

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC178073

Page: 1 of 55

FCC ID: XMF-MID7018

Original Grant

Report No. : TB-FCC178073

Applicant: Lightcomm Technology Co., Ltd.

Equipment Under Test (EUT)

EUT Name : onn 7" Tablet

Model No. : 100026191

Series Model No. : MID7018

Brand Name : onn

Sample ID : 20201103-05-1-01#& 20201103-05-1-04#

Receipt Date : 2020-11-05

Test Date : 2020-11-06 to 2020-12-28

Issue Date : 2020-12-29

Standards : FCC Part 15, Subpart C 15.247

Test Method : ANSI C63.10: 2013

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above,

Test/Witness Engineer

Engineer Supervisor : WAN SV

Engineer Manager :

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Contents

COR	NIENIS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	
	1.3 Block Diagram Showing the Configuration of System Tested	6
	1.4 Description of Support Units	7
	1.6 Description of Test Software Setting	8
	1.7 Measurement Uncertainty	8
	1.8 Test Facility	9
2.	TEST SUMMARY	10
3.	TEST SOFTWARE	10
4.	TEST EQUIPMENT	11
5.	CONDUCTED EMISSION TEST	
	5.1 Test Standard and Limit	
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 Deviation From Test Standard	13
	5.5 EUT Operating Mode	
	5.6 Test Data5	
6.	RADIATED EMISSION TEST	14
	6.1 Test Standard and Limit	14
	6.2 Test Setup	
	6.3 Test Procedure	
	6.4 Deviation From Test Standard	17
	6.5 EUT Operating Condition	17
	6.6 Test Data	17
7.	RESTRICTED BANDS REQUIREMENT	18
	7.1 Test Standard and Limit	18
	7.2 Test Setup	
	7.3 Test Procedure	18
	7.4 Deviation From Test Standard	19
	7.5 EUT Operating Condition	19
	7.6 Test Data	19
8.	BANDWIDTH TEST	20
	8.1 Test Standard and Limit	20
	8.2 Test Setup	20
	8.3 Test Procedure	20
	8.4 Deviation From Test Standard	20
	8.5 EUT Operating Condition	20

Report No.: TB-FCC178073 Page: 3 of 55

	8.6 Test Data	20
9.	PEAK OUTPUT POWER TEST	21
	9.1 Test Standard and Limit	21
	9.2 Test Setup	
	9.3 Test Procedure	21
	9.4 Deviation From Test Standard	21
	9.5 EUT Operating Condition	21
	9.6 Test Data	21
10.	POWER SPECTRAL DENSITY TEST	22
	10.1 Test Standard and Limit	22
	10.2 Test Setup	22
	10.3 Test Procedure	
	10.4 Deviation From Test Standard	22
	10.5 EUT Operating Condition	22
	10.6 Test Data	22
11.	ANTENNA REQUIREMENT	23
	11.1 Standard Requirement	23
	11.2 Deviation From Test Standard	
	11.3 Antenna Connected Construction	23
	11.4 Result	23
ATT	ACHMENT A CONDUCTED EMISSION TEST DATA	24
ATT	ACHMENT B RADIATED EMISSION TEST DATA	26
	ACHMENT C RESTRICTED BANDS REQUIREMENT AND BAND EDG	
	, consider the result of the r	
	ACHMENT D BANDWIDTH TEST DATA	
ATT	ACHMENT E PEAK OUTPUT POWER TEST DATA	48
	ACHMENT F POWER SPECTRAL DENSITY TEST DATA	

Report No.: TB-FCC178073 Page: 4 of 55

Revision History

Report No.	Version	Description	Issued Date
TB-FCC178073	Rev.01	Initial issue of report	2020-12-29
TO SECTION OF THE PROPERTY OF	2 (1) 33		4087
THE PARTY OF THE P			BY TO
min s	1000		FOR
	2000	The state of the s	
	000		1003
4000	a William		4000
	A GILLIA		
	William .		
			1000

Page: 5 of 55

1. General Information about EUT

1.1 Client Information

Applicant	1	Lightcomm Technology Co., Ltd.
Applicant		0.
Address		UNIT 1306 13/F ARION COMMERCIAL CENTRE,2-12 QUEEN'S ROAD WEST, SHEUNG WAN HK
		ROAD WEST, SHEUING WAIN HK
Manufacturer :		Huizhou Hengdu Electronics Co., Ltd
Address	1	No.8 Huitai Road, Huinan High-tech Industrial Park, Huiao Avenue,
Addiess		Huizhou, Guangdong, China.

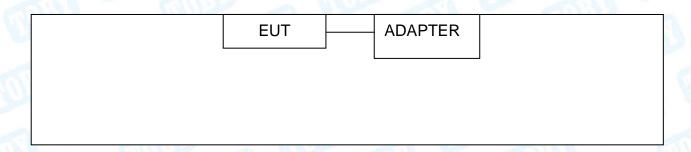
1.2 General Description of EUT (Equipment Under Test)

EUT Name	4	onn 7" Tablet				
Model(s) No.		100026191, MID7018				
Model Different		All these models are identical in the same PCB, layout and electrical circuit, The only difference is model name.				
PHUL		Operation Frequency:	Bluetooth 5.0(BLE): 2402MHz~2480MHz			
		Number of Channel:	Bluetooth 5.0(BLE): 40 channels see note(3)			
Product	1	RF Output Power:	-1.668dBm (Max)			
Description	:	Antenna Gain:	0.67 dBi FPC Antenna			
		Modulation Type:	GFSK			
		Bit Rate of Transmitter:	1Mbps&2Mbps			
Power Rating		Adapter(TEKA-UCA10US) Input: 100-240V~, 50/60Hz, 0.2A MAX Output: DC 5V 1A DC 3.8V by 3700mAh Rechargeable Li-ion battery				
Software Version	:	RP1A.200720.011 release-keys				
Hardware Version	:	MID7018-MR_MT8168_LPDDR4_EMMC_V1_1				
Remark):	The antenna gain and adapter provided by the applicant, the verified for the RF conduction test provided by TOBY test lab.				
	1					

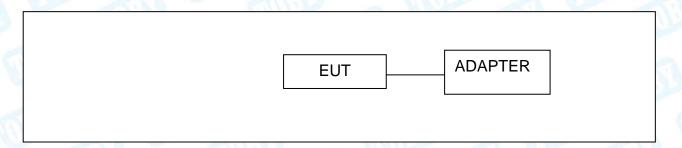
Note:

This Test Report is FCC Part 15.247 for Bluetooth, the test procedure follows the FCC KDB 558074 D01 15.247 Meas Guidance v05r02.

- (1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (2) Antenna information provided by the applicant.


Report No.: TB-FCC178073 Page: 6 of 55

(3) Channel List:


Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	14	2430	28	2458
01	2404	15	2432	29	2460
02	2406	16	2434	30	2462
03	2408	17	2436	31	2464
04	2410	18	2438	32	2466
05	2412	19	2440	33	2468
06	2414	20	2442	34	2470
07	2416	21	2444	35	2472
08	2418	22	2446	36	2474
09	2420	23	2448	37	2476
10	2422	24	2450	38	2478
11	2424	25	2452	39	2480
12	2426	26	2454		
13	2428	27	2456		

1.3 Block Diagram Showing the Configuration of System Tested

Conducted Test

Radiated Test

Page: 7 of 55

1.4 Description of Support Units

Equipment Information								
	Equipment Information							
Name Model FCC ID/VOC Manufacturer								
Cable Information								
Number Shielded Type Ferrite Core Length Not								
Cable 1	Yes	NO	1.0M	Accessory				

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test				
Final Test Mode	Description			
Mode 1 USB Charging+TX Mode				
For Radiated Test				
Final Test Mode Description				
Mode 2	TX Mode			
Mode 3 TX 1Mbps Mode (Channel 00/20/39)				
Mode 4 TX 2Mbps Mode (Channel 00/20/39)				

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

BLE Mode: GFSK Modulation Transmitting mode.

