

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC179114 Page: 1 of 16

FCC Radio Test Report FCC ID: XMF-MID1035

Change II

Report No.	:	TB-FCC179114
Applicant	2	Lightcomm Technology Co., Ltd.
Equipment Under Test	(EU	(Т)
EUT Name	:	10.1"Tablet
Model No.	:	100026203
Series Model No.	2	MID1035A, 100003562, MID1035
Brand Name	-5	onn
Sample ID	-	20210310-36-1#
Receipt Date	1	2021-03-12
Test Date	P	2021-03-13 to 2021-03-16
Issue Date	: 5	2021-03-17
Standards	:	FCC Part 15, Subpart C 15.247
Test Method		ANSI C63.10: 2013
Conclusions	2	PASS

In the configuration tested, the EUT complied with the standards specified above, The EUT technically complies with the FCC requirements

Test/Witness Engineer

Engineer Supervisor

Engineer Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Contents

CON	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	
	1.1 Client Information	
	1.2 General Description of EUT (Equipment Under Test)	4
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	6
	1.5 Description of Test Mode	6
	1.6 Description of Test Software Setting	7
	1.7 Measurement Uncertainty	8
	1.8 Test Facility	9
2.	TEST SUMMARY	10
3.	TEST SOFTWARE	
4.	TEST EQUIPMENT	
5.	RADIATED EMISSION TEST	
	5.1 Test Standard and Limit	
	5.2 Test Setup	
	5.3 Test Procedure	14
	5.4 Deviation From Test Standard	14
	5.4 EUT Operating Condition	14
	5.5 Test Data	14

Revision History

Report No.	Version	Description	Issued Date
TB-FCC178280	Rev.01	Initial issue of report	2021-01-19
TB-FCC179114	Rev.02	Delete the audio noise reduction IC module	2021-03-17
JI WE	BU	a course and	A L
DOB!	10	Eller Eller	E COBI
	Carles -	TOBY T	2
CULL THE		TOBU TOUS	
DE L	TOBL	TO TO THE	
		THE REAL	
ED -		A CONTRACT	
a fund	3 2		
and u			

1. General Information about EUT

1.1 Client Information

Applicant	:	Lightcomm Technology Co., Ltd.
Address : UNIT 1306 13/F ARION COMMERC ROAD WEST, SHEUNG WAN HK		UNIT 1306 13/F ARION COMMERCIAL CENTRE, 2-12 QUEEN'S ROAD WEST, SHEUNG WAN HK
Manufacturer		Huizhou Hengdu Electronics Co., Ltd.
		No.8 Huitai Road, Huinan High-tech Industrial Park, Huiao Avenue, Huizhou, Guangdong, China

1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	10.1"Tablet			
Models No.		100026203, MID1035A, 100003562, MID1035			
Model Difference	•	All these models are identical in the same PCB, layout and electrica circuit, The only difference is model name and memory capacity.			
	8	Operation Frequency:	Bluetooth V5.0(BT): 2402~2480 MHz		
A LUL		Number of Channel:	Bluetooth: 79 Channels See Note 2		
Product	:	Antenna Gain:	2.92dBi FPC Antenna		
Description		Modulation Type:	GFSK π /4-DQPSK 8-DPSK		
Power Rating		Adapter(TEKA-UCA20US) Input: 100-240V~, 50/60Hz, 0.35A MAX Output: DC 5V 2A DC 3.8V by 6600mAh Li-ion Polymer battery			
Software Version	:	RP1A.200720.011 release	se-keys		
Hardware Version	>	MID1035MQ_MT8768_LPDDR4_DSP_MB-VER1_1			
Connecting I/O Port(S)		Please refer to the User's	Please refer to the User's Manual		
Remark		The antenna gain and adapter provided by the applicant, the verified for the RF conduction test provided by TOBY test lab.			

Note:

(1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

(2) Channel List:

Bluetooth Channel List						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
00	2402	27	2429	54	2456	
01	2403	28	2430	55	2457	
02	2404	29	2431	56	2458	
03	2405	30	2432	57	2459	
04	2406	31	2433	58	2460	
05	2407	32	2434	59	2461	
06	2408	33	2435	60	2462	
07	2409	34	2436	61	2463	
08	2410	35	2437	62	2464	
09	2411	36	2438	63	2465	
10	2412	37	2439	64	2466	
11	2413	38	2440	65	2467	
12	2414	39	2441	66	2468	
13	2415	40	2442	67	2469	
14	2416	41	2443	68	2470	
15	2417	42	2444	69	2471	
16	2418	43	2445	70	2472	
17	2419	44	2446	71	2473	
18	2420	45	2447	72	2474	
19	2421	46	2448	73	2475	
20	2422	47	2449	74	2476	
21	2423	48	2450	75	2477	
22	2424	49	2451	76	2478	
23	2425	50	2452	77	2479	
24	2426	51	2453	78	2480	
25	2427	52	2454			
26	2428	53	2455			

(3) The Antenna information about the equipment is provided by the applicant.

