrect Measure actor ment		Over	1000.000								
No. Mk. Fr	Reading Co eq. Level F	prrect Measure	-	Over	1000.000 Detector								
No. Mk. Fr	Reading Co eq. Level F ^{Hz dBuV} d	orrect Measure actor ment	- Limit	Over m dB									
No. Mk. Fr	Reading Co eq. Level F ^{Hz dBuV} d 304 51.32 -1	orrect Measure actor ment _{B/m} dBuV/m	- Limit dBuV/i	Over m dB 0 -2.96	Detector								
No. Mk. Fr Mi 1 * 30.5	Reading Co eq. Level F Hz dBuV d 304 51.32 -1 000 56.97 -2	orrect Measure actor ment _{B/m} dBuV/m 4.28 37.04	Limit dBuV/i 40.00	Over m dB 0 -2.96 0 -4.29	Detector peak peak								
No. Mk. Fr Mi 1 * 30.5 2 ! 42.6	Reading Co eq. Level F Hz dBuV d 304 51.32 -1 000 56.97 -2 711 58.03 -2	orrect Measure- actor ment B/m dBuV/m 4.28 37.04 1.26 35.71	Limit dBuV/i 40.00	Over m dB 0 -2.96 0 -4.29 0 -6.42	Detector peak								
No. Mk. Fr Mi 1 * 30.5 2 ! 42.6 3 54.0	Reading Level Co F Hz dBuV d 304 51.32 -1 000 56.97 -2 711 58.03 -2 568 60.30 -2	Dirrect actor Measurement B/m dBuV/m 4.28 37.04 1.26 35.71 4.45 33.58	- Limit dBuV/r 40.00 40.00	Over m dB 0 -2.96 0 -4.29 0 -6.42 0 -3.37	Detector peak peak peak								
No. Mk. Fr Mi 1 * 30.5 2 ! 42.6 3 54.0 4 ! 69.3	Reading Level Co F Hz dBuV d 304 51.32 -1 000 56.97 -2 711 58.03 -2 568 60.30 -2 0882 56.05 -2	Dirrect actor Measurement B/m dBuV/m 4.28 37.04 1.26 35.71 4.45 33.58 3.67 36.63	Limit dBuV/i 40.00 40.00 40.00	Over m dB 0 -2.96 0 -4.29 0 -6.42 0 -3.37 0 -9.54	Detector peak peak peak peak								

Emission Level= Read Level+ Correct Factor

EUT	•		MID				Мо	del:			MID	713-L			
ſem	peratu	e:	25 °C	25 °CRelative Humidity:55%											
est	t Voltag	e:	AC 1	20V/60	Hz										
۹nt.	Pol.		Horiz	lorizontal											
fest	at Mode:BLE Mode TX 2402 MHzmark:No report for the emission which more than 10 dB below the														
Ren	nark:			eport for cribed li		emissic	n wh	ich mo	ore th	an 10 d	IB bel	ow the			
90.0) dBu¥/m														
										(RF) FC	C PART	15C (PEAK)		
		1 X 2								(RF) F	CC PART	15C (AVG	i)		
		×									_				
40															
-10															
10	00.000 355	0.00 6	100.00	8650.00	1120	0.00 137	50.00	16300.0	0 188	50.00 21	400.00	2	6500.00 MHz		
				Read		Corre		Vleas		Linait					
	lo. Mk		·	Leve		Fact	or	mer		Limit		Dver			
		Mł		dBu\		dB/m		dBu∖		dBuV/		dB	Detector		
1		4959	838	43.9	6	14.36	5	58.3	32	74.0	0 -	15.68	peak		
2	*	4959	889	34.5	2	14.36	3	48.8	38	54.0	0 -	5.12	AVG		
-mi	ssion l	مرماء	Read	l evel+	Cor	rect Fac	tor								