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a portable unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 8 of 55

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

Test Software Version	MT8168-LaunchEngMode.apk		
Frequency	2402 MHz	2442MHz	2480 MHz
BLE GFSK	DEF	DEF	DEF

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.50 dB ±3.10 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	\pm 4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	\pm 4.20 dB

Page: 9 of 55

1.8 Test Facility

The testing was performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at:1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China.

At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01. FCC Accredited Test Site Number: 854351.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A.

Report No.: TB-FCC178073 Page: 10 of 55

2. Test Summary

FCC Part 15 Subpart C(15.247)/RSS 247 Issue 2						
Standard Se	ection	Test Item	Test Sample(s)	ludament	Domark	
FCC	IC	rest item	Test Sample(s)	Judgment	Remark	
15.203	an B	Antenna Requirement	20201103-05-1-01#	PASS	N/A	
15.207(a)	RSS-GEN 7.2.4	Conducted Emission	20201103-05-1-04#	PASS	N/A	
15.205&15.247(d)	RSS-GEN 7.2.2	Band-Edge & Unwanted Emissions into Restricted Frequency	20201103-05-1-01#	PASS	N/A	
15.247(a)(2)	RSS 247 5.2 (1)	6dB Bandwidth	20201103-05-1-01#	PASS	N/A	
15.247(b)(3)	RSS 247 5.4 (4)	Conducted Max Output Power	20201103-05-1-01#	PASS	N/A	
15.247(e)	RSS 247 5.2 (2)	Power Spectral Density	20201103-05-1-01#	PASS	N/A	
15.205, 15.209&15.247(d)	RSS 247 5.5	Transmitter Radiated Spurious &Unwanted Emissions into Restricted Frequency	20201103-05-1-01# 20201103-05-1-04#	PASS	N/A	

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0

Report No.: TB-FCC178073 Page: 11 of 55

4. Test Equipment

Conducted Emission	Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 06, 2020	Jul. 05, 2021
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 06, 2020	Jul. 05, 2021
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 06, 2020	Jul. 05, 2021
LISN	Rohde & Schwarz	ENV216	101131	Jul. 06, 2020	Jul. 05, 2021
Radiation Emission T	est				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 06, 2020	Jul. 05, 2021
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 06, 2020	Jul. 05, 2021
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jul. 06, 2020	Jul. 05, 2021
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.01, 2020	Feb. 28, 2022
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.01, 2020	Feb. 28, 2022
Horn Antenna	ETS-LINDGREN	BBHA 9170	BBHA9170582	Mar.01, 2020	Feb. 28, 2022
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 07, 2020	Jul. 06, 2021
Pre-amplifier	Sonoma	310N	185903	Mar.01, 2020	Feb. 28, 2021
Pre-amplifier	HP	8449B	3008A00849	Mar.01, 2020	Feb. 28, 2021
Pre-amplifier	SKET	LNPA_1840G-50	SK201904032	Mar.01, 2020	Feb. 28, 2021
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.01, 2020	Feb. 28, 2021
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
	-	Antenna Conducted E	mission		
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 06, 2020	Jul. 05, 2021
Spectrum Analyzer	Rohde & Schwarz	ESPI	100010/007	Jul. 06, 2020	Jul. 05, 2021
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 11, 2020	Sep. 10, 2021
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 11, 2020	Sep. 10, 2021
Analog Signal Generator	Agilent	N5181A	MY50141953	Sep. 11, 2020	Sep. 10, 2021
1	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Sep. 11, 2020	Sep. 10, 2021
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Sep. 11, 2020	Sep. 10, 2021
Kr Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Sep. 11, 2020	Sep. 10, 2021
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Sep. 11, 2020	Sep. 10, 2021

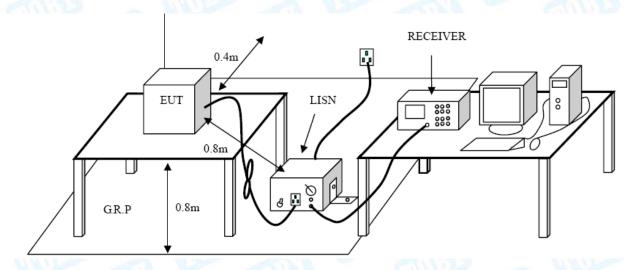
Page: 12 of 55

5. Conducted Emission Test

5.1 Test Standard and Limit

5.1.1Test Standard FCC Part 15.207

5.1.2 Test Limit


Conducted Emission Test Limit

Eroguenov	Maximum RF Line Voltage (dBμV)		
Frequency	Quasi-peak Level Average Leve		
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

Page: 13 of 55

5.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

5.4 Deviation From Test Standard

No deviation

5.5 EUT Operating Mode

Please refer to the description of test mode.

5.6 Test Data

Please refer to the Attachment A.

Page: 14 of 55

6. Radiated Emission Test

6.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.247(d)

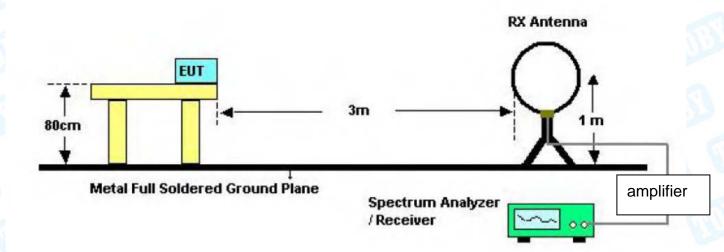
6.1.2 Test Limit

Radiated Emission Limits (9kHz~1000MHz)

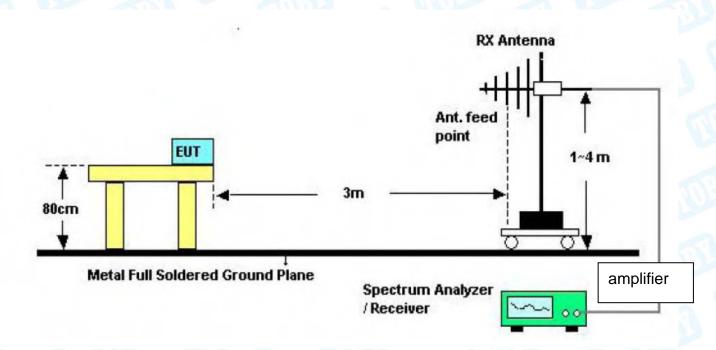
Radiated Linission Linits (5KH2~1000WH2)						
Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)				
0.009~0.490	2400/F(KHz)	300				
0.490~1.705	24000/F(KHz)	30				
1.705~30.0	30	30				
30~88	100	3				
88~216	150	3				
216~960	200	3				
Above 960	500	3				

Radiated Emission Limit (Above 1000MHz)

Frequency	Distance Met	ers(at 3m)
(MHz)	Peak (dBuV/m)	Average (dBuV/m)
Above 1000	74	54

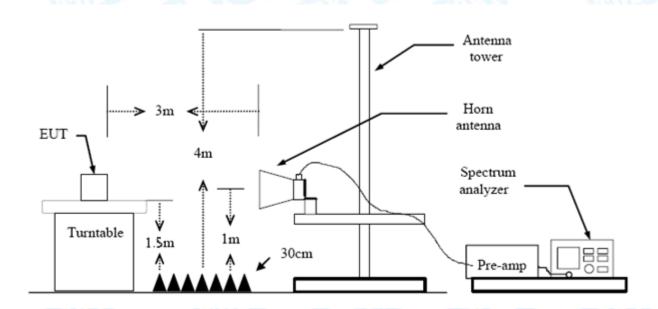

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m)



Page: 15 of 55

6.2 Test Setup


Below 30MHz Test Setup

Below 1000MHz Test Setup

Page: 16 of 55

Above 1GHz Test Setup

6.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

Page: 17 of 55

6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

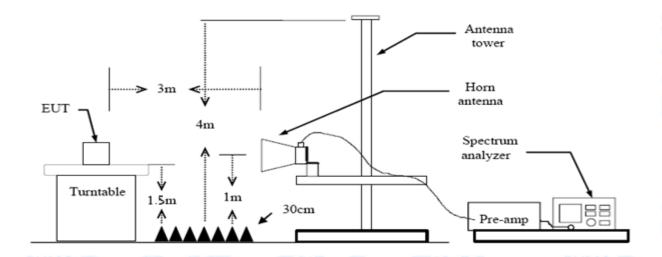
6.6 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment B.

