

Shenzhen Toby Technology Co., Ltd.

Report No.: TBR-C-202204-0388-41

Page: 1 of 21

Radio Test Report

FCC ID: XMF-MID1105

Change II

Report No. : TBR-C-202204-0388-41

Applicant : Lightcomm Technology Co., Ltd.

Equipment Under Test (EUT)

EUT Name : 11.6"Tablet

Model No. : 100043279

Series Model No. : MID1105

Brand Name : onn

Sample ID : RW-C-202204-0388-3-1#&RW-C-202204-0388-3-2#

Receipt Date : 2022-05-11

Test Date : 2022-05-11 to 2022-05-12

Issue Date : 2022-05-19

Standards : FCC Part 15 Subpart C 15.247

Test Method : ANSI C63.10: 2013

KDB 558074 D01 15.247 Meas Guidance v05r02

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above.

Witness Engineer : 2

Engineer Supervisor : WW SV

Engineer Manager :

Ray Lai

carried out on one sample

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Contents

COI	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	4
	1.1 Client Information	4
	1.2 General Description of EUT (Equipment Under Test)	4
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	6
	1.5 Description of Test Mode	7
	1.6 Description of Test Software Setting	8
	1.7 Measurement Uncertainty	8
	1.8 Test Facility	
2.	TEST SUMMARY	10
3.	TEST SOFTWARE	10
4.	TEST EQUIPMENT	11
5.	CONDUCTED EMISSION	12
	5.1 Test Standard and Limit	12
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 Deviation From Test Standard	13
	5.5 EUT Operating Mode	13
	5.6 Test Data	13
6.	RADIATED AND CONDUCTED UNWANTED EMISSIONS	14
	6.1 Test Standard and Limit	14
	6.2 Test Setup	15
	6.3 Test Procedure	16
	6.4 Deviation From Test Standard	16
	6.5 EUT Operating Mode	
	6.6 Test Data	17
ATT	FACHMENT A CONDUCTED EMISSION TEST DATA	18
АТТ	FACHMENT BUNWANTED EMISSIONS DATA	20

Revision History

Report No.	Version	Description	Issued Date
TBR-C-202204-0388-41	Rev.01	Initial issue of report	2022-05-19
COB!	3 40/2		COB,
B) MU			
A TURNEY			
	4087)		TOP
	5538 4111		
COLUMN TO THE PARTY OF THE PART	600	TOBY OF	(D) (D)
MBY) MO	33		10 33 W
1003	1000		4000
		TODY O	
The state of the s		133 A LOUIS	A TOWN

1. General Information about EUT

1.1 Client Information

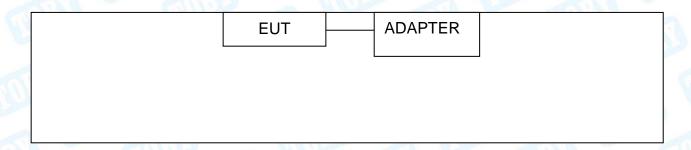
Applicant		Lightcomm Technology Co., Ltd.
Address : UNIT 1306 13/F ARION COMMERCIAL CENTRE,2-12 QU ROAD WEST, SHEUNG WAN HK		UNIT 1306 13/F ARION COMMERCIAL CENTRE,2-12 QUEEN'S ROAD WEST, SHEUNG WAN HK
Manufacturer		Huizhou Hengdu Electronics Co., Ltd
Address		No.8 Huitai Road, Huinan High-tech Industrial Park, Huiao Avenue, Huizhou, Guangdong, China.

