

1 of 94 Page:

FCC Radio Test Report FCC ID: XMF-MID7015

Original Grant

TB-FCC166207 Report No.

Applicant Lightcomm Technology Co., Ltd.

Equipment Under Test (EUT)

EUT Name 7"Tablet

Model No. 100005206

Series Model No. MID7015

Brand Name onn

2019-05-21 **Receipt Date**

2019-05-21 to 2019-05-27 **Test Date**

2019-06-10 **Issue Date**

FCC Part 15: 2017, Subpart C(15.247) **Standards**

ANSI C63.10: 2013 **Test Method**

Conclusions PASS

In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC requirements

Test/Witness Engineer

Engineer Supervisor

: Luxusu : Luyta. **Engineer Manager**

Ray Lai

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

Contents

CON	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	7
	1.5 Description of Test Mode	7
	1.6 Description of Test Software Setting	8
	1.7 Measurement Uncertainty	9
	1.8 Test Facility	10
2.	TEST SUMMARY	11
3.	TEST EQUIPMENT	12
4.	CONDUCTED EMISSION TEST	13
	4.1 Test Standard and Limit	13
	4.2 Test Setup	
	4.3 Test Procedure	
	4.4 EUT Operating Mode	
	4.5 Test Data	
5.	RADIATED EMISSION TEST	15
	5.1 Test Standard and Limit	
	5.2 Test Setup	
	5.3 Test Procedure	17
	5.4 EUT Operating Condition	
	5.5 Test Data	17
6.	RESTRICTED BANDS REQUIREMENT	18
	6.1 Test Standard and Limit	18
	6.2 Test Setup	
	6.3 Test Procedure	
	6.4 EUT Operating Condition	
	6.5 Test Data	
7.	NUMBER OF HOPPING CHANNEL	20
	7.1 Test Standard and Limit	20
	7.2 Test Setup	
	7.3 Test Procedure	
	7.4 EUT Operating Condition	20
	7.5 Test Data	
8.	AVERAGE TIME OF OCCUPANCY	21
	8.1 Test Standard and Limit	21
	8.2 Test Setup	

Report No.: TB-FCC166207
Page: 3 of 94

Page:

	8.3 Test Procedure	21
	8.4 EUT Operating Condition	21
	8.5 Test Data	
9.	CHANNEL SEPARATION AND BANDWIDTH TEST	22
	9.1 Test Standard and Limit	22
	9.2 Test Setup	22
	9.3 Test Procedure	
	9.4 EUT Operating Condition	22
	9.5 Test Data	
10.	PEAK OUTPUT POWER TEST	23
	10.1 Test Standard and Limit	
	10.2 Test Setup	23
	10.3 Test Procedure	
	10.4 EUT Operating Condition	23
	10.5 Test Data	23
11.	ANTENNA REQUIREMENT	
	11.1 Standard Requirement	24
	11.2 Antenna Connected Construction	
	11.3 Result	24
ATT	ACHMENT A CONDUCTED EMISSION TEST DATA	25
ATT	ACHMENT C RESTRICTED BANDS REQUIREMENT TEST DATA	51
	ACHMENT D NUMBER OF HOPPING CHANNEL TEST DATA	
ATT	ACHMENT E AVERAGE TIME OF OCCUPANCY TEST DATA	71
ATT	ACHMENT F CHANNEL SEPARATION AND BANDWIDTH TEST DATA	77
ATT	ACHMENT G PEAK OUTPUT POWER TEST DATA	89

Page: 4 of 94

Revision History

Report No.	Version	Description	Issued Date
TB-FCC166207	Rev.01	Initial issue of report	2019-06-10
		TO THE PARTY OF	A COLO
D C	(1)	Ellin In	
			COBI
		The same of the sa	
	1000	Comment of the second	MUDA
		10113	
033	allon a		400
W. W. W.			3 00
			6037
	W. The		The Contract of the Contract o
	3	(1033)	TI OB
TUE TO	3 000	United the second	

Page: 5 of 94

1. General Information about EUT

1.1 Client Information

Applicant		Lightcomm Technology Co., Ltd.
Address : UNIT 1306 13/F ARION COMMERCIAL CENTRE, 2-12 QUEEN ROAD WEST, SHEUNG WAN HK		
Manufacturer		Huizhou HengDu Electronics Co., Ltd
Address	:	No.8 Huitai Road, Huinan High-tech Industrial Park, Huiao Avenue, Huizhou, Guangdong, China

1.2 General Description of EUT (Equipment Under Test)

EUT Name		7"Tablet		
Models No.		100005206, MID7015		
Model Difference	:	All models are in the same PCB layout interior structure and electrical circuits, The only difference is model.		
CITE S		Operation Frequency:	Bluetooth V4.0(BT): 2402~2480 MHz	
	6	Number of Channel:	Bluetooth: 79 Channels See Note 2	
Product	Á	Max Peak Output Power:	Bluetooth: 5.883dBm(GFSK)	
Description	4	Antenna Gain:	3.02dBi FPC Antenna	
EE COOR		Modulation Type:	GFSK:5.883dBm π/4-DQPSK:5.522dBm 8-DPSK: 4.827dBm	
Power Supply			dapter(TEKA006-0501000UK).	
Power Rating	\ \ \ \	DC Voltage supplied by Li-ion battery. TEKA006-0501000UK: Input: AC 100-240V 50/60Hz 0.3A(MAX) Output: DC 5.0V 1A by adapter DC 3.7V by 2100mAh Li-ion battery		
Software Version		PPR1.180610.011 release-keys		
Hardware Version		LC-MT8167-REV 0.1		
Connecting I/O Port(S)	:	Please refer to the User's	Please refer to the User's Manual	

Note:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Page: 6 of 94

(2) Channel List:

	Bluetooth Channel List						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
00	2402	27	2429	54	2456		
01	2403	28	2430	55	2457		
02	2404	29	2431	56	2458		
03	2405	30	2432	57	2459		
04	2406	31	2433	58	2460		
05	2407	32	2434	59	2461		
06	2408	33	2435	60	2462		
07	2409	34	2436	61	2463		
08	2410	35	2437	62	2464		
09	2411	36	2438	63	2465		
10	2412	37	2439	64	2466		
11	2413	38	2440	65	2467		
12	2414	39	2441	66	2468		
13	2415	40	2442	67	2469		
14	2416	41	2443	68	2470		
15	2417	42	2444	69	2471		
16	2418	43	2445	70	2472		
17	2419	44	2446	71	2473		
18	2420	45	2447	72	2474		
19	2421	46	2448	73	2475		
20	2422	47	2449	74	2476		
21	2423	48	2450	75	2477		
22	2424	49	2451	76	2478		
23	2425	50	2452	77	2479		
24	2426	51	2453	78	2480		
25	2427	52	2454				
26	2428	53	2455				

⁽³⁾ The Antenna information about the equipment is provided by the applicant.

1.3 Block Diagram Showing the Configuration of System Tested

Charging + TX Mode

Page: 7 of 94

TX Mode	
	EUT

1.4 Description of Support Units

	Cable Information						
Number	Shielded Type	Ferrite Core	Length	Note			
Cable 1	Yes	NO	1.0M	Accessory			

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

Page: 8 of 94

For Conducted Test				
Final Test Mode Description				
Mode 1	Charging + TX Mode Channel 39			
	For Radiated Test			
Final Test Mode	Description			
Mode 1	TX GFSK Mode Channel 39			
Mode 2	TX Mode(GFSK) Channel 00/39/78			
Mode 3 TX Mode(π /4-DQPSK) Channel 00/39/78				
Mode 4	TX Mode(8-DPSK) Channel 00/39/78			
Mode 5	Hopping Mode(GFSK)			
Mode 6 Hopping Mode(π /4-DQPSK)				
Mode 7	Hopping Mode(8-DPSK)			
Remark: One electronic mater	rial suppliers are different, such as display screen.			

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate. We have pretested all the test modes above.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

TX Mode: GFSK (1 Mbps)
TX Mode: π /4-DQPSK (2 Mbps)
TX Mode: 8-DPSK (3Mbps)

(2) The EUT is considered a portable unit; it was pre-tested on the positioned of each 3 axis, X-plane, Y-plane and Z-plane. The worst case was found positioned on X-plane as the normal use. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of Bluetooth mode.

Test Software Version		MTK Engineer Mode.ex	е
Frequency	2402 MHz	2441MHz	2480 MHz
GFSK	DEF	DEF	DEF
π /4-DQPSK	DEF	DEF	DEF
8-DPSK	DEF	DEF	DEF

Page: 9 of 94

1.7 Measurement Uncertainty

The reported uncertainty of measurement y \pm U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.42 dB ±3.42 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.40 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

Page: 10 of 94

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

Page: 11 of 94

2. Test Summary

	FCC Part 15 Subpart C(15.247)/ RSS 247 Issue 2							
Standard S	ection	Table Ham	1 1					
FCC	IC	Test Item	Judgment	Remark				
15.203		Antenna Requirement	PASS	N/A				
15.207	RSS-GEN 7.2.2	Conducted Emission	PASS	N/A				
15.205	RSS-Gen 7.2.3	Restricted Bands	PASS	N/A				
15.247(a)(1)	RSS 247 5.1 (2)	Hopping Channel Separation	PASS	N/A				
15.247(a)(1)	RSS 247 5.1 (4)	Dwell Time	PASS	N/A				
15.247(b)(1)	RSS 247 5.4 (2)	Peak Output Power	PASS	N/A				
15.247(b)(1)	RSS 247 5.1 (4)	Number of Hopping Frequency	PASS	N/A				
15.247(d)	RSS 247 5.5	Band Edge	PASS	N/A				
15.247(c)& 15.209	RSS 247 5.5	Radiated Spurious Emission	PASS	N/A				
15.247(a)	RSS 247 5.1 (1)	99% Occupied Bandwidth & 20dB Bandwidth	PASS	99%OBW: GFSK: 860.46kHz π/4-DQPSK: 1155.0kHz 8-DPSK: 1154.2KHz				

Page: 12 of 94

3. Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date	
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 18, 2018	Jul. 17, 2019	
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 18, 2018	Jul. 17, 2019	
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 18, 2018	Jul. 17, 2019	
LISN	Rohde & Schwarz	ENV216	101131	Jul. 18, 2018	Jul. 17, 2019	
Radiation Emissio	n Test					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date	
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 18, 2018	Jul. 17, 2019	
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 18, 2018	Jul. 17, 2019	
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Jan. 27, 2019	Jan. 26, 2020	
Bilog Antenna	ETS-LINDGREN	3142E	00117542	Jan. 27, 2019	Jan. 26, 2020	
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.03, 2019	Mar. 02, 2020	
Horn Antenna	ETS-LINDGREN	3117	00143209	Mar.03, 2019	Mar. 02, 2020	
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 14, 2018	Jul.13, 2019	
Pre-amplifier	Sonoma	310N	185903	Mar.04, 2019	Mar. 03, 2020	
Pre-amplifier	HP	8449B	3008A00849	Mar.03, 2019	Mar. 02, 2020	
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.03, 2019	Mar. 02, 2020	
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A	
Antenna Conducte	ed Emission					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date	
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 18, 2018	Jul. 17, 2019	
Spectrum Analyzer	Rohde & Schwarz	ESCI	100010/007	Jul. 18, 2018	Jul. 17, 2019	
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 15, 2018	Sep. 14, 2019	
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 15, 2018	Sep. 14, 2019	
Analog Signal Generator	Agilent	N5181A	MY50141953	Sep. 15, 2018	Sep. 14, 2019	
33	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Sep. 15, 2018	Sep. 14, 2019	
DE Davies Caraca	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Sep. 15, 2018	Sep. 14, 2019	
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Sep. 15, 2018	Sep. 14, 2019	
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Sep. 15, 2018	Sep. 14, 2019	

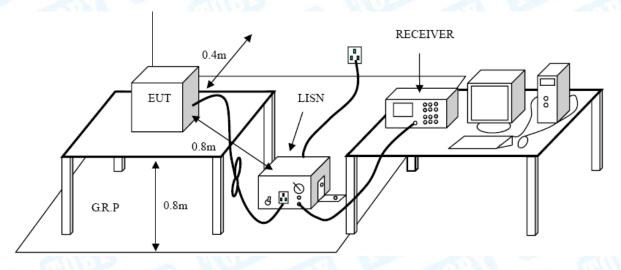
Page: 13 of 94

4. Conducted Emission Test

4.1 Test Standard and Limit

4.1.1Test Standard FCC Part 15.207

4.1.2 Test Limit


Conducted Emission Test Limit

Eroguonov	Maximum RF Line Voltage (dBμV)					
Frequency	Quasi-peak Level	Average Level				
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *				
500kHz~5MHz	56	46				
5MHz~30MHz	60	50				

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2 Test Setup

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

Page: 14 of 94

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 EUT Operating Mode

Please refer to the description of test mode.

4.5 Test Data

Please refer to the Attachment A.

Page: 15 of 94

5. Radiated Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard FCC Part 15.209

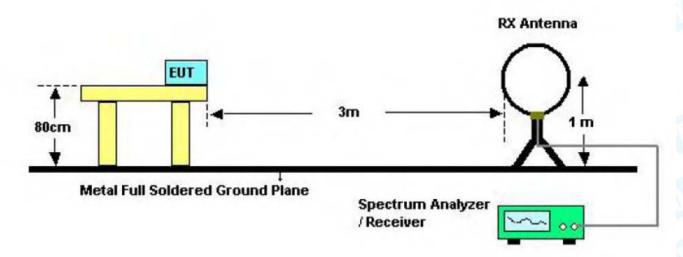
5.1.2 Test Limit

Radiated Emission Limit (9 kHz~1000MHz)

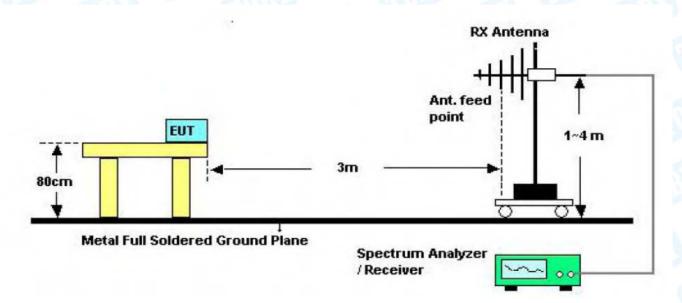
Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Radiated Emission Limit (Above 1000MHz)

Frequency	Distance of 3m	(dBuV/m)
(MHz)	Peak	Average
Above 1000	74	54

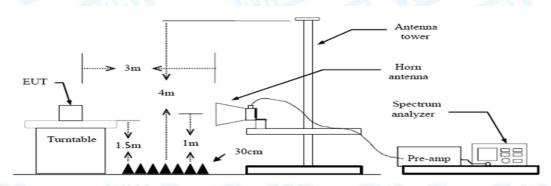

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m)



Page: 16 of 94

5.2 Test Setup


Below 30MHz Test Setup

Below 1000MHz Test Setup

Page: 17 of 94

Above 1GHz Test Setup

5.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power in TX mode.