Page: 18 of 55

7. Restricted Bands Requirement


7.1 Test Standard and Limit

7.1.1 Test Standard FCC Part 15.247(d) FCC Part 15.205

7.1.2 Test Limit

Restricted Frequency	Distance Me	eters(at 3m)
Band (MHz)	Peak (dBuV/m)	Average (dBuV/m)
2310 ~2390	74	54
2483.5 ~2500	74	54

7.2 Test Setup

7.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.

Page: 19 of 55

(4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

7.4 Deviation From Test Standard

No deviation

7.5 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

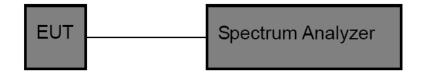
7.6 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment C.

Page: 20 of 55

8. Bandwidth Test


8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.247 (a)(2)

8.1.2 Test Limit

FCC	FCC Part 15 Subpart C(15.247)/RSS-247				
Test Item	Test Item Limit Frequency Range(MHz)				
Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5			

8.2 Test Setup

8.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) The bandwidth is measured at an amplitude level reduced 6dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
- (3)Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:100 kHz, and Video Bandwidth:300 kHz, Detector: Peak, Sweep Time set auto.

8.4 Deviation From Test Standard

No deviation

8.5 EUT Operating Condition

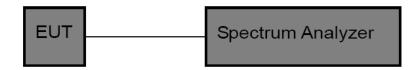
The EUT was set to continuously transmitting in each mode and low, middle and high channel for the test.

8.6 Test Data

Please refer to the Attachment D.

Page: 21 of 55

9. Peak Output Power Test


9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.247 (b)(3)

9.1.2 Test Limit

FCC Part 15 Subpart C(15.247)/RSS-247				
Test Item Limit Frequency Range(MHz)				
Peak Output Power	1 Watt or 30 dBm	2400~2483.5		

9.2 Test Setup

9.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement is according to section 9.1.1 of KDB 558074 D01 Meas Guidance v05r02.

- (1) Set the RBW≥DTS Bandwidth
- (2) Set VBW≥3*RBW
- (3) Set Span≥3*RBW
- (4) Sweep time=auto
- (5) Detector= peak
- (6) Trace mode= maxhold.
- (7) Allow trace to fully stabilize, and then use peak marker function to determine the peak amplitude level.

9.4 Deviation From Test Standard

No deviation

9.5 EUT Operating Condition

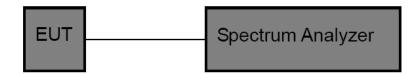
The EUT was set to continuously transmitting in the max power during the test.

9.6 Test Data

Please refer to the Attachment E.

Page: 22 of 55

10. Power Spectral Density Test


10.1 Test Standard and Limit

10.1.1 Test Standard FCC Part 15.247 (e)

10.1.2 Test Limit

FCC Part 15 Subpart C(15.247)				
Test Item Limit Frequency Range(MHz)				
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5		

10.2 Test Setup

10.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 Meas Guidance v05r02.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyser centre frequency to DTS channel centre frequency.
- (3) Set the span to 1.5 times the DTS bandwidth.
- (4) Set the RBW to: 3 kHz(5) Set the VBW to: 10 kHz
- (6) Detector: peak(7) Sweep time: auto
- (8) Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

10.4 Deviation From Test Standard

No deviation

10.5 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

10.6 Test Data

Please refer to the Attachment F.

Page: 23 of 55

11. Antenna Requirement

11.1 Standard Requirement

10.1.1 Standard

FCC Part 15.203

10.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

11.2 Deviation From Test Standard

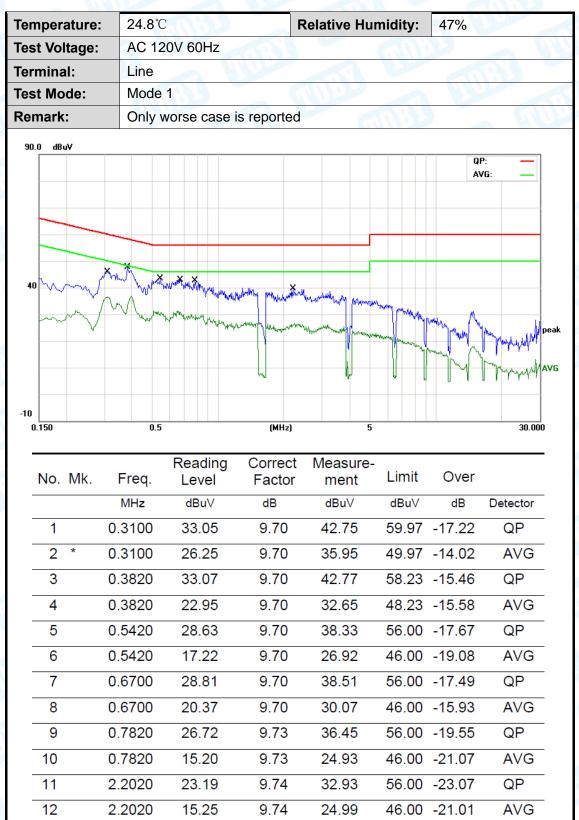
No deviation

11.3 Antenna Connected Construction

The gains of the antenna used for transmitting is 0.68dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

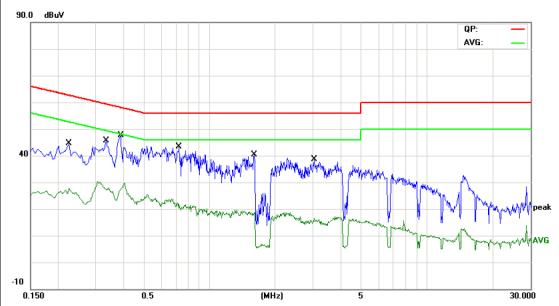
11.4 Result

The EUT antenna is a FPC Antenna. It complies with the standard requirement.


Antenna Type				
WILL ALL	Permanent attached antenna			
	⊠Unique connector antenna	B.F.		
THE PERSON NAMED IN	Professional installation antenna			

Page: 24 of 55

Attachment A-- Conducted Emission Test Data



- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Temperature:	24.8℃	Relative Humidity:	47%
Test Voltage:	AC 120V 60Hz	CHILL STORY	1
Terminal:	Neutral	011175	
Test Mode:	Mode 1		
Remark:	Only worse case is reported		

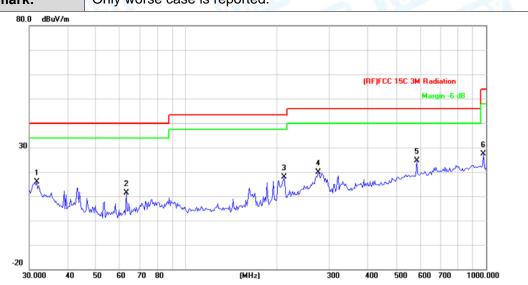
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBu∨	dB	dBu∀	dBu∨	dB	Detector
1	0.2260	27.39	9.70	37.09	62.59	-25.50	QP
2	0.2260	14.24	9.70	23.94	52.59	-28.65	AVG
3	0.3339	30.16	9.70	39.86	59.35	-19.49	QP
4	0.3339	17.25	9.70	26.95	49.35	-22.40	AVG
5 *	0.3899	30.18	9.70	39.88	58.06	-18.18	QP
6	0.3899	17.90	9.70	27.60	48.06	-20.46	AVG
7	0.7260	26.28	9.71	35.99	56.00	-20.01	QP
8	0.7260	11.69	9.71	21.40	46.00	-24.60	AVG
9	1.6100	21.84	9.74	31.58	56.00	-24.42	QP
10	1.6100	8.20	9.74	17.94	46.00	-28.06	AVG
11	3.0260	19.12	9.90	29.02	56.00	-26.98	QP
12	3.0260	3.36	9.90	13.26	46.00	-32.74	AVG