1.3 Block Diagram Showing the Configuration of System Tested

Charging + TX Mode

Cable 1

EUT

TX Mode

1.4 Description of Support Units

Equipment Information						
Name	Model	FCC ID/VOC	Manufacturer	Used "√"		
				Ŧ		
	Cable Information					
Number	Shielded Type	Ferrite Core	Length	Note		
Cable 1	Yes	NO	1.0M	Accessory		

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

TOBY

Report No.: TB-FCC179114 Page: 7 of 16

F	or Conducted Test
Final Test Mode	Description
Mode 1	Charging + TX Mode Channel 00
F	For Radiated Test
Final Test Mode	Description
Mode 1	TX GFSK Mode Channel 00
Mode 2	TX Mode(GFSK) Channel 00/39/78
Mode 3	TX Mode(π /4-DQPSK) Channel 00/39/78
Mode 4	TX Mode(8-DPSK) Channel 00/39/78
Mode 5	Hopping Mode(GFSK)
Mode 6	Hopping Mode(π /4-DQPSK)
Mode 7	Hopping Mode(8-DPSK)

Note:

- (1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate. We have pretested all the test modes above.
 - According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:
 - TX Mode: GFSK (1 Mbps)
 - TX Mode:π /4-DQPSK (2 Mbps)
 - TX Mode: 8-DPSK (3Mbps)
- (2) The EUT is considered a portable unit; it was pre-tested on the positioned of each 3 axis, X-plane, Y-plane and Z-plane. The worst case was found positioned on X-plane as the normal use. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of Bluetooth mode.

Test Software Version	any	LaunchEngmode	The second
Frequency	2402 MHz	2441MHz	2480 MHz
GFSK	DEF	DEF	DEF
π /4-DQPSK	DEF	DEF	DEF
8-DPSK	DEF	DEF	DEF

1.7 Measurement Uncertainty

The reported uncertainty of measurement y \pm U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.50 dB ±3.10 dB
Radiated Emission	adiated Emission Level Accuracy: 9kHz to 30 MHz	
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F.,Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01. FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A.

TOBY

2. Test Summary

FCC Part 15 Subpart C(15.247)/ RSS 247 Issue 2					
Standard Section		Test Item		Judgm	Dente
FCC	IC	Test item	Test Sample(s)	ent	Remark
15.203	3	Antenna Requirement	N/A	N/A	N/A
15.207	RSS-GEN 7.2.2	Conducted Emission	N/A	N/A	N/A
15.205	RSS-Gen 7.2.3	Restricted Bands	N/A	N/A	N/A
15.247(a)(1)	RSS 247 5.1 (2)	Hopping Channel Separation	N/A	N/A	N/A
15.247(a)(1)	RSS 247 5.1 (4)	Dwell Time	N/A	N/A	N/A
15.247(b)(1)	RSS 247 5.4 (2)	Peak Output Power	N/A	N/A	N/A
15.247(b)(1)	RSS 247 5.1 (4)	Number of Hopping Frequency	N/A	N/A	N/A
15.247(d)	RSS 247 5.5	Band Edge	N/A	N/A	N/A
15.247(c)& 15.209	RSS 247 5.5	Radiated Spurious Emission	20210310-36-1#	PASS	N/A
15.247(a)	RSS 247 5.1 (1)	99% Occupied Bandwidth & 20dB Bandwidth	N/A	N/A	N/A

Note:

(1) N/A is an abbreviation for Not Applicable.

(2) This report is Class II change report for the original equipment have changed, the transmitter module itself has not changed. More information about the test data please refer to the original test report.

(3) As there is no change regard RF transmitter portion and Antenna assembly, the change will not have effect on Radiated emission above 1GHz by judging for experience, thus testing is performed up to 1GHz only.

3. Test Software

Test Item Test Software		Manufacturer	Version No.	
Conducted Emission	EZ-EMC	EZ	CDI-03A2	
Radiation Emission	EZ-EMC	EZ	FA-03A2RE	

4. Test Equipment

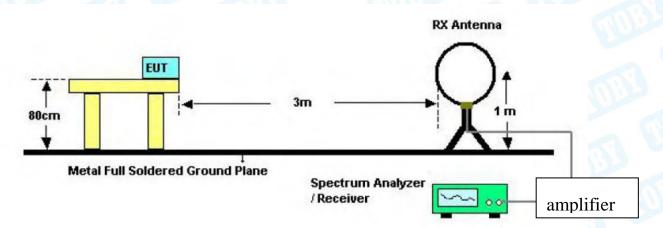
Radiation Emission Test								
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date Jul. 05, 2021			
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 06, 2020				
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 06, 2020	Jul. 05, 2021			
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jul. 06, 2020	Jul. 05, 2021			
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.01, 2020	Feb. 28, 2022			
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.01, 2020	Feb. 28, 2022			
Horn Antenna	ETS-LINDGREN	BBHA 9170	BBHA9170582	Mar.01, 2020	Feb. 28, 2022			
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 06, 2020	Jul. 05, 2021			
Pre-amplifier	Sonoma	310N	185903	Feb. 25, 2021	Feb. 24, 2022			
Pre-amplifier	HP	8449B	3008A00849	Feb. 25, 2021	Feb. 24, 2022			
Pre-amplifier	SKET	LNPA_1840G-50	SK201904032	Jul. 07, 2020	Jul. 06, 2021			
Cable	HUBER+SUHNER	100	SUCOFLEX	Feb. 25, 2021	Feb. 24, 2022			
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A			