Ant. Pol. Ver Test Mode: BLE Remark: No pres 90.0 dBuV/m 90.0 dBuV/m 2 2 × 1 40 -10 1000.000 3550.00 6100.00 No. Mk. Freq.	5 ℃ C 120V/60 Hz ertical LE Mode TX 2402 MHz o report for the emissio rescribed limit.	n which more than 10 o	dB below the
Ant. Pol. Ver Test Mode: BLE Remark: No 90.0 dBuV/m 90.0 dBuV/m 2 2 × 1 40 -10 1000.000 3550.00 6100.00 No. Mk. Freq.	ertical LE Mode TX 2402 MHz o report for the emissio	n which more than 10 o	CC PART 15C (PEAK)
Test Mode: BLE Remark: No 90.0 dBuV/m 90.0 dBuV/m 2 2 2 X 1 X 40 1 -10 1000.000 3550.00 6100.00 No. Mk. Freq.	LE Mode TX 2402 MHz o report for the emissio	n which more than 10 o	CC PART 15C (PEAK)
Remark: No pres 90.0 dBuV/m 2	o report for the emissio	n which more than 10 o	CC PART 15C (PEAK)
90.0 dBuV/m 90.0 dBuV/m 2 2 × 1 40 -10 1000.000 3550.00 6100.00 No. Mk. Freq.	•	(RF) 1	CC PART 15C (PEAK)
40 -10 1000.000 3550.00 6100.00 No. Mk. Freq.			
40 -10 1000.000 3550.00 6100.00 No. Mk. Freq.			
40 -10 1000.000 3550.00 6100.00 No. Mk. Freq.		(RF)	FCC PART 15C (AVG)
40 -10 1000.000 3550.00 6100.00 No. Mk. Freq.			
1000.000 3550.00 6100.00 No. Mk. Freq.			
1000.000 3550.00 6100.00 No. Mk. Freq.			
1000.000 3550.00 6100.00 No. Mk. Freq.			
No. Mk. Freq.			
· · · · · ·	00 8650.00 11200.00 137	50.00 16300.00 18850.00 2	26500.00 MHz
	Reading Corre Level Fact		t Over
MHz	dBuV dB/m	dBuV/m dBu∨	//m dB Detector
1 * 4959.877	7 34.07 14.36	6 48.43 54.0	00 -5.57 AVG
2 4959.995	95 43.51 14.30	6 57.87 74.0	00 -16.13 peak
Emission Level= Read			

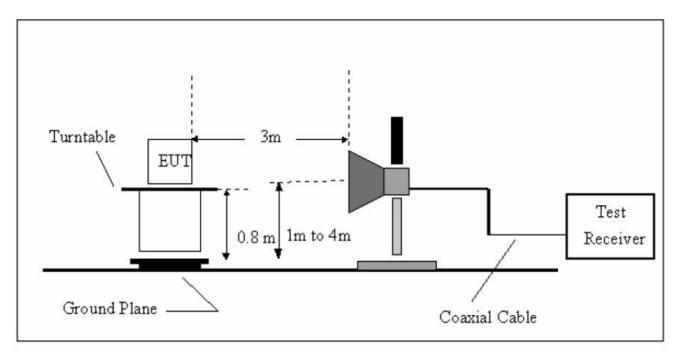
EUT			MID			Mode	:		MID713-L			
Tem	peratur	e:	25 °C	25 °C Relative Humidity: 55%								
Tes	t Voltage	:	AC 12	0V/60 Hz								
Ant. Pol. Horizontal												
Test	t Mode:		BLE M	lode TX 24	142 MHz							
Ren	nark:			oort for the ibed limit.	emissio	n which	more t	han 10 d	dB below the	Э		
90.0) dBuV/m											
								(RF)	FCC PART 15C (P	EAK)		
		1 X						(BF	F) FCC PART 15C (AVG)		
		2 X										
40												
-10 10	00.000 3550	00 6	100.00	8650.00 112	200.00 137	50.00 10	300.00	18850.00	21400.00	26500.00 MHz		
١	lo. Mk.	Fre		Reading Level	Corre Facto		asure- ient	Limit	Over			
		MF	lz	dBuV	dB/m	dl	BuV/m	dBuV	/m dB	Detector		
1		4883.	998	43.46	13.92	5	7.38	74.0	0 -16.62	peak		
2	*	4884.	275	34.02	13.92	4	7.94	54.0	-6.06	AVG		
Emi	ssion Lo	evel=	Read L	evel+ Cor	rect Fac	tor						

EU	Г:		MID			Mode	l:		MID713-L	
Ten	nperature):	25 ℃			Relat	ive Hum	idity:	55%	
Tes	t Voltage	:	AC 12	0V/60 HZ						
Ant	. Pol.		Vertica	al						
Test Mode: BLE Mode TX 2442 MHz										
Rer	nark:			oort for the ibed limit.	emissio	n which	n more th	ian 10 c	B below the	9
90.0) dBu∀/m									
								(RF)	FCC PART 15C (P	EAK)
		2 X						(RF) FCC PART 15C (AVG)
40		1 X								
-10										
			eq.	Reading Level	Corre	ct M	easure- ment	Limit	21400.00 t Over	26500.00 MH
		Μ	Hz	dBuV	dB/m	(lBuV/m	dBuV	/m dB	Detector
1	*	4883	.847	33.66	13.92	2	47.58	54.0	0 -6.42	AVG
2		4884	.269	43.10	13.92	2	57.02	74.0	0 -16.98	b peak
Em	ission Le	vel=	Read L	evel+ Corı	ect Fac	tor				