5.5 Test Data

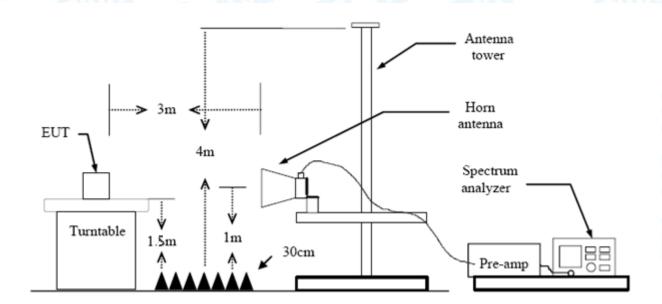
Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment B.

Page: 18 of 94

6. Restricted Bands Requirement

6.1 Test Standard and Limit


6.1.1 Test Standard FCC Part 15.209 FCC Part 15.205

6.1.2 Test Limit

Restricted Frequency	Distance of 3m (dBuV/m)				
Band (MHz)	Peak	Average			
2310 ~2390	74	54			
2483.5 ~2500	74	54			

Note: All restriction bands have been tested, only the worst case is reported.

6.2 Test Setup

6.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

Report No.: TB-FCC166207 Page: 19 of 94

(3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.

- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with AVG Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

6.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

6.5 Test Data

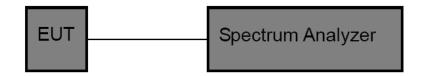
Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

All restriction bands have been tested, only the worst case is reported.

Please refer to the Attachment C.

Page: 20 of 94

7. Number of Hopping Channel


7.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.247 (a)(1)

6.1.2 Test Limit

Section	Test Item	Limit
15.247	Number of Hopping Channel	>15

7.2 Test Setup

7.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: RBW=100 KHz, VBW=100 KHz, Sweep time= Auto.

7.4 EUT Operating Condition

The EUT was set to the Hopping Mode by the Customer.

7.5 Test Data

Please refer to the Attachment D.

Page: 21 of 94

8. Average Time of Occupancy


8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.247 (a)(1)

8.1.2 Test Limit

Section	Test Item	Limit
15.247(a)(1)	Average Time of Occupancy	0.4 sec

8.2 Test Setup

8.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: RBW=1MHz, VBW=1MHz.
- (3) Use video trigger with the trigger level set to enable triggering only on full pulses.
- (4) Sweep Time is more than once pulse time.
- (5) Set the center frequency on any frequency would be measure and set the frequency span to zero.
- (6) Measure the maximum time duration of one single pulse.
- (7) Set the EUT for packet transmitting.
- (8) Measure the maximum time duration of one single pulse.

8.4 EUT Operating Condition

The average time of occupancy on any channel within the Period can be calculated with formulas:

 $\{Total \ of \ Dwell\} = \{Pulse \ Time\} * (1600 / X) / \{Number \ of \ Hopping \ Frequency\} * \{Period\} = 0.4s * \{Number \ of \ Hopping \ Frequency\}$

Note: X=2 or 4 or 6 (1DH1=2, 1DH3=4, 1DH5=6. 2DH1=2, 2DH3=4, 2DH5=6. 3DH1=2, 3DH3=4, 3DH5=6)

The lowest, middle and highest channels are selected to perform testing to record the dwell time of each occupation measured in this channel, which is called Pulse Time here.

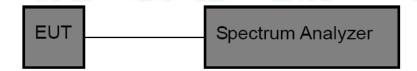
The EUT was set to the Hopping Mode by the Customer.

8.5 Test Data

Please refer to the Attachment E.

Page: 22 of 94

9. Channel Separation and Bandwidth Test


9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.247

9.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
Bandwidth	<=1 MHz (20dB bandwidth)	2400~2483.5
Channel Separation	>25KHz or >two-thirds of the 20 dB bandwidth Which is greater	2400~2483.5

9.2 Test Setup

9.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:

Channel Separation: RBW=100 kHz, VBW=100 kHz.

Bandwidth: RBW=30 kHz, VBW=100 kHz.

- (3) The bandwidth is measured at an amplitude level reduced 20dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
 - (4) Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:30 kHz, and Video Bandwidth:100 kHz. Sweep Time set auto.

9.4 EUT Operating Condition

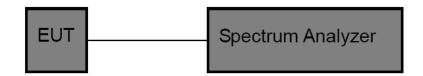
The EUT was set to the Hopping Mode for Channel Separation Test and continuously transmitting for the Bandwidth Test.

9.5 Test Data

Please refer to the Attachment F.

Page: 23 of 94

10. Peak Output Power Test


10.1 Test Standard and Limit

10.1.1 Test Standard FCC Part 15.247 (b) (1)

10.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
Peak Output Power	Hopping Channels>75 Power<1W(30dBm) Other <125 mW(21dBm)	2400~2483.5

10.2 Test Setup

10.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:

Peak Detector: RBW=1 MHz, VBW=3 MHz for bandwidth less than 1MHz. RBW=3 MHz, VBW ≥ RBW for bandwidth more than 1MHz.

10.4 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

10.5 Test Data

Please refer to the Attachment G.

Page: 24 of 94

11. Antenna Requirement

11.1 Standard Requirement

11.1.1 Standard FCC Part 15.203

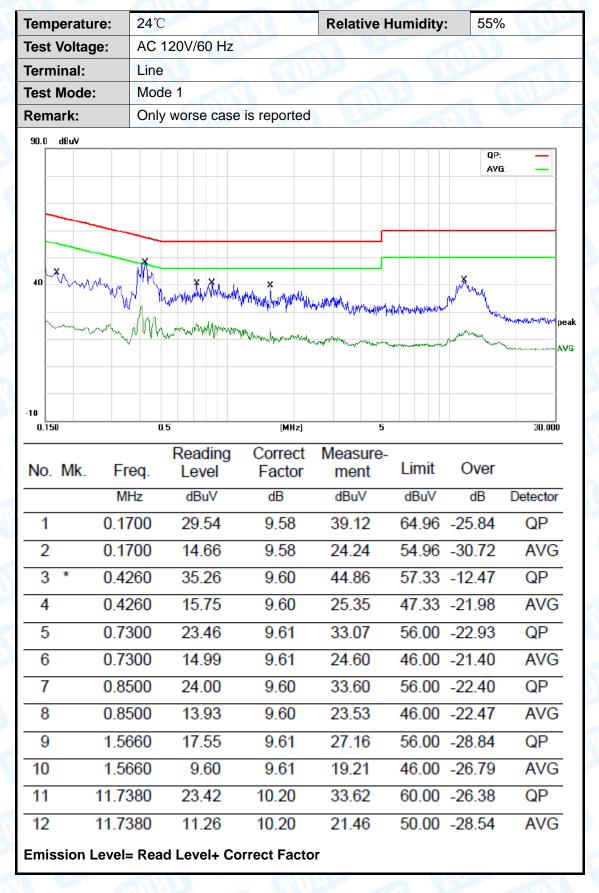
11.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

11.2 Antenna Connected Construction

The gains of the antenna used for transmitting is 3.02dBi, and the antenna connector is de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

11.3 Result


The EUT antenna is a FPC Antenna. It complies with the standard requirement.

	Antenna Type	
The state of the s	Permanent attached antenna	
The state of the s	⊠Unique connector antenna	ā
	Professional installation antenna	H

Attachment A-- Conducted Emission Test Data

24°C 55% Temperature: **Relative Humidity:** AC 120V/60 Hz **Test Voltage:** Terminal: Neutral **Test Mode:** Mode 1 Remark: Only worse case is reported 90.0 dBuV QP: AVG: 0.150 0.5 [MHz] 30.000 Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment MHz dBuV dB dBuV dBuV dB Detector 1 0.1700 25.08 9.64 34.72 64.96 -30.24 QΡ 2 0.1700 11.61 9.64 21.25 54.96 -33.71 AVG 3 QP 0.4260 31.77 9.58 41.35 57.33 -15.98 17.26 47.33 -20.49 AVG 0.4260 9.58 26.84 4 5 22.75 32.34 56.00 -23.66 QP 0.6180 9.59 16.62 9.59 26.21 46.00 -19.79 AVG 6 0.6180 7 0.8340 24.92 9.59 34.51 56.00 -21.49 QΡ AVG 8 0.8340 16.13 9.59 25.72 46.00 -20.28 3.0260 16.58 26.25 56.00 -29.75 QP 9 9.67 10 3.0260 10.00 19.67 46.00 -26.33 AVG 9.67 QP 11 13.5100 14.09 10.50 24.59 60.00 -35.41

12

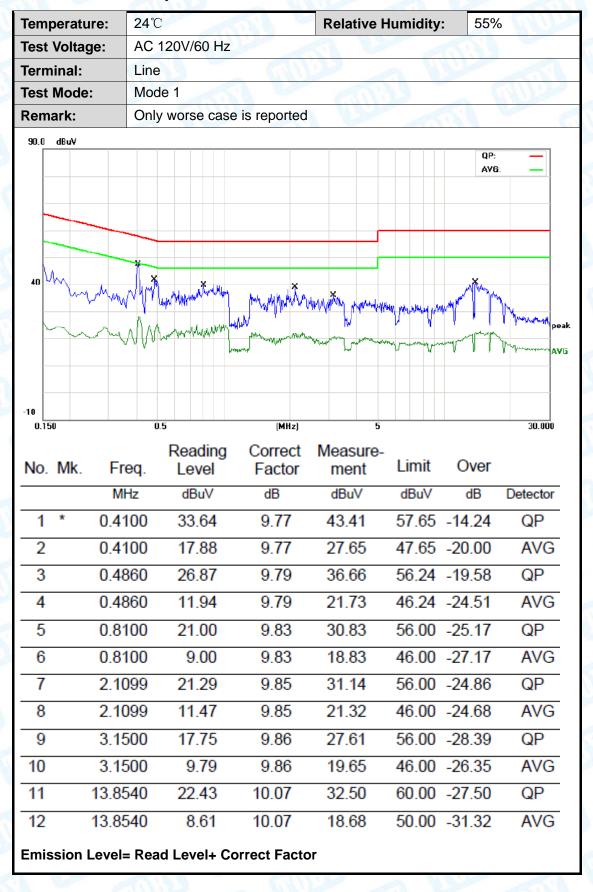
13.5100

6.05

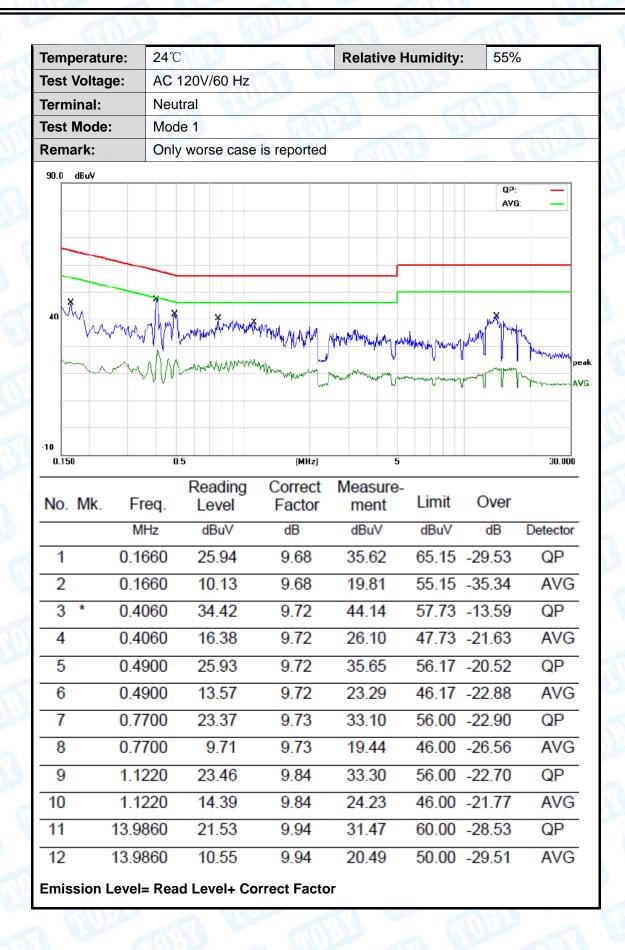
Emission Level= Read Level+ Correct Factor

10.50

16.55


50.00 -33.45

AVG


Page: 27 of 94

Material difference sample

Page: 28 of 94

29 of 94

Attachment B-- Radiated Emission Test Data

9KHz~30MHz

From 9KHz to 30MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB

below the permissible value has no need to be reported.