1.2 General Description of EUT (Equipment Under Test)

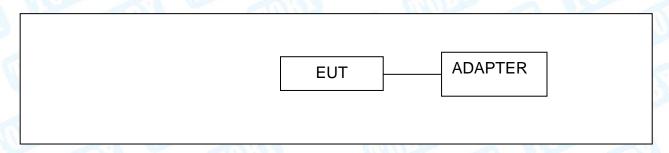
EUT Name		11.6"Tablet			
HVIN/Models No.	9	100043279, MID1105			
Model Different		All these models are identical in the same PCB, layout and electrical circuit, The only difference is model name.			
TO TO	A	Operation Frequency:	Bluetooth 5.2(BDR+EDR): 2402MHz~2480MHz		
Duaduat		Number of Channel:	79 channels		
Product Description		Antenna Gain:	1.73dBi FPC Antenna		
M LU		Modulation Type:	GFSK(1Mbps) π/4-DQPSK(2Mbps) 8-DPSK(3Mbps)		
Power Rating		Adapter(TEKA-UCA20US) Input: 100-240V~, 50/60Hz, 0.35A MAX Output: DC 5V2.0A DC 3.8V by 7300mAh Rechargeable Li-ion battery			
Software Version	: RP1A.200720.011 mp1V889 release-keys		IV889 release-keys		
Hardware Version		MID1105MP_MT8183_	MID1105MP_MT8183_LPDDR4_MB-VER1.1		
	7				

Remark:

- (1) The antenna gain and adapter provided by the applicant, the verified for the RF conduction test provided by TOBY test lab.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (3) Antenna information provided by the applicant.


(4) Channel List:

Bluetooth Channel List								
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)			
00	2402	27	2429	54	2456			
01	2403	28	2430	55	2457			
02	2404	29	2431	56	2458			
03	2405	30	2432	57	2459			
04	2406	31	2433	58	2460			
05	2407	32	2434	59	2461			
06	2408	33	2435	60	2462			
07	2409	34	2436	61	2463			
08	2410	35	2437	62	2464			
09	2411	36	2438	63	2465			
10	2412	37	2439	64	2466			
11	2413	38	2440	65	2467			
12	2414	39	2441	66	2468			
13	2415	40	2442	67	2469			
14	2416	41	2443	68	2470			
15	2417	42	2444	69	2471			
16	2418	43	2445	70	2472			
17	2419	44	2446	71	2473			
18	2420	45	2447	72	2474			
19	2421	46	2448	73	2475			
20	2422	47	2449	74	2476			
21	2423	48	2450	75	2477			
22	2424	49	2451	76	2478			
23	2425	50	2452	77	2479			
24	2426	51	2453	78	2480			
25	2427	52	2454					
26	2428	53	2455					



1.3 Block Diagram Showing the Configuration of System Tested

Conducted Test

Radiated Test

1.4 Description of Support Units

Equipment Information								
Name Model FCC ID/VOC Manufacturer Us								
Cable Information								
Number	Number Shielded Type Ferrite Core Length Note							
Cable 1	Yes	NO	1.0M	Accessory				

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test					
Final Test Mode	Description				
Mode 1	Charging + TX GFSK Mode Channel 00				
	For Radiated Test				
Final Test Mode	Description				
Mode 1	TX GFSK Mode Channel 00				
Mode 2	TX Mode(GFSK) Channel 00/39/78				
Mode 3	TX Mode(π /4-DQPSK) Channel 00/39/78				
Mode 4	TX Mode(8-DPSK) Channel 00/39/78				
Mode 5	Hopping Mode(GFSK)				
Mode 6	Hopping Mode(π /4-DQPSK)				
Mode 7 Hopping Mode(8-DPSK)					

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

TX Mode: GFSK (1 Mbps)

TX Mode: π /4-DQPSK (2 Mbps)
TX Mode:8-DPSK (3 Mbps)

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a portable unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

Test Software Version	8.	788-LaunchEngM	ode
Frequency	2402 MHz	2441MHz	2480 MHz
GFSK	DEF	DEF	DEF
π /4-DQPSK	DEF	DEF	DEF
8-DPSK	DEF	DEF	DEF

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.50 dB ±3.10 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

Page: 9 of 21

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F., Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.