- Remark:
 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Page: 26 of 55

Attachment B-- Radiated Emission Test Data

9 KHz~30 MHz


From 9 KHz to 30 MHz: Conclusion: PASS

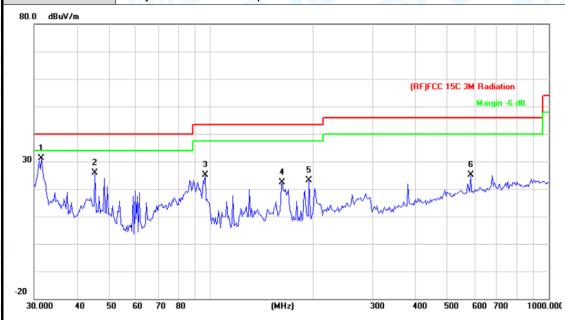
Note: The amplitude of spurious emissions which are attenuated by more than 20dB

Below the permissible value has no need to be reported.

30MHz~1GHz

Temperature:	23.7℃	Relative Humidity:	46%
Test Voltage:	AC 120V 60Hz	William I	
Ant. Pol.	Horizontal		1
Test Mode:	Mode 2		
Remark:	Only worse case is reported	d.	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		31.7313	30.09	-14.25	15.84	40.00	-24.16	peak
2		63.0915	35.41	-23.95	11.46	40.00	-28.54	peak
3		212.2694	37.20	-19.28	17.92	43.50	-25.58	peak
4		275.1569	36.59	-16.76	19.83	46.00	-26.17	peak
5	*	586.8437	33.05	-8.47	24.58	46.00	-21.42	peak
6		979.1803	31.43	-4.05	27.38	54.00	-26.62	peak
•								


^{*:}Maximum data x:Over limit !:over margin

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Temperature:	23.7℃	Relative Humidity:	46%
Test Voltage:	AC 120V 60Hz	O TOTAL	
Ant. Pol.	Vertical		
Test Mode:	Mode 2		
Remark:	Only worse case is reported	ed.	1
00.0 dp.\//m			

N	۱o.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	31.5094	45.20	-14.08	31.12	40.00	-8.88	peak
2			45.3755	47.30	-21.54	25.76	40.00	-14.24	peak
3			96.0986	47.06	-21.91	25.15	43.50	-18.35	peak
4			162.6106	43.12	-20.71	22.41	43.50	-21.09	peak
5			195.1365	42.95	-19.87	23.08	43.50	-20.42	peak
6			586.8437	33.56	-8.47	25.09	46.00	-20.91	peak

^{*:}Maximum data x:Over limit !:over margin

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Above 1GHz

Temperature:	23.7℃	Relative Humidity:	46%		
Test Voltage:	AC 120V 60Hz				
Ant. Pol. Horizontal					
Test Mode:	BLE(1Mbps) Mode TX 2402	2 MHz	MINDE		
Remark:	No report for the emission verscribed limit.	which more than 10 dB	below the		

No	. Mk	. Freq.			Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4804.024	28.01	13.01	41.02	54.00	-12.98	AVG
2		4804.032	41.56	13.01	54.57	74.00	-19.43	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Temperature:	23.7℃	Relative Humidity:	46%
Test Voltage:	AC 120V 60Hz		
Ant. Pol.	Vertical	William.	
Test Mode:	BLE(1Mbps) Mode T	X 2402 MHz	133
Remark:	No report for the emi	ssion which more than 10 de	B below the
	prescribed limit.		Millian

No.	Mk.	Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4804.032	41.46	13.01	54.47	74.00	-19.53	peak
2	*	4804.045	28.06	13.01	41.07	54.00	-12.93	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

Temperature:	23.7℃ Relative Humidity: 46%
Test Voltage:	AC 120V 60Hz
Ant. Pol.	Horizontal
Test Mode:	BLE(1Mbps) Mode TX 2442 MHz
Remark:	No report for the emission which more than 20 dB below the prescribed limit.

No.	. Mk	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4884.234	42.87	13.60	56.47	74.00	-17.53	peak
2	*	4884.341	28.68	13.61	42.29	54.00	-11.71	AVG

- Remark:
 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

Temperature:	23.7℃ Relative Humidity: 46%
Test Voltage:	AC 120V 60Hz
Ant. Pol.	Vertical
Test Mode:	BLE(1Mbps) Mode TX 2442 MHz
Remark:	No report for the emission which more than 20 dB below the
	prescribed limit.

No.	Mk.	Freq.			Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4884.123	42.02	13.60	55.62	74.00	-18.38	peak
2	*	4884.241	28.95	13.60	42.55	54.00	-11.45	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Temperature:	23.7℃	Relative Humidity:	46%			
Test Voltage:	AC 120V 60Hz	Carried Control	N. Second			
Ant. Pol.	Horizontal					
Test Mode:	BLE(1Mbps) Mode TX 2480	MHz				
Remark:	No report for the emission was prescribed limit.	hich more than 20 dB	below the			

N	o. N	Иk.	Freq.			Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*		4960.234	28.27	14.15	42.42	54.00	-11.58	AVG
2			4960.351	41.98	14.16	56.14	74.00	-17.86	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Temperature:	23.7℃	46%				
Test Voltage:	AC 120V 60Hz					
Ant. Pol.	Vertical					
Test Mode:	BLE(1Mbps) Mode TX 24	480 MHz	13			
Remark:	No report for the emission which more than 20 dB below the prescribed limit.					

No	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4960.124	28.16	14.15	42.31	54.00	-11.69	AVG
2		4960.234	41.10	14.15	55.25	74.00	-18.75	peak

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Temperature:	23.7℃	Relative Humidity:	46%		
Test Voltage:	AC 120V 60Hz				
Ant. Pol.	Horizontal				
Test Mode:	BLE(2Mbps) Mode TX 2402	MHz			
Remark:	No report for the emission which more than 10 dB below the				
prescribed limit.					

No	o. N	Иk.	Freq.	_		Measure- ment	Limit	Over	
			MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*		4804.141	27.94	13.02	40.96	54.00	-13.04	AVG
2			4804.231	41.38	13.02	54.40	74.00	-19.60	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Relative Humidity:	46%			
Relative Humidity: 46%				
AC 120V 60Hz				
Ant. Pol. Vertical				
X 2402 MHz	33			
ssion which more than 10 d	3 below the			
	7.4.4			

No	o. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4804.241	41.09	13.02	54.11	74.00	-19.89	peak
2	*	4804.351	28.04	13.02	41.06	54.00	-12.94	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Temperature:	23.7℃	Relative Humidity:	46%		
Test Voltage:	AC 120V 60Hz				
Ant. Pol.	Horizontal				
Test Mode:	BLE(2Mbps) Mode TX 2442 MHz				
Remark:	No report for the emission v prescribed limit.	which more than 20 dB	below the		

No.	. Mk	. Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4884.123	42.34	13.60	55.94	74.00	-18.06	peak
2	*	4884.421	28.89	13.61	42.50	54.00	-11.50	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Temperature:	23.7℃	Relative Humidity:	46%			
Test Voltage:	AC 120V 60Hz					
Ant. Pol.	Vertical					
Test Mode:	BLE(2Mbps) Mode TX 2442	MHz				
Remark:	No report for the emission which more than 20 dB below the					
	prescribed limit.					