30MHz~1GHz

Ten	nperat	ure:	2	.5°C			1978			6.6	F	Relativ	е Ни	ımi	dity	/ :	559	%			V
Tes	t Volta	ge:	С	C:	3.7\	V	A			Jack Control of the Park							A	N	N	5	
Ant	. Pol.	H	Horizontal																		
Tes	t Mode	e:	N	/lod	le 1						W		6		3						
Ren	nark:		C	Only	/ WC	orse	e ca	ase	is re	ported		1	1				K		3		
80.0	dBuV/i	m																			
														(F	F)FC	C 15C	3M R	adiatio			
						_	+				┵								+	\dashv	
											۲										
30													5 ¥				6			m	
	L.	1		2	3		+			4 X						_/~	_mr	~~~	WY THI		
	My	who had	Mun	, Å	, J	J. Mary	mu	um/M	how	m ^d	\m	Mariana	~~IV	W							
-20																					
	1.000	40 5	0 6	0 7	70					(MHz)		:	300	4	00	500	600	700)	1000.	000
N	lo. Ml	k. F	req				din vel			rrect actor		leasur ment	0 -	Lir	nit		Ov	er			
		ı	MHz			dB	uV		dE	3/m		dBuV/m	1	dB	uV/ı	m	d	В	D	etec	to
1		47.	.325	5		37	.50		-22	2.35		15.15		4(0.0)	-24	1.85	5	QI	5
2		67.	202	2		37	.86	;	-23	3.74		14.12		4(0.0)	-25	5.88	3	QI)
3		77.	.865	4		38	.01		-22	2.74		15.27		4(0.0)	-24	1.73	3	QI	5
4		178	3.132	27		39	.33	,	-20).24		19.09		43	3.50)	-24	1.41		QF	5
5	*	332	2.518	37		38	.57	,	-15	5.14		23.43		46	6.00)	-22	2.57	7	QI	5
6		620	.709	96		31	.21		-8	.36		22.85		46	6.00)	-23	3.15	5	QI	5
	aximum (x:Over				r mai														
Emi	ission	Level	l= Re	ead	Le	vel	+ C	orr	ect I	Factor											

Report No.: TB-FCC166207
Page: 30 of 94

Page:

Temperature:	25 ℃	33	EN.	Relative H	lumidity:	55%	
Test Voltage:	DC 3.7	V	33	THE STATE OF THE S	183	- N	1917
Ant. Pol.	Vertical	1110		1 12	6.00		
Test Mode:	Mode 1		CALL S		I All		(773
Remark:	Only wo	orse case i	is reported		9	EN.	1
80.0 dBuV/m							
					(RF)FCC 15	iC 3M Radiation	
						Margin -6	dB
30						6	
, į		2 3			5 ¥	X	mound
my /	1.7	3 4 7 X			a when when	Mr. Linkow	
· • • • • • • • • • • • • • • • • • • •	mm	- William	while was plant	mountaine	Alex		
20							
30.000 40 50	60 70		(MHz)	300	400 50	0 600 700	1000.0
		Reading		Measure-	Limit	Over	
	TOCI	OVO	Factor	ment	Limit	Over	
	req.	Level	- deter				
	lHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detecto
М					dBuV/m 40.00	dB -15.14	Detecto QP
M 1 * 47.6	lHz	dBuV	dB/m	dBuV/m			
M 1 * 47.6 2 78.4	Hz 3586	dBu√ 47.32	dB/m -22.46	dBuV/m 24.86	40.00	-15.14	QP
M 1 * 47.6 2 78.4 3 96.0	1Hz 1586 1133	dBu∨ 47.32 42.67	dB/m -22.46 -22.68	dBuV/m 24.86 19.99	40.00 40.00	-15.14 -20.01	QP QP
M 47.6 2 78.4 3 96.0 4 113.	0586 1133	dBuV 47.32 42.67 39.85	dB/m -22.46 -22.68 -22.05	dBuV/m 24.86 19.99 17.80	40.00 40.00 43.50	-15.14 -20.01 -25.70	QP QP QP
M 47.6 2 78.4 3 96.0 4 113.5 5 377.5	Hz 6586 4133 0986 7143	dBuV 47.32 42.67 39.85 39.79	dB/m -22.46 -22.68 -22.05 -22.38	dBuV/m 24.86 19.99 17.80 17.41	40.00 40.00 43.50 43.50	-15.14 -20.01 -25.70 -26.09	QP QP QP
M 1 * 47.6 2 78.4 3 96.0 4 113.5 5 377.6 6 566.6	Hz 6586 H133 0986 7143 2591	dBuV 47.32 42.67 39.85 39.79 34.36	dB/m -22.46 -22.68 -22.05 -22.38 -13.32 -8.92	dBuV/m 24.86 19.99 17.80 17.41 21.04	40.00 40.00 43.50 43.50 46.00	-15.14 -20.01 -25.70 -26.09 -24.96	QP QP QP QP

Page: 31 of 94

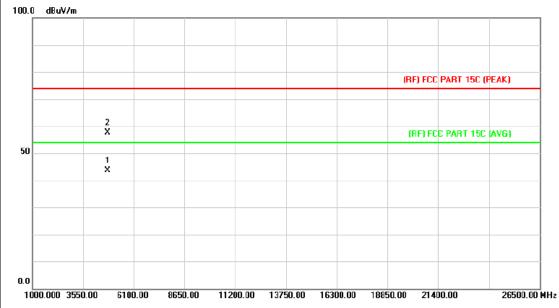
Material difference sample

30MHz~1GHz

Tempe	erature:	26℃	(MIL)		Relative H	Humidity:	55%	
Test V	oltage:	DC 3.	7V	CHILL:		J BIT		M
Ant. P	ol.	Horizo	ontal				(III)	
Test M	lode:	Mode	1		Mich		1 6	(
Remark: Only worse ca				is reported		alin		
80.0 d	lBuV/m							
						(BEIECC 15	iC 3M Radiation	
						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Margin -6	dB [
30				3		1 K	5 6 X .M	. M.
, k		2		×			mallina,	~~~
Are s	Muny	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Marian Marian	hough	Manufan Maria	now.		
-20								
30.000	40 50			(MHz)	300	400 50	0 600 700	1000.00
No.	Mk. F	req.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	N	ИНZ	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detecto
1	32.6	6340	34.32	-14.98	19.34	40.00	-20.66	QP
2	67.2	2022	37.86	-23.74	14.12	40.00	-25.88	QP
3	178.	1324	40.83	-20.24	20.59	43.50	-22.91	QP
4	332.	5187	39.07	-15.14	23.93	46.00	-22.07	QP
5	620.	7096	32.71	-8.36	24.35	46.00	-21.65	QP
6	* 776.	.8777	32.50	-6.02	26.48	46.00	-19.52	QP
		:Over limit = Read L	!:over margin	ect Factor				

Report No.: TB-FCC166207
Page: 32 of 94

Page:


ant Valtage.							
est Voltage:	DC 3.7	V	111	TIM.		~ 1	MA
nt. Pol.	Vertica	I MAN		WILL TO		19.3	
est Mode:	Mode 1				J KD		1
emark:	Only w	orse case i	s reported		3	" BA	1
0.0 dBuV/m							
					(RF)FCC 15	C 3M Radiation	
						Margin -6	dB
30		2				e e	
, ķ		ў з ×	4 X		5 ¥	Marken	Munu
~~~~\\\ / \			الآمر _{ان}		ward ward hiller	**	
7" 1	WWW V		Myms	James James			
0	00 70		2111.	000	400 50	2 000 700	1000.0
30.000 40 50	60 70		(MHz)	300	400 50	0 600 700	1000.0
No Mir E		Reading	Correct	Measure-	Limit	Over	
	req.	Level	Factor	ment			
M	lHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detecto
46.9	947	46.22	-22.24	23.98	40.00	-16.02	QP
2 * 78.4	1133	46.67	-22.68	23.99	40.00	-16.01	QP
3 96.0	986	41.85	-22.05	19.80	43.50	-23.70	QP
	4122	39.86	-19.88	19.98	43.50	-23.52	QP
377.	2590	34.36	-13.32	21.04	46.00	-24.96	QP
566.	6221	37.69	-8.92	28.77	46.00	-17.23	QP
*:Maximum data x:	Over limit	!:over margin	-				



Page: 33 of 94

### Above 1GHz(Only worse case is reported)

Temperature:	25℃	Relative Humidity:	55%					
Test Voltage:	DC 3.7V		NAME OF THE PARTY					
Ant. Pol.	Horizontal							
Test Mode:	TX GFSK Mode 2402MHz	TX GFSK Mode 2402MHz						
Remark: No report for the emission which more than 10 dB below the prescribed limit.								

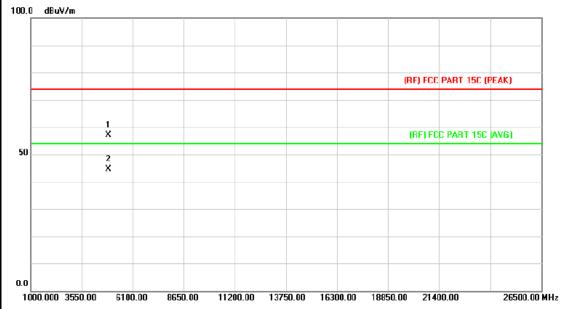



No	. Mk	. Freq.		Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4804.942	29.27	14.44	43.71	54.00	-10.29	AVG
2		4805.332	43.13	14.44	57.57	74.00	-16.43	peak



Page: 34 of 94

Temperature:	25℃ Relative Humidity: 55%							
Test Voltage:	DC 3.7V							
Ant. Pol.	Vertical	Vertical						
Test Mode:	TX GFSK Mode 2402MH	TX GFSK Mode 2402MHz						
Remark:	No report for the emission which more than 10 dB below the							
	prescribed limit.							

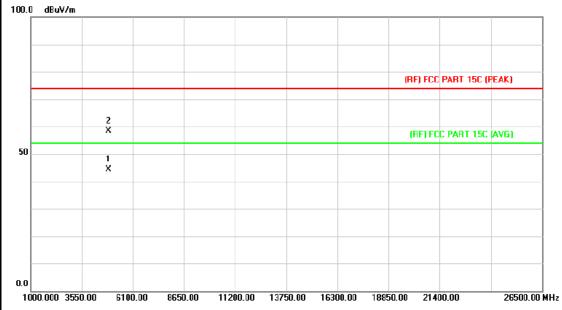



No	o. Mk	. Freq.		Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4804.228	30.38	14.43	44.81	54.00	-9.19	AVG
2		4804.672	44.73	14.44	59.17	74.00	-14.83	peak



Page: 35 of 94

Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V						
Ant. Pol.	Horizontal						
Test Mode:	TX GFSK Mode 2441MHz						
Remark: No report for the emission which more than 10 dB below the prescribed limit.							

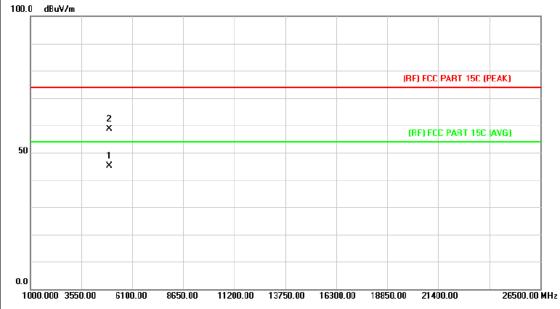



No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4880.824	42.23	14.90	57.13	74.00	-16.87	peak
2	*	4883.098	29.63	14.91	44.54	54.00	-9.46	AVG



Page: 36 of 94

Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V	THE STATE OF THE S	THU.				
Ant. Pol.	Vertical						
Test Mode:	TX GFSK Mode 2441MHz						
Remark: No report for the emission which more than 10 dB below the prescribed limit.							




ı	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		*	4882.330	29.54	14.91	44.45	54.00	-9.55	AVG
2			4882.720	43.51	14.91	58.42	74.00	-15.58	peak



Page: 37 of 94

Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		NAME OF THE PARTY
Ant. Pol.	Horizontal		
Test Mode:	TX GFSK Mode 2480MHz		
Remark:	No report for the emission wh prescribed limit.	ich more than 10 dB be	elow the

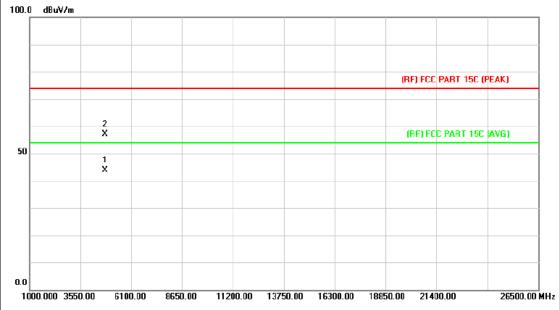


No	. Mk	Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4960.684	29.71	15.40	45.11	54.00	-8.89	AVG
2		4961.236	43.35	15.40	58.75	74.00	-15.25	peak



Page: 38 of 94

Temperature:	25℃	Relative Humidity: 55%					
Test Voltage:	DC 3.7V	COUNTY OF	MAG				
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX GFSK Mode 2480MHz						
Remark:	No report for the emission v prescribed limit.	hich more than 10 dB	below the				

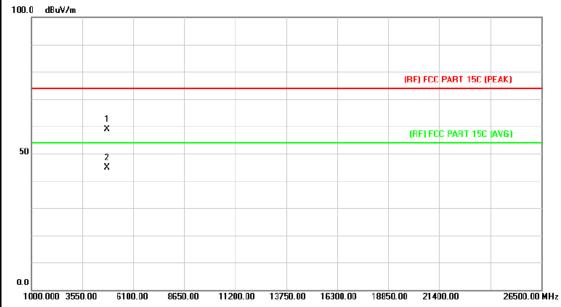



No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4960.294	43.68	15.39	59.07	74.00	-14.93	peak
2	*	4960.984	29.74	15.40	45.14	54.00	-8.86	AVG



Page: 39 of 94

Temperature:	25℃	Relative Humidity: 55%					
Test Voltage:	DC 3.7V						
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	TX π /4-DQPSK Mode 2402	MHz					
Remark:	No report for the emission w prescribed limit.	hich more than 10 dB	below the				




No.	Mk	Freq.	Reading Level		Measure- ment	Limit	Over	
•		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4804.168	29.41	14.43	43.84	54.00	-10.16	AVG
2		4804.396	42.71	14.43	57.14	74.00	-16.86	peak



Page: 40 of 94

Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V						
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX π /4-DQPSK Mode 24	02MHz					
Remark:	No report for the emission prescribed limit.	n which more than 10 dE	3 below the				