EUT	:		MID			Model			MID713-	L		
Tem	perature	: :	25 °C			Relativ	/e Hum	idity:	55%			
Test	t Voltage	:	AC 12	AC 120V/60 HZ								
Ant.	Pol.		Horizo	ontal								
Test	Mode:		BLE N	/lode TX 24	80 MHz							
Ren	nark:			oort for the ribed limit.	emissio	n which	more th	ian 10 d	IB below t	he		
90.0) dBuV/m											
								(RF) F	TCC PART 15C (PEAK)		
		2 X						(RF)	FCC PART 15C	(AVG)		
		1 X										
40												
			_									
-10 10	00.000 3550.	00 6	100.00	8650.00 112	00.00 137	50.00 163	00.00 18	850.00 2	1400.00	26500.00 MHz		
				Reading	Corre		asure-	Limit	Ove			
	No. Mk.		eq.	Level	Facto		nent					
		M		dBuV	dB/m		BuV/m	dBuV/		Detector		
1		4803		33.73	13.44		7.17	54.0				
2		4804	.103	43.17	13.44	5	6.61	74.0	0 -17.3	39 peak		
Emi	ssion Le	evel=	Read L	.evel+ Cor	rect Fac	tor						

EUT	Г:	MID			Model:			MID713-L	
Tem	nperature:	25 ℃	l ,		Relativ	e Humic	dity:	55%	
Tes	t Voltage:	AC 12	20V/60 HZ						
Ant	. Pol.	Vertic	al						
Tes	t Mode:	BLE	Mode TX 24	480 MHz					
Ren	nark:		port for the ribed limit.	emissio	n which i	more tha	ın 10 d	B below th	е
90.0) dBuV/m			1					
							(RF) F	CC PART 15C (PE	AK)
	1	<					(RF)	FCC PART 15C (A	VG)
40	>								
-10	000.000 3550.00	6100.00	8650.00 112	00.00 1375	50.00 1630	0.00 1885	0.00 21	400.00	26500.00 MHz
	5550.00	0100.00	0000.00 112	00.00 131	0.00 1030	0.00 1003	0.00 21	400.00	20300.00 MH2
	No. Mk.	Freq.	Reading Level	Corre Facto		asure- ient	Limit	Over	
		MHz	dBuV	dB/m	dB	3uV/m	dBuV/	'm dB	Detector
1	48	03.825	44.14	13.44	5	7.58	74.0	0 -16.42	2 peak
2	* 48	03.867	34.70	13.44	4	8.14	54.0	0 -5.86	AVG
Emi	ission Leve	I= Read I	_evel+ Cor	rect Fac	tor				

5. Restricted Bands Requirement


- 5.1 Test Standard and Limit
 - 5.1.1 Test Standard

FCC Part 15.209 FCC Part 15.205

5.1.2 Test Limit

Restricted Frequency	Class B (dBu	ιV/m)(at 3 M)
Band (MHz)	Peak	Average
2310 ~2390	74	54
2483.5 ~2500	74	54

5.2 Test Setup

5.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (3) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (4) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit

Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.

- (5) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (6) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (7) For the actual test configuration, please see the test setup photo.

5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

5.5 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Mar. 20, 2014	Mar. 19, 2015
Spectrum Analyzer	Rohde & Schwarz	FSP30	DE25181	Aug. 10, 2013	Aug.09, 2014
EMI Test Receiver	Rohde & Schwarz	ESCI	101165	Aug. 10, 2013	Aug.09, 2014
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar. 07, 2014	Mar.06, 2015
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Mar. 07, 2014	Mar.06, 2015
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar. 07, 2014	Mar.06, 2015
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar. 07, 2014	Mar.06, 2015
Pre-amplifier	HP	11909A	185903	Mar. 07, 2014	Mar.06, 2015
Pre-amplifier	HP	8447B	3008A00849	Mar. 07, 2014	Mar.06, 2015
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar. 07, 2014	Mar.06, 2015
Signal Generator	Rohde & Schwarz	SML03	IKW682-054	Feb. 11, 2014	Feb.10, 2015
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A

5.6 Test Data

Please see the next page.

