

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC178281

1 of 21 Page:

FCC Radio Test Report FCC ID: XMF-MID1035

Change II

TB-FCC178281 Report No.

Applicant Lightcomm Technology Co., Ltd.

Equipment Under Test (EUT)

EUT Name 10.1"Tablet Model No. 100026203

MID1035A, 100003562, MID1035 Series Model No.

Brand Name onn

Sample ID 20201224-13-1#

Receipt Date 2020-12-30

Test Date 2020-12-30 to 2021-01-18

Issue Date 2021-01-19

Standards FCC Part 15, Subpart C 15.247

Test Method ANSI C63.10: 2013

Conclusions PASS

In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC and IC requirements

Test/Witness

Engineer

LVAN SU fayli. **Engineer Supervisor**

Engineer Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Page:

Contents

CON	IENIS	2
1.	GENERAL INFORMATION ABOUT EUT	4
	1.1 Client Information	4
	1.2 General Description of EUT (Equipment Under Test)	
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	
	1.5 Description of Test Mode	
	1.6 Description of Test Software Setting	7
	1.7 Measurement Uncertainty	7
	1.8 Test Facility	8
2.	TEST SUMMARY	9
3.	TEST SOFTWARE	9
4.	TEST EQUIPMENT	10
5.	CONDUCTED EMISSION TEST	
	5.1 Test Standard and Limit	
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 Deviation From Test Standard	12
	5.5 EUT Operating Mode	12
	5.6 Test Data	
6.	RADIATED EMISSION TEST	13
	6.1 Test Standard and Limit	13
	6.2 Test Setup	14
	6.3 Test Procedure	15
	6.4 Deviation From Test Standard	15
	6.5 EUT Operating Condition	15
	6.6 Test Data	15
7.	PEAK OUTPUT POWER TEST	16
	7.1 Test Standard and Limit	16
	7.2 Test Setup	16
	7.3 Test Procedure	16
	7.4 Deviation From Test Standard	
	7.5 EUT Operating Condition	
	7.6 Test Data	16
ATTA	ACHMENT A CONDUCTED EMISSION TEST DATA	17
ATTA	ACHMENT B RADIATED EMISSION TEST DATA	19
ATTA	ACHMENT C PEAK OUTPUT POWER TEST DATA	21

Page: 3 of 21

Revision History

Report No.	Version	Description	Issued Date
TB-FCC178281	Rev.01	Initial issue of report	2021-01-19
a This			The state of the s
3	533		
1000			WOD!
1000	(University)		6000
			THUE
UP O			The same of the sa
			THE PARTY OF THE P
	D. Carrie		The same of

Page: 4 of 21

1. General Information about EUT

1.1 Client Information

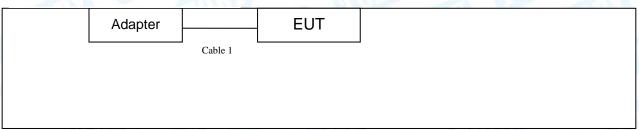
Applicant	Lightcomm Technology Co., Ltd.	
Address :		UNIT 1306 13/F ARION COMMERCIAL CENTRE, 2-12 QUEEN'S ROAD WEST, SHEUNG WAN HK
Manufacturer		Huizhou Hengdu Electronics Co., Ltd.
Address	1	No.8 Huitai Road, Huinan High-tech Industrial Park, Huiao Avenue, Huizhou, Guangdong, China

1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	10.1"Tablet			
Models No.	:	100026203, MID1035A, 100003562, MID1035			
Model Difference		All these models are identical in the same PCB, layout and electric circuit, The only difference is model name and memory capacity.			
Product Description	10:	Operation Frequency: 802.11b/g/n(HT20): 2412MHz~2462MHz 802.11n(HT40): 2422MHz~2452MHz Number of Channel: 802.11b/g/n(HT20):11 channels see note 802.11b/g/n(HT20):7 channels see note(3) 802.11b: DSSS(CCK, DQPSK, DBPSK) 802.11g/n: OFDM(BPSK,QPSK,16QAM 64QAM) Antenna Gain: 2.92dBi FPC Antenna			
Power Supply	Power Supply Adapter(TEKA-UCA20US) Input: 100-240V~, 50/60Hz, 0.35A MAX Output: DC 5V 2A DC 3.8V by 6600mAh Li-ion Polymer battery		50/60Hz, 0.35A MAX		
Software Version	: `	RP1A.200720.011	release-keys		
Hardware Version	:	MID1035MQ_MT8	768_LPDDR4_DSP_MB-VER1_1		
Connecting I/O Port(S)		Please refer to the User's Manual			
Remark		The antenna gain and adapter provided by the applicant, the verified for the RF conduction test and adapter provided by TOBY test lab.			

