Shenzhen Toby Technology Co., Ltd.

Report No.: TB-RF185301 Page: 1 of 99

Radio Test Report

FCC ID: XMF-MID7019

Report No. : TB-RF185301

Applicant: Lightcomm Technology Co., Ltd.

Equipment Under Test (EUT)

EUT Name : 7" Tablet

Model No. : 100071481

Series Model No. : TBGRY100071481, TBPRP100071481, TBBLU100071481,

TBYLW100071481, MID7019

Brand Name : onn.

Sample ID : 20211116-07-1#& 20211116-07-2#

Receipt Date : 2021-11-23

Test Date : 2021-11-24 to 2021-12-27

Issue Date : 2021-12-28

Standards : FCC Part 15 Subpart E 15.407

Test Method : ANSI C63.10: 2013

KDB 789033 D02 General UNII Test Procedures New Rules v02r01

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above.

Witness Engineer :

Engineer Supervisor : JAW SV

Engineer Manager :

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Contents

CON	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	7
	1.6 Description of Test Software Setting	10
	1.7 Measurement Uncertainty	12
	1.8 Test Facility	12
2.	TEST SUMMARY	13
3.	TEST SOFTWARE	13
4.	TEST EQUIPMENT	14
5.	CONDUCTED EMISSION TEST	
	5.1 Test Standard and Limit	
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 Deviation From Test Standard	
	5.5 EUT Operating Mode	16
	5.6 Test Data	16
6.	RADIATED AND CONDUCTED UNWANTED EMISSIONS	17
	6.1 Test Standard and Limit	17
	6.2 Test Setup	
	6.3 Test Procedure	19
	6.4 Deviation From Test Standard	20
	6.5 EUT Operating Mode	20
	6.6 Test Data	20
7.	RESTRICTED BANDS REQUIREMENT	21
	7.1 Test Standard and Limit	21
	7.2 Test Setup	22
	7.3 Test Procedure	22
	7.4 Deviation From Test Standard	23
	7.5 EUT Operating Mode	
	7.6 Test Data	23
8.	BANDWIDTH TEST	24
	8.1 Test Standard and Limit	24
	8.2 Test Setup	24
	8.3 Test Procedure	
	8.4 Deviation From Test Standard	
	8.5 EUT Operating Mode	
	8.6 Test Data	26

9.	MAXIMUM CONDUCTED OUTPUT POWER	27
	9.1 Test Standard and Limit	
	9.2 Test Setup	
	9.3 Test Procedure	
	9.4 Deviation From Test Standard	
	9.5 EUT Operating Mode	
	9.6 Test Data	
10.	POWER SPECTRAL DENSITY TEST	
	10.1 Test Standard and Limit	28
	10.2 Test Setup	28
	10.3 Test Procedure	
	10.4 Deviation From Test Standard	29
	10.5 Antenna Connected Construction	29
	10.6 Test Data	29
11.	FREQUENCY STABILITY	30
	11.1 Test Standard and Limit	30
	11.2 Test Setup	30
	11.3 Test Procedure	
	11.4 Deviation From Test Standard	31
	11.5 Antenna Connected Construction	31
	11.6 Test Data	31
12.	ANTENNA REQUIREMENT	32
	12.1 Test Standard and Limit	32
	12.2 Deviation From Test Standard	32
	12.3 Antenna Connected Construction	32
	12.4 Test Data	32
ATT	ACHMENT A CONDUCTED EMISSION TEST DATA	33
	A CHIMENT D. LINIMANTED EMICCIONO DATA	

Report No.: TB-RF185301 Page: 4 of 99

Revision History

Report No.	Version	Description	Issued Date
TB-RF185301	Rev.01	Initial issue of report	2021-12-28
	107		The state of the s
TO THE	(103)	COLD TO THE	3
and the same	W (100)		MOBIL
		Mary Control	03)
(100)		OBY MOBY	TUDE!
			W W
			1000
	MORI	THE REAL PROPERTY.	
(M)33			
			1011
TOBY			

1. General Information about EUT

1.1 Client Information

Applicant		Lightcomm Technology Co., Ltd.
Address		UNIT 1306 13/F ARION COMMERCIAL CENTRE,2-12 QUEEN'S ROAD WEST, SHEUNG WAN HK
Manufacturer	1	Huizhou Hengdu Electronics Co., Ltd
Address		No.8 Huitai Road, Huinan High-tech Industrial Park, Huiao Avenue, Huizhou, Guangdong, China.

1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	7" Tablet		
HVIN/Models No.	:	100071481, TBGRY100071481, TBPRP100071481, TBBLU100071481, TBYLW100071481, MID7019		
Model Different		All these models are identical in the same PCB, layout and electrical circuit, The only difference is model name and screen.		
		Operation Frequency: U-NII-1: 5180MHz~5240MHz, U-NII-2A: 5260MHz~5320MHz U-NII-2C: 5500MHz~5720MHz, U-NII-3: 5745MHz~5825MHz		
and a	1	Antenna Gain:	2.98dBi FPC Antenna	
Product Description	3	Modulation Type:	802.11a: OFDM (QPSK, BPSK, 16QAM) 802.11n: OFDM (QPSK, BPSK, 16QAM, 64QAM) 802.11ac: OFDM (QPSK, BPSK, 16QAM, 64QAM, 256QAM)	
TOBY		Bit Rate of Transmitter:	802.11a: 6/9/12/18/24/36/48/54 Mbps 802.11n: up to 150Mbps 802.11ac: at most 433.3 Mbps	
Power Rating		Adapter(TEKA-UCA10US)		
Software Version				
Hardware Version	s.	MID7019-MR_MT8168_LPDDR4_EMMC_V1_1		

Remark:

- (1) The antenna gain and adapter provided by the applicant, the verified for the RF conduction test provided by TOBY test lab.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (3) Antenna information provided by the applicant.

Report No.: TB-RF185301

Page: 6 of 99

(4) Channel List:

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	36	5180 MHz	44	5220 MHz
5180~5240MHz (U-NII-1)	38	5190 MHz	46	5230 MHz
(0-1411-1)	40	5200 MHz	48	5240 MHz
	42	5210 MHz		

For 20 MHz Bandwidth, use channel 36, 40, 44, 48. For 40 MHz Bandwidth, use channel 38, 46.

For 80 MHz Bandwidth, use channel 42.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	52	5260 MHz	60	5300 MHz
5260~5320 MHz	54	5270 MHz	62	5310MHz
(U-NII-2A)	56	5280MHz	64	5320 MHz
	58	5290MHz		

For 20 MHz Bandwidth, use channel 52, 56, 60, 64. For 40 MHz Bandwidth, use channel 54, 62.

For 80 MHz Bandwidth, use channel 58.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	100	5500 MHz	124	5620 MHz
	102	5510 MHz	126	5630 MHz
	104	5520 MHz	128	5640 MHz
	106	5530 MHz	132	5660 MHz
5500~5720 MHz	108	5540 MHz	134	5670 MHz
(U-NII-2C)	110	5550 MHz	136	5680 MHz
	112	5560 MHz	138	5690 MHz
	116	5580 MHz	140	5700 MHz
	118	5590 MHz	142	5710 MHz
	120	5600 MHz	144	5720 MHz
	122	5610 MHz		

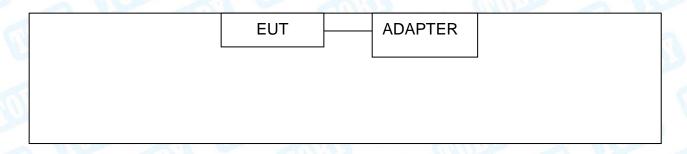
For 20 MHz Bandwidth, use channel 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144

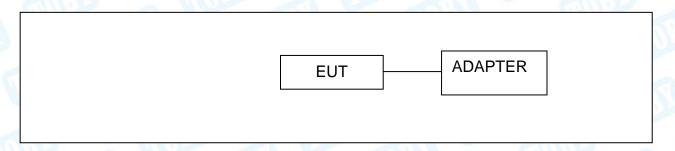
For 40 MHz Bandwidth, use channel 102, 110, 118, 126, 134, 142

For 80 MHz Bandwidth, use channel 106, 122, 138.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	149	5745 MHz	157	5785 MHz
5745~5825MHz	151	5755 MHz	159	5795 MHz
(U-NII-3)	153	5765 MHz	161	5805 MHz
	155	5775 MHz	165	5825 MHz

For 20 MHz Bandwidth, use channel 149, 153, 157, 161, 165. For 40 MHz Bandwidth, use channel 151, 159.


For 80 MHz Bandwidth, use channel 155.



1.3 Block Diagram Showing the Configuration of System Tested

Conducted Test

Radiated Test

1.4 Description of Support Units

	Equipment Information			
Name	Model	FCC ID/VOC	Manufacturer	Used "√"
	1373 6	0000		
		Cable Information		
Number	Shielded Type	Ferrite Core	Length	Note
Cable 1	Yes	NO	1.0M	Accessory

8 of 99

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

		For Conducted Test
Fina	I Test Mode	Description
	Mode 1	Charging + TX a Mode(5180MHz)
	For	Radiated Test Below 1GHz
Fina	I Test Mode	Description
Mode 2		Charging + TX a Mode(5180MHz)
	For Radiated	Above 1GHz and RF Conducted Test
Test Band	Final Test Mode	Description
	Mode 3	TX Mode 802.11a Mode Channel 36/44/48
	Mode 4	TX Mode 802.11n(HT20) Mode Channel 36/44/48
11 8111 4	Mode 5	TX Mode 802.11ac(VHT20) Mode Channel 36/44/48
U-NII-1	Mode 6	TX Mode 802.11n(HT40) Mode Channel 38/46
	Mode 7	TX Mode 802.11ac(VHT40) Mode Channel 38/46
	Mode 8	TX Mode 802.11ac(VHT80) Mode Channel 42
11.0	Mode 9	TX Mode 802.11a Mode Channel 52/60/64
Like The Lik	Mode 10	TX Mode 802.11n(HT20) Mode Channel 52/60/64
	Mode 11	TX Mode 802.11ac(VHT20) Mode Channel 52/60/64
U-NII-2A	Mode 12	TX Mode 802.11n(HT40) Mode Channel 54/62
	Mode 13	TX Mode 802.11ac(VHT40) Mode Channel 54/62
	Mode 14	TX Mode 802.11ac(VHT80) Mode Channel 58
N. R. C.	Mode 15	TX Mode 802.11a Mode Channel 100/116/144
	Mode 16	TX Mode 802.11n(HT20) Mode Channel 100/116/144
LI NIII OC	Mode 17	TX Mode 802.11ac(VHT20) Mode Channel 100/116/144
U-NII-2C	Mode 18	TX Mode 802.11n(HT40) Mode Channel 102/110/142
	Mode 19	TX Mode 802.11ac(VHT40) Mode Channel 102/110/142
	Mode 20	TX Mode 802.11ac(VHT80) Mode Channel 106/138
	Mode 21	TX Mode 802.11a Mode Channel 149/157/165
	Mode 22	TX Mode 802.11n(HT20) Mode Channel 149/157/165
LLNILO	Mode 23	TX Mode 802.11ac(vHT20) Mode Channel 149/157/165
U-NII-3	Mode 24	TX Mode 802.11n(HT40) Mode Channel 151/159
	Mode 25	TX Mode 802.11ac(VHT40) Mode Channel 151/159
	Mode 26	TX Mode 802.11ac(VHT80) Mode Channel 155

Report No.: TB-RF185301 Page: 9 of 99

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

802.11a Mode: OFDM (6 Mbps) 802.11n (HT20) Mode: MCS 0 802.11n (HT40) Mode: MCS 0

802.11ac(VHT20) Mode: MCS 0/ Nss1 802.11ac(VHT40) Mode: MCS 0/ Nss1 802.11ac(VHT80) Mode: MCS 0/ Nss1

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a portable unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

Test	Software: LaunchEngMode	
	U-NII-1	
Mode	Frequency (MHz)	Parameters
	5180	14
802.11a	5200	14
	5240	14
	5180	14
802.11n(HT20)	5200	14
	5240	14
	5180	14
802.11ac(VHT20)	5200	14
	5240	14
000 44 m/LIT40\	5190	14
802.11n(HT40)	5230	14
202 44 co/\/LIT40\	5190	14
802.11ac(VHT40)	5230	14
802.11ac(VHT80)	5210	14
	U-NII-2A	
Mode	Frequency (MHz)	Parameters
	5260	14
802.11a	5300	14
	5320	14
	5260	14
802.11n(HT20)	5300	14
	5320	14
	5260	14
802.11ac(VHT20)	5300	14
	5320	14
002 44n/UT40\	5270	14
802.11n(HT40)	5310	14
202 44 co/\/LIT40\	5270	14
802.11ac(VHT40)	5310	14
802.11ac(VHT80)	5290	14

	U-NII-2C	
Mode	Frequency (MHz)	Parameters
	5500	14
802.11a	5580	14
	5720	14
	5500	14
802.11n(HT20)	5580	14
	5720	14
	5500	14
802.11ac(VHT20)	5580	14
	5720	14
	5510	14
802.11n(HT40)	5550	14
	5710	14
The state of the s	5510	14
802.11ac(VHT40)	5550	14
	5710	14
	5530	14
802.11ac(VH180)	5690	14
	U-NII-3	
Mode	Frequency (MHz)	Parameters
	5745	14
802.11a	5785	14
02.11ac(VHT40) 02.11ac(VHT80) Mode 802.11a	5825	14
	5745	14
802.11n(HT20)	5785	14
	5825	14
	5745	14
802.11ac(VHT20)	5785	14
TUE TO	5825	14
000 44 (UT46)	5755	14
802.11n(HT40)	5795	14
000 44 (\/ T 40\)	5755	14
802.11ac(VHT40)	5795	14
802.11ac(VHT80)	5775	14

Report No.: TB-RF185301

Page: 12 of 99

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.50 dB ±3.10 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F.,Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.