2. Test Summary

Standard Section	T. of 16	T (O l . (.)			
FCC	Test Item	Test Sample(s)	Judgment	Remark	
FCC 15.207(a)	Conducted Emission	RW-C-202204-0388-3-1#	PASS	N/A	
FCC 15.209 & 15.247(d)	Radiated Unwanted Emissions	RW-C-202204-0388-3-1#	PASS	N/A	
FCC 15.203	Antenna Requirement		N/A	N/A	
FCC 15.247(a)	99% Occupied Bandwidth & 20dB Bandwidth	100	N/A	N/A	
FCC 15.247(b)(1)	Peak Output Power		N/A	N/A	
FCC 15.247(a)(1)	Carrier frequency separation	1	N/A	N/A	
FCC 15.247(a)(1)	Time of occupancy		N/A	N/A	
FCC 15.247(b)(1)	Number of Hopping Frequency		N/A	N/A	
FCC 15.247(d)	Band Edge	1	N/A	N/A	
FCC 15.207(a)	Conducted Unwanted Emissions	1 1111111111111111111111111111111111111	N/A	N/A	
FCC 15.205	Emissions in Restricted Bands		N/A	N/A	
	On Time and Duty Cycle			N/A	

Note:

- (1) N/A is an abbreviation for Not Applicable.
- (2) This report is Class II change report for the original equipment have changed, the transmitter module itself has not changed. More information about the test data please refer to the original test report.
- (3) As there is no change regard RF transmitter portion and Antenna assembly, the change will not have effect on Radiated emission above 1GHz by judging for experience, thus testing is performed up to 1GHz only.

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0
RF Test System	JS1120	Tonscend	V2.6.88.0336

4. Test Equipment

Conducted Emission	on Test				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 02, 2021	Jul. 01, 2022
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jul. 02, 2021	Jul. 01, 2022
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 02, 2021	Jul. 01, 2022
LISN	Rohde & Schwarz	ENV216	101131	Jul. 02, 2021	Jul. 01, 2022
Radiation Emission	n Test (A Site)				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jul. 02, 2021	Jul. 01, 2022
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 02, 2021	Jul. 01, 2022
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Feb. 27, 2022	Feb. 26, 2024
Horn Antenna	ETS-LINDGREN	3117	00143207	Feb. 26, 2022	Feb. 25, 2024
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Feb. 26, 2022	Feb. 25, 2024
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 06, 2021	Jul. 05, 2022
Pre-amplifier	SONOMA	310N	185903	Feb. 26, 2022	Feb. 25, 2023
Pre-amplifier	HP	8449B	3008A00849	Feb. 26, 2022	Feb. 25, 2023
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Sep. 03, 2021	Sep. 02, 2022
Radiation Emission	Test (B Site)	'	'	<u>'</u>	•
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jul. 02, 2021	Jul. 01, 2022
MXA Signal Analyzer	Agilent	N9020A	MY47380425	Sep. 03, 2021	Sep. 02, 2022
EMI Test Receiver	Rohde & Schwarz	ESU-8	100472	Feb. 26, 2022	Feb. 25, 2023
Bilog Antenna	SCHWARZBECK	VULB 9168	1225	Dec. 05, 2021	Dec. 04, 2023
Horn Antenna	SCHWARZBECK	BBHA 9120 D	2463	May 20, 2021	May 19, 2022
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Feb. 26, 2022	Feb. 25, 2024
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 06, 2021	Jul. 05, 2022
HF Amplifier	Tonscend	TAP9E6343	AP21C806117	Sep. 03, 2021	Sep. 02, 2022
HF Amplifier	Tonscend	TAP051845	AP21C806141	Sep. 03, 2021	Sep. 02, 2022
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Sep. 03, 2021	Sep. 02, 2022
Antenna Conducte	d Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 02, 2021	Jul. 01, 2022
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jul. 02, 2021	Jul. 01, 2022
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 03, 2021	Sep. 02, 2022
Spectrum Analyzer	KEYSIGT	N9020B	MY60110172	Sep. 03, 2021	Sep. 02, 2022
W.	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Sep. 03, 2021	Sep. 02, 2022
DED O	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Sep. 03, 2021	Sep. 02, 2022
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Sep. 03, 2021	Sep. 02, 2022
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Sep. 03, 2021	Sep. 02, 2022
RF Control Unit	Tonsced	JS0806-2	21F8060439	Sep. 03, 2021	Sep. 02, 2022