No	o. Mk	Freq.			Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4884.123	42.76	13.60	56.36	74.00	-17.64	peak
2	*	4884.241	28.94	13.60	42.54	54.00	-11.46	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Temperature:	23.7℃	Relative Humidity:	46%			
Test Voltage:	AC 120V 60Hz					
Ant. Pol.	Horizontal					
Test Mode:	BLE(2Mbps) Mode TX 2480 MHz					
Remark:	No report for the emission was prescribed limit.	hich more than 20 dB be	elow the			

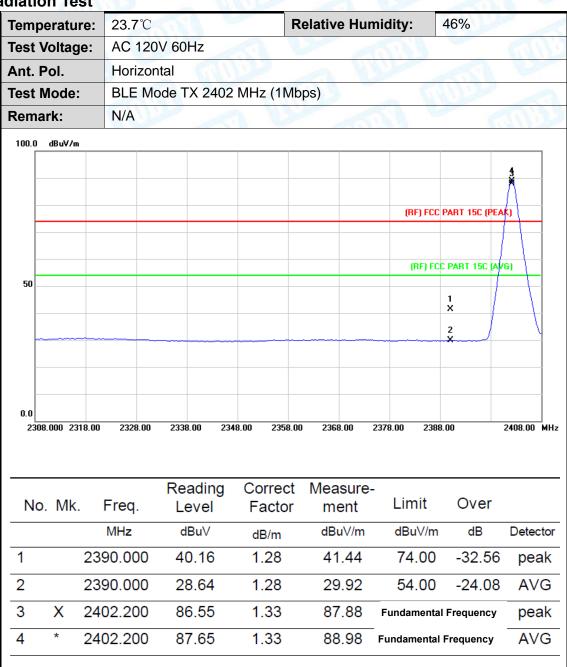
No.	Mk	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4960.012	47.64	14.15	61.79	74.00	-12.21	peak
2	*	4960.013	31.06	14.15	45.21	54.00	-8.79	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

Temperature:	23.7℃ Relative Humidity: 46%
Test Voltage:	AC 120V 60Hz
Ant. Pol.	Vertical
Test Mode:	BLE(2Mbps) Mode TX 2480 MHz
Remark:	No report for the emission which more than 20 dB below the
	prescribed limit.

No	o. M	1k.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4	1960.241	28.27	14.15	42.42	54.00	-11.58	AVG
2		4	1960.412	41.08	14.16	55.24	74.00	-18.76	peak

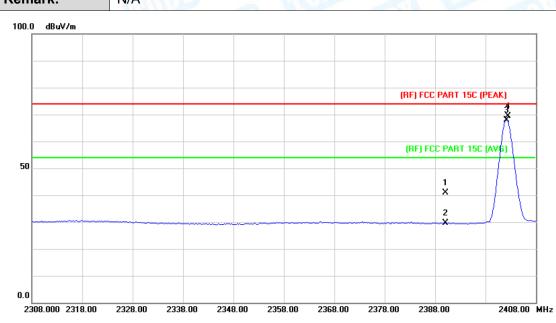
- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)



Page: 34 of 55

Attachment C-- Restricted Bands Requirement and Band Edge Test Data

(1) Radiation Test



- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

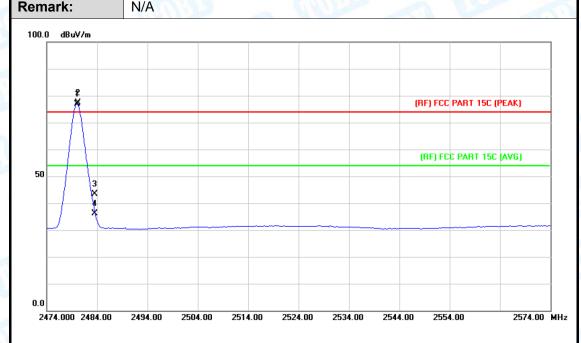
Temperature:	23.7℃	Relative Humidity:	46%
Test Voltage:	AC 120V 60Hz		
Ant. Pol.	Vertical		
Test Mode:	BLE Mode TX 2402	2 MHz(1Mbps)	

Remark: N/A

No.	Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	39.59	1.28	40.87	74.00	-33.13	peak
2		2390.000	28.28	1.28	29.56	54.00	-24.44	AVG
3	*	2402.200	66.60	1.33	67.93	Fundamental	Frequency	AVG
4		2402.400	68.05	1.33	69.38	Fundamenta	l Frequency	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

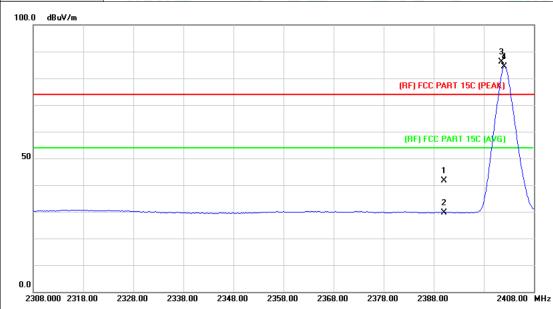
Report No.: TB-FCC178073 Page: 36 of 55



emp	eratu	re:	23.7	${\mathbb C}$		Relative	Humidity:	46%	
est \	/oltag	e:	AC 1	20V 60Hz		CHIE.		I Was	
\nt. F	Pol.		Horiz	zontal			CHILD.		1/1
est l	Mode:		BLE	Mode TX 2	2480 MHz (*	1Mbps)	6.30		
Rema	ırk:		N/A	1333	- 6	HILL		A. S.	1
50	Ž j	3 **						PART 15C (PEAK	
0.0 247	4.000 248	B4.00 2	494.00	2504.00 2	2514.00 2524.0	0 2534.00	2544.00 2554	4.00 2	574.00 MH
No	o. Mk		<u> </u>	Reading Level	Correct Factor	ment	Limit	Over	
		MF		dBu∀	dB/m	dBuV/m	dBuV/m	n dB	Detecto
1	X	2480.	000	87.82	1.85	89.67	Fundamenta	I Frequency	peak
2	*	2480.	000	86.92	1.85	88.77	Fundamenta	l Frequency	AVG
		0.400		40.22	4.00	51.20	74.00	-22.80	peak
3		2483.	500	49.32	1.88	51.20	74.00	-22.00	pear

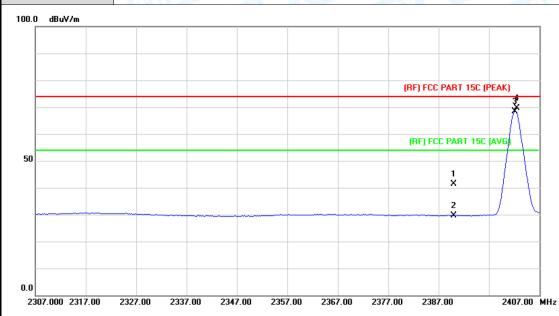
- Remark:
 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG(dB μ V/m)

Temperature:	23.7℃	Relative Humidity:	46%
Test Voltage:	AC 120V 60Hz	AMILE .	The same of the sa
Ant. Pol.	Vertical	a Cili	
Test Mode:	BLE Mode TX 2480 MHz ((1Mbps)	
Domoris	NI/A		


No	. Mk	c. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	2480.000	75.13	1.85	76.98	Fundamental	Frequency	AVG
2	Χ	2480.200	75.54	1.85	77.39	Fundamental	Frequency	peak
3		2483.500	41.40	1.88	43.28	74.00	-30.72	peak
4		2483.500	34.34	1.88	36.22	54.00	-17.78	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)

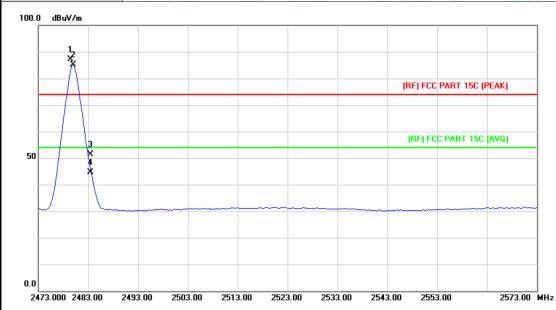
Temperature:	23.7℃	Relative Humidity:	46%
Test Voltage:	AC 120V 60Hz	CHILL	
Ant. Pol.	Horizontal		
Test Mode:	BLE Mode TX 2402 MHz (2)	Mbps)	1000
Remark:	N/A	THUE TO	