2. Test Summary

Standard Section	Test Item	Test Sample(s)	Judgment	Remark
FCC	rest item	rest Sample(s)	Judgment	Remark
FCC 15.207(a)	Conducted Emission	20211116-07-1#	PASS	N/A
FCC 15.209 & 15.407(b)	Radiated Unwanted Emissions	20211116-07-1#	PASS	N/A
FCC 15.203	Antenna Requirement	20211116-07-2#	PASS	N/A
FCC 15.407(a)	-26dB Emission Bandwidth	20211116-07-2#	PASS	N/A
FCC 15.407(a)	99% Occupied Bandwidth	20211116-07-2#	PASS	N/A
FCC 15.407(e)	-6dB Min Emission Bandwidth	20211116-07-2#	PASS	N/A
FCC 15.407(a)	Maximum Conducted Output Power	20211116-07-2#	PASS	N/A
FCC 15.407(a)	Power Spectral Density	20211116-07-2#	PASS	N/A
FCC 15.407(b)& 15.205	Emissions in Restricted Bands	20211116-07-2#	PASS	N/A
FCC 15.407(b)&15.209	Conducted Unwanted Emissions	20211116-07-2#	PASS	N/A
FCC 15.407(g)	Frequency Stability	20211116-07-2#	PASS	N/A
1,000	On Time and Duty Cycle	20211116-07-2#	1	N/A

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0
RF Test System	JS1120	Tonscend	V2.6.88.0336

Report No.: TB-RF185301 Page: 14 of 99

4. Test Equipment

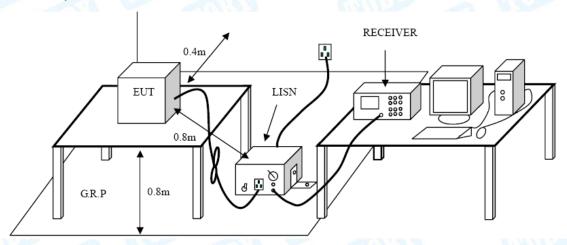
Conducted Emission	Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 02, 2021	Jul. 01, 2022
	Compliance				
RF Switching Unit	Direction Systems	RSU-A4	34403	Jul. 02, 2021	Jul. 01, 2022
	Inc				HILL
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 02, 2021	Jul. 01, 2022
LISN	Rohde & Schwarz	ENV216	101131	Jul. 02, 2021	Jul. 01, 2022
Radiation Emission T	est				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jul. 02, 2021	Jul. 01, 2022
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 02, 2021	Jul. 01, 2022
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar. 01, 2020	Feb.28, 2022
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar. 01, 2020	Feb.28, 2022
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	May. 20, 2021	May. 19, 2022
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 06, 2021	Jul. 05, 2022
Pre-amplifier	SONOMA	310N	185903	Feb. 25, 2021	Feb.24, 2022
Pre-amplifier	HP	8449B	3008A00849	Feb. 25, 2021	Feb.24, 2022
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Sep. 03, 2021	Sep. 02, 2022
Antenna Conducted I	Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jul. 02, 2021	Jul. 01, 2022
Vector Signal Generator	Agilent	5182B	MY59101429	Sep. 03, 2021	Sep. 02, 2022
Analog Signal Generator	Agilent	5181A	MY48180463	Sep. 03, 2021	Sep. 02, 2022
RF Control Unit	Tonsced	JS0806-2	21F8060439	Sep. 03, 2021	Sep. 02, 2022
Band Reject Filter Group	Tonsced	JS0806-F	21D8060414	Jul. 02, 2021	Jul. 01, 2022
Power Control Box	Tonsced	JS0806-4ADC	21C8060387	N/A	N/A

5. Conducted Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard

FCC Part 15.207


5.1.2 Test Limit

Eroguanav	Maximum RF Line Voltage (dBμV)		
Frequency	Quasi-peak Level	Average Level	
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

5.3 Test Procedure

- ●The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.
- Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- ●I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- ●LISN at least 80 cm from nearest part of EUT chassis.
- The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

Report No.: TB-RF185301

Page: 16 of 99

5.4 Deviation From Test Standard

No deviation

5.5 EUT Operating Mode

Please refer to the description of test mode.

5.6 Test Data

Please refer to the Attachment A inside test report.

6. Radiated and Conducted Unwanted Emissions

6.1 Test Standard and Limit

6.1.1 Test Standard

FCC Part 15.209 & FCC Part 15.407(b)

6.1.2 Test Limit

General field strength limits at frequencies Below 30MHz					
Frequency Field Strength Field Strength Measurement (MHz) (µA/m)* (microvolt/meter)** Distance (meters)					
0.009~0.490	6.37/F (F in kHz)	2400/F(KHz)	Distance (meters)		
0.490~1.705	63.7/F (F in kHz)	24000/F(KHz)	30		
1.705~30.0	0.08	30	30		

Note: 1, The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

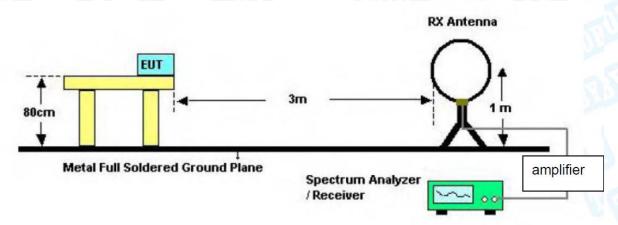
2, *is for RSS Standard, **is for FCC Standard.

General field strength limits at frequencies above 30 MHz				
Frequency Field strength Measurement (MHz) (µV/m at 3 m) (meters				
30~88	100	3		
88~216	150	3		
216~960	200	3		
Above 960	500	3		

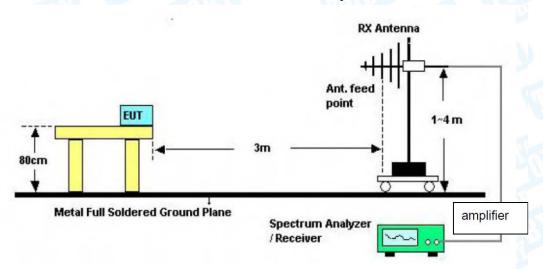
General field strength limits at frequencies Above 1000MHz			
Frequency	Distance of 3m (dBuV/m)		
(MHz)	Peak	Average	
Above 1000	74	54	
Notor		THE CALLS	

- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

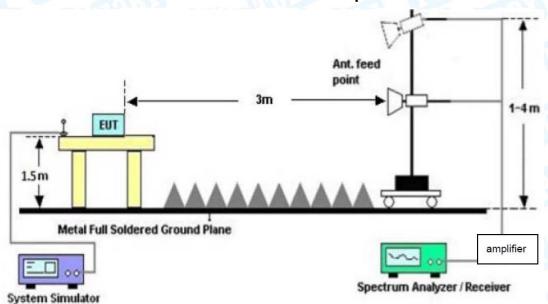
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.



Report No.: TB-RF185301

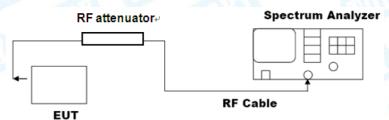

Page: 18 of 99

6.2 Test Setup


Radiated measurement

Below 30MHz Test Setup

Below 1000MHz Test Setup



Above 1GHz Test Setup

Report No.: TB-RF185301 Page: 19 of 99

Conducted measurement

6.3 Test Procedure

---Radiated measurement

- The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Below 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- Testing frequency range 30MHz-1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection. Testing frequency range 9KHz-150Hz the measuring instrument use VBW=200Hz with Quasi-peak detection. Testing frequency range 9KHz-30MHz the measuring instrument use VBW=9kHz with Quasi-peak detection.
- Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- For the actual test configuration, please see the test setup photo.

Report No.: TB-RF185301 Page: 20 of 99

--- Conducted measurement

● Reference level measurement

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to≥1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW≥[3*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

Emission level measurement

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW≥[3*RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.

6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Mode

Please refer to the description of test mode.

6.6 Test Data

Radiated measurement please refer to the Attachment B inside test report. Conducted measurement please refer to the Appendix D section 7.

7. Restricted Bands Requirement

7.1 Test Standard and Limit

7.1.1 Test Standard

FCC Part 15.205 & FCC Part 15.407(b)

7.1.2 Test Limit

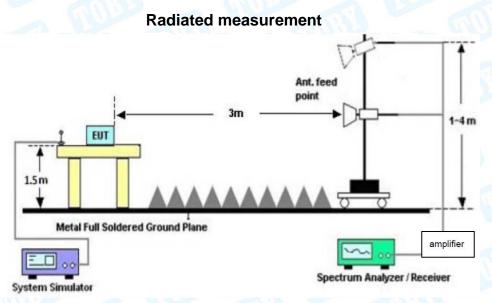
Frequency (MHz)	EIRP Limits (dBm)	Equivalent Field Strength at 3m (dBuV/m)
5150~5250	-27	68.3
5250~5350	-27	68.3
5470~5725	-27	68.3
China Contraction	-27(Note 2)	68.3
5705 5005	10(Note 2)	105.3
5725~5825	15.6(Note 2)	110.9
	27(Note 2)	122.3

NOTE:

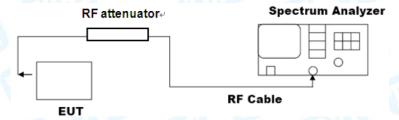
1, The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$E = \frac{1000000\sqrt{30P}}{3} \text{ uV/m, where P is the eirp (Watts)}$$

2, According to FCC 16-24, All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27dBm/MHz at the band edge.


Note: According the ANSI C63.10 11.12.2 antenna-port conducted measurements may also be used as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test forcabinet/case emissions is required.

21 of 99



7.2 Test Setup

Conducted measurement

7.3 Test Procedure

---Radiated measurement

- Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- The Peak Value and average value both need to comply with applicable limit above 1 GHz.
- Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- For the actual test configuration, please see the test setup photo.

Report No.: TB-RF185301 Page: 23 of 99

--- Conducted measurement

- a) Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 11.12.2.3 through 11.12.2.5 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).
- b) Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP (see 11.12.2.6 for guidance on determining the applicable antenna gain).
- c) Add the appropriate maximum ground reflection factor to the EIRP (6 dB for frequencies ≤30 MHz; 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive; and 0 dB for frequencies > 1000 MHz).
- d) For MIMO devices, measure the power of each chain and sum the EIRP of all chains in linear terms (i.e., watts and mW).
- e) Convert the resultant EIRP to an equivalent electric field strength using the following relationship:

 $E = EIRP-20 \log d + 104.8$

where

E is the electric field strength in dBuV/m

EIRP is the equivalent isotropically radiated power in dBm

d is the specified measurement distance in m

- f) Compare the resultant electric field strength level with the applicable regulatory limit.
- g) Perform the radiated spurious emission test.

7.4 Deviation From Test Standard

No deviation

7.5 EUT Operating Mode

Please refer to the description of test mode.

7.6 Test Data

Remark: The test uses antenna-port conducted measurements as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements.