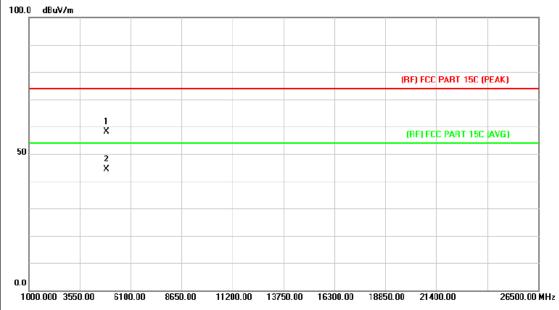



No.	Mk.	Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4804.132	44.39	14.43	58.82	74.00	-15.18	peak
2	*	4804.150	30.42	14.43	44.85	54.00	-9.15	AVG



Page: 41 of 94

Temperature: 25°C		Relative Humidity:	55%				
Test Voltage:	DC 3.7V	COUNTY S	A VIVI				
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	TX π /4-DQPSK Mode 2441	MHz					
Remark:	No report for the emission v	No report for the emission which more than 10 dB below the					
	prescribed limit.						

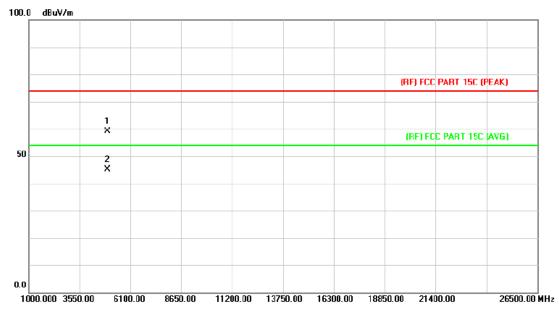



No.	Mk	Freq.		Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4881.094	29.57	14.91	44.48	54.00	-9.52	AVG
2		4881.910	43.30	14.91	58.21	74.00	-15.79	peak



Page: 42 of 94

Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V	0.00	MUL				
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX π /4-DQPSK Mode 2441	MHz					
Remark:							

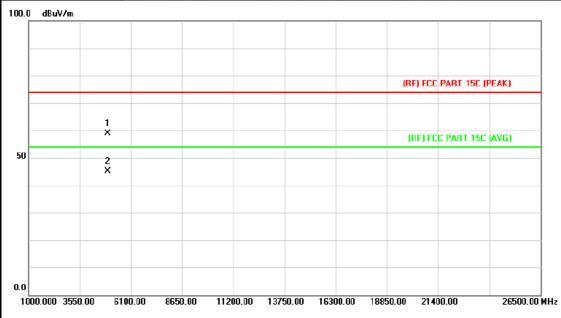



No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4881.016	43.21	14.91	58.12	74.00	-15.88	peak
2	*	4883.242	29.59	14.91	44.50	54.00	-9.50	AVG



Page: 43 of 94

Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V	W1777	THE PARTY OF THE P				
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	TX π /4-DQPSK Mode 2480M	Hz					
Remark:	No report for the emission wh prescribed limit.	ich more than 10 dB bo	elow the				

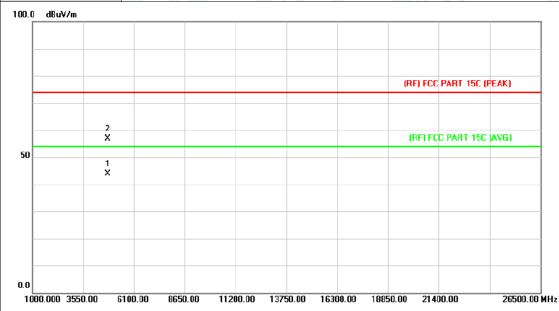



No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	_
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4959.202	43.62	15.39	59.01	74.00	-14.99	peak
2	*	4960.702	29.72	15.40	45.12	54.00	-8.88	AVG



Page: 44 of 94

Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V	COUNTY OF	NAME OF THE PARTY				
Ant. Pol.	Vertical	Vertical					
Test Mode:	TX π /4-DQPSK Mode 2480M	Hz					
Remark:	No report for the emission which more than 10 dB below the						
	prescribed limit.	The same of the sa					

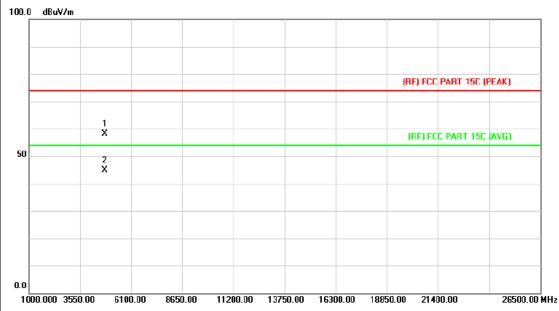



No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4959.622	43.44	15.39	58.83	74.00	-15.17	peak
2	*	4960.270	29.71	15.39	45.10	54.00	-8.90	AVG



Page: 45 of 94

<b>25</b> ℃	Relative Humidity:	55%				
DC 3.7V						
Horizontal	Horizontal					
TX 8-DPSK Mode 2402MH	z					
No report for the emission of prescribed limit.	which more than 10 dB	below the				
	DC 3.7V Horizontal TX 8-DPSK Mode 2402MH No report for the emission v	DC 3.7V Horizontal TX 8-DPSK Mode 2402MHz No report for the emission which more than 10 dB				

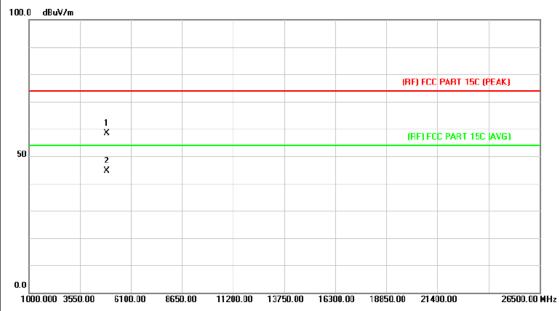



N	lo. N	Иk.	Freq.	Reading Level		Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*		4804.510	29.39	14.44	43.83	54.00	-10.17	AVG
2			4805.296	42.45	14.44	56.89	74.00	-17.11	peak



Page: 46 of 94

Temperature:	25℃	Relative Humidity:	55%		
Test Voltage:	DC 3.7V	WW.	MAN		
Ant. Pol.	Vertical				
Test Mode:	TX 8-DPSK Mode 2402N	ИНz			
Remark:	No report for the emission which more than 10 dB below the				
	prescribed limit.				

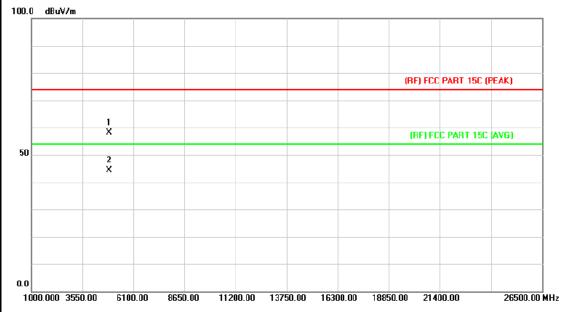



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4803.844	43.78	14.43	58.21	74.00	-15.79	peak
2	*	4804.186	30.42	14.43	44.85	54.00	-9.15	AVG



Page: 47 of 94

Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V	0.00	NYU.				
Ant. Pol.	Horizontal	Horizontal					
Test Mode:	TX 8-DPSK Mode 2441MHz	PAU					
Remark:	No report for the emission w prescribed limit.	No report for the emission which more than 10 dB below the					

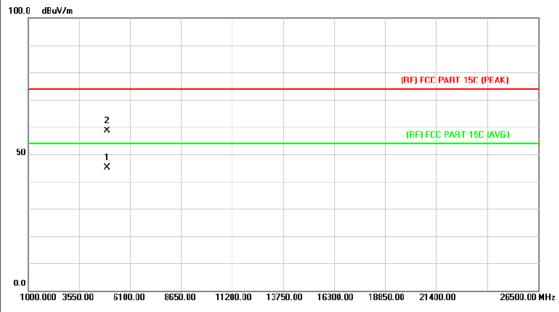



No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4882.204	43.51	14.91	58.42	74.00	-15.58	peak
2	*	4883.362	29.62	14.91	44.53	54.00	-9.47	AVG



Page: 48 of 94

Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V	(41)	NYU:
Ant. Pol.	Vertical	V C	
Test Mode:	TX 8-DPSK Mode 2441MHz	PAU	
Remark:	No report for the emission was prescribed limit.	hich more than 10 dB	below the
1			




No.	Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4882.180	43.33	14.91	58.24	74.00	-15.76	peak
2	*	4882.192	29.53	14.91	44.44	54.00	-9.56	AVG



Page: 49 of 94

Temperature:	25℃	Relative Humidity:	55%					
Test Voltage:	DC 3.7V	COLUMN TO SERVICE OF THE PERSON OF THE PERSO	NAME OF THE PARTY					
Ant. Pol.	Horizontal		189					
Test Mode:	TX 8-DPSK Mode 2480MHz	TX 8-DPSK Mode 2480MHz						
Remark:	No report for the emission wh prescribed limit.	ich more than 10 dB be	elow the					