No	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	40.24	1.28	41.52	74.00	-32.48	peak
2		2390.000	28.34	1.28	29.62	54.00	-24.38	AVG
3	Χ	2401.600	84.86	1.33	86.19	Fundamental	Frequency	peak
4	*	2402.000	83.02	1.33	84.35	Fundamental	Frequency	AVG

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)

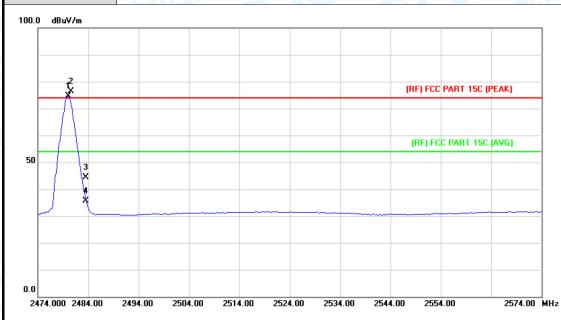
TOBY

23.7℃ **Relative Humidity:** 46% Temperature: **Test Voltage:** AC 120V 60Hz Ant. Pol. Vertical **Test Mode:** BLE Mode TX 2402 MHz (2Mbps) N/A Remark:


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	40.16	1.28	41.44	74.00	-32.56	peak
2		2390.000	28.31	1.28	29.59	54.00	-24.41	AVG
3	*	2402.200	67.10	1.33	68.43	Fundamenta	I Frequency	AVG
4		2402.600	68.25	1.33	69.58	Fundamenta	I Frequency	peak

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

Temperature:	23.7℃	Relative Humidity:	46%
Test Voltage:	AC 120V 60Hz	THE PARTY OF THE P	The same of the sa
Ant. Pol.	Horizontal	CUIT ST	
Test Mode:	BLE Mode TX 2480 MHz (2	Mbps)	1013
Remark:	N/A		

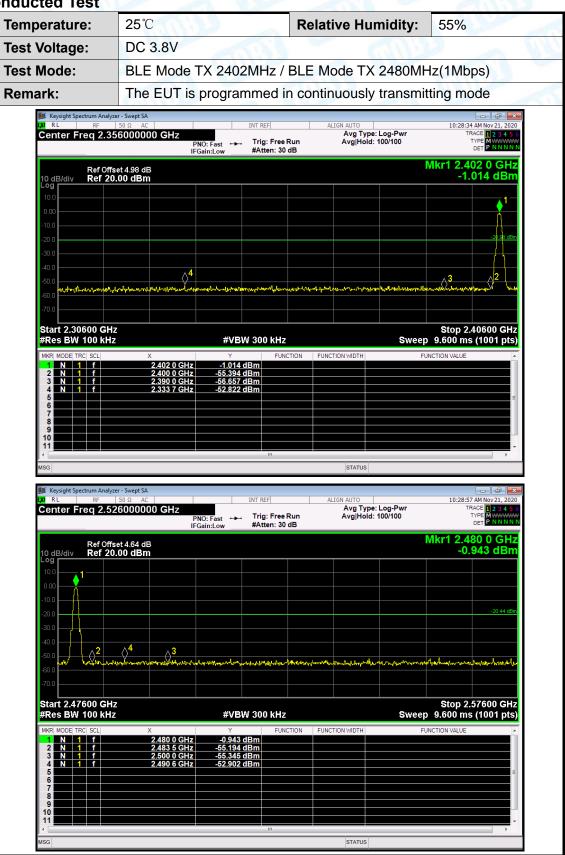


No.	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∀	dB/m	dBuV/m	dBuV/m	dB	Detector
1	X	2479.400	85.20	1.85	87.05	Fundamental F	requency	peak
2	*	2480.000	83.25	1.85	85.10	Fundamental F	requency	AVG
3		2483.500	49.61	1.88	51.49	74.00	-22.51	peak
4		2483.500	42.64	1.88	44.52	54.00	-9.48	AVG

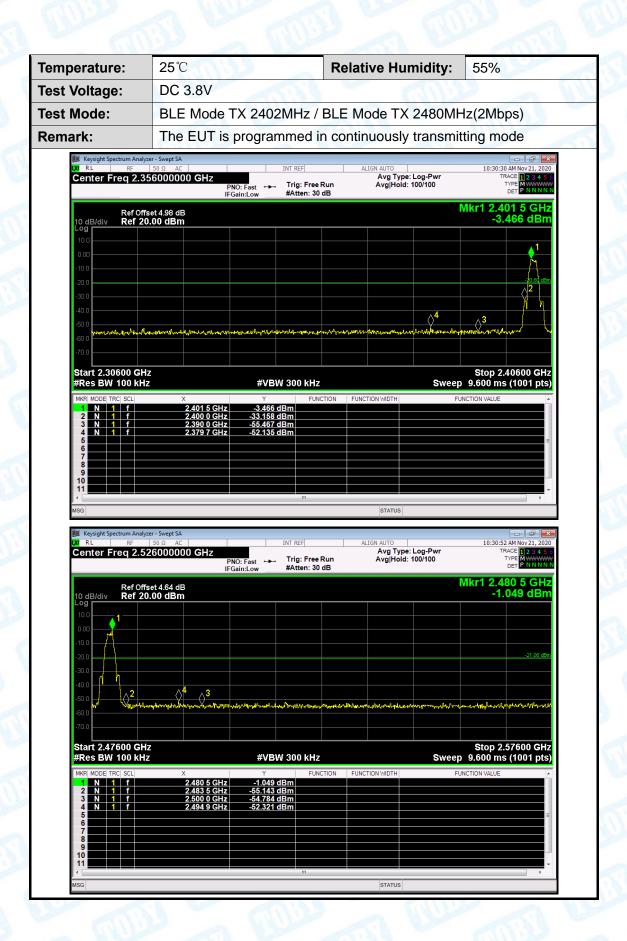
- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

Temperature:	23.7℃	Relative Humidity:	46%
Test Voltage:	AC 120V 60Hz	O. W.	The same of the sa
Ant. Pol.	Vertical		
Test Mode:	BLE Mode TX 2480 MHz	(2Mbps)	
Remark:	N/A	CHILL STATE OF THE	

No.	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	2480.000	72.81	1.85	74.66	 Fundamenta	I Frequency	AVG
2	X	2480.600	74.54	1.85	76.39	Fundamenta	I Frequency	peak
3		2483.500	42.61	1.88	44.49	74.00	-29.51	peak
4		2483.500	33.78	1.88	35.66	54.00	-18.34	AVG


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG(dBµV/m)

Page: 42 of 55


(2) Conducted Test

Page: 43 of 55



Page: 44 of 55

Attachment D-- Bandwidth Test Data

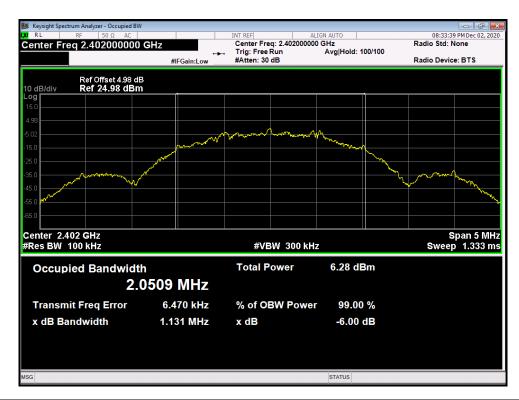
	Temperature:	25 ℃		Relative Humidity:	55%
	Test Voltage:	DC 3	.8V		
I	Test Mode:	BLE	TX Mode(1 Mbps)		
	Channel freque	ncy	6dB Bandwidth	99% Bandwidth	Limit
ı	(MHz)		(kHz)	(kHz)	(kHz)
	2402		678.0	1048.2	
	2442		644.6	1043.3	>=500
۱	2480		653.0	1047.2	
					*