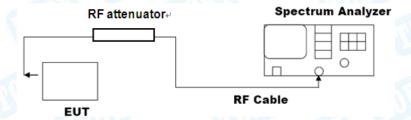
Please refer to the Appendix D section 6.

Report No.: TB-RF185301

Page: 24 of 99

8. Bandwidth Test

8.1 Test Standard and Limit


8.1.1 Test Standard

FCC Part 15.407(a) & FCC Part 15.407(e)

8.1.2 Test Limit

Test Item	Limit	Frequency Range (MHz)
	SA CUDA	5150~5250
26 Bandwidth	N/A	5250~5350
		5500~5725
6 dB Bandwidth	>500kHz	5725~5850
		5150~5250
99% Bandwidth	N/A	5250~5350
99% Balluwiuiii	IV/A	5500~5725
		5725~5850

8.2 Test Setup

8.3 Test Procedure

---Emission bandwidth

- The procedure for this method is as follows:
- a) Set RBW = approximately 1% of the emission bandwidth.
- b) Set the VBW > RBW.
- c) Detector = peak.
- d) Trace mode = max hold.
- e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission.

Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

NOTE—The automatic bandwidth measurement capability of a spectrum analyzer or an EMI receiver may be employed if it implements the functionality described in the preceding items.

Report No.: TB-RF185301 Page: 25 of 99

---DTS bandwidth

- The steps for the first option are as follows:
- a) Set RBW = 100 kHz.
- b) Set the VBW≥[3*RBW].
- c) Detector = peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

---occupied bandwidth

- The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:
- a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
- d) Step a) through step c) might require iteration to adjust within the specified range.
- e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
- g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.
- h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

Report No.: TB-RF185301

Page: 26 of 99

8.4 Deviation From Test Standard

No deviation

8.5 EUT Operating Mode

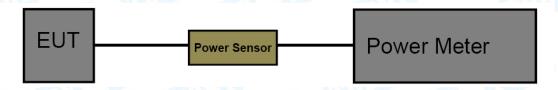
Please refer to the description of test mode.

8.6 Test Data

Please refer to the Appendix D section 1&2&3.

Report No.: TB-RF185301 Page: 27 of 99

9. Maximum Conducted Output Power


9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.407(a)

9.1.2 Test Limit

FCC Part 15 Subpart E(15.407)					
l incit	Freq	uency Range(M	ency Range(MHz)		
Limit	5150~5250	5250~5350	5500~5725	5725~5850	
Max Conducted TX Power	Master Device: 1 Watt(30dBm) Client Device: 250mW(24dBm)	24dBm (250 mW) or 11 dBm+ 10 log B, whichever is lower (B= 26-dB emission BW)		1 Watt (30dBm)	
4 W (36 dBm) with 6 dBi antenna 200 W (53 dBm) for fixed P-t-P application with 23 dBiantenna Additional rule for outdoor operation: Max_EIRP< 125 mW(21 dBm) at any elevation angle > 30° from horizon		1 W (30 dBm) with 6 dBi antenna		4 W (36 dBm) with 6 dBi	
			Yangy	antenna	
TPC	NO		P ≥ 500 mW (27 dBm) or EIRP below 24dBm	NO	
		NO, if Max_EIR	P < 500mW (27dBm)		

9.2 Test Setup

9.3 Test Procedure

● The EUT was connected to RF power meter via a broadband power sensor as show the block above. The power sensor video bandwidth is greater than or equal to the DTS bandwidth of the equipment.

9.4 Deviation From Test Standard

No deviation

9.5 EUT Operating Mode

Please refer to the description of test mode.

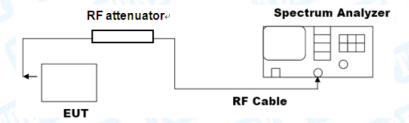
9.6 Test Data

Please refer to the Appendix D section 4.

Report No.: TB-RF185301 Page: 28 of 99

10. Power Spectral Density Test

10.1 Test Standard and Limit


10.1.1 Test Standard

FCC Part 15.407(a)

10.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
TUDE	Master Device: 17dBm/MHz Client Device: 11dBm/MHz	5150~5250
Power Spectral	11dBm/MHz	5250~5350
Density	11dBm/MHz	5500~5725
	30dBm/500kHz	5725~5850

10.2 Test Setup

10.3 Test Procedure

- Notwithstanding that some regulatory requirements refer to peak power spectral density (PPSD), in some cases the intent is to measure the maximum value of the time average of the power spectral density during a period of continuous transmission. The procedure for this method is as follows:
- a) Create an average power spectrum for the EUT operating mode being tested by following the instructions in 12.3.2 for measuring maximum conducted output power using a spectrum analyzer or EMI receiver; that is, select the appropriate test method (SA-1, SA-2, SA-3, or their respective alternatives) and apply it up to, but not including, the step labeled, "Compute power..."(This procedure is required even if the maximum conducted output power measurement was performed using the power meter method PM.)
- b) Use the peak search function on the instrument to find the peak of the spectrum.
- c) Make the following adjustments to the peak value of the spectrum, if applicable:
- 1) If method SA-2 or SA-2A was used, then add [10 log (1 / D)], where D is the duty cycle, to the peak of the spectrum.
- 2) If method SA-3A was used and the linear mode was used in step h) of 12.3.2.7, add 1 dB to the final result to compensate for the difference between linear averaging and power averaging.
- d) The result is the PPSD.

Report No.: TB-RF185301 Page: 29 of 99

e) The procedure in item a) through item c) requires the use of 1 MHz resolution bandwidth to satisfy the 1 MHz measurement bandwidth specified by some regulatory authorities.95 This requirement also permits use of resolution bandwidths less than 1 MHz"provided that the measured power is integrated to show the total power over the measurement bandwidth"(i.e., 1 MHz). If measurements are performed using a reduced resolution bandwidth and integrated over 1 MHz bandwidth, the following adjustments to the procedures apply:

- 1) Set RBW≥1 / T, where T is defined in 12.2 a).
- 2) Set VBW ≥ [3*RBW].
- 3) Care shall be taken such that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

10.4 Deviation From Test Standard

No deviation

10.5 Antenna Connected Construction

Please refer to the description of test mode.

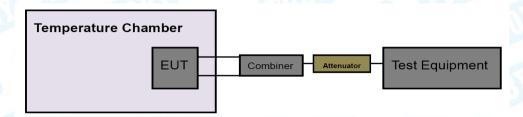
10.6 Test Data

Please refer to the Appendix D section 5.

Report No.: TB-RF185301 Page: 30 of 99

11. Frequency Stability

11.1 Test Standard and Limit


11.1.1 Test Standard

FCC Part 15.407(g)

11.1.2 Test Limit

If the frequency stability of the licence-exempt radio apparatus is not specified in the applicable RSS, the fundamental emissions of the radio apparatus should be kept within at least the central 80% of its permitted operating frequency band in order to minimize the possibility of out-of-band operation.

11.2 Test Setup

11.3 Test Procedure

- Determining compliance with the peak excursion requirement shall be done by confirming that the ratio of the maximum of the peak-max-hold spectrum to the maximum of the average spectrum for continuous transmission does not exceed the regulatory requirement. 96 The procedure for this method is as follows:
- a) The following guidance for limiting the number of tests applies only to peak excursion measurements:
- 1) Testing each modulation mode on a single channel in a single operating band is sufficient to determine compliance with the peak excursion requirement. (If all modulation modes are not available on a single channel in a single band, then testing must be extended to other channels and bands as needed to ensure that all modulation modes are tested.)
- 2) Tests must include all variations in signal structure, such as:
 - i) All signal types [e.g., direct sequence spread spectrum (DSSS) and OFDM].
 - ii) All modulation types [e.g., binary phase-shift keying (BPSK), quadrature phase-shift keying (QPSK), 16-QAM, 64-QAM, and 256-QAM].
 - iii) All bandwidth modes.
 - iv) All variations in signal parameters (e.g., changes in subcarrier spacing or number of subcarriers).
- 3) For a given signal structure, testing of multiple error-correction coding rates is not required (e.g., 1/2, 2/3, and 3/4).
- 4) For MIMO devices, testing of a single output port is sufficient to determine compliance with the peak excursion requirement. If a given signal structure can be exercised with various combinations of spatial multiplexing (such as different numbers of spatial streams), beamforming, and cyclic delay diversity, peak excursion tests are not

Report No.: TB-RF185301 Page: 31 of 99

required to include those variations.

- b) The procedure is as follows:
- 1) Set the span of the spectrum analyzer or EMI receiver to view the entire emission bandwidth or occupied bandwidth.
- 2) Find the maximum of the peak-max-hold spectrum:
 - i) Set RBW = 1 MHz.
 - ii) VBW 🗆 3 MHz.
 - iii) Detector = peak.
 - iv) Trace mode = max-hold.
 - v) Allow the sweeps to continue until the trace stabilizes.
 - vi) Use the peak search function to find the peak of the spectrum.
- 3) Use the procedure found in 12.5 to measure the PPSD.
- 4) Compute the ratio of the maximum of the peak-max-hold spectrum to the PPSD.

11.4 Deviation From Test Standard

No deviation

11.5 Antenna Connected Construction

Please refer to the description of test mode.

11.6 Test Data

Please refer to the Appendix D section 8.

Report No.: TB-RF185301 Page: 32 of 99

12. Antenna Requirement

12.1 Test Standard and Limit

12.1.1 Test Standard

FCC Part 15.203

12.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

12.2 Deviation From Test Standard

No deviation

12.3 Antenna Connected Construction

The gains of the antenna used for transmitting is 2.98dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

12.4 Test Data

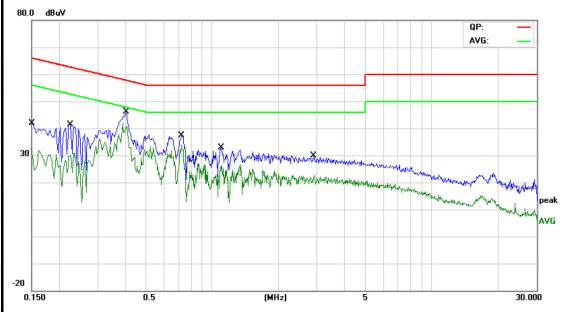
The EUT antenna is a FPC Antenna. It complies with the standard requirement.

	Antenna Type	rmanent attached antenna que connector antenna
100	Permanent attached antenna	
A Comment	⊠Unique connector antenna	0.33
	Professional installation antenna	7 (100)