No	. Mk	. Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4958.698	29.65	15.39	45.04	54.00	-8.96	AVG
2		4960.384	43.32	15.40	58.72	74.00	-15.28	peak

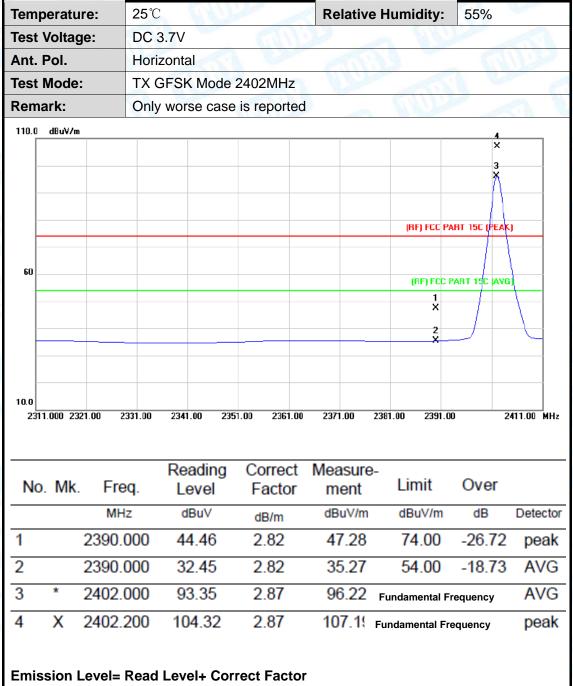


Page: 50 of 94

Temperature:	25℃	Relative Humidity:	55%				
Test Voltage:	DC 3.7V		NAME OF THE PARTY				
Ant. Pol.	Vertical						
Test Mode:	TX 8-DPSK Mode 2480MHz	TX 8-DPSK Mode 2480MHz					
Remark:	No report for the emission wh prescribed limit.	ich more than 10 dB be	elow the				

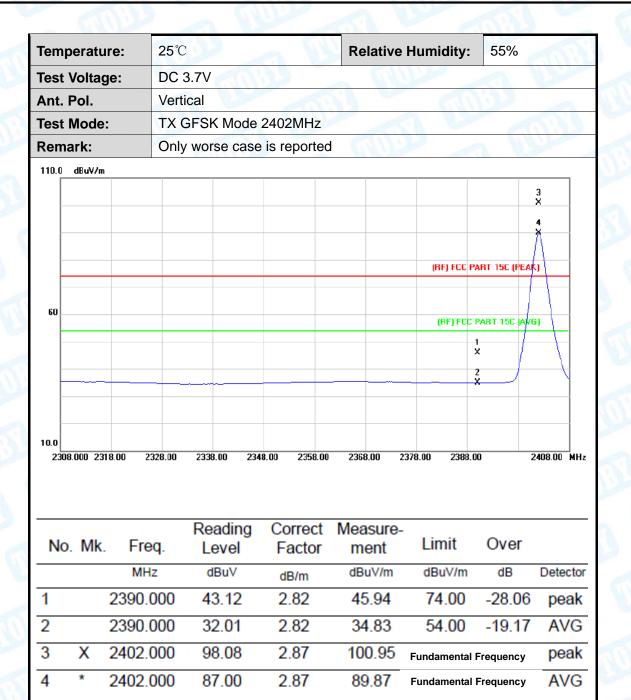


No	. Mk	Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4960.102	42.84	15.39	58.23	74.00	-15.77	peak
2	*	4961.224	29.72	15.40	45.12	54.00	-8.88	AVG



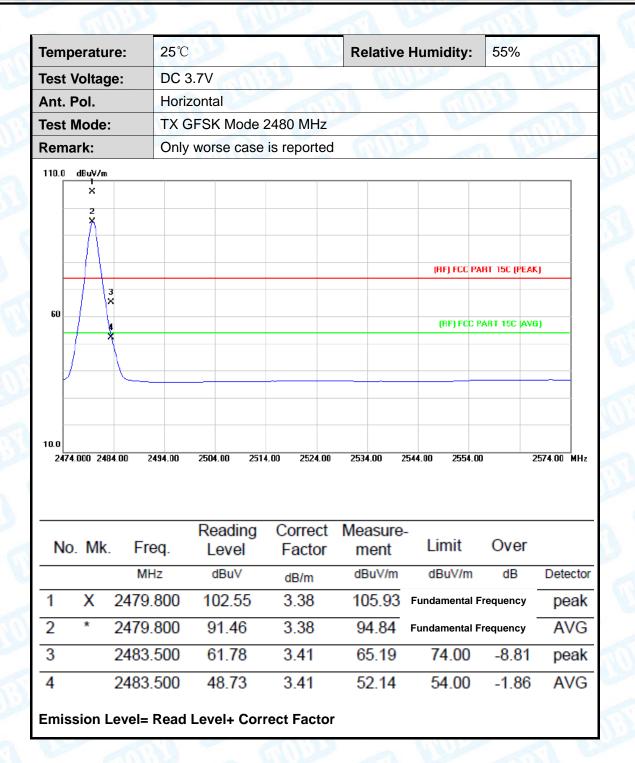



Page: 51 of 94


## **Attachment C-- Restricted Bands Requirement Test Data**

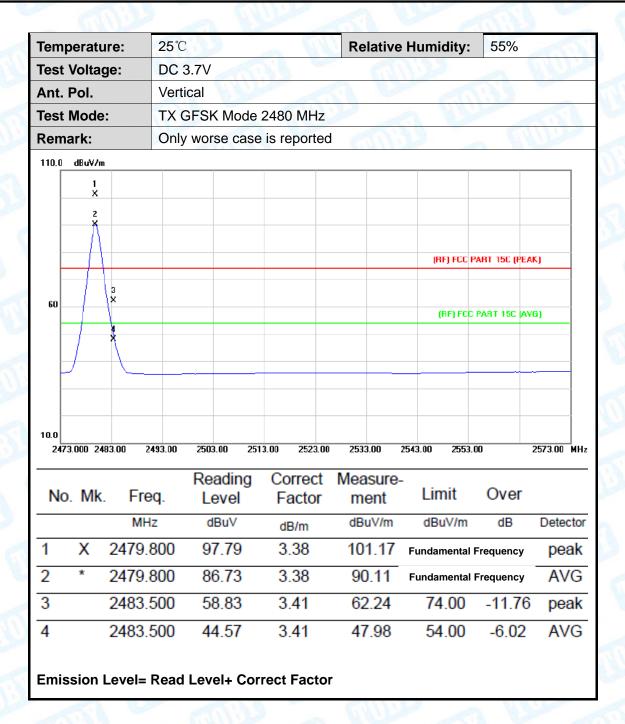
### (1) Radiation Test





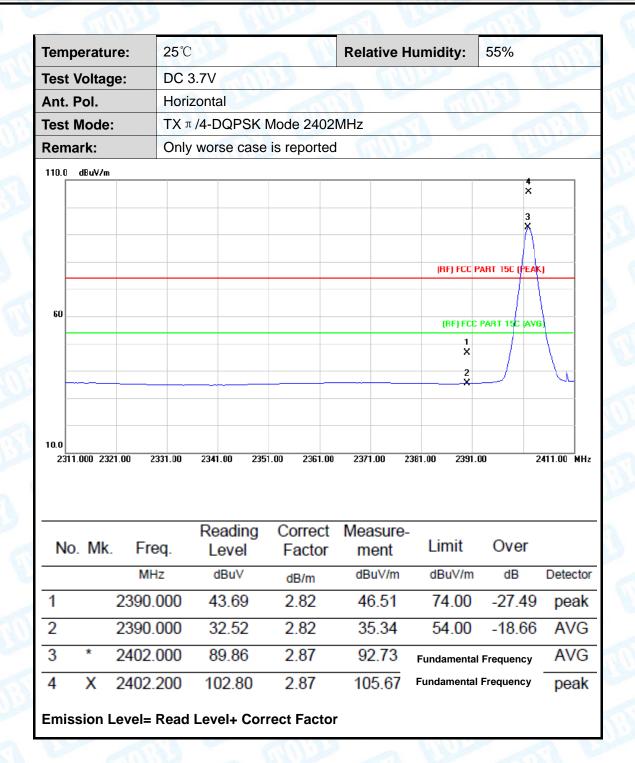

Page: 52 of 94





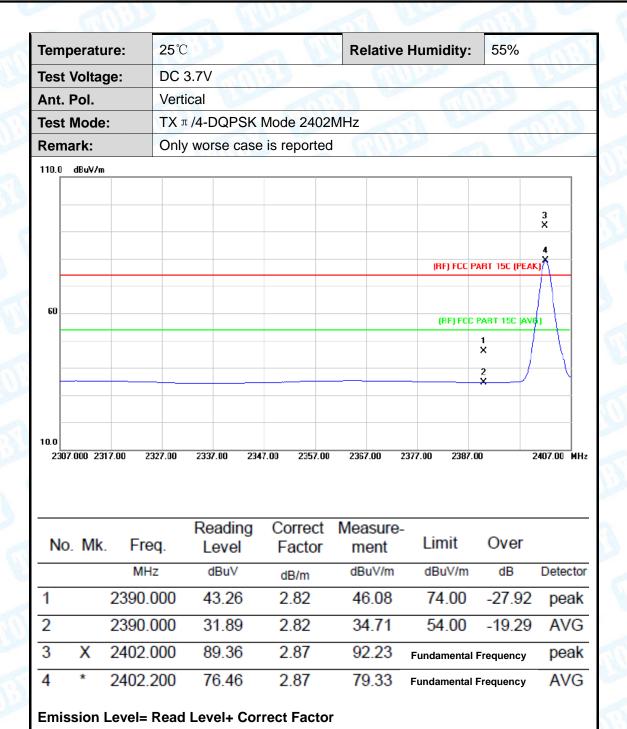

Page: 53 of 94






Page: 54 of 94






Page: 55 of 94





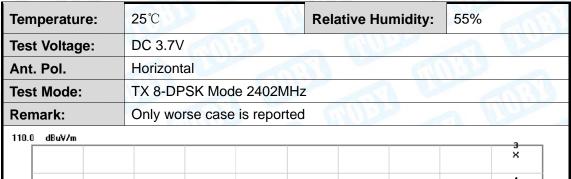
Page: 56 of 94





Page: 57 of 94

Ten	peratu	ıre:	<b>25</b> ℃	33	1	1/1/	Relative	e Humidity:	55%	
Tes	t Volta	ge:	DC 3.	7V	130		July Carl	M. Ber		All Indian
Ant	. Pol.		Horizo	ontal		1		TIME TO THE	133	
Tes	t Mode	):	<b>TX</b> π /	4-DQPSk	Mode 24	480M	Hz			
Ren	nark:		Only	worse cas	se is repo	rted	CMI)		a W	S. Land
110.0	dBuV/m	1								
	×	1								
	2 X									
	[									
								(RF) FCC P	ART 15C (PE	AKJ
		3 X								
60	-+							(RF) FCC	PART 15C (A'	VG)
		×								
		+								
10.0										
24	72.000 24	82.00 2	492.00	2502.00 2	512.00 252	22.00	2532.00	2542.00 2552.0	00	2572.00 MHz
				Reading			Measure		Over	
N	o. Mk			Level	Fact	or	ment	Limit	Over	
		МН	Z	dBu∨	dB/m		dBuV/m	dBuV/m	dB	Detector
1	X	2480.	000	101.71	3.38		105.09	Fundamental F	requency	peak
2	*	2480.	000	88.76	3.38		92.14	Fundamental F	requency	AVG
3		2483.	500	61.25	3.41		64.66	74.00	-9.34	peak
4		2483.	500	47.33	3.41		50.74	54.00	-3.26	AVG
Emi	ission	Level=	Read L	.evel+ Co	orrect Fac	ctor				

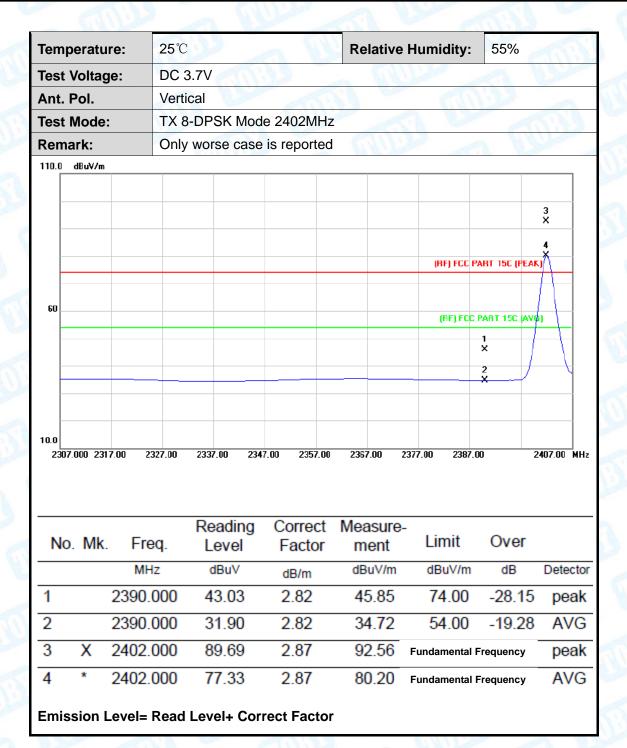



Page: 58 of 94

10111	perature:	25℃		- FI	Relative H	lumidity:	55%	THE
Test	t Voltage:	DC 3	.7V	133		سطنا		The same
Ant.	. Pol.	Vertic	cal			Tim	133	
Test	t Mode:	ΤΧ π	/4-DQPSK	Mode 2480	MHz			1119
Rem	nark:	Only	worse cas	e is reported			a W	No.
110.0	dBuV/m							
60	2 X 1 X X X X X X X X X X X X X X X X X						ART 15C (PEAK)	
10.0	75.000 2485.00	2495.00	2505.00 2	515.00 2525.00	2535.00 2	2545.00 2555.0	10 21	575.00 MHz
No	o. Mk. F	req.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
No		req.	_				Over	Detecto
No 1	N		Level	Factor	ment	Limit	dB	Detecto
	* 248	ИHz	Level dBuV	Factor dB/m	ment dBuV/m	Limit dBuV/m	dB I Frequency	
1	* 248 X 248	инz 0.000	Level dBuV 76.92	Factor dB/m 3.38	ment dBuV/m 80.30	Limit dBuV/m Fundamenta	dB I Frequency	AVG



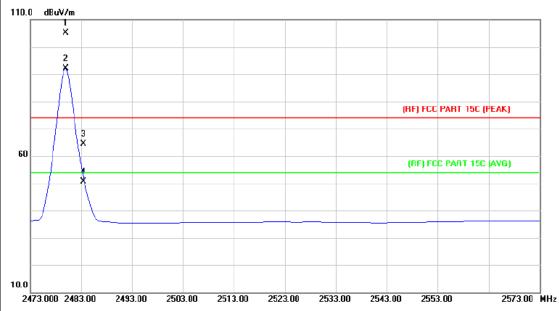
Page: 59 of 94






No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	44.46	2.82	47.28	74.00	-26.72	peak
2		2390.000	32.30	2.82	35.12	54.00	-18.88	AVG
3	X	2402.000	103.22	2.87	106.09	Fundamental	Frequency	peak
4	*	2402.000	90.30	2.87	93.17	Fundamental	Frequency	AVG





Page: 60 of 94





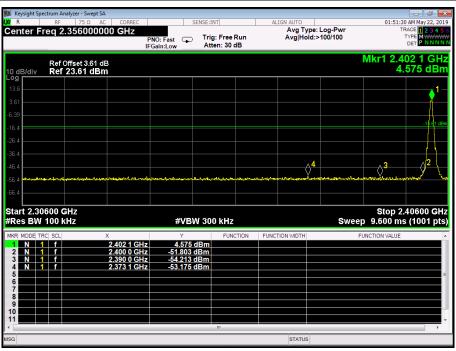
Page: 61 of 94

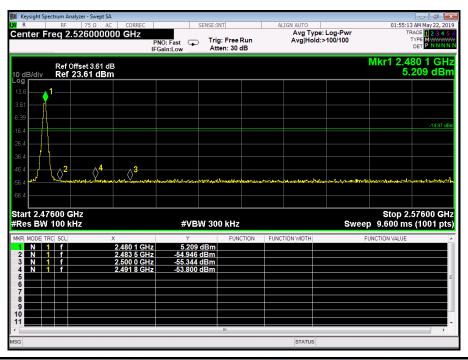




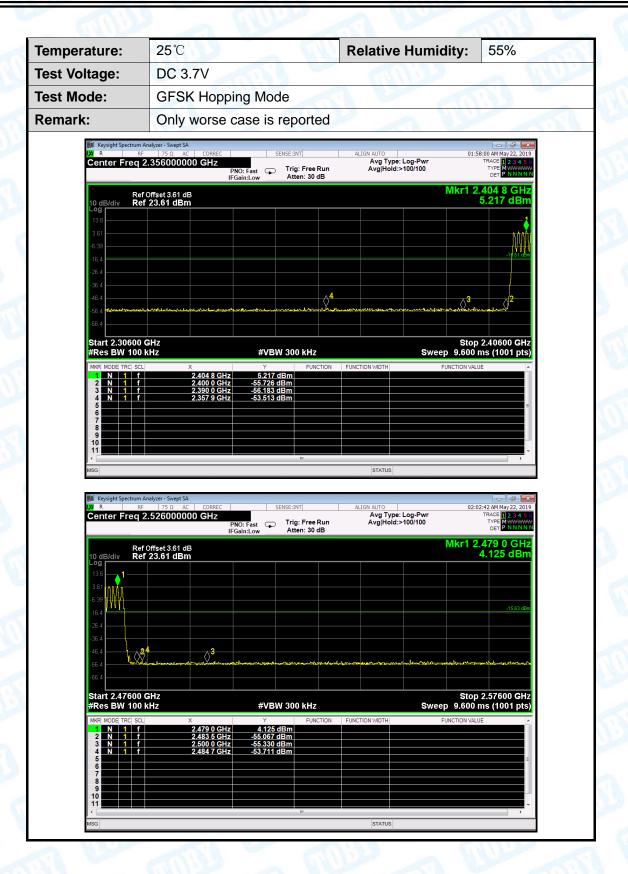
No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	X	2480.000	101.70	3.38	105.08	Fundamental F	requency	peak
2	*	2480.000	88.72	3.38	92.10	Fundamental Frequency		AVG
3		2483.500	61.06	3.41	64.47	74.00	-9.53	peak
4		2483.500	47.19	3.41	50.60	54.00	-3.40	AVG



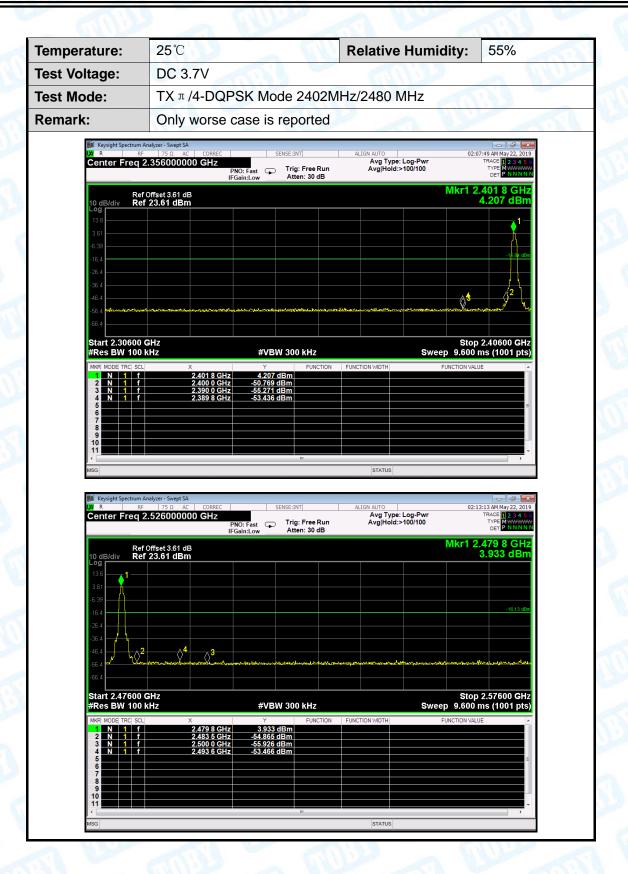

Page: 62 of 94


Temperature:			<b>25</b> ℃	300		64	Rela	tive H	lumidity:	55%	THE
Tes	t Volta	ge:	DC 3	3.7V	1110			ETH)	المليا		The same
Ant	. Pol.		Verti	cal					177	1,350	
Tes	t Mode	:	TX 8	-DPSK N	1ode 248	0MHz	•	-		-	CEST
Ren	nark:		Only	worse ca	ase is rep	orted	6	100		a W	Ulasa
110.0	dBuV/m										
	1 ×										
	2										
	Ň								(RF) FCC I	PART 15C (PEA	KJ
60	A										
	\ \X								(RF) FCC	PART 15C AV	<u> </u>
	\ \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\										
	/ '										
10.0	75.000 24	DE 00 2	495.00	2505.00	2515.00	2525.00	2535	: 00 21	545.00 <b>255</b> 5.	00	2575.00 MHz
	3.000 24	55.00	733.50	2303.00	2313.00	2323.00	2333		2333.		2313.00 11112
		_		Readin		rect		sure-		0	
N	lo. Mk	. Fre	eq.	Level	Fa	ctor	m	ent	Limit	Over	
		MH	lz	dBuV	dB	/m	dB	uV/m	dBuV/m	dB	Detector