BLE Mode

TOBY

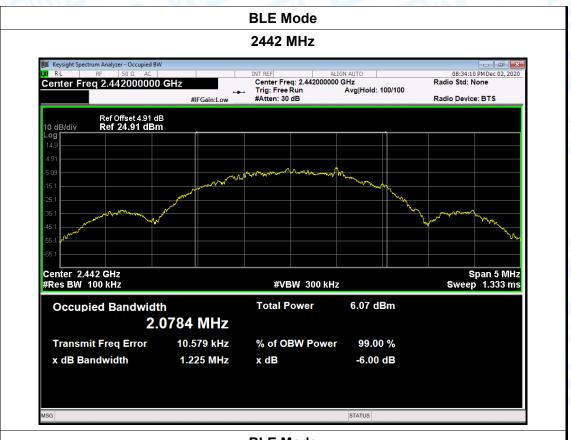
Page: 45 of 55

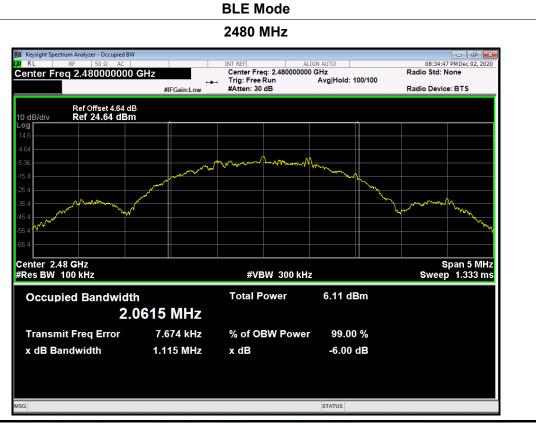
2480 MHz Keysight Spectrum Analyzer - Occupied BW 08:30:20 PM Dec 02, 2020 Radio Std: None Center Freq 2.480000000 GHz Radio Device: BTS Ref Offset 4.64 dB Ref 24.64 dBm Span 3 MHz Sweep 1.333 ms Center 2.48 GHz #Res BW 100 kHz #VBW 300 kHz Occupied Bandwidth **Total Power** 5.87 dBm 1.0472 MHz Transmit Freq Error -1.196 kHz % of OBW Power 99.00 % 653.0 kHz -6.00 dB x dB Bandwidth x dB STATUS



Page: 46 of 55

Temperature:	25 ℃		Relative Humidity:	55%
Test Voltage:	DC 3	.8V	000	
Test Mode:	BLE	TX Mode (2Mbps)		1000
Channel freque	ncy	6dB Bandwidth	99% Bandwidth	Limit
(MHz)		(kHz)	(kHz)	(kHz)
2402		1131	2050.9	
2442		1225	2078.4	>=500
2480		1115	2061.5	
		BLE M	ode	


BLE Mode

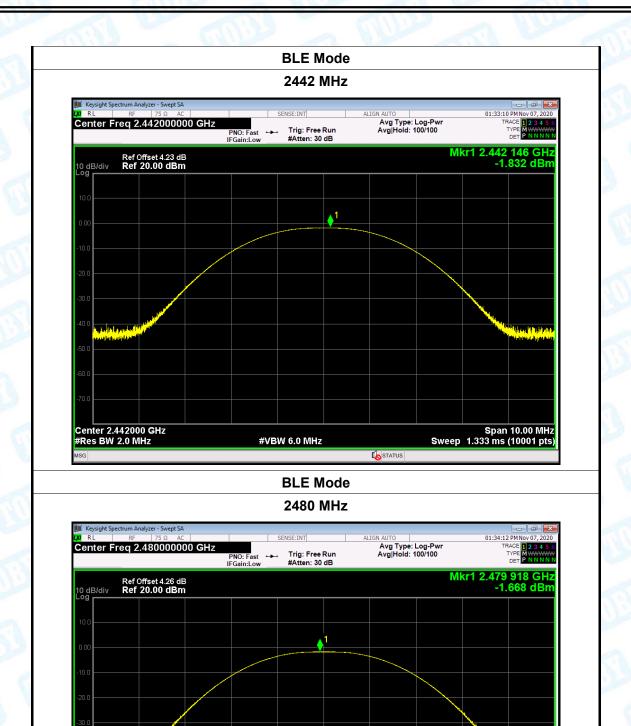


Page: 47 of 55

Center 2.402000 GHz #Res BW 2.0 MHz

Span 10.00 MHz Sweep 1.333 ms (10001 pts)

Attachment E-- Peak Output Power Test Data


nperature:	25℃		Relative Humi	dity:	55%
t Voltage:	DC 3.8V				
t Mode:	BLE TX N	lode (1Mbps)		A Section	
annel frequen	ıcy (MHz)	Test Res	ult (dBm)	I	imit (dBm)
2402		-1.8	303		
2442		-1.8	332		30
2480		-1.6	668		
		BLE	Mode		
		2402	MHz		
Keysight Spectrum Analyz					
LXI RL RF	75 Ω AC	SENSE:INT	ALIGN AUTO Avg Type: I	D	01:31:58 PM Nov 07, 202
Center Freq 2.40	2000000 GHZ	PNO: Fast → Trig: Fre		.og-Pwr 00/100	TRACE 1 2 3 4 5 TYPE M WWWW DET P N N N N
		IFGain:Low #Atten:	30 dB		DET P N N N N
Dof Offe	et 4.29 dB			Mkr	1 2.402 009 GH
10 dB/div Ref 20	et 4.29 aB .00 dBm				4 000 15
Log					-1.803 dBn
- I					-1.803 dBn
					-1.803 dBn
10.0					-1.803 dBn
10.0			1		-1.803 dBn
			1		-1.803 dBn
0.00			1		-1.803 GBN
10.0			1		-1.803 dBn
0.00			1		-1.803 GBN
10.0			1		-1.803 GBN
10.0			1		-1.803 dBn
10.0			1		-1.803 dBn
-10.0			1		
10.0			1		
10.0 0.00 -10.0 -20.0 -40.0			1		
10.0			1		
-10.0			1		

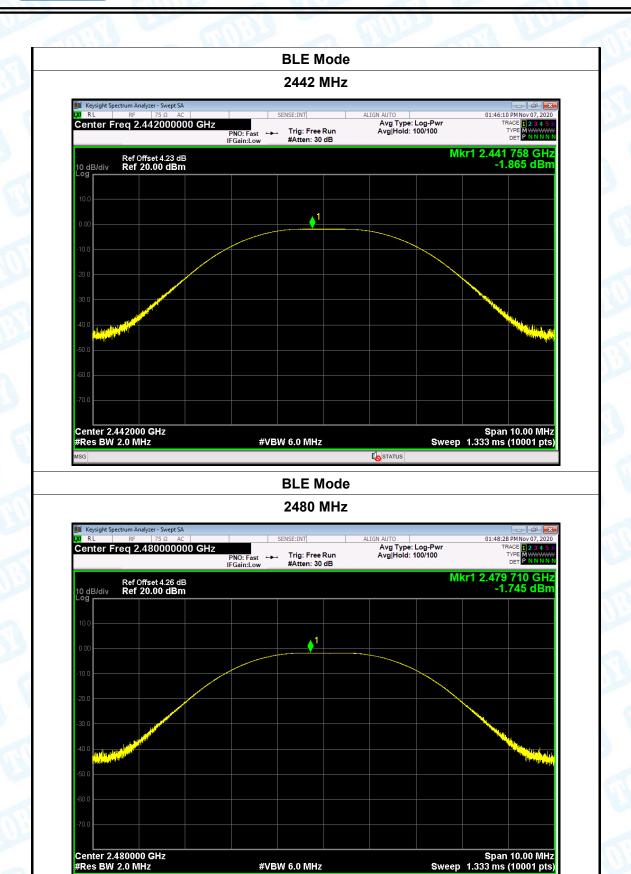
#VBW 6.0 MHz

Center 2.480000 GHz #Res BW 2.0 MHz Page: 49 of 55

#VBW 6.0 MHz

STATUS

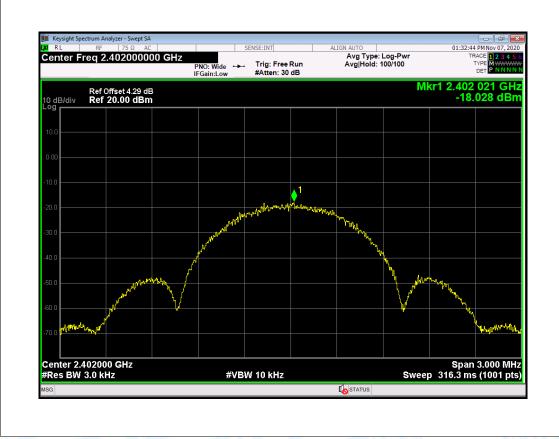
Span 10.00 MHz Sweep 1.333 ms (10001 pts)