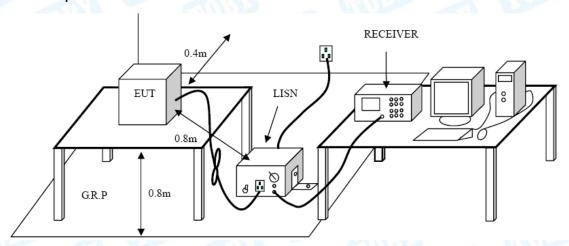
Page: 12 of 21

5. Conducted Emission

5.1 Test Standard and Limit

5.1.1 Test Standard

FCC Part 15.207


5.1.2 Test Limit

Francos	Maximum RF Line Voltage (dBμV)				
Frequency	Quasi-peak Level	Average Level			
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *			
500kHz~5MHz	56	46			
5MHz~30MHz	60	50			

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

5.3 Test Procedure

- The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.
- Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- ●I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- ●LISN at least 80 cm from nearest part of EUT chassis.
- ●The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

No.:

Page: 13 of 21

5.4 Deviation From Test Standard

No deviation

5.5 EUT Operating Mode

Please refer to the description of test mode.

5.6 Test Data

Please refer to the Attachment A inside test report.

6. Radiated and Conducted Unwanted Emissions

6.1 Test Standard and Limit

6.1.1 Test Standard

FCC Part 15.209 & FCC Part 15.247(d)

6.1.2 Test Limit

General field strength limits at frequencies Below 30MHz								
	Frequency	Field Strength	Field Strength	Measurement				
	(MHz)	(μA/m)*	(microvolt/meter)**	Distance (meters)				
ſ	0.009~0.490	6.37/F (F in kHz)	2400/F(KHz)	300				
	0.490~1.705	63.7/F (F in kHz)	24000/F(KHz)	30				
	1.705~30.0	0.08	30	30				

Note: 1, The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

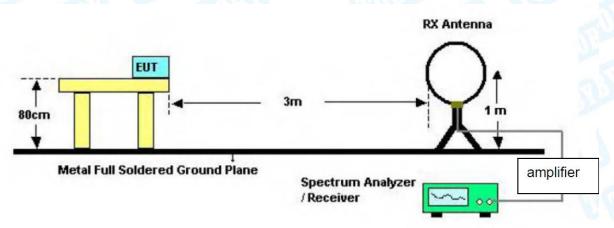
2, *is for RSS Standard, **is for FCC Standard.

General field	strength limits at frequencie	s above 30 MHz
Frequency (MHz)	Field strength (μV/m at 3 m)	Measurement Distance (meters)
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

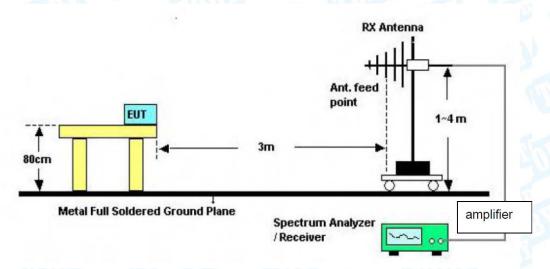
General field stre	ength limits at frequencies A	Above 1000MHz
Frequency	Distance of 3r	m (dBuV/m)
(MHz)	Peak	Average
Above 1000	74	54
Note		

Note:

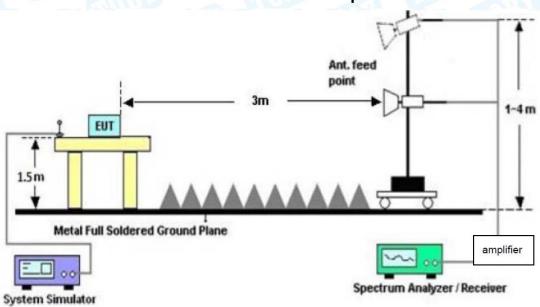
- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