(1) Radiation Test

EUT	:			MID						Mo	odel:				ſ	MID	713-	-L		
Tem	perat	ure:	2	25 °C	2					Re	lativ	e Hu	umio	dity	5	55%				
Test	Volta	age:		AC 1	20V/	60 F	ΙZ													
Ant.	Pol.		I	Horiz	onta	I														
Test	Mod	e:		BLE	Mode	e TX	24	02 N	ЛНz											
Rem	nark:			N/A																
100.	0 dBu\	//m																		1
																	3 X			
														(8	F) FCC	PART		PEAK)		
50	1													1	RF) FC		T 15C			
	Marilal-yanyin	hiptophy	beleghendelsen	unior deservices	proceedides	et we have a feature of the second	en an	normality)	WARNEN	-winew-1	ward a da	rhyne d han	Jupan New York	د. درساریارا ۲	ennure.H	Mart		hulu.	waantaati	
0.0	315.000	2225.00		35.00	2345	00	2355	- 00	236	- 00	237	- 00	2385	- 00	2200	- 00			15.00	
2.	313.000	2323.00	J 23.	33.00	2343	.00	233:	J. UU	236		231	5.00	2303		239	J.UU		24	15.00	MUS
1	No. N	Лk.	Fre	q.		adir eve	-		orre			asur ient	e-	Lir	nit	(Ove	er		
			MH	z	c	lBuV		d	IB/m		dE	3uV/n	n	dB	uV/m	I	dB		Deteo	tor
1		2	390.0	000	4	2.75	5	0).77		4	3.52)	74	1.00	_	30.4	48	pea	ak
2		2	390.0	000	3	3.3′	1	0).77		3	4.08	}	54	.00	-	19.9	92	AV	G
3	Х	(2	402.2	200	8	4.22	2	0	.82		8	5.04	ŀ	74	.00		11.0)4	pea	ak
4	*	2	402.2	200	7	4.78	3	0	.82		7	5.60)	54	1.00		21.6	60	AV	G
Emi	ssion	Lev	el= R	ead	Leve	el+ C	orr	ect	Fac	tor										

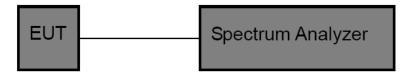
EUT:	MID		М	odel:		MID7	13-L	
Temperature:	25 ℃		Re	elative H	umidity:	55%		
Test Voltage:	AC 120V/6	60 HZ						
Ant. Pol.	Vertical							
Test Mode:	BLE Mode	e TX 2480 I	MHz					
Remark:	N/A							
100.0 dBu∀/m								
							3	
							Å.	
					(RF) I	CC PART	SC (PEAK)	
					(RF)	FCC PART	15C (AVG)	
50					1			
sentencing-differentiations and	when when the short of the state of the stat	elydrosonau saeteddolyn daenola	havar eta eratza era	rangeled son the test de la la serie de la serie d	2	sharry have	11 erge	annanderen
					×			
0.0 2315.000 2325.00	2335.00 2345	.00 2355.00	2365.00	2375.00	2385.00 2	2395.00	24	15.00 MHz
	Rea	ading C	orrect	Measur	e-			
No. Mk. Fr		-	actor	ment	1	t O	ver	
M	Hz d	BuV (dB/m	dBuV/r	n dBuV	//m	dB	Detector
1 2390	.000 44	4.62 (0.77	45.39) 74.(00 -2	28.61	peak
2 2390	.000 35	5.18 ().77	35.95	5 54.0	00 -1	8.05	AVG
3 X 2402	.300 87	7.39 ().82	88.21	74.0	00 1	4.21	peak
4 * 2402	.300 77	7.95 (0.82	78.77	7 54.0	00 2	4.77	AVG
	Pood Lovo	L+ Correct	Factor					
Emission Level=	Reau Leve	IT Correct	Factor					

EUT:	MID		Model:		MID713-	L
Temperature:	25 ℃		Relative	Humidity:	55%	
Test Voltage:	AC 120V/60) HZ				
Ant. Pol.	Horizontal					
Test Mode:	BLE Mode	TX 2480 MHz				
Remark:	N/A					
100.0 dBu∀/m						
0.0	2487.00 2497.00		7.00 2527.00	(RF	FCC PART 15C () FCC PART 15C	(AVG)
No. Mk. Fr	Read eq. Lev	-		1 :	it Ove	r
M	Hz dBu	uV dB/m	dBu∖	//m dBu\	√/m dB	Detector
1 X 2480	.200 86.	87 1.15	88.0	02 74.	00 14.0)2 peak
2 * 2480	.200 74.	43 1.15	75.5	58 54.	00 21.5	58 AVG
3 2483	.500 50.	62 1.17	51.7	79 74.	00 -22.	21 peak
4 2483	.500 41.	18 1.17	42.3	35 54.	00 -11.	65 AVG
Emission Level=	Read Level+	- Correct Fac	tor			