Attachment A-- Conducted Emission Test Data

Temperat	ture:	24.5℃			Relative Hun	nidity:	45%	
Test Volta			0V 60Hz		relative Hull	marty.	10 /0	BALL
Terminal:		Line	5 V 001 12			TI.	THE	
Test Mod			1 with 6.95	o" screen				Time
Remark:	0.		orse case		d.			
80.0 dBuV			W. W. J. Bay					
30	My M	WWW.		Marine Ma	Marine Ma	phone of the state	QP: AVG:	peal
0.150 No. Mk	En	0.5 eq.	Reading Level	Correct Factor		Limit	Over	30.000
INO. IVIK	. 11				dBu∀	dBuV	dB	Detector
	1711	14	dRH//					Detector
1	0.40	160	dBu∀ 29.23	dB 11 44				OP
1	0.40		29.23	11.44	40.67	57.73	-17.06	QP
2 *	0.40	060	29.23 19.42	11.44 11.44	40.67 30.86	57.73 47.73	-17.06 -16.87	AVG
2 *	0.40	060 260	29.23 19.42 23.49	11.44 11.44 11.39	40.67 30.86 34.88	57.73 47.73 56.00	-17.06 -16.87 -21.12	AVG QP
2 * 3 4	0.40 0.72 0.72	260 260	29.23 19.42 23.49 9.28	11.44 11.44 11.39 11.39	40.67 30.86 34.88 20.67	57.73 47.73 56.00 46.00	-17.06 -16.87 -21.12 -25.33	AVG QP AVG
2 * 3 4 5	0.40 0.72 0.72 0.85	260 260 260 540	29.23 19.42 23.49 9.28 20.97	11.44 11.44 11.39 11.39 11.29	40.67 30.86 34.88 20.67 32.26	57.73 47.73 56.00 46.00 56.00	-17.06 -16.87 -21.12 -25.33 -23.74	AVG QP AVG QP
2 * 3 4	0.40 0.72 0.72	260 260 260 540	29.23 19.42 23.49 9.28	11.44 11.44 11.39 11.39	40.67 30.86 34.88 20.67	57.73 47.73 56.00 46.00 56.00 46.00	-17.06 -16.87 -21.12 -25.33 -23.74 -27.05	AVG QP AVG
2 * 3 4 5	0.40 0.72 0.72 0.85	260 260 260 540	29.23 19.42 23.49 9.28 20.97	11.44 11.44 11.39 11.39 11.29	40.67 30.86 34.88 20.67 32.26	57.73 47.73 56.00 46.00 56.00 46.00	-17.06 -16.87 -21.12 -25.33 -23.74	AVG QP AVG QP
2 * 3 4 5 6	0.40 0.72 0.72 0.85 0.85	260 260 260 540 540	29.23 19.42 23.49 9.28 20.97 7.66	11.44 11.39 11.39 11.29 11.29	40.67 30.86 34.88 20.67 32.26 18.95	57.73 47.73 56.00 46.00 56.00 56.00	-17.06 -16.87 -21.12 -25.33 -23.74 -27.05	AVG QP AVG QP AVG
2 * 3 4 5 6 7	0.40 0.72 0.72 0.85 0.85 2.03	260 260 260 540 540 380	29.23 19.42 23.49 9.28 20.97 7.66 16.13	11.44 11.39 11.39 11.29 11.29 10.54	40.67 30.86 34.88 20.67 32.26 18.95 26.67	57.73 47.73 56.00 46.00 56.00 46.00 46.00	-17.06 -16.87 -21.12 -25.33 -23.74 -27.05 -29.33	AVG QP AVG QP AVG
2 * 3 4 5 6 7	0.40 0.72 0.72 0.85 0.85 2.03	260 260 540 540 380 380	29.23 19.42 23.49 9.28 20.97 7.66 16.13 6.97	11.44 11.39 11.39 11.29 11.29 10.54 10.54	40.67 30.86 34.88 20.67 32.26 18.95 26.67 17.51	57.73 47.73 56.00 46.00 56.00 46.00 46.00 60.00	-17.06 -16.87 -21.12 -25.33 -23.74 -27.05 -29.33 -28.49	AVG QP AVG QP AVG QP
2 * 3 4 5 6 7 8	0.40 0.72 0.72 0.85 0.85 2.03 2.03	260 260 540 540 380 380 980	29.23 19.42 23.49 9.28 20.97 7.66 16.13 6.97 11.58	11.44 11.39 11.39 11.29 11.29 10.54 10.54 10.10	40.67 30.86 34.88 20.67 32.26 18.95 26.67 17.51 21.68	57.73 47.73 56.00 46.00 56.00 46.00 60.00 50.00	-17.06 -16.87 -21.12 -25.33 -23.74 -27.05 -29.33 -28.49 -38.32	AVG QP AVG QP AVG QP AVG

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)


Temperat	ure:	24.5℃			Relative H	umidity:	45%	
Test Volta	age:	AC 12	0V 60Hz			1350		CHILL
Terminal:		Neutra	al W		a W		17.1	
Test Mod	е:	Mode	1 with 6.9	95" screen		2 81	11 case	
Remark:		Only w	vorse cas	se is reported		3	_ 6	MIN.
30 dBuV		A Horrows	a Maradak	gp-s/ vel telenseden vertingssyde	May make hoster day		QP: AVG:	peak AVG
-20 0.150 No. Mk.		q. I	eading Level	Correct Factor	Measure- ment	Limit	Over	30.000
	MH:		dBu∀	dB	dBu∀	dBu∀	dB	Detector
1	0.198		26.58	11.67	38.25	63.69		QP
2	0.198	30 -	13.72	11.67	25.39	53.69		AVG
3	0.410	00 3	35.50	11.48	46.98	57.65	-10.67	QP
4 *	0.410	00 2	28.87	11.48	40.35	47.65	-7.30	AVG
5	1.382	20 2	23.00	10.93	33.93	56.00	-22.07	QP
6	1.382	20 ′	14.42	10.93	25.35	46.00	-20.65	AVG
7	2.150	00 2	21.50	10.42	31.92	56.00	-24.08	QP
8	2.150	00	13.89	10.42	24.31	46.00	-21.69	AVG
9	4.702	20	17.79	10.08	27.87	56.00	-28.13	QP
10	4.702	20	11.02	10.08	21.10	46.00	-24.90	AVG
11	15.874		11.42	10.39	21.81	60.00		QP
12	15.874		5.09	10.39	15.48	50.00		AVG
Remark: 1. Corr. Fac	ctor (dB)	= LISN F	actor (dB)	+ Cable Loss	(dB)			

- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Temperature:	24.5℃ I	Relative Humidity:	45%
Test Voltage:	AC 120V 60Hz		
Terminal:	Line		W
Test Mode:	Mode 1 with 7" screen		mn by
Remark:	Only worse case is reported	NINO.	
80.0 dBuV			
			QP: —
			AVG: —

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB	dBu∀	dBu∀	dB	Detector
1		0.1500	25.81	11.62	37.43	65.99	-28.56	QP
2		0.1500	12.41	11.62	24.03	55.99	-31.96	AVG
3		0.2260	27.45	11.64	39.09	62.59	-23.50	QP
4		0.2260	14.30	11.64	25.94	52.59	-26.65	AVG
5		0.4060	32.13	11.44	43.57	57.73	-14.16	QP
6	*	0.4060	29.83	11.44	41.27	47.73	-6.46	AVG
7		0.7220	23.72	11.40	35.12	56.00	-20.88	QP
8		0.7220	18.83	11.40	30.23	46.00	-15.77	AVG
9		1.0940	20.12	11.13	31.25	56.00	-24.75	QP
10		1.0940	15.50	11.13	26.63	46.00	-19.37	AVG
11		2.8980	15.13	10.27	25.40	56.00	-30.60	QP
12		2.8980	8.90	10.27	19.17	46.00	-26.83	AVG

Remark:

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Temper	rature:	24.5℃		Relative	Humidity:	45%	-6
Test Vo	Itage:	AC 120V 60Hz					Un:
Termina	al:	Veutral		a V			
Test Mo	ode:	Mode 1 with 7"	screen		- A1		
Remark	C :	Only worse cas	e is reported	d	33		111033
30 dBs				3/6/4/19/14/4/19/14/4/4/4/4/4/4/4/4/4/4/4/4	Top water the standard the reposition of the standard the	QP: AVG:	pea AV(
0.150	II. F	Reading	Correct	Measure		Over	30.000
No. M	•		Factor	ment	Limit	Over	D
4	MHz	dBu∀	dB	dBu∀	dBu∀	dB	Detector
1	0.2220		11.65	35.90	62.74		QP
2	0.2220		11.65	19.36	52.74		AVG
3	0.4060	29.78	11.44	41.22	57.73	-16.51	QP
4 *	0.4060	20.15	11.44	31.59	47.73	-16.14	AVG
5	0.6220	17.12	11.45	28.57	56.00	-27.43	QP
6	0.6220	7.72	11.45	19.17	46.00	-26.83	AVG
7	1.7020	10.63	10.75	21.38	56.00	-34.62	QP
8	1.7020	2.41	10.75	13.16	46.00	-32.84	AVG
9	5.3260		10.08	17.57	60.00		QP
10	5.3260		10.08	10.02	50.00		AVG
11	17.1540		10.32	14.71	60.00		QP
12	17.1540	-3.26	10.32	7.06	50.00	-47 94	AVG

Attachment B--Unwanted Emissions Data

--- Radiated Unwanted Emissions

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB

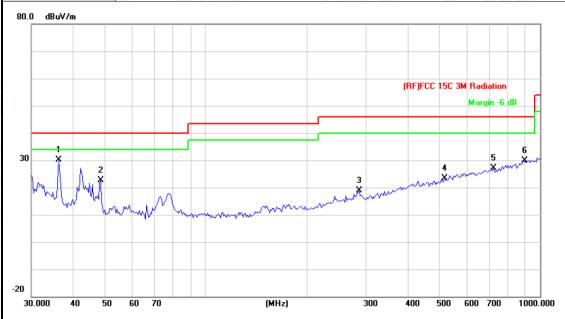
Below the permissible value has no need to be reported.

30MHz~1GHz

Temperature:			2	3.5°	С		2	The same	Relative	Hu	midity:	4	6%		13
Гes	t Volta	ge:	А	C 1	20\	/ 60	Hz		MAN				Marie Control	A REAL PROPERTY.	
Ant	. Pol.		Н	loriz	ont	tal		Niemon I		6					1
Tes	t Mode) :	N	Mode 2 with 6.95" screen											
Rei	mark:		С	nly	wo	rse	case	is reported	Miles			1		12	
80.	0 dBuV/m	1													
											(RF)FC	C 15C 3	M Radi	ation	+
													Margi	in -6 dB	4
						┕			_						
30						\vdash									
30		1 ¥							6 X				-Marin	mm	·~~~
	Way 1	2	<u>2</u> K		3			4	5 7	W.M.	moone	Al War			
	mulm	ηľVľ	hoor	سا	<u>"</u> X	m	maken	aryn Xumber	Why to the said						
			7.00												
-20															
	0.000 4	4 0	50 (60 7	70 1	80		(MHz)		300	400	500	600	700	1000.0
						Do	ading	Correct	Measur						
	No.	Mk.	Fı	req.			evel	Factor		C-	Limit	0	ver		
			M	1Hz		d	lBu∀	dB/m	dBuV/m	1	dBuV/m	(dB	Det	ector
	1 '	*	42.0	0066	3	4	5.22	-20.45	24.77		40.00	-1	5.23	ре	eak
	2		48.3	3318	3	3	9.35	-23.00	16.35		40.00	-2	3.65	ре	eak
	3		77.8	3654	1	3	5.46	-22.88	12.58		40.00	-2	7.42	ре	eak
	4		147.	403	6	3	3.63	-21.85	11.78		43.50	-3	1.72	ре	eak
					_	2	2 02	-18.27	15.55		46.00	_3	0.45	n	eak
	5		232.	531	8	3.	3.82	-10.27	15.55		10.00	-5	0.43	, b	cak

^{*:}Maximum data

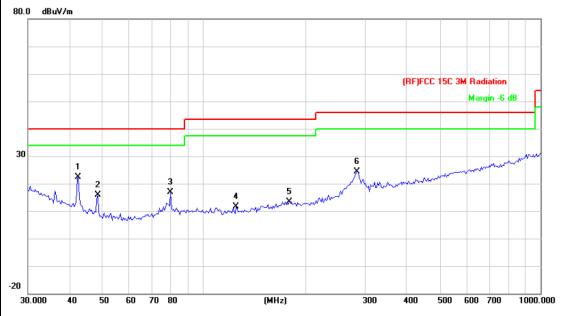
- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)


x:Over limit !:over margin

3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Temperature:	23.5℃	Relative Humidity:	46%					
Test Voltage:	AC 120V 60Hz							
Ant. Pol.	Vertical	Vertical						
Test Mode:	Mode 2 with 6.95" screen							
Remark:	Only worse case is re	eported.						

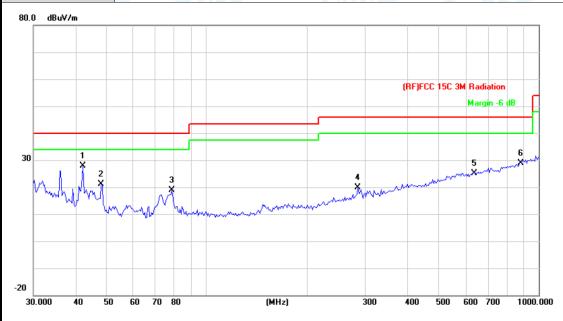
١	No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	36.2541	47.73	-17.72	30.01	40.00	-9.99	peak
2		48.3318	45.66	-23.00	22.66	40.00	-17.34	peak
3		286.9823	35.46	-16.56	18.90	46.00	-27.10	peak
4		517.2480	33.57	-10.13	23.44	46.00	-22.56	peak
5		724.2611	33.68	-6.66	27.02	46.00	-18.98	peak
6		900.1474	33.33	-3.39	29.94	46.00	-16.06	peak


^{*:}Maximum data x:Over limit !:over margin

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Temperature:	23.5℃	Relative Humidity:	46%					
Test Voltage:	AC 120V 60Hz	AC 120V 60Hz						
Ant. Pol.	Horizontal							
Test Mode:	Mode 2 with 7" screen							
Remark:	Only worse case is reporte	ed.	COLLIDS.					