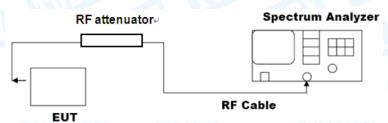
Page: 15 of 21



6.2 Test Setup


Radiated measurement

Below 30MHz Test Setup



Below 1000MHz Test Setup

Above 1GHz Test Setup Conducted measurement

6.3 Test Procedure

---Radiated measurement

- The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Below 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- Testing frequency range 30MHz-1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection. Testing frequency range 9KHz-150Hz the measuring instrument use VBW=200Hz with Quasi-peak detection. Testing frequency range 9KHz-30MHz the measuring instrument use VBW=9kHz with Quasi-peak detection.
- Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- For the actual test configuration, please see the test setup photo.

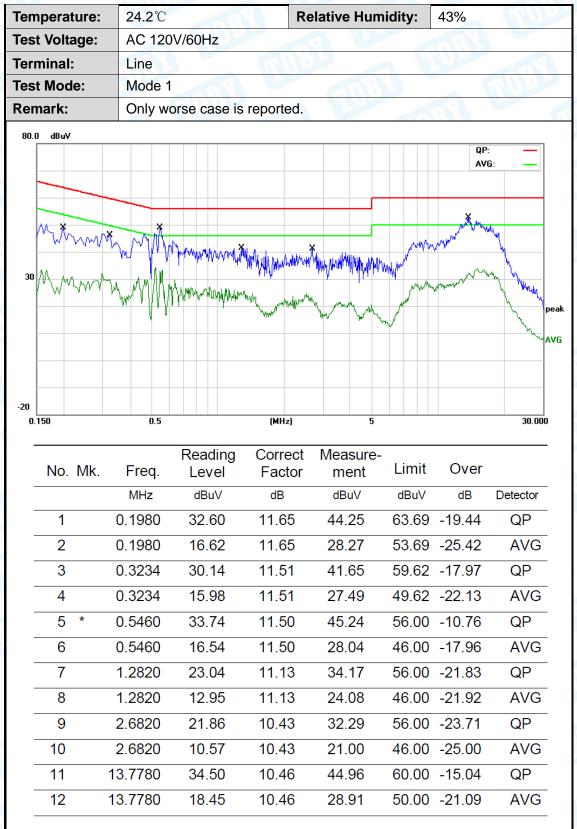
6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Mode

Please refer to the description of test mode.

Report No.: TBR-C-202204-0388-41


Page: 17 of 21

6.6 Test Data

Radiated measurement please refer to the Attachment B inside test report.

Attachment A-- Conducted Emission Test Data

Remark:

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Temperature:	24.2℃		Relative Humidity	: 43%	
Test Voltage:	AC 120V/60Hz				BHO.
Terminal:	Neutral		7		
Test Mode:	Mode 1	- CHILL			
Remark:	Only worse case	e is reported			Mirror
30 dBuV		WHO MAN AND AND AND AND AND AND AND AND AND A	May provide the second of the	QP: AVG:	peak AVG
-20 0.150	0.5	(MHz)	5		30.000
No. Mk. F	Reading req. Level	Correct Factor	Measure- ment Limit	t Over	
	MHz dBuV	dB	dBuV dBuV	dB	Detector
1 0.3	3180 31.90	11.51	43.41 59.70	6 -16.35	QP
2 0.3	3180 18.14	11.51	29.65 49.70	6 -20.11	AVG
3 0.4	4620 29.76	11.50	41.26 56.60	6 -15.40	QP
4 0.4	4620 13.74	11.50	25.24 46.60	6 -21.42	AVG
5 * 0.5	5380 30.55	11.50	42.05 56.00	0 -13.95	QP
6 0.5	5380 7.85	11.50	19.35 46.00	-26.65	AVG
7 1.0	0060 25.16	11.32	36.48 56.00	0 -19.52	QP
8 1.0	0060 12.56	11.32	23.88 46.00	0 -22.12	AVG
9 3.8	3660 19.19	10.17	29.36 56.00	0 -26.64	QP

Remark:

10

11

12

1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)

8.43

33.99

18.62

10.17

10.46

10.46

18.60

44.45

29.08

3.8660

13.8580

13.8580

2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

AVG

QΡ

AVG

46.00 -27.40

60.00 -15.55

50.00 -20.92

Attachment B--Unwanted Emissions Data

---Radiated Unwanted Emissions

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB

Below the permissible value has no need to be reported.