nperature:	25℃		Relative Humidi	Humidity: 55%		
st Voltage:	DC 3.8V		6.1	11/11/2		
st Mode:	BLE TX M	lode(2Mbps)				
nannel frequency (MHz)		Test Result (dBm)		Limit (dBm)		
2402 2442		-1.854 -1.865		30		
						2480
		BLE I	Mode			
-		2402	MHz			
Keysight Spectrum Anal	75 Ω AC	SENSE:INT	ALIGN AUTO	Design	01:43:15 PM Nov 07, 2020	
Center Freq 2.4	102000000 GHz	PNO: Fast Trig: Fre			TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P NNNNN	
Ref Off 10 dB/div Ref 2	fset 4.29 dB 0.00 dBm			Mkr1	2.401 758 GHz -1.854 dBm	
Log Rei 2	0.00 dBiii					
10.0						
0.00			1			
			1			
0.00		•	1			
-10.0		•	1			
-10.0			1			
-10 0 -20 0 -30 0			1			
-10.0		1	1		A STATE OF THE STA	
-10 0 -20 0 -30 0						
-10 0 -20 0 -30 0 -40 0						
-10.0 -20.0 -30.0 -40.0 -50.0	GHz				Span 10.00 MHz	

Page: 51 of 55

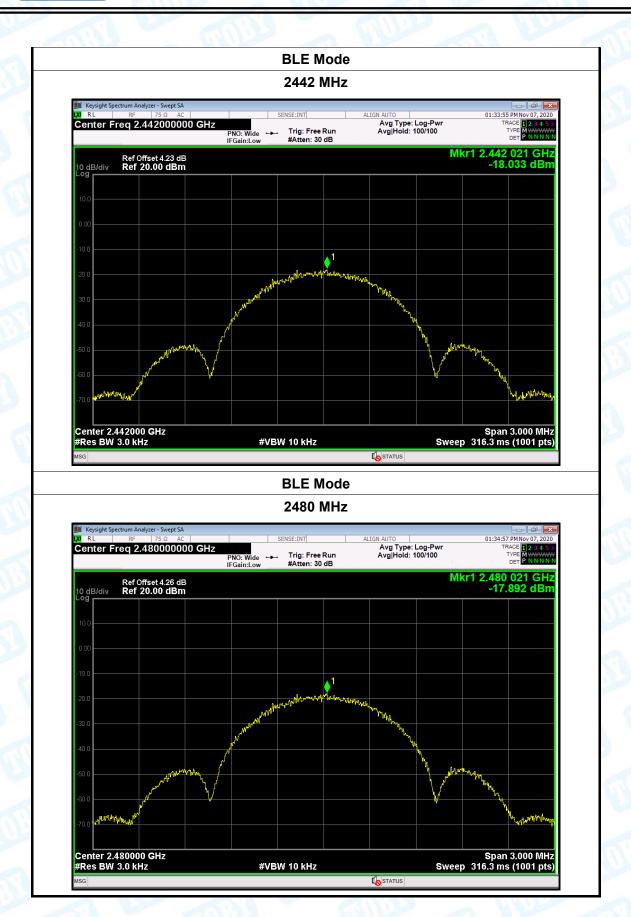
STATUS


Temperature: 25°C

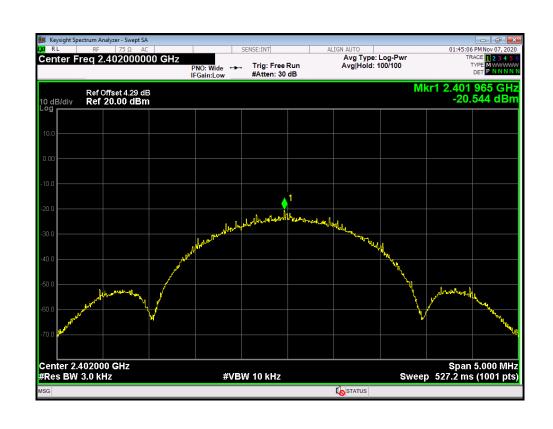
Page: 52 of 55

Relative Humidity: 55%

Attachment F-- Power Spectral Density Test Data

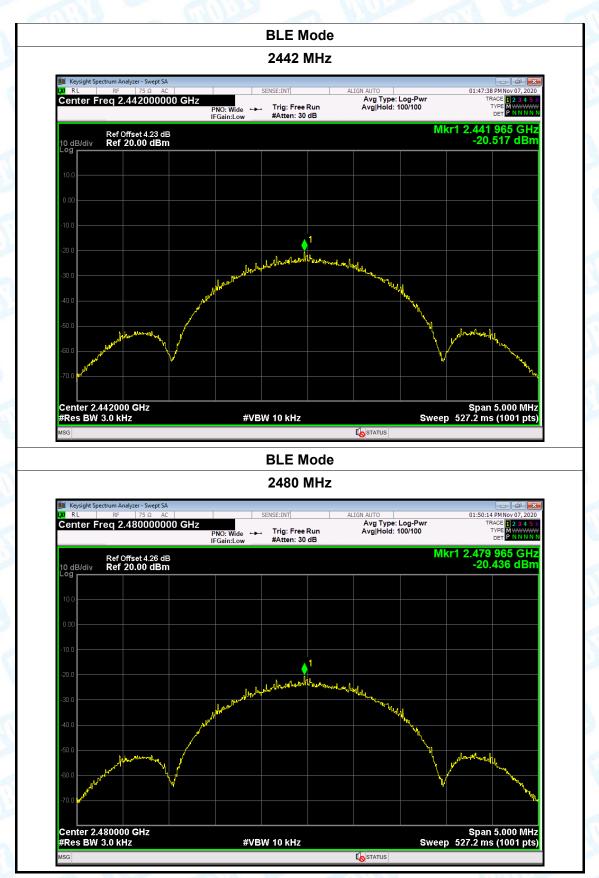

Test Voltage:	DC 3.8V						
Test Mode:	BLE TX Mode(1Mbps)						
Channel Frequency		Power Density	Limit	Result			
(MHz)		(dBm/3kHz)	(dBm/3kHz)	Result			
2402		-18.028					
2442 2480		-18.033	8	PASS			
		-17.892					
		BLE Mode	•				

Page: 53 of 55



Report No.: TB-FCC178073 Page: 54 of 55

Temperature:	25℃		Relative Humidity:		55%		
Test Voltage:	DC 3.8V						
Test Mode:	BLE TX Mode (2Mbps)						
Channel Frequency		Power Density		Limit		Result	
(MHz)		(dBm/3kHz)		(dBm/3kHz)		Resuit	
2402		-20.544					
2442 2480		-20.5	-20.517 8			PASS	
		-20.436					
		DIEM		I			


BLE Mode

Report No.: TB-FCC178073

Page: 55 of 55

----END OF REPORT-----