_	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
	1	*	42.3022	42.92	-20.59	22.33	40.00	-17.67	peak
	2		48.3318	38.96	-23.00	15.96	40.00	-24.04	peak
-,	3		79.5209	39.55	-22.70	16.85	40.00	-23.15	peak
-	4		124.5690	34.08	-22.50	11.58	43.50	-31.92	peak
,	5		179.3863	33.83	-20.33	13.50	43.50	-30.00	peak
	6		284.9767	40.95	-16.59	24.36	46.00	-21.64	peak


^{*:}Maximum data x:Over limit !:over margin

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Temperature:	23.5℃	Relative Humidity:	46%					
Test Voltage:	AC 120V 60Hz	AC 120V 60Hz						
Ant. Pol.	Vertical							
Test Mode:	Mode 2 with 7" screen							
Remark:	Only worse case is report	ted.	alle					

No	. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	42.3021	48.41	-20.59	27.82	40.00	-12.18	peak
2		47.9940	44.11	-22.89	21.22	40.00	-18.78	peak
3		78.4133	41.60	-22.82	18.78	40.00	-21.22	peak
4		284.9767	36.49	-16.59	19.90	46.00	-26.10	peak
5		633.9073	33.29	-8.15	25.14	46.00	-20.86	peak
6		875.2470	33.27	-4.39	28.88	46.00	-17.12	peak

^{*:}Maximum data x:Over limit !:over margin

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Above 1GHz

5180MHz-5240MHz(U-NII-1)

Temperature:	23.5℃	Relative Humidity:	46%						
Test Voltage:	AC 120V/60Hz								
Ant. Pol.	Horizontal	Horizontal							
Test Mode:	TX 802.11a Mode 5180N	TX 802.11a Mode 5180MHz (U-NII-1)							

No	o. M	k. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	10360.244	45.32	16.85	62.17	68.30	-6.13	peak
2		10360.244	30.19	16.85	47.04	54.00	-6.96	AVG

Remark:

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%				
Test Voltage:	AC 120V/60Hz		MULL				
Ant. Pol.	Vertical						
Test Mode:	TX 802.11a Mode 5180MHz (U-NII-1)						

N	o. Mk	c. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		10360.244	44.08	16.85	60.93	68.30	-7.37	peak
2	*	10360.283	30.59	16.85	47.44	54.00	-6.56	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature	23.5℃	Relative Humidity:	46%					
Test Voltage	: AC 120V/60Hz	AC 120V/60Hz						
Ant. Pol.	Horizontal	Horizontal						
Test Mode:	TX 802.11a Mode 522	TX 802.11a Mode 5220MHz (U-NII-1)						

-	No.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	10440.201	46.15	16.99	63.14	68.30	-5.16	peak
2	1		10440.521	28.26	16.99	45.25	54.00	-8.75	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%				
Test Voltage:	AC 120V/60Hz						
Ant. Pol.	Vertical		The same				
Test Mode:	TX 802.11a Mode 5220N	/IHz (U-NII-1)					

N	0.	Mk.	Freq.	_	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		•	10440.362	28.24	16.99	45.23	54.00	-8.77	AVG
2	,	* .	10440.851	46.22	16.99	63.21	68.30	-5.09	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%		
Test Voltage:	AC 120V/60Hz	an in	MUD		
Ant. Pol.	Horizontal	7			
Test Mode:	TX 802.11a Mode 5240N	TX 802.11a Mode 5240MHz (U-NII-1)			

No	o. M	k. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		10480.384	27.19	17.07	44.26	54.00	-9.74	AVG
2	*	10481.274	46.43	17.08	63.51	68.30	-4.79	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%				
Test Voltage:	AC 120V/60Hz						
Ant. Pol.	Ant. Pol. Vertical						
Test Mode:	TX 802.11a Mode 5240N	1Hz (U-NII-1)					

No	o. MI	k. Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		10480.021	28.29	17.07	45.36	54.00	-8.64	AVG
2	*	10480.521	44.54	17.07	61.61	68.30	-6.69	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	23.5°C Relative Humidity: 46%					
Test Voltage:	AC 120V/60Hz		Million				
Ant. Pol.	Horizontal						
Test Mode:	TX 802.11n(HT20) Mode	TX 802.11n(HT20) Mode 5180MHz (U-NII-1)					

N	o. N	Иk.	Freq.	_		Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*		10361.210	44.27	16.85	61.12	68.30	-7.18	peak
2			10361.210	26.47	16.85	43.32	54.00	-10.68	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃ Relative Humidity: 46%
Test Voltage:	AC 120V/60Hz
Ant. Pol.	Vertical
Test Mode:	TX 802.11n(HT20) Mode 5180MHz (U-NII-1)

No.	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		10360.231	26.29	16.85	43.14	54.00	-10.86	AVG
2	*	10360.240	46.40	16.85	63.25	68.30	-5.05	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	AC 120V/60Hz		William .
Ant. Pol.	Horizontal	1	
Test Mode:	TX 802.11n(HT20) Mode	5220MHz (U-NII-1)	YUL

1	No.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	10440.410	45.33	16.99	62.32	68.30	-5.98	peak
2			10441.314	28.26	16.99	45.25	54.00	-8.75	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical	COURS -	THU
Test Mode:	TX 802.11n(HT20) Mode	5220MHz (U-NII-1)	

No	. Mł	c. Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	10440.415	45.42	16.99	62.41	68.30	-5.89	peak
2		10441.021	28.22	16.99	45.21	54.00	-8.79	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

A L M. L. R.						
Temperature:	23.5℃	Relative Humidity:	46%			
Test Voltage:	AC 120V/60Hz					
Ant. Pol.	Horizontal	7				
Test Mode:	TX 802.11n(HT20) Mode	5240MHz (U-NII-1)	W.			

No). M	k. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		10481.221	28.13	17.07	45.20	54.00	-8.80	AVG
2	*	10481.231	43.18	17.07	60.25	68.30	-8.05	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	AC 120V/60Hz	COUNTY OF	THUL
Ant. Pol.	Vertical		
Test Mode:	TX 802.11n(HT20) Mode	5240MHz (U-NII-1)	

No	. M	k. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	10480.015	46.07	17.07	63.14	68.30	-5.16	peak
2		10480.615	28.14	17.07	45.21	54.00	-8.79	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%			
Test Voltage:	AC 120V/60Hz					
Ant. Pol.	Horizontal	7				
Test Mode:	TX 802.11ac(VHT20) Mode 5180MHz (U-NII-1)					

-	No.	Mk	. Freq.	_		Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	10360.151	44.26	16.85	61.11	68.30	-7.19	peak
2			10360.751	25.29	16.85	42.14	54.00	-11.86	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%			
Test Voltage:	AC 120V/60Hz		M C			
Ant. Pol.	Vertical					
Test Mode: TX 802.11ac(VHT20) Mode 5180MHz (U-NII-1)						

No	٥.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	,	*	10361.013	45.29	16.85	62.14	68.30	-6.16	peak
2			10361.250	26.25	16.85	43.10	54.00	-10.90	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

MALVA L. K. and S. C.						
Temperature:	23.5℃	Relative Humidity:	46%			
Test Voltage:	AC 120V/60Hz					
Ant. Pol.	Horizontal	1				
Test Mode:	TX 802.11ac(VHT20) Mo	de 5220MHz (U-NII-1)	YUL			

	No.	Mk.	. Freq.	_	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1			10441.201	26.02	16.99	43.01	54.00	-10.99	AVG
2		*	10441.354	44.23	16.99	61.22	68.30	-7.08	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%				
Test Voltage:	AC 120V/60Hz		U D				
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX 802.11ac(VHT20) Mc	de 5220MHz (U-NII-1)					

No	. MI	k. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBu∀/m	dBuV/m	dB	Detector
1	*	10440.241	44.15	16.99	61.14	68.30	-7.16	peak
2		10440.441	26.26	16.99	43.25	54.00	-10.75	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%			
Test Voltage:	AC 120V/60Hz					
Ant. Pol.	Horizontal	1				
Test Mode: TX 802.11 ac(VHT20) Mode 5240MHz (U-NII-1)						

N	0.	Mk.	. Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	10481.154	44.05	17.07	61.12	68.30	-7.18	peak
2			10481.254	26.14	17.07	43.21	54.00	-10.79	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%			
Test Voltage:	AC 120V/60Hz					
Ant. Pol.	Vertical					
Test Mode:	TX 802.11ac(VHT20) Mode 5240MHz (U-NII-1)					

No	o. N	Иk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	1	10480.654	45.07	17.07	62.14	68.30	-6.16	peak
2		1	10481.654	25.06	17.08	42.14	54.00	-11.86	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

MALL NAVE AND ADDRESS OF THE PARTY OF THE PA						
Temperature:	23.5℃	Relative Humidity:	46%			
Test Voltage:	AC 120V/60Hz					
Ant. Pol.	Horizontal	7				
Test Mode: TX 802.11n(HT40) Mode 5190MHz (U-NII-1)						

	No.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1			10380.252	26.14	16.88	43.02	54.00	-10.98	AVG
2		*	10380.362	45.13	16.88	62.01	68.30	-6.29	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%			
Test Voltage: AC 120V/60Hz						
Ant. Pol.	Vertical	THU	0.0			
Test Mode:	TX 802.11n(HT40) Mode	5190MHz (U-NII-1)				

No	. Mł	c. Freq.			Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		10380.352	27.34	16.88	44.22	54.00	-9.78	AVG
2	*	10380.440	45.16	16.88	62.04	68.30	-6.26	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%			
Test Voltage:	AC 120V/60Hz					
Ant. Pol.	Horizontal	1				
Test Mode: TX 802.11n(HT40) Mode 5230MHz (U-NII-1)						

No	o. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	10460.162	43.21	17.04	60.25	68.30	-8.05	peak
2		10461.540	26.08	17.04	43.12	54.00	-10.88	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	AC 120V/60Hz		O
Ant. Pol.	Vertical		
Test Mode:	TX 802.11n(HT40) Mode	5230MHz (U-NII-1)	

N	0.	Mk	. Freq.	_	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	10460.411	45.07	17.04	62.11	68.30	-6.19	peak
2			10461.014	25.37	17.04	42.41	54.00	-11.59	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

_				
	Temperature:	23.5℃	Relative Humidity:	46%
	Test Voltage:	AC 120V/60Hz		Million
	Ant. Pol.	Horizontal		
	Test Mode:	TX 802.11ac(VHT40) Mo	de 5190MHz (U-NII-1)	W.

	No.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1			10380.142	25.26	16.88	42.14	54.00	-11.86	AVG
2		*	10381.410	43.35	16.89	60.24	68.30	-8.06	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%			
Test Voltage:	AC 120V/60Hz					
Ant. Pol.	Vertical		WILD T			
Test Mode:	TX 802.11ac(VHT40) Mo	de 5190MHz (U-NII-1)				

No	. MI	k. Freq.	_		Measure- ment	Limit	Over	4
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	10381.014	44.47	16.88	61.35	68.30	-6.95	peak
2		10381.411	25.62	16.89	42.51	54.00	-11.49	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	AC 120V/60Hz	anily a	
Ant. Pol.	Horizontal	7	
Test Mode:	TX 802.11ac(VHT40) Mo	ode 5230MHz (U-NII-1)	NU -

No.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		10460.624	25.10	17.04	42.14	54.00	-11.86	AVG
2	*	10461.614	45.06	17.04	62.10	68.30	-6.20	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃ Relative Humidity: 46%
Test Voltage:	AC 120V/60Hz
Ant. Pol.	Vertical
Test Mode:	TX 802.11ac(VHT40) Mode 5230MHz (U-NII-1)

No	. Mł	c. Freq.	_		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		10460.410	25.31	17.04	42.35	54.00	-11.65	AVG
2	*	10461.214	44.31	17.04	61.35	68.30	-6.95	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%				
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz					
Ant. Pol.	Horizontal	11:37	U				
Test Mode:	TX 802.11ac(VHT80) Mo	de 5210MHz (U-NII-1)					

-	No.	Mk	. Freq.			Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	10420.141	45.18	16.96	62.14	68.30	-6.16	peak
2			10420.352	25.14	16.96	42.10	54.00	-11.90	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%		
Test Voltage:	AC 120V/60Hz	THE WAY	(13)		
Ant. Pol.	Vertical				
Test Mode:	TX 802.11ac(VHT80) Mc	de 5210MHz (U-NII-1)			

N	o. M	k. Freq.	_		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		10420.324			41.41	54.00	-12.59	AVG
2	*	10420.641	43.45	16.96	60.41	68.30	-7.89	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

5260MHz-5320MHz(U-NII-2A)

Temperature:	23.5℃	Relative Humidity:	46%			
Test Voltage:	AC 120V/60Hz					
Ant. Pol.	Horizontal	1				
Test Mode:	TX 802.11a Mode 5260M	IHz (U-NII-2A)	W.			