1	X	2479.	800	89.96	3.	38	93	3.34	Fundamenta	I Frequency	peak
2	*	2479.	800	77.06	3.	38	80	).44	Fundamenta	I Frequency	AVG
3		2483.	500	49.86	3.4	41	53	3.27	74.00	-20.73	peak
4		2483.	500	38.09	3.4	41	41	1.50	54.00	-12.50	AVG

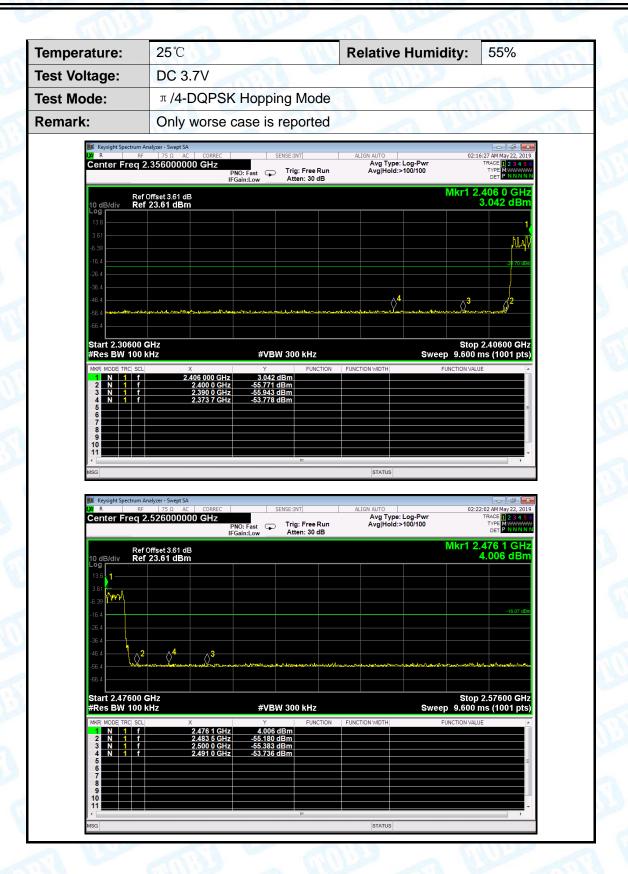



## (2) Conducted Test

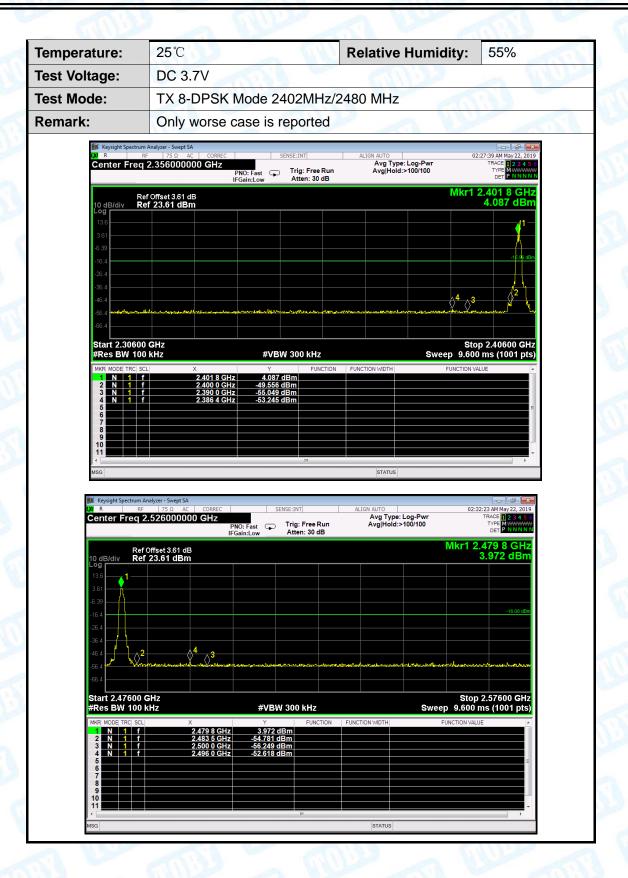




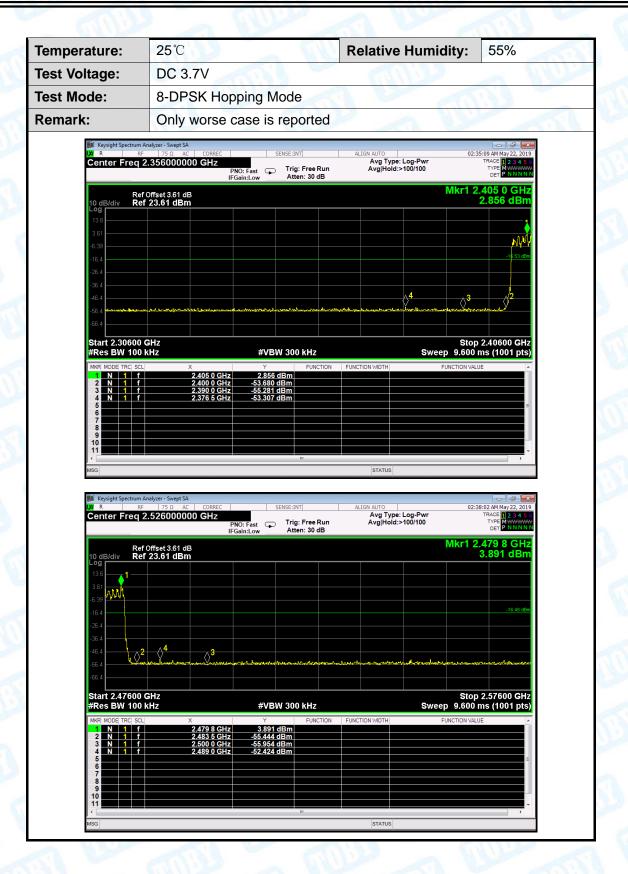










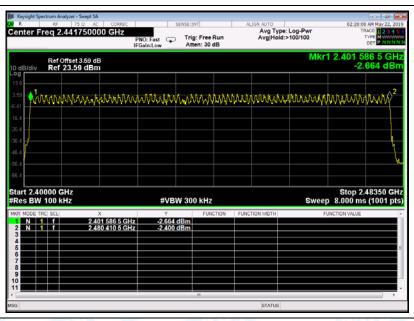






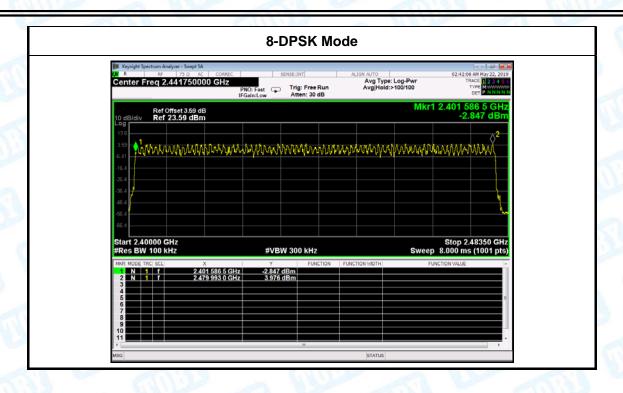






**Attachment D-- Number of Hopping Channel Test Data** 

	Temperature:	25°		Relative Humidity:	55%
	Test Voltage:	DC	3.7V		133
	Test Mode:	Hop	pping Mode	THE PARTY OF	
	Frequency Range		Test Mode	Quantity of Hopping	Limit
			rest Mode	Channel	Lillit
			GFSK	79	
	2402MHz~2480MHz		π /4-DQPSK	79	>15
			8-DPSK 79		
				CECK Made	•






### π/4-DQPSK Mode





Page: 70 of 94







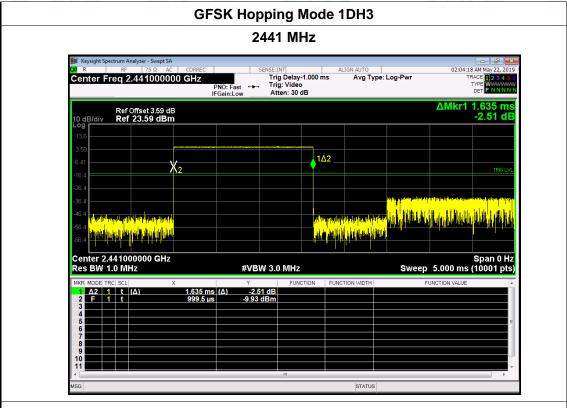
Page: 71 of 94

# **Attachment E-- Average Time of Occupancy Test Data**

Temper	ature:	25°	C	ity: 55%	Million				
Test Voltage: DC 3.7V									
Test Mode: Hopping Mode (GFSK)									
Test	Channel		Pulse	Total of Dw	ell Period Tim	e Limit	Result		
Mode	(MH	z)	Time (ms)	(ms)	(s)	(ms)	Resuit		
1DH1	2441		0.378	120.96	31.60	400	PASS		
1DH3	2441		1.635 261.60		31.60	400	PASS		
	15 2441 15 2441		2.883		307.52 31.60		PASS		

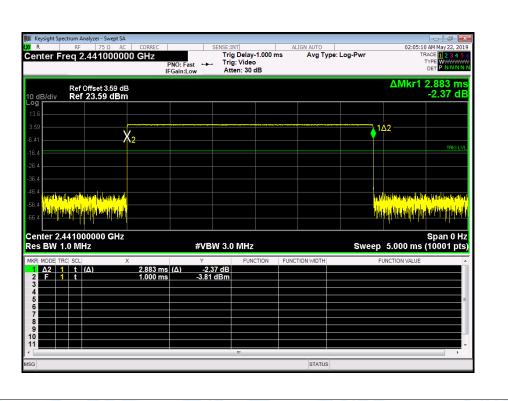
1DH1 Total of Dwell= Pulse Time*(1600/2)*31.6/79

1DH3 Total of Dwell= Pulse Time*(1600/4)*31.6/79


1DH5 Total of Dwell= Pulse Time*(1600/6)*31.6/79

### **GFSK Hopping Mode 1DH1**

#### 2441 MHz








### **GFSK Hopping Mode 1DH5**

### 2441 MHz

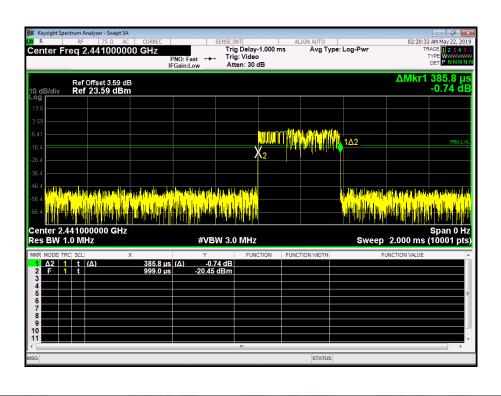




Page: 73 of 94

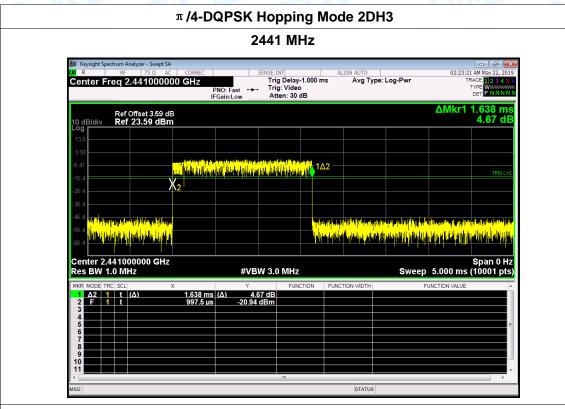
Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V		

**Test Mode:** Hopping Mode ( π /4-DQPSK)

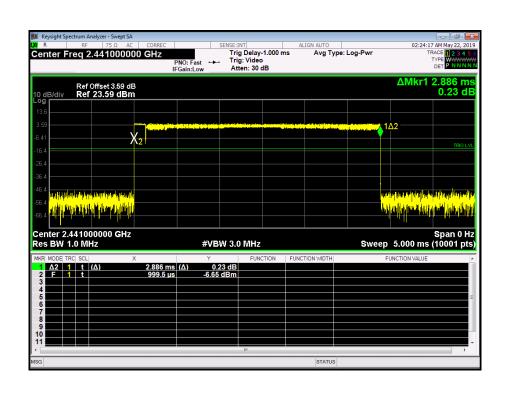

Test	Channel	Pulse	Total of Dwell	Period Time	Limit	Result
Mode	(MHz)	Time (ms)	(ms)	(s)	(ms)	Result
2DH1	2441	0.386	123.52	31.60	400	PASS
2DH3	2441	1.638	262.08	31.60	400	PASS
2DH5	2441	2.886	307.84	31.60	400	PASS

2DH1 Total of Dwell= Pulse Time*(1600/2)*31.6/79

2DH3 Total of Dwell= Pulse Time*(1600/4)*31.6/79


2DH5 Total of Dwell= Pulse Time*(1600/6)*31.6/79

# $\pi$ /4-DQPSK Hopping Mode 2DH1






Report No.: TB-FCC166207 Page: 74 of 94



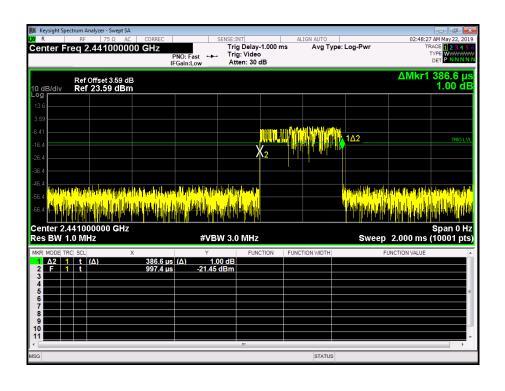
#### π /4-DQPSK Hopping Mode 2DH5





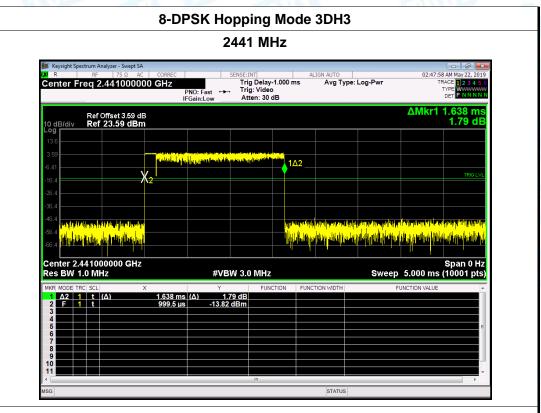
Page: 75 of 94

Temper	mperature: 25			F	Relative Humidity:	55%	TO STATE OF
Test Vo	Itage:	DC:	DC 3.7V				
Test Mode: Hopping Mode (8-DPSK)							
Test	Chan	nel	Pulse	Total of Dwell	Period Time	Limit	

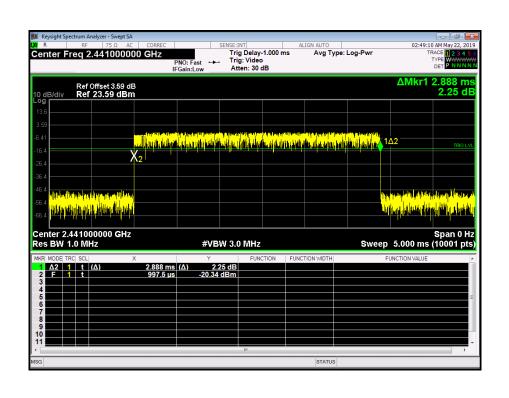

Test	Channel	Pulse	Total of Dwell	Period Time	Limit	Popult.
Mode	(MHz)	Time (ms)	(ms)	(s)	(ms)	Result
3DH1	2441	0.387	123.84	31.60	400	PASS
3DH3	2441	1.638	262.08	31.60	400	PASS
3DH5	2441	2.888	308.05	31.60	400	PASS

1DH1 Total of Dwell= Pulse Time*(1600/2)*31.6/79

1DH3 Total of Dwell= Pulse Time*(1600/4)*31.6/79


1DH5 Total of Dwell= Pulse Time*(1600/6)*31.6/79

# 8-DPSK Hopping Mode 3DH1






76 of 94 Page:



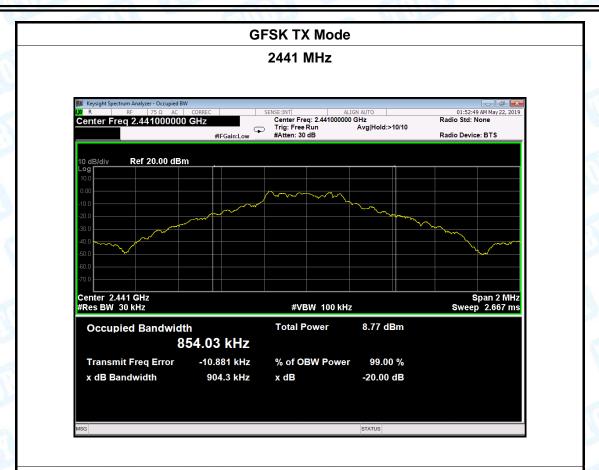
# 8-DPSK Hopping Mode 3DH5



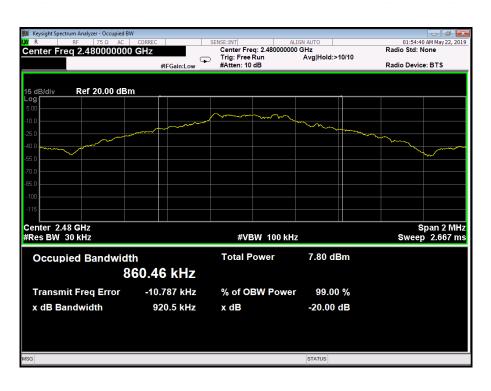




Page: 77 of 94


# Attachment F-- Channel Separation and Bandwidth Test Data

Temperature:	25℃		Relative Humidity:	55%		
Test Voltage:	DC 3.7	V		MILLIAM		
Test Mode:	TX Mo	de (GFSK)				
Channel frequer (MHz)	псу	99% OBW (kHz)	20dB Bandwidth (kHz)	20dB Bandwidth *2/3 (kHz)		
2402		851.95	921.7			
2441		854.03	904.3			
2480		2480 860.46				
GFSK TX Mode						
2402 MHz						



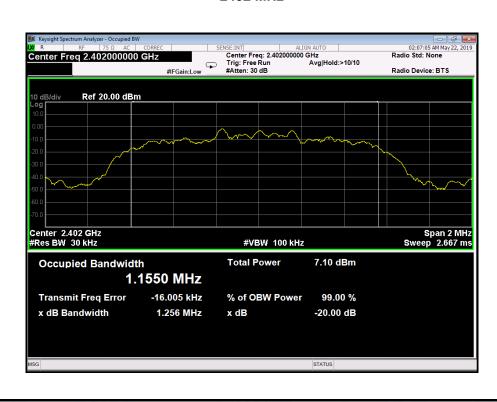



Report No.: TB-FCC166207 Page: 78 of 94



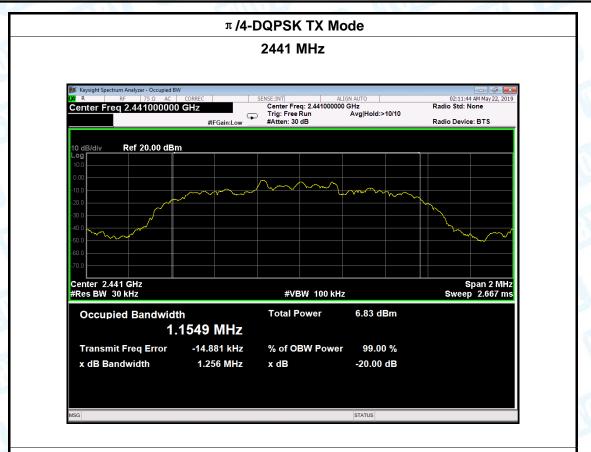
#### **GFSK TX Mode**



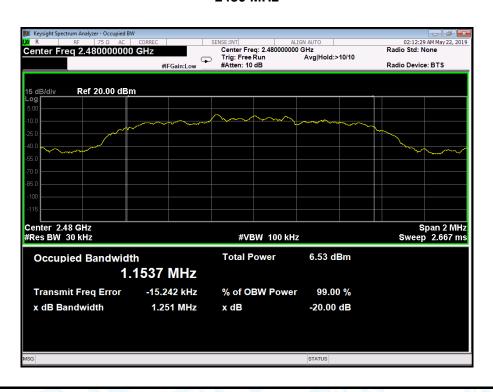



Page: 79 of 94

Temperature:	25℃	Relative Humidity:	55%
Test Voltage:	DC 3.7V	COUNTY OF	THU .
Test Mode:	TX Mode (π/4-DQPSK)	10	133
			20dB


Channel frequency (MHz)	99% OBW (kHz)	20dB Bandwidth (kHz)	20dB Bandwidth *2/3 (kHz)
2402	1155.0	1256	837.33
2441	1154.9	1256	837.33
2480	1153.7	1251	834.00

# π/4-DQPSK TX Mode

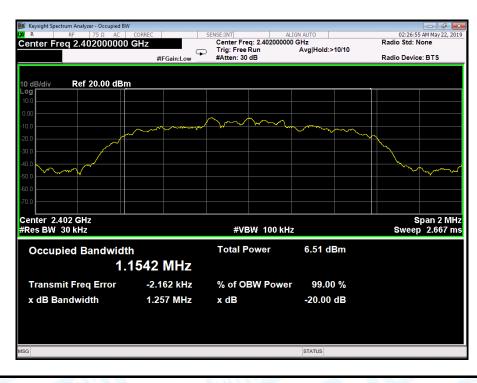





Page: 80 of 94

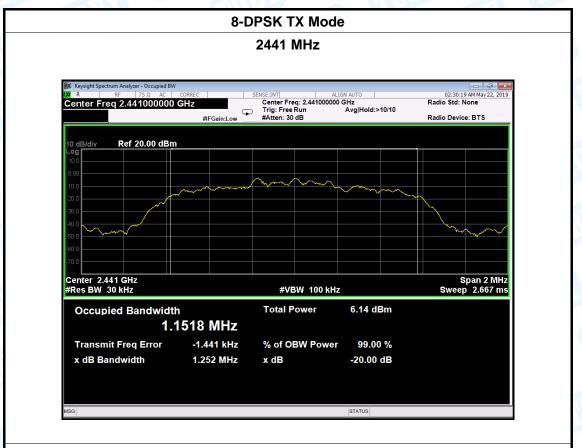


#### π/4-DQPSK TX Mode

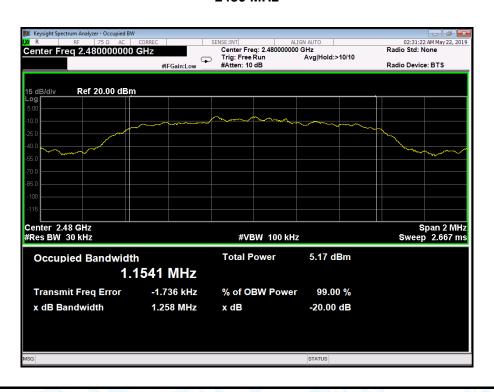





Page: 81 of 94


Temperature:	25°		Relative Humidity:	55%		
Test Voltage:	DC	DC 3.7V				
Test Mode:	TX	Mode (8-DPSK)				