Note:

- (1) This Test Report is FCC Part 15.247 for 802.11b/g/n, the test procedure follows the FCC KDB 558074 D01 DTS Meas Guidance v05r02.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (3) Channel List:


Page: 5 of 21

	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
	01	2412	05	2432	09	2452
	02	2417	06	2437	10	2457
I	03	2422	07	2442	11	2462
	04	2427	08	2447		

Note: CH 01~CH 11 for 802.11b/g/n(HT20) CH 03~CH 9 for 802.11n(HT40)

- (4) The Antenna information about the equipment is provided by the applicant.
- 1.3 Block Diagram Showing the Configuration of System Tested

Charging Mode+Tx Mode

TX Mode

1.4 Description of Support Units

Equipment Information							
Name	Model	Manufacturer	Used "√"				
milling.	- W			E-HILLS			
	Cable Information						
Number Shielded Type		Ferrite Core	Length	Note			
Cable 1	Yes	NO	1.0M	Accessory			

Page: 6 of 21

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test				
Final Test Mode Description				
Mode 1	Charging+ TX B Mode			

For Radiated Test					
Final Test Mode Description					
Mode 2	TX Mode B Mode Channel 01/06/11				
Mode 3	TX Mode G Mode Channel 01/06/11				
Mode 4 TX Mode N(HT20) Mode Channel 0					
Mode 5	TX Mode N(HT40) Mode Channel 03/06/09				

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, Middle, lowest available channels, and the worst case data rate as follows:

802.11b Mode: CCK (1 Mbps) 802.11g Mode: OFDM (6 Mbps)

802.11n (HT20) Mode: MCS 0 (6.5 Mbps) 802.11n (HT40) Mode: MCS 0 (13 Mbps)

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is portable unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 7 of 21

1.6 Description of Test Software Setting

During testing channel&Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of WLAN.

400	LaunchEngmode	
CH 01	CH 06	CH 11
15	15	15
17	17	17
17	17	17
THU DE	n/a	
CH 03	CH 06	CH 09
18	18	18
	15 17 17 CH 03	CH 01 CH 06 15 15 17 17 17 17 n/a CH 03 CH 06

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	$\pm 3.50~\mathrm{dB}$ $\pm 3.10~\mathrm{dB}$
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

Page: 8 of 21

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01. FCC Accredited Test Site Number: 854351.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A.

Page: 9 of 21

2. Test Summary

	FCC F	Part 15 Subpart C(15.247)/ RSS 247 Iss	ue 2	
Standard Section		Took Itom	To a (O a ser a la (a)		
FCC	IC	Test Item	Test Sample(s)	Judgment	Remark
15.203	75	Antenna Requirement	N/A	N/A	N/A
15.207	RSS-GEN 7.2.4	Conducted Emission	20201224-13-1#	PASS	N/A
15.205	RSS-GEN 7.2.2	Restricted Bands	N/A	N/A	N/A Note(2)
15.247(a)(2)	RSS 247 5.2 (1)	6dB Bandwidth	N/A	N/A	N/A Note(2)
15.247(b)	RSS 247 5.4 (4)	Peak Output Power	20201224-13-1#	Pass	N/A Note(2)
15.247(e)	RSS 247 5.2 (2)	Power Spectral Density	N/A	N/A	N/A Note(2)
15.247(d)	RSS 247 5.5	Band Edge	N/A	N/A	N/A Note(2)
15.247(d)& 15.209	RSS 247 5.5	Transmitter Radiated Spurious Emission	20201224-13-1#	PASS	N/A

Note:

- (1) N/A is an abbreviation for Not Applicable.
- (2) This report is Class II change report for the original equipment have changed, the transmitter module itself has not changed. More information about the test data please refer to the original test report.
- (3) As there is no change regard RF transmitter portion and Antenna assembly(Output power for each mode verified), the change will not have effect on Radiated emission above 1GHz by judging for experience, thus testing is performed up to 1GHz only.

