

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC179113 Page: 1 of 16

FCC Radio Test Report FCC ID: XMF-MID1035

Change II

Report No.	•	TB-FCC179113					
Applicant		Lightcomm Technology Co., Ltd.					
Equipment Under Test (EUT)							
EUT Name	:	10.1"Tablet					
Model No.	÷	100026203					
Series Model No.		MID1035A, 100003562, MID1035					
Brand Name		onn					
Sample ID	÷	20210310-36-1#					
Receipt Date	•	2021-03-12					
Test Date		2021-03-13 to 2021-03-16					
Issue Date	8	2021-03-17					
Standards	:	FCC Part 15, Subpart C 15.247					
Test Method	•	ANSI C63.10: 2013					
Conclusions	:	PASS					
		In the configuration tested, the EUT complied with the standards specified above,					
Test/Witness Engineer		: Reheea TECHNOR					
Engineer Supervisor		: Repear : WAN SU : fuy to: : Pay to:					
Engineer Manager		: four Lai					

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Contents

CON	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	
	1.1 Client Information	4
	1.2 General Description of EUT (Equipment Under Test)	4
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	6
	1.6 Description of Test Software Setting	7
	1.7 Measurement Uncertainty	7
	1.8 Test Facility	8
2.	TEST SUMMARY	
3.	TEST SOFTWARE	
4.	TEST EQUIPMENT	
5.	RADIATED EMISSION TEST	
	5.1 Test Standard and Limit	
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 Deviation From Test Standard	14
	5.5 EUT Operating Condition	14
	5.6 Test Data	14
ATT	ACHMENT A RADIATED EMISSION TEST DATA	

Revision History

Report No.	Version	Description	Issued Date
TB-FCC178279	Rev.01	Initial issue of report	2021-01-19
TB-FCC179113	Rev.02	Delete the audio noise reduction IC module	2021-03-17
	Tam	E BA	R
and a			mBL
3 .	B		
m BY			mBJ -
			TUT I
	000		
200	F	TUBE TO BE	
B	RUDD		33
0000			1000
			2
		THE TOP	TUDD

1. General Information about EUT

1.1 Client Information

Applicant		Lightcomm Technology Co., Ltd.	
Address		UNIT 1306 13/F ARION COMMERCIAL CENTRE, 2-12 QUEEN'S ROAD WEST, SHEUNG WAN HK	
Manufacturer	-	Huizhou Hengdu Electronics Co., Ltd.	
Address		No.8 Huitai Road, Huinan High-tech Industrial Park, Huiao Avenue, Huizhou, Guangdong, China	

1.2 General Description of EUT (Equipment Under Test)

EUT Name		10.1"Tablet		
Models No.	:	100026203, MID1035A, 100003562, MID1035		
Model Different	:	All these models are identical in the same PCB, layout and electrical circuit, The only difference is model name and memory capacity.		
MB		Operation Frequency:	Bluetooth 5.0(BLE): 2402MHz~2480MHz	
A LA	Č.	Number of Channel:	Bluetooth 5.0(BLE): 40 channels see note(3)	
Product Description	-	Antenna Gain:	2.92dBi FPC Antenna	
Description	A	Modulation Type:	GFSK	
		Bit Rate of Transmitter:	1/2Mbps(GFSK)	
Power Rating		Adapter(TEKA-UCA20US) Input: 100-240V~, 50/60Hz, 0.35A MAX Output: DC 5V 2A DC 3.8V by 6600mAh Li-ion Polymer battery		
Software Version	3	RP1A.200720.011 release-keys		
Hardware Version	-	MID1035MQ_MT8768_LPDDR4_DSP_MB-VER1_1		
Connecting I/O Port(S)	:	Please refer to the User's Manual		
Remark		The antenna gain and adapter provided by the applicant, the verified for the RF conduction test provided by TOBY test lab.		

Note:

(1) This Test Report is FCC Part 15.247 for Bluetooth BLE, the test procedure follows the FCC KDB 558074 D01 15.247 Meas Guidance v05r02.

- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (3) Antenna information provided by the applicant.
- (4) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	14	2430	28	2458
01	2404	15	2432	29	2460
02	2406	16	2434	30	2462
03	2408	17	2436	31	2464
04	2410	18	2438	32	2466
05	2412	19	2440	33	2468
06	2414	20	2442	34	2470
07	2416	21	2444	35	2472
08	2418	22	2446	36	2474
09	2420	23	2448	37	2476
10	2422	24	2450	38	2478
11	2424	25	2452	39	2480
12	2426	26	2454		
13	2428	27	2456		

1.3 Block Diagram Showing the Configuration of System Tested

Conducted Test

EUT ADAPTER

Cable 1

Radiated Test

1.4 Description of Support Units

Equipment Information						
Name	Model	FCC ID/VOC	Manufacturer	Used " $$ "		
B	Mun .			<u></u>		
Cable Information						
Number	Shielded Type	Ferrite Core	Length	Note		
Cable 1	Yes	NO	1.0M	Accessory		

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test				
Final Test Mode	Description			
Mode 1	N/A			

For Radiated Test			
Final Test Mode	Description		
Mode 2	TX Mode		
Mode 3	TX 1Mbps Mode (Channel 00/20/39)		
Mode 4TX 2Mbps Mode (Channel 00/20/39)			

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

BLE Mode: GFSK Modulation Transmitting mode.

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a portable unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

Test Software Version	LaunchEngmode			
Frequency	2402 MHz	2442MHz	2480 MHz	
BLE GFSK	DEF	DEF	DEF	

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})	
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.50 dB ±3.10 dB	
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB	
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB	
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB	

1.8 Test Facility

The testing was performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at: 1/F.,Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China.

At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01. FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A.

TOBY

2. Test Summary

1022	FCC	C Part 15 Subpart C(15.2	47)/RSS 247 Issue 2			
Standard Se	ection	Toot Itom	Toot Somple(a)	ludament		
FCC	IC	Test Item	Test Sample(s)	Judgment	Remark	
15.203	30	Antenna Requirement	N/A	N/A	N/A Note(2)	
15.207(a)	RSS-GEN 7.2.4	Conducted Emission	N/A	N/A	N/A	
15.205&15.247(d)	RSS-GEN 7.2.2	Band-Edge & Unwanted Emissions into Restricted Frequency	N/A	N/A	N/A Note(2)	
15.247(a)(2)	RSS 247 5.2 (1)	6dB Bandwidth	N/A	N/A	N/A Note(2)	
15.247(b)(3)	RSS 247 5.4 (4)	Conducted Max Output Power	N/A	N/A	N/A	
15.247(e)	RSS 247 5.2 (2)	Power Spectral N/A		N/A	N/A Note(2)	
15.205, RSS 247 15.209&15.247(d) 5.5		Transmitter Radiated Spurious &Unwanted Emissions into Restricted Frequency	20210310-36-1#	PASS	N/A	

Note:

(1) N/A is an abbreviation for Not Applicable.

(2) This report is Class II change report for the original equipment have changed, the transmitter module itself has not changed. More information about the test data please refer to the original test report.

(3) As there is no change regard RF transmitter portion and Antenna assembly, the change will not have effect on Radiated emission above 1GHz by judging for experience, thus testing is performed up to 1GHz only.

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE

4. Test Equipment

Radiation Emission Test								
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date			
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 06, 2020	Jul. 05, 2021			
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 06, 2020	Jul. 05, 2021			
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jul. 06, 2020	Jul. 05, 2021			
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.01, 2020	Feb. 28, 2022			
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.01, 2020	Feb. 28, 2022			
Horn Antenna	ETS-LINDGREN	BBHA 9170	BBHA9170582	Mar.01, 2020	Feb. 28, 2022			
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 06, 2020	Jul. 05, 2021			
Pre-amplifier	Sonoma	310N	185903	Feb. 25, 2021	Feb. 24, 2022			
Pre-amplifier	HP	8449B	3008A00849	Feb. 25, 2021	Feb. 24, 2022			
Pre-amplifier	SKET	LNPA_1840G-50	SK201904032	Jul. 07, 2020	Jul. 06, 2021			
Cable	HUBER+SUHNER	100	SUCOFLEX	Feb. 25, 2021	Feb. 24, 2022			
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A			

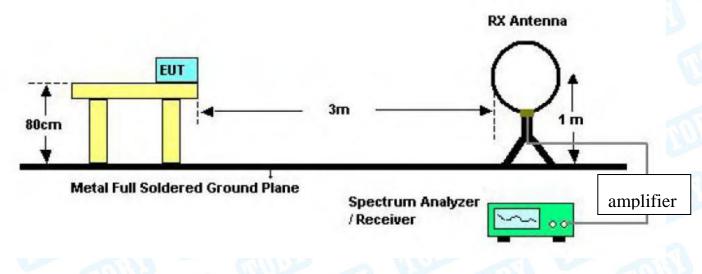
5. Radiated Emission Test

- 5.1 Test Standard and Limit
 - 5.1.1 Test Standard
 - FCC Part 15.247(d)
 - 5.1.2 Test Limit