No.	. Mk	. Freq.	_		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	10520.540	45.89	17.12	63.01	68.30	-5.29	peak
2		10521.241	28.10	17.12	45.22	54.00	-8.78	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical	WILLIAM S	LAND TO SERVICE STATE OF THE PARTY OF THE PA
Test Mode:	TX 802.11a Mode 5260M	Hz (U-NII-2A)	

No	o. MI	k. Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		10520.241	27.90	17.12	45.02	54.00	-8.98	AVG
2	*	10520.751	47.09	17.12	64.21	68.30	-4.09	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%	
Test Voltage:	Test Voltage: AC 120V/60Hz			
Ant. Pol.	Horizontal	1		
Test Mode:	TX 802.11a Mode 5300M	1Hz (U-NII-2A)	WU	

No	. Mk	. Freq.			Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		10601.214	28.10	17.21	45.31	54.00	-8.69	AVG
2	*	10601.751	47.00	17.21	64.21	68.30	-4.09	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%	
Test Voltage:	AC 120V/60Hz			
Ant. Pol.	Ant. Pol. Vertical			
Test Mode:	TX 802.11a Mode 5300MHz (U-NII-2A)			

No	o. N	Иk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*		10600.141	46.00	17.21	63.21	68.30	-5.09	peak
2			10600.621	28.12	17.21	45.33	54.00	-8.67	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
 The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%		
Test Voltage:	AC 120V/60Hz				
Ant. Pol.	Horizontal	7			
Test Mode:	TX 802.11a Mode 5320N	MHz (U-NII-2A)	W.		

No	o. Mł	c. Freq.	_		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	10641.211	47.26	17.25	64.51	68.30	-3.79	peak
2		10641.624	27.09	17.25	44.34	54.00	-9.66	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%			
Test Voltage:	AC 120V/60Hz					
Ant. Pol.	Vertical	WILLIAM -	THUL			
Test Mode:	Test Mode: TX 802.11a Mode 5320MHz (U-NII-2A)					

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		10640.241	26.90	17.25	44.15	54.00	-9.85	AVG
2	*	10640.521	46.26	17.25	63.51	68.30	-4.79	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

	Temperature:	23.5℃	Relative Humidity:	46%				
Test Voltage: AC 120V/60Hz								
	Ant. Pol.	Horizontal						
5	Test Mode:	TX 802.11n(HT20) Mode 5260MHz (U-NII-2A)						

No	. Mk	. Freq.			Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	10520.414	44.13	17.12	61.25	68.30	-7.05	peak
2		10520.414	26.10	17.12	43.22	54.00	-10.78	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%				
Test Voltage:	AC 120V/60Hz						
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX 802.11n(HT20) Mode 5260MHz (U-NII-2A)						

No	0.	Mk	Freq.	_	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	10520.351	43.29	17.12	60.41	68.30	-7.89	peak
2			10520.751	26.08	17.12	43.20	54.00	-10.80	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
 The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

WILLIAM THE COMPANY					
Temperature:	23.5℃	Relative Humidity:	46%		
Test Voltage: AC 120V/60Hz					
Ant. Pol.	Horizontal	7	TO THE REAL PROPERTY.		
Test Mode: TX 802.11n(HT20) Mode 5300MHz (U-NII-2A)					

No). N	1k.	Freq.			Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	1	0601.141	46.00	17.21	63.21	68.30	-5.09	peak
2		1	0601.241	26.33	17.21	43.54	54.00	-10.46	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%			
Test Voltage: AC 120V/60Hz						
Ant. Pol.	Vertical	Vertical				
Test Mode:	TX 802.11n(HT20) Mode 5300MHz (U-NII-2A)					

N	lo.	Mk	. Freq.	_		Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	10600.000	43.81	17.21	61.02	68.30	-7.28	peak
2			10600.414	24.93	17.21	42.14	54.00	-11.86	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

	Temperature:	23.5℃	Relative Humidity:	46%				
3	Test Voltage:	AC 120V/60Hz						
	Ant. Pol.	Horizontal						
	Test Mode:	TX 802.11n(HT20) Mode 5320MHz (U-NII-2A)						

	No.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
•	1	*	10641.041	45.95	17.25	63.20	68.30	-5.10	peak
2	2		10641.041	25.96	17.25	43.21	54.00	-10.79	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%			
Test Voltage:						
Ant. Pol.	I. Vertical					
Test Mode:	TX 802.11n(HT20) Mode	5320MHz (U-NII-2A)	N. C.			

No	o. MI	k. Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	10641.120	45.19	17.25	62.44	68.30	-5.86	peak
2		10641.542	26.97	17.25	44.22	54.00	-9.78	AVG

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

	The A. Linds, M. H. Landson, Co.							
	Temperature:	23.5℃	Relative Humidity:	46%				
	Test Voltage:	Test Voltage: AC 120V/60Hz						
	Ant. Pol.	Horizontal						
F	Test Mode:	TX 802.11ac(VHT20) Mode 5260MHz (U-NII-2A)						

No.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		10520.511	24.09	17.12	41.21	54.00	-12.79	AVG
2	*	10520.854	45.29	17.12	62.41	68.30	-5.89	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

The second secon				
Temperature:	23.5℃	R	elative Humidity:	46%
Test Voltage:	AC 120V/60Hz	Millian		
Ant. Pol.	Vertical	6		THU .
Test Mode:	TX 802.11ac(VH	T20) Mode	5260MHz (U-NII-2A	
	Reading	Correct	Measure-	

No.	Mk.	Freq.			Measure- ment	Limit	Over	
		MHz	dBu∨	dB	dBuV/m	dBuV/m	dB	Detector
1	* 10	0520.08	25.09	20.73	45.82	54.00	-8.18	AVG
2	10	0520.18	35.42	20.73	56.15	68.30	-12.15	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%			
Test Voltage:	AC 120V/60Hz					
Ant. Pol.	Horizontal	0				
Test Mode:	TX 802.11ac(VHT20) Mo	1)				

No	. M	lk.	Freq.	_		Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	10	600.000	44.20	17.21	61.41	68.30	-6.89	peak
2		10	600.413	25.93	17.21	43.14	54.00	-10.86	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical		
Test Mode:	TX 802.11ac(VHT20) Mc	de 5300MHz (U-NII-2A	1)

No.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		10600.113	24.43	17.21	41.64	54.00	-12.36	AVG
2	*	10600.542	46.04	17.21	63.25	68.30	-5.05	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

	Temperature:	23.5℃	Relative Humidity:	46%			
ľ	Test Voltage:	AC 120V/60Hz					
	Ant. Pol.	Horizontal					
	Test Mode:	TX 802.11 ac(VHT20) Mode 5320MHz (U-NII-2A)					

No	o. I	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1			10640.124	24.27	17.25	41.52	54.00	-12.48	AVG
2	*		10640.644	45.27	17.25	62.52	68.30	-5.78	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%				
Test Voltage:	AC 120V/60Hz						
Ant. Pol.	Vertical	THUM					
Test Mode:	TX 802.11ac(VHT20) Mode 5320MHz (U-NII-2A)						

No).	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	,	k	10640.142	45.76	17.25	63.01	68.30	-5.29	peak
2			10640.742	25.10	17.25	42.35	54.00	-11.65	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

A L M L R AND			
Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	AC 120V/60Hz	anily .	Unive
Ant. Pol.	Horizontal	1	TO VICE
Test Mode:	TX 802.11n(HT40) Mode	5270MHz (U-NII-2A)	

N	0.	Mk	. Freq.			Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	10540.411	44.97	17.14	62.11	68.30	-6.19	peak
2			10540.621	25.97	17.14	43.11	54.00	-10.89	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%			
Test Voltage:	AC 120V/60Hz		Ja U			
Ant. Pol.	Vertical					
Test Mode: TX 802.11n(HT40) Mode 5270MHz (U-NII-2A)						

N	o. M	k. Freq.	_		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		10541.021	24.07	17.14	41.21	54.00	-12.79	AVG
2	*	10541.641	44.97	17.14	62.11	68.30	-6.19	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:		23.5℃	- C	Relative Humidity:	46%		
Test Voltag	ge:	AC 120V/60Hz					
Ant. Pol.		Horizontal		7			
Test Mode: TX 802.11n(HT40) Mode 5310MHz (U-NII-2A)							

No	. MI	k. Freq.	_		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	10620.041	44.88	17.23	62.11	68.30	-6.19	peak
2		10620.321	23.99	17.23	41.22	54.00	-12.78	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%					
Test Voltage:	AC 120V/60Hz							
Ant. Pol.	Vertical	Vertical						
Test Mode: TX 802.11n(HT40) Mode 5310MHz (U-NII-2A)								

No	. N	۱k.	Freq.	_		Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	1	0621.120	44.91	17.23	62.14	68.30	-6.16	peak
2		10	0621.240	25.99	17.23	43.22	54.00	-10.78	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

WILLIAM F.							
Temperature:	23.5℃	Relative Humidity:	46%				
Test Voltage:	age: AC 120V/60Hz						
Ant. Pol.	Horizontal	7					
Test Mode:	TX 802.11ac(VHT40) Mode 5270MHz (U-NII-2A)						

No	o. Mł	c. Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	10540.145	45.00	17.14	62.14	68.30	-6.16	peak
2		10540.345	24.00	17.14	41.14	54.00	-12.86	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Vertical		
Test Mode:	TX 802.11ac(VHT40) Mo	de 5270MHz (U-NII-2A)

No	. MI	k. Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		10540.105	25.00	17.14	42.14	54.00	-11.86	AVG
2	*	10540.645	45.00	17.14	62.14	68.30	-6.16	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperatur	e: 23.5℃	Relative Humidity:	46%
Test Voltage	e: AC 120V/60Hz		William .
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11ac(VH	T40) Mode 5310MHz (U-NII-2/	4)

N	0.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1			10620.110	24.91	17.23	42.14	54.00	-11.86	AVG
2		*	10620.510	43.99	17.23	61.22	68.30	-7.08	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%			
Test Voltage:	AC 120V/60Hz					
Ant. Pol.	Vertical					
Test Mode: TX 802.11ac(VHT40) Mode 5310MHz (U-NII-2A)						

N	lo.	Mk	. Freq.	_		Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	10620.110	45.09	17.23	62.32	68.30	-5.98	peak
2			10620.410	23.91	17.23	41.14	54.00	-12.86	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

MINA I ROSE					
Temperature:	23.5℃	Relative Humidity:	46%		
Test Voltage:	AC 120V/60Hz	COLUMN TO THE PARTY OF THE PART			
Ant. Pol.	Horizontal	7			
Test Mode: TX 802.11ac(VHT80) Mode 5290MHz (U-NII-2A)					

N	0.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	10580.102	45.22	17.19	62.41	68.30	-5.89	peak
2			10580.362	25.22	17.19	42.41	54.00	-11.59	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%				
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz					
Ant. Pol.	Vertical						
Test Mode: TX 802.11ac(VHT80) Mode 5290MHz (U-NII-2A)							

No	. Mk	. Freq.	_		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		10580.201	24.95	17.19	42.14	54.00	-11.86	AVG
2	*	10580.580	43.03	17.19	60.22	68.30	-8.08	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

5500MHz-5720MHz(U-NII-2C)

Temperature:	23.5℃	Relative Humidity:	46%				
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz					
Ant. Pol.	Horizontal	7					
Test Mode: TX 802.11a Mode 5500MHz (U-NII-2C)							

No. I	Mk.	Freq.			Measure- ment	Limit	Over	
		MHz	dBu∀	dB	dBuV/m	dBuV/m	dB	Detector
1	11	1000.05	35.27	21.33	56.60	68.30	-11.70	peak
2	* 11	1000.05	24.58	21.33	45.91	54.00	-8.09	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	AC 120V/60Hz		TYU
Ant. Pol.	Vertical		
Test Mode:	TX 802.11a Mode 5500M	1Hz (U-NII-2C)	100

No	. Mł	c. Freq.	_		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		11001.024	28.02	17.63	45.65	54.00	-8.35	AVG
2	*	11001.254	45.61	17.63	63.24	68.30	-5.06	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	AC 120V/60Hz	MUDE	The same
Ant. Pol.	Horizontal	ann's s	ann.
Test Mode:	TX 802.11a Mode 5580N	MHz (U-NII-2C)	