EUT:	MID		Model:		N	11D713-L	_
Temperature:	25 °C		Relativ	e Humidi	i ty: 5	5%	
Test Voltage:	AC 120V/6	60 HZ					
Ant. Pol.	Vertical						
Test Mode:	BLE Mode	TX 2480 Mł	łz				
Remark:	N/A						
100.0 dBuV/m							
mounannan	2487.00 2497.0			7.00 2537.0	(RF) FCC		
No. Mk. Fr		iding Con vel Fac		asure- ent l	Limit	Over	
М	Hz dB	BuV dB/	m dB	uV/m (dBuV/m	dB	Detector
1 X 2480	.000 85	.01 1.1	5 86	6.16	74.00	12.16	b peak
2 * 2480	.000 75	.57 1.1	5 76	6.72	54.00	22.72	2 AVG
3 2483	.500 48	.56 1.1	7 49	9.73	74.00	-24.2	7 peak
4 2483	.500 39	.12 1.1	7 40	0.29	54.00	-13.7	1 AVG
Emission Level=	Read Level	+ Correct Fa	actor				

(2) Conducted Test

EUT:	MID		Model:		MID713-L
Temperature:	25 ℃		Relative H	lumidity:	55%
Fest Voltage:	AC 120V/60	Hz			-
fest Mode:	BLE Mode T	X 2402MHz	/ BLE Mode	TX 2480	MHz
Remark:	The EUT is p	programed ir	continuous	ly transmi	itting mode
∦ Agile	ent 17:08:14 Jul 31,	2014			
Ref 20 d	Bm	Atten 30 dB		MI	kr1 2.40200 GHz -3.204 dBm
Peak Log					1
10 dB/					
	Display Line 23.20 dBm				
DI	23.20 UBIII		4	2	3
-23.2 dBm			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	•••••	no hanna
	.366 GHz	#\/D\M		0	Span 100 MHz
	/ 100 kHz		300 kHz	Sweep 10. nplitude	36 ms (401 pts)
Marker	Trace Type	X Axis			
	Trace Type (1) Freq (1) Freq (1) Freq (1) Freq (1) Freq	X Axis 2.40200 GHz 2.39000 GHz 2.40000 GHz 2.37400 GHz	-3.2 -48. -48.	49 dBm 49 dBm 25 dBm 52 dBm	
Marker 1 2 3 4	(1) Freq (1) Freq (1) Freq (1) Freq	2.40200 GHz 2.39000 GHz 2.40000 GHz 2.37400 GHz	-3.2 -48. -48.	04 dBm 49 dBm 25 dBm	
Marker 1 2 3	(1) Freq (1) Freq (1) Freq (1) Freq	2.40200 GHz 2.39000 GHz 2.40000 GHz 2.37400 GHz	-3.2 -48. -48.	04 dBm 49 dBm 52 dBm 52 dBm	<pre>kr1 2.48000 GHz</pre>
Marker 1 2 3 4 4 k Agila Ref 20 d	(1) Freq (1) Freq (1) Freq (1) Freq (1) Freq mf 17:09:31 Jul 31,	2.40200 GHz 2.39000 GHz 2.40000 GHz 2.37400 GHz	-3.2 -48. -48.	04 dBm 49 dBm 52 dBm 52 dBm	kr1 2.48000 GHz -3.546 dBm
Marker 1 2 3 4	(1) Freq (1) Freq (1) Freq (1) Freq (1) Freq mf 17:09:31 Jul 31,	2.40200 GHz 2.39000 GHz 2.40000 GHz 2.37400 GHz 2.37400 GHz	-3.2 -48. -48.	04 dBm 49 dBm 52 dBm 52 dBm	
Marker 1 2 3 4	(1) Freq (1) Freq (1) Freq (1) Freq (1) Freq ent 17:09:31 Jul 31, Bm	2.40200 GHz 2.39000 GHz 2.40000 GHz 2.37400 GHz 2.37400 GHz	-3.2 -48. -48.	04 dBm 49 dBm 52 dBm 52 dBm	
Marker 1 2 3 4	(1) Freq (1) Freq (1) Freq (1) Freq (1) Freq enf 17:09:31 Jul 31,	2.40200 GHz 2.39000 GHz 2.40000 GHz 2.37400 GHz 2.37400 GHz	-3.2 -48. -48.	04 dBm 49 dBm 52 dBm 52 dBm	