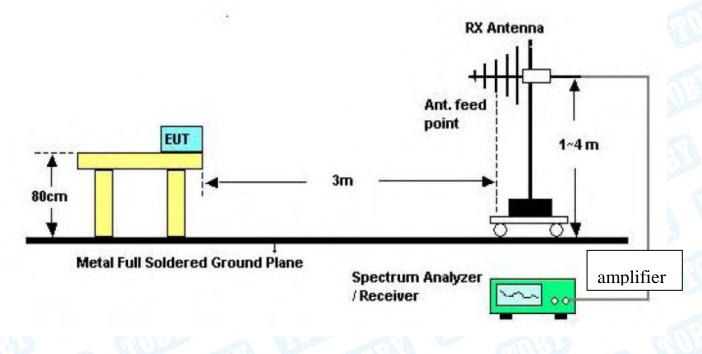
Radiated Emission Limits (9kHz~1000MHz)

Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

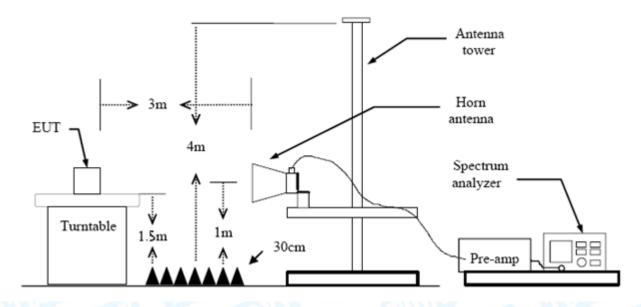
Frequency	Distance Met	ers(at 3m)
(MHz)	Peak (dBuV/m)	Average (dBuV/m)
Above 1000	74	54


Note:

(1) The tighter limit applies at the band edges.


(2) Emission Level (dBuV/m)=20log Emission Level (uV/m)

5.2 Test Setup



Below 1000MHz Test Setup

Above 1GHz Test Setup

5.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

5.4 Deviation From Test Standard

No deviation

5.5 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

- 5.6 Test Data
 - Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values. Please refer to the Attachment A.

Attachment A-- Radiated Emission Test Data

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB Below the permissible value has no need to be reported.

30MHz~1GHz

Ten	nperatu	ire:	23	.2℃					R	elative H	lum	idit	y:	4	1%			
Tes	t Volta	ge:	DC	3.8	8V	R		N.		-					1	1	23)
Ant	. Pol.		Но	orizo	ontal	6	2			NUC	2	2				100		A
Tes	t Mode	:	Mo	ode	2 24	102	ЛНz	0.1			6			9		9		
Ren	nark:		Or	nly v	vors	e ca	ise is i	reported	ł	1200	10	320		3	N			
80.0) dBuV/m	1																_
30	M	, the second sec	L. Mark	- A A A A A A A A A A A A A A A A A A A	2	, , ,	~~~~~	w w w	3			(P	Arjfcc	15C 3		liation gin -6		6 ×
-20 30).000 4	0 5	60 60) 7(0 80			(MHz)			300	4	00	500	600	700	100	00.000
N	lo. Mk	F	Freq.			edi eve	<u> </u>	Correct Factor		Measure ment) -	Lin	nit	C	Ove	r		
	0. WIK		MHz			eve ¦Bu∖				dBuV/m			uV/m		dB	<u> </u>	Dete	ector
1	*		.994	7		2.0		dB/m -22.07		29.96			0.00		10.0	04		eak
2			.965			7.1		-22.56		24.62			0.00		15.3		· ·	eak
2			.303 3.412			8.2		-19.85		24.02			3.50 3.50		15.1			
																	· ·	eak
4			0.002			5.8		-16.50		29.36			6.00		16.6			eak
5			.825			3.1		-8.87		34.30			6.00		11.7			eak
6		100	0.00	00	4	1.2)	-3.90		37.30		54	.00	-'	16.7	70	ре	eak