No	. MI	k. Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	11160.120	45.28	17.92	63.20	68.30	-5.10	peak
2		11160.451	25.59	17.92	43.51	54.00	-10.49	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%			
Test Voltage:	AC 120V/60Hz					
Ant. Pol.	Vertical					
Test Mode:	TX 802.11a Mode 5580N	MHz (U-NII-2C)				

No.	MI	k. Freq.			Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	11160.012	46.29	17.92	64.21	68.30	-4.09	peak
2		11160.521	26.29	17.92	44.21	54.00	-9.79	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	AC 120V/60Hz		William .
Ant. Pol.	Horizontal	100	
Test Mode:	TX 802.11a Mode 5720M	IHz (U-NII-2C)	YUL

	No.	Mk	. Freq.	_	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
•	1	*	11441.021	44.94	18.28	63.22	68.30	-5.08	peak
2	2		11441.241	25.24	18.28	43.52	54.00	-10.48	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%			
Test Voltage:	AC 120V/60Hz					
Ant. Pol.	Vertical					
Test Mode:	TX 802.11a Mode 5720N	MHz (U-NII-2C)				

No). M	k. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	11440.141	44.84	18.28	63.12	68.30	-5.18	peak
2		11440.651	23.96	18.28	42.24	54.00	-11.76	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	AC 120V/60Hz		William .
Ant. Pol.	Horizontal	1	
Test Mode:	TX 802.11n(HT20) Mode	5500MHz (U-NII-2C)	YUL

No	o. Mk	c. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		11000.361	25.48	17.63	43.11	54.00	-10.89	AVG
2	*	11000.511	42.81	17.63	60.44	68.30	-7.86	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%		
Test Voltage:	AC 120V/60Hz				
Ant. Pol.	Vertical		N. C.		
Test Mode:	TX 802.11 n(HT20) Mode 5500MHz (U-NII-2C)				

No	0.	Mk	. Freq.			Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	11000.401	44.48	17.63	62.11	68.30	-6.19	peak
2			11000.410	25.69	17.63	43.32	54.00	-10.68	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	AC 120V/60Hz		William .
Ant. Pol.	Horizontal	1	
Test Mode:	TX 802.11n(HT20) Mode	5580MHz (U-NII-2C)	YUL

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		11160.241	24.63	17.92	42.55	54.00	-11.45	AVG
2	*	11160.401	45.19	17.92	63.11	68.30	-5.19	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%			
Test Voltage:	AC 120V/60Hz	1				
Ant. Pol.	Vertical	Vertical				
Test Mode:	TX 802.11n(HT20) Mode 5580MHz (U-NII-2C)					

No	No. Mk. Freq.				Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		11161.220	24.23	17.92	42.15	54.00	-11.85	AVG
2	*	11161.365	42.30	17.92	60.22	68.30	-8.08	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

MALVA L. K. and S. C.			
Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	AC 120V/60Hz		William .
Ant. Pol.	Horizontal	1	
Test Mode:	TX 802.11n(HT20) Mode	5720MHz (U-NII-2C)	YUL

No.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		11440.124	24.94	18.28	43.22	54.00	-10.78	AVG
2	*	11440.241	41.96	18.28	60.24	68.30	-8.06	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%		
Test Voltage:	AC 120V/60Hz				
Ant. Pol.	Vertical				
Test Mode:	TX 802.11n(HT20) Mode 5720MHz (U-NII-2C)				

-	No.	Mk	. Freq.			Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	11440.650	41.92	18.28	60.20	68.30	-8.10	peak
2			11440.650	24.86	18.28	43.14	54.00	-10.86	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

	A Link A R water			
Tempe	rature:	23.5℃	Relative Humidity:	46%
Test Vo	ltage:	AC 120V/60Hz		MAIN
Ant. Po	ol.	Horizontal	7	
Test M	ode:	TX 802.11ac(VHT20) Mc	de 5500MHz (U-NII-2C	

N	lo.	Mk	. Freq.			Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	11000.241	43.89	17.63	61.52	68.30	-6.78	peak
2			11000.641	24.52	17.63	42.15	54.00	-11.85	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%				
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz					
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX 802.11 ac(VHT20) M	ode 5500MHz (U-NII-20	TX 802.11 ac(VHT20) Mode 5500MHz (U-NII-2C)				

No.	. Mk	. Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		11000.141	23.99	17.63	41.62	54.00	-12.38	AVG
2	*	11000.624	44.58	17.63	62.21	68.30	-6.09	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%				
Test Voltage:	AC 120V/60Hz	C 120V/60Hz					
Ant. Pol.	Horizontal	7					
Test Mode:	TX 802.11 ac(VHT20) M	TX 802.11 ac(VHT20) Mode 5580MHz (U-NII-2C)					

No. Mk.		k. Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		11160.124	24.49	17.92	42.41	54.00	-11.59	AVG
2	*	11160.724	43.52	17.92	61.44	68.30	-6.86	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%				
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz					
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX 802.11 ac(VHT20) M	TX 802.11 ac(VHT20) Mode 5580MHz (U-NII-2C)					

No. Mk.		Freq.	_	Correct Factor	Measure- ment	Limit	Over		
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	1	1160.141	44.82	17.92	62.74	68.30	-5.56	peak
2		1	1160.324	25.59	17.92	43.51	54.00	-10.49	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%				
Test Voltage:	AC 120V/60Hz	MUDIA					
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	TX 802.11 ac(VHT20) Mo	TX 802.11 ac(VHT20) Mode 5720MHz (U-NII-2C)					

1	No.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1			11440.120	24.23	18.28	42.51	54.00	-11.49	AVG
2		*	11440.621	44.13	18.28	62.41	68.30	-5.89	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃ Relative Humidity:		46%					
Test Voltage:	AC 120V/60Hz	C 120V/60Hz						
Ant. Pol.	Vertical	Vertical						
Test Mode:	TX 802.11 ac(VHT20) M	TX 802.11 ac(VHT20) Mode 5720MHz (U-NII-2C)						

No	. N	lk.	Freq.	_		Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	11	1441.010	44.13	18.28	62.41	68.30	-5.89	peak
2		11	1441.521	25.13	18.28	43.41	54.00	-10.59	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

_					
	Temperature:	23.5℃	Relative Humidity:	46%	
Ī	Test Voltage:	AC 120V/60Hz		Million	
	Ant. Pol.	Horizontal			
	Test Mode:	TX 802.11n(HT40) Mode	5510MHz (U-NII-2C)	W.	

No	0.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	11021.021	44.34	17.67	62.01	68.30	-6.29	peak
2			11021.254	24.34	17.67	42.01	54.00	-11.99	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%					
Test Voltage:	AC 120V/60Hz							
Ant. Pol.	Vertical	Vertical						
Test Mode:	Test Mode: TX 802.11n(HT40) Mode 5510MHz (U-NII-2C)							

No.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBu∀/m	dBuV/m	dB	Detector
1		11020.321	24.98	17.67	42.65	54.00	-11.35	AVG
2	*	11020.413	43.57	17.67	61.24	68.30	-7.06	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

_			W 1 14 1 1 2 2	
	Temperature:	23.5℃	Relative Humidity:	46%
	Test Voltage:	AC 120V/60Hz	TUDE OF	
	Ant. Pol.	Horizontal		
	Test Mode:	TX 802.11n(HT40) Mode	5550MHz (U-NII-2C)	

N	0.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	11100.021	44.34	17.67	62.01	68.30	-6.29	peak
2			11101.254	24.34	17.67	42.01	54.00	-11.99	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%	
Test Voltage: AC 120V/60Hz				
Ant. Pol.	Vertical			
Test Mode:	TX 802.11n(HT40) Mode	5550MHz (U-NII-2C)		

N	o. N	۱k.	Freq.	_	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		1	1100.321	24.98	17.67	42.65	54.00	-11.35	AVG
2	*	1	1100.413	43.57	17.67	61.24	68.30	-7.06	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

	THE R. LEWIS CO., LANSING, MICH.						
Temp	perature:	23.5℃	Relative Humidity:	46%			
Test	MAIN						
Ant.	Pol.	Horizontal					
Test	Mode:	TX 802.11n(HT40) Mode	TX 802.11n(HT40) Mode 5710MHz (U-NII-2C)				

	No.	Mk	. Freq.			Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1			11420.011	23.08	18.13	41.21	54.00	-12.79	AVG
2	-	*	11420.754	43.98	18.13	62.11	68.30	-6.19	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%				
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz					
Ant. Pol.	Vertical		N. C.				
Test Mode: TX 802.11n(HT40) Mode 5710MHz (U-NII-2C)							

No. Mk.		k.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	11	420.121	43.34	18.13	61.47	68.30	-6.83	peak
2		11	420.321	24.01	18.13	42.14	54.00	-11.86	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

WALL OF STREET						
Temperature:	23.5℃	Relative Humidity:	46%			
Test Voltage:	t Voltage: AC 120V/60Hz					
Ant. Pol.						
Test Mode:	e: TX 802.11ac(VHT40) Mode 5510MHz (U-NII-2C)					

No	. Mk	. Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		11020.141	23.54	17.67	41.21	54.00	-12.79	AVG
2	*	11020.341	42.47	17.67	60.14	68.30	-8.16	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5 ℃	Relative Humidity:	46%				
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz					
Ant. Pol.	Vertical		N. C.				
Test Mode:	Mode: TX 802.11ac(VHT40) Mode 5510MHz (U-NII-2C)						

No	No. Mk.		Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	1	11020.141	43.43	17.67	61.10	68.30	-7.20	peak
2		1	11020.641	23.58	17.67	41.25	54.00	-12.75	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

į,	Temperature:	23.5℃	Relative Humidity:	46%			
V	Test Voltage:	AC 120V/60Hz					
	Ant. Pol.	Horizontal					
	Test Mode:	TX 802.11ac(VHT40) Mo	X 802.11ac(VHT40) Mode 5550MHz (U-NII-2C)				

_	No.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
	1	*	11101.240	42.23	17.89	60.12	68.30	-8.18	peak
-	2		11101.652	23.34	17.90	41.24	54.00	-12.76	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%		
Test Voltage:	AC 120V/60Hz				
Ant. Pol.					
Test Mode:	TX 802.11ac(VHT40) Mode 5550MHz (U-NII-2C)				

N	lo. I	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		,	11100.320	23.16	17.89	41.05	54.00	-12.95	AVG
2	*		11100.651	43.43	17.89	61.32	68.30	-6.98	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

MINA I ROSE						
Temperature:	23.5℃	Relative Humidity:	46%			
Test Voltage:	AC 120V/60Hz					
Ant. Pol.	Horizontal					
Test Mode:	TX 802.11ac(VHT40) Mode 5710MHz (U-NII-2C)					

	No.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1			11420.240	22.11	18.13	40.24	54.00	-13.76	AVG
2	2	*	11420.652	44.28	18.13	62.41	68.30	-5.89	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	43%				
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz					
Ant. Pol. Vertical							
Test Mode:	TX 802.11ac(VHT40) Mode 5710MHz (U-NII-2C)						

No	. Mł	c. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBu∀/m	dBuV/m	dB	Detector
1		11420.120	23.12	18.13	41.25	54.00	-12.75	AVG
2	*	11420.320	43.07	18.13	61.20	68.30	-7.10	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

į,	Temperature:	23.5℃	Relative Humidity:	46%			
V	Test Voltage:	AC 120V/60Hz					
	Ant. Pol.	Horizontal					
	Test Mode:	TX 802.11ac(VHT80) Mo	X 802.11ac(VHT80) Mode 5530MHz (U-NII-2C)				

No. Mk.		c. Freq.			Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		11060.101	27.49	17.72	45.21	54.00	-8.79	AVG
2	*	11060.601	43.29	17.72	61.01	68.30	-7.29	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%			
Test Voltage:	st Voltage: AC 120V/60Hz					
Ant. Pol.	Ant. Pol. Vertical					
Test Mode:	TX 802.11ac(VHT80) Mc	X 802.11ac(VHT80) Mode 5530MHz (U-NII-2C)				

N	lo.	Mk	. Freq.			Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	11060.101	44.42	17.72	62.14	68.30	-6.16	peak
2			11060.344	23.42	17.72	41.14	54.00	-12.86	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

A L MA L RESERVE			
Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Horizontal	1	
Test Mode:	TX 802.11ac(VHT80) Mo	de 5690MHz (U-NII-2C	

N	Ο.	Mk.	Freq.			Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1			11380.141	23.03	18.18	41.21	54.00	-12.79	AVG
2	1	k	11380.241	43.96	18.18	62.14	68.30	-6.16	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%			
Test Voltage:	AC 120V/60Hz					
Ant. Pol.	Vertical	Vertical				
Test Mode:	TX 802.11ac(VHT80) Mode 5690MHz (U-NII-2C)					

-	No.	Mk	. Freq.		Correct Factor	Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	11380.141	42.16	18.18	60.34	68.30	-7.96	peak
2			11380.685	24.34	18.18	42.52	54.00	-11.48	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

5745MHz-5825MHz(U-NII-3)

0. 10111112 0020	(
Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	AC 120V/60Hz		
Ant. Pol.	Horizontal		
Test Mode:	TX 802.11a Mode 5	5745MHz (U-NII-3)	W.