Marker 1 2 3 4	(1) Freq (1) Freq (1) Freq (1) Freq (1) Freq (1) Freq Display Line	2.40200 GHz 2.39000 GHz 2.40000 GHz 2.37400 GHz 2.37400 GHz	-3.2 -48. -48.	04 dBm 49 dBm 52 dBm 52 dBm	
Marker 1 2 3 4 Xef 20 d Peak Log 10 dB/	(1) Freq (1) Freq (1) Freq (1) Freq (1) Freq (1) Freq 23.55 dBm	2.40200 GHz 2.39000 GHz 2.40000 GHz 2.37400 GHz 2.37400 GHz 2.37400 GHz	-3.2 -48. -48.	04 dBm 49 dBm 52 dBm 52 dBm	
Marker 1 2 3 4	(1) Freq (1) Freq (1) Freq (1) Freq (1) Freq (1) Freq 23.55 dBm 23.55 dBm 23.55 dBm 23.55 dBm	2.40200 GHz 2.39000 GHz 2.40000 GHz 2.37400 GHz 2.37400 GHz 2.37400 GHz	-3.2 -48. -48.	04 dBm 49 dBm 52 dBm 52 dBm	-3.546 dBm
Marker 1 2 3 4 Ref 20 d Peak Log 10 dB/ DI -23.5 dBm Center 2	(1) Freq (1) Freq (1) Freq (1) Freq (1) Freq (1) Freq 23.55 dBm	2.40200 GHz 2.39000 GHz 2.40000 GHz 2.37400 GHZ 2.3740	-3.2 -48. -48.	04 dBm 49 dBm 52	
Marker 1 2 3 4	(1) Freq (1) Fr	2.40200 GHz 2.39000 GHz 2.40000 GHz 2.37400 GHz 2.37400 GHz 2.37400 GHz 2014 Atten 30 dB	-3.2 -48. -48. -47. 	04 dBm 49 dBm 52 dBm 50	-3.546 dBm
Marker 1 2 3 4 Ref 20 d Peak Log 10 dB/ DI -23.5 dBm Center 2 #Res BW Marker 1 2 3	(1) Freq (1) Freq (1) Freq (1) Freq (1) Freq (1) Freq (1) Freq (1) Freq 23.55 dBm ³ ³ ³ ³ ³ ³ ³ ³	2.40200 GHz 2.39000 GHz 2.37400 GHz 2.37400 GHz 2.37400 GHz 2.37400 GHz 2.37400 GHz 2.48000 GHz 2.48000 GHz 2.48300 GHz 2.48300 GHz 2.48300 GHz 2.48300 GHz 2.48300 GHz	-3.2 -48. -48. -47. 	04 dBm 49 dBm 52 dBm 52 dBm 52 dBm 52 dBm 52 dBm 52 dBm 52 dBm 79 dBm 52 dBm	-3.546 dBm
Marker 1 2 3 4	(1) Freq (1) Freq (1) Freq (1) Freq (1) Freq (1) Freq (1) Freq (1) Freq (1) Freq (1) Freq 23.55 dBm 2 4 2 4 516 GHz ✓ 100 kHz Trace Type (1) Freq (1) Freq	2.40200 GHz 2.39000 GHz 2.37400 GHz 2.37400 GHz 2.37400 GHz 2.37400 GHz 2.4000 GHz 2.48000 GHz 2.48000 GHz 2.48000 GHz 2.48300 GHz	-3.2 -48. -48. -47. 	04 dBm 49 dBm 52 dBm 52 dBm 52 dBm 52 dBm 52 dBm 70 dBm 70 dBm	-3.546 dBm
Marker 1 2 3 4 Ref 20 d Peak Log 10 dB/ DI -23.5 dBm Center 2 #Res BW Marker 1 2 3	(1) Freq (1) Freq (1) Freq (1) Freq (1) Freq (1) Freq (1) Freq (1) Freq 23.55 dBm ³ ³ ³ ³ ³ ³ ³ ³	2.40200 GHz 2.39000 GHz 2.37400 GHz 2.37400 GHz 2.37400 GHz 2.37400 GHz 2.37400 GHz 2.48000 GHz 2.48000 GHz 2.48300 GHz 2.48300 GHz 2.48300 GHz 2.48300 GHz 2.48300 GHz	-3.2 -48. -48. -47. 	04 dBm 49 dBm 52 dBm 52 dBm 52 dBm 52 dBm 52 dBm 52 dBm 52 dBm 79 dBm 52 dBm	-3.546 dBm