30MHz~1GHz

Tem	npera	ture:	24.3°C		1	C. C.	Relative H	umidity:	45%	1383		
Tes	t Volt	age:	AC 12	AC 120V/60Hz								
Ant	. Pol.	ı	Horizo	ontal	E S	MBJ.				1 1/1/2		
Tes	t Mod	de:	Mode	2	1	3	ATTICK.		CITE.			
Ren	nark:		Only	vorse	case	is reported.	Miles					
80.0	dBu	V/m										
70												
60												
50								(RF)FCC 15 Margin -6 d	C 3M Radiation B	, [
40				بـــــــــــــــــــــــــــــــــــــ								
30			ķ	Ž		3 4	5_	6		peak		
20			M M	() 			1 March	My mary water mander	Charles of the control of the state of	peak property peak		
10	whenh	Lyllywayddin Hawy	Winthlan .	The state of the s	Market Market	, white	V					
0												
-10												
-20												
3	0.000		60.00			(MHz)	300	.00		1000.000		
N	No.	Frequ (Mł			ading BuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector		
<i>-</i>	1 *	65.5	727	54	.50	-24.00	30.50	40.00	-9.50	peak		
	2	71.8	320	54	.65	-24.76	29.89	40.00	-10.11	peak		
	3	119.8	3556	51	.43	-23.29	28.14	43.50	-15.36	peak		
	4	165.4	1866	53	3.44	-21.87	31.57	43.50	-11.93	peak		
	5	215.2	2678	51	.00	-23.56	27.44	43.50	-16.06	peak		

^{*:}Maximum data x:Over limit !:over margin

350.4768

Remark:

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)

46.53

-19.61

26.92

46.00

-19.08

peak

3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 21 of 21

Tem	pera	ture:	24.3℃			R	elative Hu	midity:	45%	
Test	Volt	age:	AC 12	0V/60H	lz	33		100		BAD.
Ant.	Pol.		Vertica	al	MA		A V			
Test	Mod	le:	Mode	2		CHI)		aW		
Rem	ark:		Only v	vorse c	ase i	is reported.		30		
80.0	dBu∖	//m								
70										
60								(RF)FCC 1	5C 3M Radiatio	n
50								Margin -6 o	IB .	
40	1		2 3 X X			4				
30	Ť	1	MMw			*	5	6		
20			M _{ha} dd ac i			MANANAMA	/Å	Mary Mary Mary Mary Mary Mary Mary Mary	was a supplied to the first	AL ROPOLOGY
10	year V	ար արագ		M. MANN	hy Debudd	, M	1 Mayring M	JY .		
0										
-10 -20										
- 1	.000		60.00			(MHz)	30	0.00		1000.00
								1	1	
N	INO I		Frequency Reading (MHz) (dBuV)		Factor	Level	Limit	Margin	Detector	
			•		•	(dB/m)	` '	(dBuV/m)	<u> </u>	
	-		0007	56.0		-23.06	33.01	40.00	-6.99	peak
2			3588	59.4		-23.59	35.85	40.00	-4.15	QP
3	*	65.5	5727	60.4	14	-24.00	36.44	40.00	-3.56	QP
	1	119.	8556	56.1	3	-23.29	32.84	43.50	-10.66	peak
1 -	5	214.	5143	48.7	' 3	-23.59	25.14	43.50	-18.36	peak

^{*:}Maximum data x:Over limit !:over margin

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

----END OF REPORT-----