Channel frequency (MHz)		99% OBW (kHz)	20dB Bandwidth (kHz)	20dB Bandwidth *2/3 (kHz)		
2402		1154.2	1257	838.00		
2441		1151.8	1252	834.67		
2480		1154.1	1258	838.67		

#### 8-DPSK TX Mode





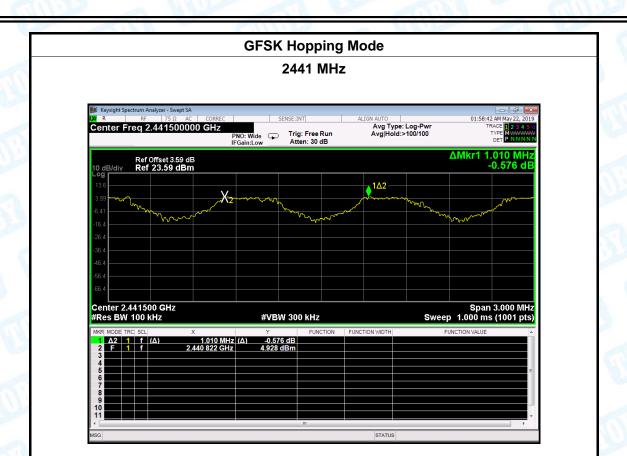

Page: 82 of 94



#### 8-DPSK TX Mode






Page: 83 of 94

Temperature:	25℃	25℃		idity:	55%	
Test Voltage:	DC 3.7V	DC 3.7V				
Test Mode:	Hopping I	Hopping Mode (GFSK)				
Channel frequency Separation Read Value Separation			aration Limit			
(MHz)		(kHz)			(kHz)	
2402		970			921.7	
2441		1010			904.3	
2480		1000			920.5	
		GFSK Hoppir	g Mode			
2402 MHz						





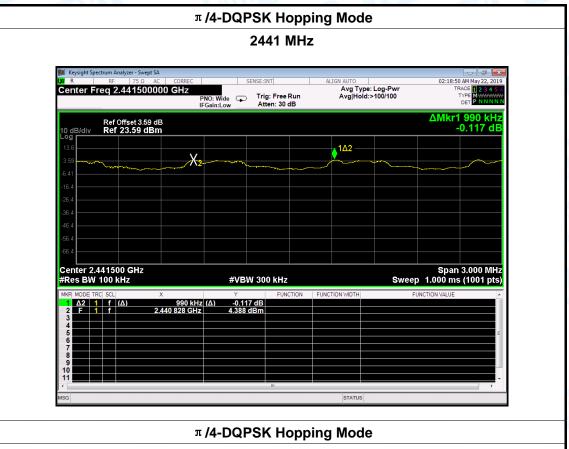
Report No.: TB-FCC166207 Page: 84 of 94



# **GFSK Hopping Mode**






Page: 85 of 94

Temperature:	25℃ Relative Humidity:			55%		
Test Voltage:	DC 3.7V	DC 3.7V				
Test Mode:	Hopping I	Hopping Mode ( π /4-DQPSK)				
Channel frequency		Separation Read Value		Separation Limit		
(MHz)	(MHz)				(kHz)	
2402		960			837.33	
2441	2441				837.33	
2480		1000		834.00		
π /4-DQPSK Hopping Mode						



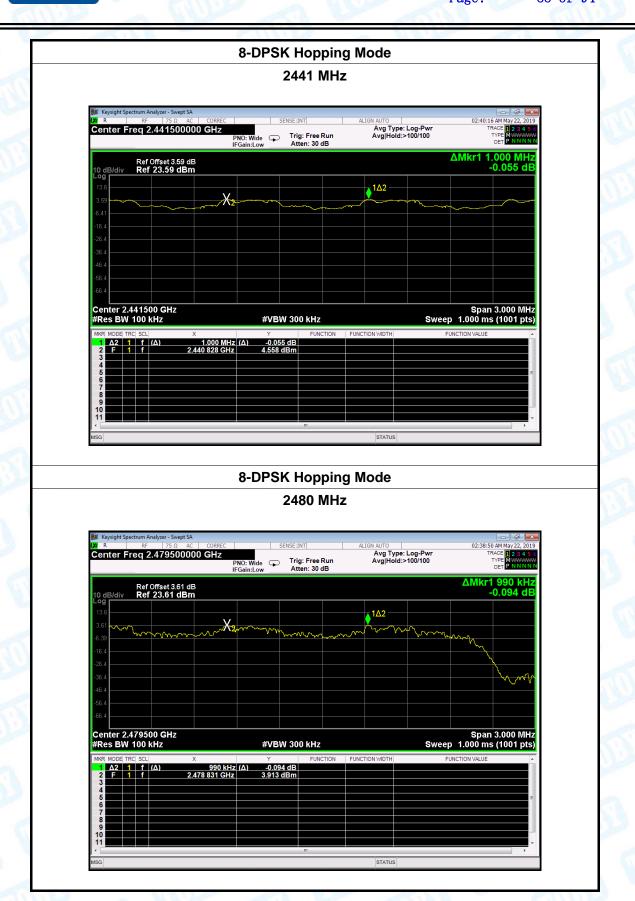


Page: 86 of 94








Page: 87 of 94

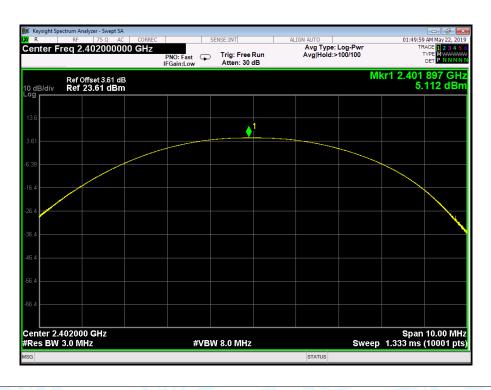
Temperature:	25℃		Relative Humidity:	55%		
Test Voltage:	DC 3.7V	M. Comment		20.0		
Test Mode:	Hopping N	Hopping Mode (8-DPSK)				
Channel freq	uency	Separation Re	ead Value Se	paration Limit		
(MHz)		(kHz)		(kHz)		
2402		990		838.00		
2441		1000		834.67		
2480		990		838.67		
		8-DPSK Hopp	ing Mode			
			ing inoac			
		2402 M				
<b>Ⅲ</b> Keysight Spectrum				- 3 <del>X</del>		
LXI R RF		<b>2402 M</b>	ALIGN AUTO AVG Type: Log-Pwr	02:34:15 AM May 22, 2019 TRACE 12:34:35 TIPE WANNING		
OM R RE	75 Ω AC CORRE 2.402500000 GHz	2402 M	ALIGN AUTO AVG Type: Log-Pwr Avg Hold:>100/100	02:34:15 AM May 22, 2019 TRACE 1 2 3 4 5 6 TYPE M WAYNAW		
OM R RE	75 Ω AC CORRE 2.402500000 GHz	2402 M	ALIGN AUTO AVG Type: Log-Pwr Avg Hold:>100/100	02:34:15 AM May 22, 2019 TRACE 1 2 3 4 5 6 TYPE M P NNNNN  AMKr1 990 KHZ		
Center Freq	75 Ω AC CORRE 2.402500000 GHz	2402 M	ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>100/100	02:34:15 AM May 22, 2019 TRACE 12:34:56 TYPE 12:34:56 TYPE P NNNNN  MKr1 990 kHz -0.214 dB		
Center Freq  10 dB/div Re 10 dB/div Re 13 6 13 6 16 39 16 4	75 Ω AC CORRE 2.402500000 GHz	2402 M	ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>100/100	02:34:15 AM May 22, 2019 TRACE 12:34:56 TYPE 12:34:56 TYPE P NNNNN  MKr1 990 kHz -0.214 dB		
Center Freq  10 dB/div Re 10 dB/div Re 13.6 16.39 16.4 26.4	75 Ω AC CORRE 2.402500000 GHz	2402 M	ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>100/100	02:34:15 AM May 22, 2019 TRACE 12:34:56 TYPE 12:34:56 TYPE P NNNNN  MKr1 990 kHz -0.214 dB		
Center Freq  10 dB/div Re 10 dB/div Re 13.6 16.39 16.4 26.4 26.4 26.4	75 Ω AC CORRE 2.402500000 GHz	2402 M	ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>100/100	02:34:15 AM May 22, 2019 TRACE 12:34:56 TYPE 12:34:56 TYPE P NNNNN  MKr1 990 kHz -0.214 dB		
Center Freq  10 dB/div Re 10 dB/div Re 13.6 16.39 16.4 26.4	75 Ω AC CORRE 2.402500000 GHz	2402 M	ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>100/100	02:34:15 AM May 22, 2019 TRACE 12:34:56 TYPE 12:34:56 TYPE P NNNNN  MKr1 990 kHz -0.214 dB		

× 990 kHz (Δ) -0.214 dB 2.401 834 GHz 3.990 dBm



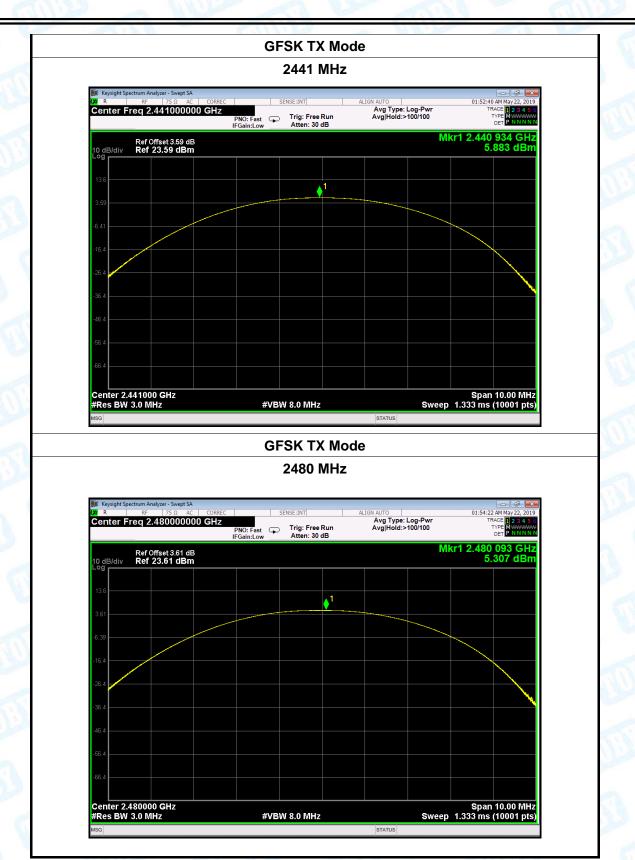
88 of 94 Page:








Page: 89 of 94

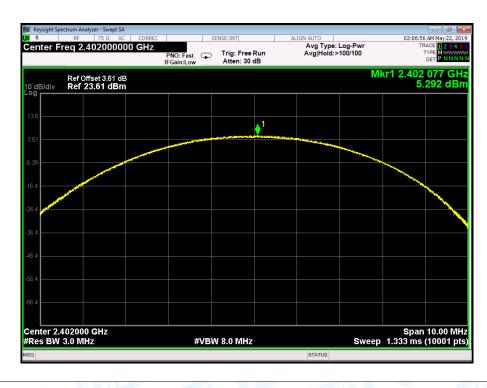

# **Attachment G-- Peak Output Power Test Data**

Temperature:	25℃		Relative Humidity:	55%	
Test Voltage:	DC 3.7V				
Test Mode:	TX Mode (GFSK)				
Channel frequen	nel frequency (MHz) Test Result (dBm) Limit (dBm)			.imit (dBm)	
2402	2402		5.112		
2441	2441			30	
2480		5.307			
GFSK TX Mode					
2402 MHz					



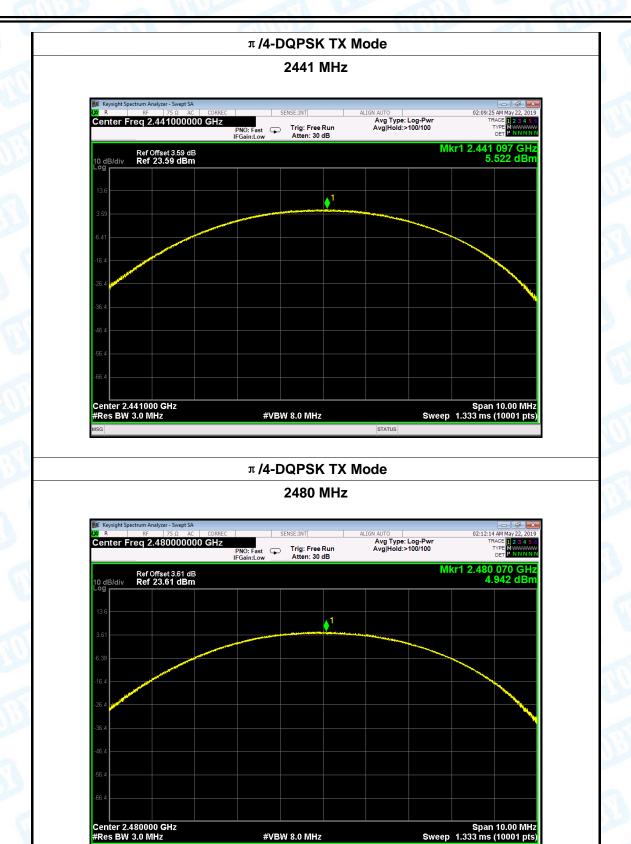


Page: 90 of 94






Page: 91 of 94


Temperature:	25℃		Relative Humidity:	55%			
Test Voltage:	DC 3.7V						
Test Mode:	TX Mode ( π /4-DQPSK)						
Channel frequency (MHz)		Test Result (dBm)		Limit (dBm)			
2402		5.292					
2441		5.522		21			
2480		4.942					
T // DODSK TY Mode							

#### π/4-DQPSK TX Mode



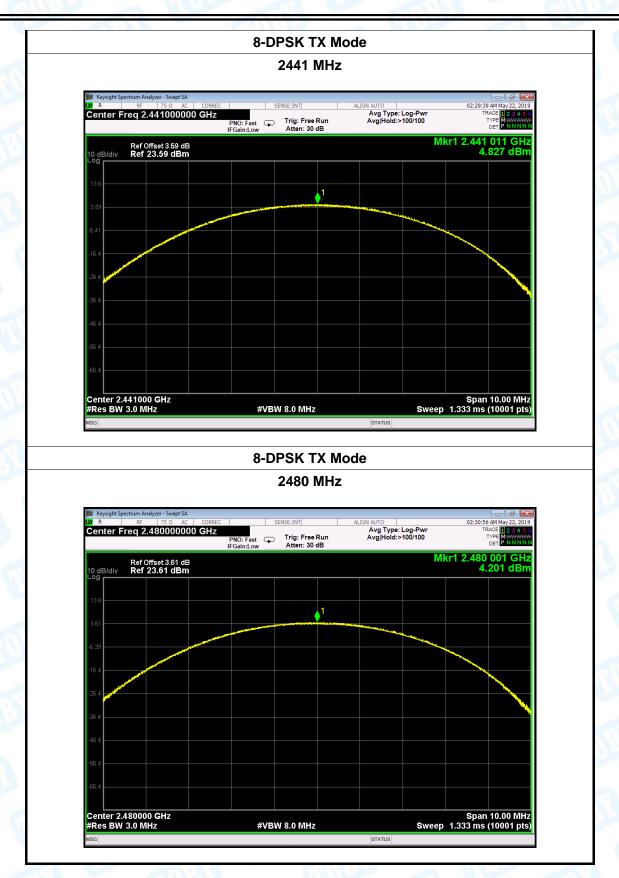


Page: 92 of 94






Page: 93 of 94


Temperature:	25℃		Relative Humidity:	55%		
Test Voltage:	DC 3.7V					
Test Mode:	TX Mode (8-DPSK)					
Channel frequency (MHz)		Test Result (dBm)		Limit (dBm)		
2402		4.785				
2441		4.827		21		
2480		4.201				
O DDCV TV Mada						

#### 8-DPSK TX Mode





Page: 94 of 94



----END OF REPORT----