6. Bandwidth Test

- 6.1 Test Standard and Limit
 - 6.1.1 Test Standard
 - FCC Part 15.247 (a)(2)
 - 6.1.2 Test Limit

FCC P	FCC Part 15 Subpart C(15.247)/RSS-210								
Test Item	Test Item Limit Frequency Range(MHz)								
Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5							

6.2 Test Setup

6.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) The bandwidth is measured at an amplitude level reduced 6dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
- (3)Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:100 kHz, and Video Bandwidth:300 kHz, Detector: Peak, Sweep Time set auto.

6.4 EUT Operating Condition

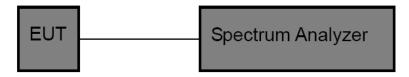
The EUT was set to continuously transmitting in each mode and low, middle and high channel for the test.

6.5 Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	FSP30	DE25181	Aug. 10, 2013	Aug.09, 2014

6.6 Test Data

EUT:	MID	Model:	MID713-L
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60 Hz		
Test Mode:	BLE TX Mode		
Channel frequen	cy 6dB Bandwidth	99% Bandwidth	Limit
(MHz)	(kHz)	(kHz)	(kHz)
2402	682.077	1059.00	_
2442	682.553	1058.50	>=500
2480	682.266	1058.90	
	BLE	Mode	
	54:25 Jul 31, 2014		
Ref 20 dBm #Peak Log 10 dB/ Center 2.4020	Atten 30 dB	¢	
Center 2.402 GHz #Res BW 100 kHz		300 kHz S	Span 3 MHz weep 5 ms (401 pts)
Occupied I Transmit Freq Et x dB Bandwidth	1.0590 MHz	Occ BW	/ % Pwr 99.00 % x dB -6.00 dB



7. Peak Output Power Test

- 7.1 Test Standard and Limit
 - 7.1.1 Test Standard
 - FCC Part 15.247 (b)
 - 7.1.2 Test Limit

FCC Part 15 Subpart C(15.247)/RSS-210			
Test Item	Limit	Frequency Range(MHz)	
Peak Output Power	1 Watt or 30 dBm	2400~2483.5	

7.2 Test Setup

7.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement is according to section 9.1.1 of KDB 558074 D01 DTS Meas Guidance v03r02.

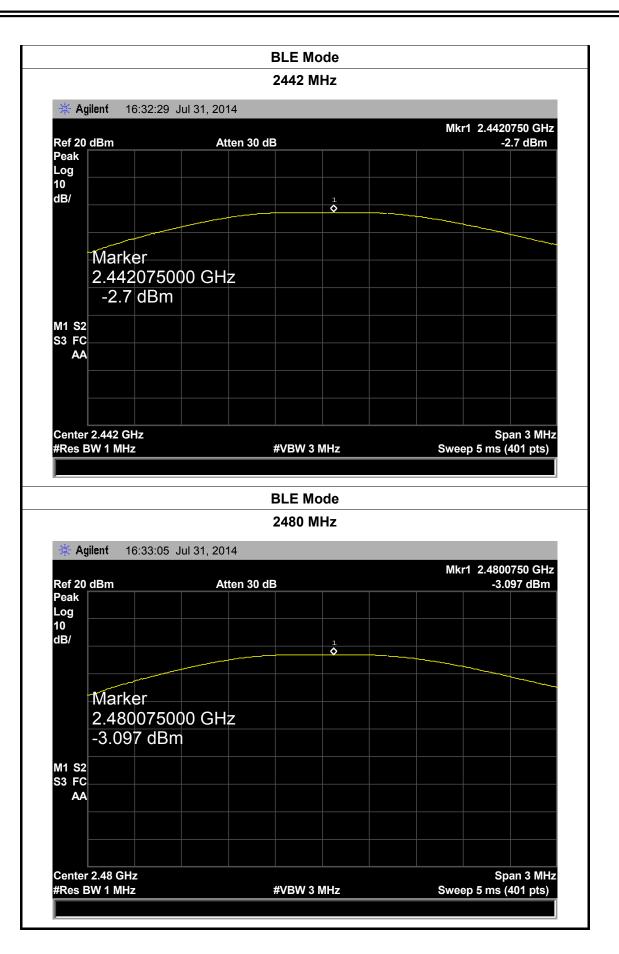
- (1) Set the RBW≥DTS Bandwidth
- (2) Set VBW≥3*RBW
- (3) Set Span≥3*RBW
- (4) Sweep time=auto
- (5) Detector= peak
- (6) Trace mode= maxhold.
- (7) Allow trace to fully stabilize, and then use peak marker function to determine the peak amplitude level.

7.4 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

7.5 Test Equipment

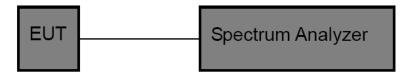
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum	Rohde & Schwarz	FSP30	DE25181	Aug. 10, 2013	Aug.09, 2014



Δnalvzer			
Analyzei			

7.6 Test Data

UT:	MID		Model:		MID713-L	
emperature:	25 ℃	25 ℃		nidity:	55%	
est Voltage:	AC 120	V/60 HZ				
est Mode:	BLE TX	Mode				
hannel freq	uency (MHz)	Test Res	sult (dBm)		Limit (dBm)	
24	02	-2	.756			
24	42	-2	.700	30		
24	80	-3	.097			
		BLE	Mode			
		2402	2 MHz			
🔆 Agilent	16:31:41 Jul 3	1, 2014			Mkr1 2.4021051 GHz	
Ref 20 dBm		Atten 30 dB			-2.756 dBm	
Peak Log						
10 dB/						
	rker					
	02105050	GHz				
-2.1	756 dBm					
M1 S2 S3 FC AA						
Center 2.402 #Res BW 1		#VBV	V 3 MHz	s	Span 3 MHz weep 5 ms (401 pts)	



8. Power Spectral Density Test

- 8.1 Test Standard and Limit
 - 8.1.1 Test Standard
 - FCC Part 15.247 (e)
 - 8.1.2 Test Limit

FCC Part 15 Subpart C(15.247)			
Test Item	Limit	Frequency Range(MHz)	
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5	

8.2 Test Setup

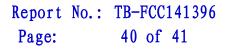
8.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v03r02.