5. Radiated Emission Test

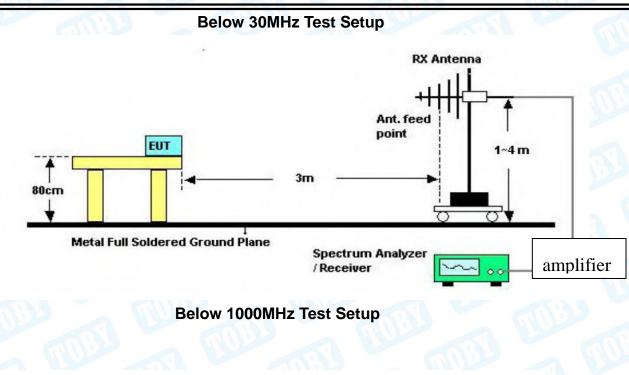
5.1 Test Standard and Limit

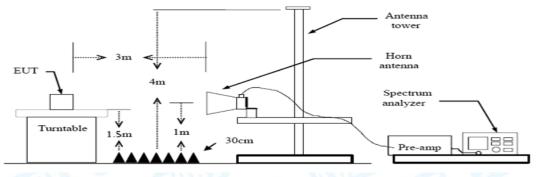
- 5.1.1 Test Standard
 - FCC Part 15.209
- 5.1.2 Test Limit

Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3


Radiated Emission Limit (Above 1000MHz)

Frequency	Distance of 3m (dBuV/m)				
(MHz)	Peak	Average			
Above 1000	74	54			


Note:


- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m)

5.2 Test Setup

Above 1GHz Test Setup

TOBY

5.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

5.4 Deviation From Test Standard

No deviation

5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power in TX mode.

5.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values. Please refer to the Attachment A.

Attachment A-- Radiated Emission Test Data

9KHz~30MHz

From 9KHz to 30MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

30MHz~1GHz

Temperature:	23.2°C	41%						
Test Voltage:								
Ant. Pol.	Horizontal							
Test Mode:	Mode 1 2402MHz							
Remark:	Only worse case is reported	au	A 15					
80.0 dBu¥/m								
30		(RF)FCC 15C	Margin -6 dB					

-20

-20												
30.000	40	50	60	70	80	(MHz)	300	400	500	600	700	1000.000
					Reading	Correct	Measure-			_		

No	o. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	46.9947	52.03	-22.07	29.96	40.00	-10.04	peak
2		77.3212	51.01	-22.71	28.30	40.00	-11.70	peak
3		183.2005	48.62	-20.01	28.61	43.50	-14.89	peak
4		289.0020	44.86	-16.50	28.36	46.00	-17.64	peak
5		554.8251	44.17	-8.87	35.30	46.00	-10.70	peak
6		771.4486	41.32	-6.20	35.12	46.00	-10.88	peak
-								

*:Maximum data x:Over limit !:over margin

Emission Level= Read Level+ Correct Factor

		m				A I A	Contraction of the second seco	
Temperature:	23.2℃			Relative H	umidity:	41%		
Test Voltage:	AC 120V6	OHZ	20		51	1	2012	
Ant. Pol.	Vertical	a a a	2			5		
Test Mode:	Mode 1 2	2402MHz			Um			
Remark: Only worse case is reported								
80.0 dBu¥/m								
-20 30.000 40 50		J. M. M.	3 	4 4 4 300	(RF)FCC 15C	3M Radiation Margin -6 c 5 6 X X X	3B	
						000 102	1000.000	
No. Mk. F		ading evel	Correct Factor	Measure-	Limit	Over		
	· ·			ment			Distan	
		lBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	
1 * 46.	.9947 5	5.03	-22.07	32.96	40.00	-7.04	peak	
2 77.	.8653 5	0.17	-22.66	27.51	40.00	-12.49	peak	
3 187	.0956 5	2.91	-19.89	33.02	43.50	-10.48	peak	
4 240	.8302 4	4.23	-17.72	26.51	46.00	-19.49	peak	

*:Maximum data x:Over limit !:over margin

554.8252

771.4486

5

6

Emission Level= Read Level+ Correct Factor

46.17

43.82

-----END OF REPORT-----

-8.87

-6.20

37.30

37.62

46.00

46.00

-8.70

-8.38

peak

peak