N	0.	Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	11490.321	44.85	18.35	63.20	68.30	-5.10	peak
2			11491.241	26.87	18.35	45.22	54.00	-8.78	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%				
•		Relative Hulliaity.	4070				
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz					
Ant. Pol.	Vertical						
Test Mode:	rest Mode: TX 802.11a Mode 5745MHz (U-NII-3)						

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		11491.141	24.89	18.35	43.24	54.00	-10.76	AVG
2	*	11491.415	44.87	18.35	63.22	68.30	-5.08	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:23.5 °CRelative Humidity:46%Test Voltage:AC 120V/60HzAnt. Pol.HorizontalTest Mode:TX 802.11a Mode 5785MHz (U-NII-3)

No	o. M	k. Freq.			Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	11571.410	44.76	18.45	63.21	68.30	-5.09	peak
2		11571.421	24.65	18.45	43.10	54.00	-10.90	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	AC 120V/60Hz	N. C.	The same
Ant. Pol.	Vertical		
Test Mode:	TX 802.11a Mode 5785M	IHz (U-NII-3)	

No.	. MI	k. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	11570.314	44.56	18.45	63.01	68.30	-5.29	peak
2		11571.254	24.76	18.45	43.21	54.00	-10.79	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

MINA I K AND						
Temperature:	23.5℃	Relative Humidity:	46%			
Test Voltage:	AC 120V/60Hz	an in	W. Collins			
Ant. Pol.	Horizontal	Horizontal				
Test Mode:	TX 802.11a Mode 5825N	1Hz (U-NII-3)	TO THE REAL PROPERTY OF THE PARTY OF THE PAR			

No). M	lk. Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		11650.214	26.66	18.55	45.21	54.00	-8.79	AVG
2	*	11650.241	44.55	18.55	63.10	68.30	-5.20	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	AC 120V/60Hz		No Cal
Ant. Pol.	Vertical		
Test Mode:	TX 802.11a Mode 5825M	IHz (U-NII-3)	MANAGE

No	. M	k. Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	11651.032	43.59	18.55	62.14	68.30	-6.16	peak
2		11651.240	24.66	18.55	43.21	54.00	-10.79	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

	Temperature:	23.5℃	Relative Humidity:	46%	
1	Test Voltage:	AC 120V/60Hz			
	Ant. Pol.	Horizontal			
Test Mode: TX 802.11n(HT20) Mode 5745MHz (U-NII-3)					

	No.	Mk	. Freq.			Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	11490.201	41.89	18.35	60.24	68.30	-8.06	peak
2	2		11490.652	26.87	18.35	45.22	54.00	-8.78	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%				
Test Voltage:	AC 120V/60Hz	N. C.					
Ant. Pol.	Vertical	Vertical					
Test Mode: TX 802.11n(HT20) Mode 5745MHz (U-NII-3)							

N	o. I	Иk.	Freq.	_	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		1	1490.021	25.87	18.35	44.22	54.00	-9.78	AVG
2	*	1	1490.685	41.87	18.35	60.22	68.30	-8.08	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

MALL NAVE AND ADDRESS OF THE PARTY OF THE PA								
Temperature:	23.5℃	Relative Humidity:	46%					
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz						
Ant. Pol.	Horizontal	7						
Test Mode:	st Mode: TX 802.11n(HT20) Mode 5785MHz (U-NII-3)							

No	. Mk	. Freq.			Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		11570.011	26.77	18.45	45.22	54.00	-8.78	AVG
2	*	11570.601	42.00	18.45	60.45	68.30	-7.85	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%			
Test Voltage:	AC 120V/60Hz		THU			
Ant. Pol.	Vertical	THE PARTY OF THE P				
Test Mode: TX 802.11n(HT20) Mode 5785MHz (U-NII-3)						

No	o. N	Иk.	Freq.	_		Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*		11571.141	41.81	18.45	60.26	68.30	-8.04	peak
2			11571.254	25.80	18.45	44.25	54.00	-9.75	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%				
Test Voltage:	AC 120V/60Hz	HULL	The same				
Ant. Pol.	Horizontal	WW TO THE	MAIN				
Test Mode:	Test Mode: TX 802.11n(HT20) Mode 5825MHz (U-NII-3)						

No	o. MI	k. Freq.	_		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		11650.021	24.66	18.55	43.21	54.00	-10.79	AVG
2	*	11650.411	42.70	18.55	61.25	68.30	-7.05	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%				
Test Voltage:	AC 120V/60Hz						
Ant. Pol.	Vertical						
Test Mode: TX 802.11n(HT20) Mode 5825MHz (U-NII-3)							

No	o. M	k.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	116	550.254	43.59	18.55	62.14	68.30	-6.16	peak
2		116	550.621	24.46	18.55	43.01	54.00	-10.99	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

į,	Temperature:	23.5℃	Relative Humidity:	46%			
1	Test Voltage:	AC 120V/60Hz					
	Ant. Pol.	Horizontal					
	Test Mode:	TX 802.11ac(VHT20) Mo	de 5745MHz (U-NII-3)	W			

No	. Mk	c. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		11490.131	24.79	18.35	43.14	54.00	-10.86	AVG
2	*	11490.631	44.06	18.35	62.41	68.30	-5.89	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%				
Test Voltage:	AC 120V/60Hz						
Ant. Pol.	Vertical	Vertical					
Test Mode: TX 802.11ac(VHT20) Mode 5745MHz (U-NII-3)							

N	lo.	Mk	. Freq.	_	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	11490.031	44.06	18.35	62.41	68.30	-5.89	peak
2			11490.031	24.00	18.35	42.35	54.00	-11.65	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

	Temperature:	23.5℃	Relative Humidity:	46%			
1	Test Voltage:	AC 120V/60Hz					
	Ant. Pol.	Horizontal					
P	Test Mode:	TX 802.11ac(VHT20) Mo	de 5785MHz (U-NII-3)				

N	o. MI	k. Freq.			Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	11570.031	43.95	18.45	62.40	68.30	-5.90	peak
2		11570.651	23.69	18.45	42.14	54.00	-11.86	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%				
Test Voltage:	AC 120V/60Hz						
Ant. Pol.	Vertical						
Test Mode: TX 802.11ac(VHT20) Mode 5785MHz (U-NII-3)							

No.	. Mk	c. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		11570.051	22.69	18.45	41.14	54.00	-12.86	AVG
2	*	11570.352	43.96	18.45	62.41	68.30	-5.89	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

MINA VENEZO							
Temperature:	23.5℃	Relative Humidity:	46%				
Test Voltage:	AC 120V/60Hz						
Ant. Pol.	Horizontal	Horizontal					
Test Mode: TX 802.11ac(VHT20) Mode 5825MHz (U-NII-3)							

N	0.	Mk	Freq.			Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	1	k	11650.250	43.59	18.55	62.14	68.30	-6.16	peak
2			11651.210	24.59	18.55	43.14	54.00	-10.86	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%			
Test Voltage:	AC 120V/60Hz					
Ant. Pol.	Vertical					
Test Mode:	TX 802.11ac(VHT20) Mc	ode 5825MHz (U-NII-3)				

No). M	k. Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	11650.302	43.46	18.55	62.01	68.30	-6.29	peak
2		11651.250	24.60	18.55	43.15	54.00	-10.85	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%				
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz					
Ant. Pol.	Horizontal						
Test Mode:	TX 802.11n(HT40	0) Mode 5755MHz (U-NII-3)	TU STATE OF THE ST				

N	o. Mł	c. Freq.			Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		11510.021	23.73	18.38	42.11	54.00	-11.89	AVG
2	*	11510.410	42.63	18.38	61.01	68.30	-7.29	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%		
Test Voltage:	AC 120V/60Hz				
Ant. Pol.	t. Pol. Vertical				
Test Mode:	TX 802.11n(HT40) Mode	5755MHz (U-NII-3)			

	No.	Mk	. Freq.	_		Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1			11510.224	23.24	18.38	41.62	54.00	-12.38	AVG
2		*	11511.652	42.97	18.38	61.35	68.30	-6.95	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

A L MA L R AND						
Temperature:	23.5℃	Relative Humidity:	46%			
Test Voltage:	AC 120V/60Hz					
Ant. Pol.	Horizontal					
Test Mode:	TX 802.11n(HT40) Mode	5795MHz (U-NII-3)	W.			

N	0.	Mk	. Freq.			Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBu∀/m	dBuV/m	dB	Detector
1		*	11591.032	43.67	18.47	62.14	68.30	-6.16	peak
2			11591.365	23.63	18.48	42.11	54.00	-11.89	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%	
Test Voltage:	AC 120V/60Hz	N. C.	The same of the sa	
Ant. Pol. Vertical				
Test Mode:	TX 802.11n(HT40) Mode	5795MHz (U-NII-3)		

No	. Mk	c. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		11590.221	24.65	18.47	43.12	54.00	-10.88	AVG
2	*	11591.652	43.87	18.48	62.35	68.30	-5.95	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

MINA I KANDO					
Temperature:	23.5℃	Relative Humidity:	46%		
Test Voltage:	Itage: AC 120V/60Hz				
Ant. Pol.	Horizontal	7			
Test Mode:	TX 802.11ac(VHT40) Mo	de 5755MHz (U-NII-3)	NU.		

No. Mk.		k. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	11510.161	42.86	18.38	61.24	68.30	-7.06	peak
2		11510.246	23.76	18.38	42.14	54.00	-11.86	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated 1-40 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40 GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%					
Test Voltage:	AC 120V/60Hz							
Ant. Pol.	Vertical	Vertical						
Test Mode:	TX 802.11ac(VHT40) Mc	TX 802.11ac(VHT40) Mode 5755MHz (U-NII-3)						

No	o. MI	k. Freq.	_		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		11510.261	23.87	18.38	42.25	54.00	-11.75	AVG
2	*	11510.661	43.76	18.38	62.14	68.30	-6.16	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%				
Test Voltage:	AC 120V/60Hz		William .				
Ant. Pol.	Horizontal	7					
Test Mode:	TX 802.11ac(VHT40) Mo	X 802.11ac(VHT40) Mode 5795MHz (U-NII-3)					

	No.	Mk	. Freq.			Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1			11590.201	21.67	18.47	40.14	54.00	-13.86	AVG
2	2	*	11590.604	41.67	18.47	60.14	68.30	-8.16	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Temperature:	23.5℃	Relative Humidity:	46%
Test Voltage:	AC 120V/60Hz	A THURSDAY	
Ant. Pol.	Vertical		
Test Mode:	TX 802.11ac(VHT40) M	ode 5795MHz (U-NII-3)	

No	o. N	/lk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	1	1590.104	42.77	18.47	61.24	68.30	-7.06	peak
2		1	1590.752	23.67	18.47	42.14	54.00	-11.86	AVG

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:23.5 °CRelative Humidity:46%Test Voltage:AC 120V/60HzAnt. Pol.HorizontalTest Mode:TX 802.11ac(VHT80) Mode 5775MHz (U-NII-3)

No	o. MI	k. Freq.			Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	11551.121	41.72	18.42	60.14	68.30	-8.16	peak
2		11551.352	23.72	18.42	42.14	54.00	-11.86	AVG

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23.5℃	Relative Humidity:	46%				
Test Voltage:	AC 120V/60Hz	N. C.	The same				
Ant. Pol.	Vertical						
Test Mode:	TX 802.11ac(VHT80) Mo	TX 802.11ac(VHT80) Mode 5775MHz (U-NII-3)					

No	р. М	k. Freq.	_		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		11550.321	23.10	18.42	41.52	54.00	-12.48	AVG
2	*	11550.621	43.99	18.42	62.41	68.30	-5.89	peak

Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)
- 4. The tests evaluated1-40GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency or 40GHz.
- 5. No report for the emission which more than 20dB below the prescribed limit.

----END OF REPORT-----