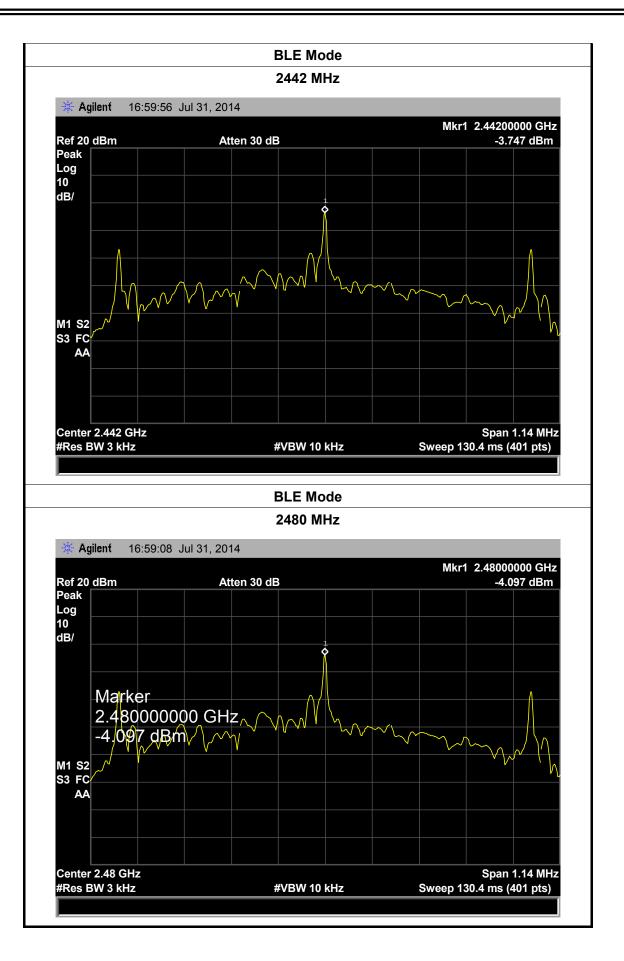
- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyser center frequency to DTS channel center frequenyc.
- (3) Set the span to 1.5 times the DTS bandwidth.
- (4) Set the RBW to: 3 kHz
- (5) Set the VBW to: 10 kHz
- (6) Detector: peak
- (7) Sweep time: auto
- (8) Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

8.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Midle and high channel for the test.



8.5 Test Equipment


Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	FSP30	DE25181	Aug. 10, 2013	Aug.09, 2014

8.6 Test Data

25 °C AC 120V/6 BLE TX M ency	ode Power (3 kH -3. -3. -4. BLE 2402	Relative Hu Density z/dBm) 834 747 097 Mode 2 MHz		55% Limit (dBm) 8 8 kr1 2.40200000 GHz -3.834 dBm
BLE TX M	ode Power (3 kH -3. -3. -4. BLE 2402 2014	z/dBm) 834 747 097 Mode		8 kr1 2.40200000 GHz
ency	Power (3 kH -3. -3. -4. BLE 2402	z/dBm) 834 747 097 Mode	MH	8 kr1 2.40200000 GHz
	(3 kH -3. -3. -4. BLE 2402	z/dBm) 834 747 097 Mode	MH	8 kr1 2.40200000 GHz
:32 Jul 31, :	-3. -3. -4. BLE 2402 2014	834 747 097 Mode		kr1 2.40200000 GHz
:32 Jul 31, 3	-3. -4. BLE 2402	747 097 Mode		kr1 2.40200000 GHz
:32 Jul 31, :	-4. BLE 2402	097 Mode		kr1 2.40200000 GHz
:32 Jul 31, :	BLE 2402 2014	Mode	M	
:32 Jul 31, :	2402 2014		Mł	
:32 Jul 31, :	2014	2 MHz	Mł	
:32 Jul 31, :			Mi	
00000 G	Hz			
	#VBW	/ 10 kHz	Sweep	Span 1.14 MHz 130.4 ms (401 pts)
	Bm/ /		#VBW 10 kHz	

9. Antenna Requirement

9.1 Standard Requirement

9.1.1 Standard

FCC Part 15.203

9.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

9.2 Antenna Connected Construction

The directional gains of the antenna used for transmitting is 0 dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

9.3 Result

The EUT antenna is a FPC Antenna. It complies with the standard requirement.