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE

Page: 10 of 21

4. Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date	
• •						
EMI Test Receiver	Rohde & Schwarz Compliance	ESCI	100321	Jul. 06, 2020	Jul. 05, 2021	
RF Switching Unit	Direction Systems	RSU-A4	34403	Jul. 06, 2020	Jul. 05, 2021	
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 06, 2020	Jul. 05, 2021	
LISN	Rohde & Schwarz	ENV216	101131	Jul. 06, 2020	Jul. 05, 2021	
Radiation Emission T	est					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date	
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 06, 2020	Jul. 05, 2021	
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 06, 2020	Jul. 05, 2021	
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jul. 06, 2020	Jul. 05, 2021	
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar.01, 2020	Feb. 28, 2022	
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar.01, 2020	Feb. 28, 2022	
Horn Antenna	ETS-LINDGREN	BBHA 9170	BBHA9170582	Mar.01, 2020	Feb. 28, 2022	
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 06, 2020	Jul. 05, 2021	
Pre-amplifier	Sonoma	310N	185903	Mar.01, 2020	Feb. 28, 2021	
Pre-amplifier	HP	8449B	3008A00849	Mar.01, 2020	Feb. 28, 2021	
Pre-amplifier	SKET	LNPA_1840G-50	SK201904032	Jul. 07, 2020	Jul. 06, 2021	
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar.01, 2020	Feb. 28, 2021	
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A	
Antenna Conducted I	Emission					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date	
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 06, 2020	Jul. 05, 2021	
Spectrum Analyzer	Rohde & Schwarz	ESPI	100010/007	Jul. 06, 2020	Jul. 05, 2021	
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 11, 2020	Sep. 10, 2021	
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 11, 2020	Sep. 10, 2021	
Analog Signal Generator	Agilent	N5181A	MY50141953	Sep. 11, 2020	Sep. 10, 2021	
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Sep. 11, 2020	Sep. 10, 2021	
DE Davis C	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Sep. 11, 2020	Sep. 10, 2021	
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Sep. 11, 2020	Sep. 10, 2021	
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Sep. 11, 2020	Sep. 10, 2021	

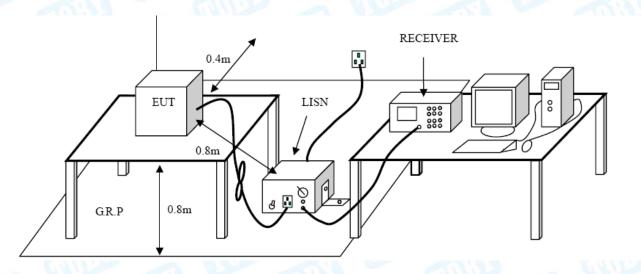
Page: 11 of 21

5. Conducted Emission Test

5.1 Test Standard and Limit

5.1.1Test Standard FCC Part 15.207

5.1.2 Test Limit


Conducted Emission Test Limit

Eroguenov	Maximum RF Line Voltage (dBμV)				
Frequency	Quasi-peak Level	Average Level			
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *			
500kHz~5MHz	56	46			
5MHz~30MHz	60	50			

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

Page: 12 of 21

5.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

5.4 Deviation From Test Standard

No deviation

5.5 EUT Operating Mode

Please refer to the description of test mode.

5.6 Test Data

Please refer to the Attachment A.