*:Maximum data x:Over limit !:over margin

Emission Level= Read Level+ Correct Factor

Test Voltage: DC 3.8V Ant. Pol. Vertical Test Mode: Mode 2 2402MHz Remark: Only worse case is reported 80.0 dBuV/m 60.0 dBuV/m 7.0 Status 7.0 Status Status 7.0 Status Status Status 7.0 Mk. Freq. Reading Level Correct Factor Measure- ment Limit Over MHz dBuV dB/m dBuV/m dBuV/m dB Detector 1 46.9947 56.53 -22.07 34.46 40.00 -5.54 peak 2 77.3212 53.01 -22.71 30.30 40.00 -5.54 peak 3 183.2005 51.12		2					
Ant. Pol. Vertical Test Mode: Mode 2 2402MHz Remark: Only worse case is reported 00.0 d80.0/m 0	Temperature:	23.5 ℃		Relative H	umidity:	42%	
Test Mode: Mode 2 2402MHz Remark: Only worse case is reported 00.0 d80W/m 00.0 d80W/m 0 0 0	Test Voltage:	DC 3.8V	- Trans	6	0132		RUP
Remark: Only worse case is reported 80.0 dBuV/m 0 0 1 0 20 0 30 0 0 0 1 0 20 0 30 0 30 0 0 0 1 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 20 0 30.000 40 50 60 20 77.3212 30.01 -22.71 30.30 40.00	Ant. Pol.	Vertical	NUL	21	Y A	Sol	
B0.0 dBuV/m 0 <td< th=""><th>Test Mode:</th><th>Mode 2 240</th><th>2MHz</th><th></th><th></th><th>U.S.</th><th></th></td<>	Test Mode:	Mode 2 240	2MHz			U.S.	
No. Mk. Freq. Reading Level Correct Factor Measure- ment Limit Over MHz dBuV dB/m dBuV/m	Remark:	Only worse	case is reporte	ed		IT.	1622
$\frac{1}{20} \frac{1}{20} \frac$	80.0 dBuV/m			1			· · · · · · · · · · · · · · · · · · ·
No. Mk. Freq. Reading Level Correct Factor Measure- ment Limit Over MHz dBuV dB/m dBuV/m dBuV/m dB Detector 1 * 46.9947 56.53 -22.07 34.46 40.00 -5.54 peak 2 77.3212 53.01 -22.71 30.30 40.00 -9.70 peak 3 183.2005 51.12 -20.01 31.11 43.50 -12.39 peak 4 374.6225 41.66 -13.49 28.17 46.00 -17.83 peak 5 554.8252 45.67 -8.87 36.80 46.00 -9.20 peak	-20	Sur ha			4 M.M.M.	Margin -6	
No. Mk. Freq. Level Factor ment Limit Over MHz dBuV dB/m dBuV/m dBuV/m dBuV/m dB Detector 1 * 46.9947 56.53 -22.07 34.46 40.00 -5.54 peak 2 77.3212 53.01 -22.71 30.30 40.00 -9.70 peak 3 183.2005 51.12 -20.01 31.11 43.50 -12.39 peak 4 374.6225 41.66 -13.49 28.17 46.00 -17.83 peak 5 554.8252 45.67 -8.87 36.80 46.00 -9.20 peak	30.000 40 2.			-		300 000 .52	1000.000
1 * 46.9947 56.53 -22.07 34.46 40.00 -5.54 peak 2 77.3212 53.01 -22.71 30.30 40.00 -9.70 peak 3 183.2005 51.12 -20.01 31.11 43.50 -12.39 peak 4 374.6225 41.66 -13.49 28.17 46.00 -17.83 peak 5 554.8252 45.67 -8.87 36.80 46.00 -9.20 peak	No. Mk. F		•			Over	
2 77.3212 53.01 -22.71 30.30 40.00 -9.70 peak 3 183.2005 51.12 -20.01 31.11 43.50 -12.39 peak 4 374.6225 41.66 -13.49 28.17 46.00 -17.83 peak 5 554.8252 45.67 -8.87 36.80 46.00 -9.20 peak	N	/Hz dB	uV dB/m	dBuV/n	n dBuV/r	m dB	Detector
3 183.2005 51.12 -20.01 31.11 43.50 -12.39 peak 4 374.6225 41.66 -13.49 28.17 46.00 -17.83 peak 5 554.8252 45.67 -8.87 36.80 46.00 -9.20 peak	1 * 46.9	9947 56	.53 -22.0	7 34.46	6 40.00	0 -5.54	peak
4 374.6225 41.66 -13.49 28.17 46.00 -17.83 peak 5 554.8252 45.67 -8.87 36.80 46.00 -9.20 peak	2 77.3	3212 53.	.01 -22.7	1 30.30	40.00	0 -9.70	peak
5 554.8252 45.67 -8.87 36.80 46.00 -9.20 peak	3 183.	.2005 51	.12 -20.0	1 31.11	43.50	0 -12.39	peak
	4 374.	.6225 41	.66 -13.4	9 28.17	46.00	0 -17.83	peak
6 771.4486 43.82 -6.20 37.62 46.00 -8.38 peak	5 554.	.8252 45	.67 -8.87	36.80	46.00	0 -9.20	peak
	6 771.	.4486 43	.82 -6.20) 37.62	46.00	0 -8.38	peak

*:Maximum data x:Over limit !:over margin

Emission Level= Read Level+ Correct Factor

-----END OF REPORT-----