Page: 13 of 21

6. Radiated Emission Test

6.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.209

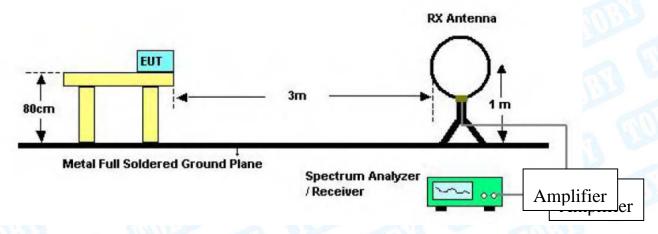
6.1.2 Test Limit

Radiated Emission Limits (9 kHz~1000 MHz)

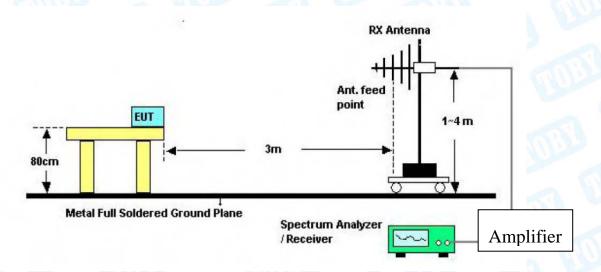
Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Radiated Emission Limit (Above 1000MHz)

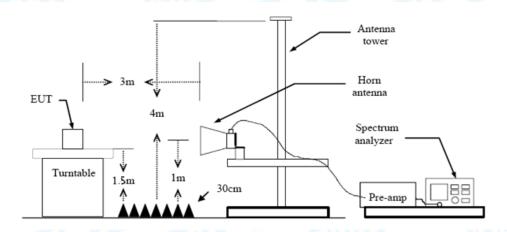
Frequency	Distance of 3	m (dBuV/m)
(MHz)	Peak	Average
Above 1000	74	54


Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)



Page: 14 of 21


6.2 Test Setup

Below 30MHz Test Setup

Below 1000MHz Test Setup

Above 1GHz Test Setup

Page: 15 of 21

6.3 Test Procedure

(1) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

- (2) Measurements at frequency Below 1GHz. The EUT was placed on a rotating 0.8m high above the ground. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

6.6 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment B.

Page: 16 of 21

7. Peak Output Power Test


7.1 Test Standard and Limit

7.1.1 Test Standard FCC Part 15.247 (b)

7.1.2 Test Limit

FCC Part 15 Subpart C(15.247)/RSS-210							
Test Item	Limit	Frequency Range(MHz)					
Peak Output Power	1 Watt or 30 dBm	2400~2483.5					

7.2 Test Setup

7.3 Test Procedure

The measurement is according to section 9.1.2 of KDB 558074 D01 DTS Meas Guidance v05r02.

The EUT was connected to RF power meter via a broadband power sensor as show the block above. The power sensor video bandwidth is greater than or equal to the DTS bandwidth of the equipment.

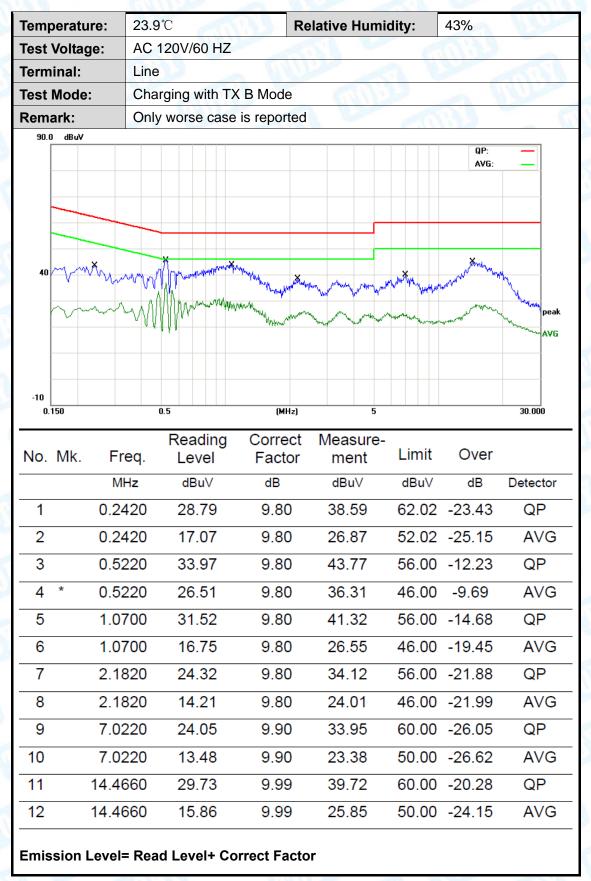
7.4 Deviation From Test Standard

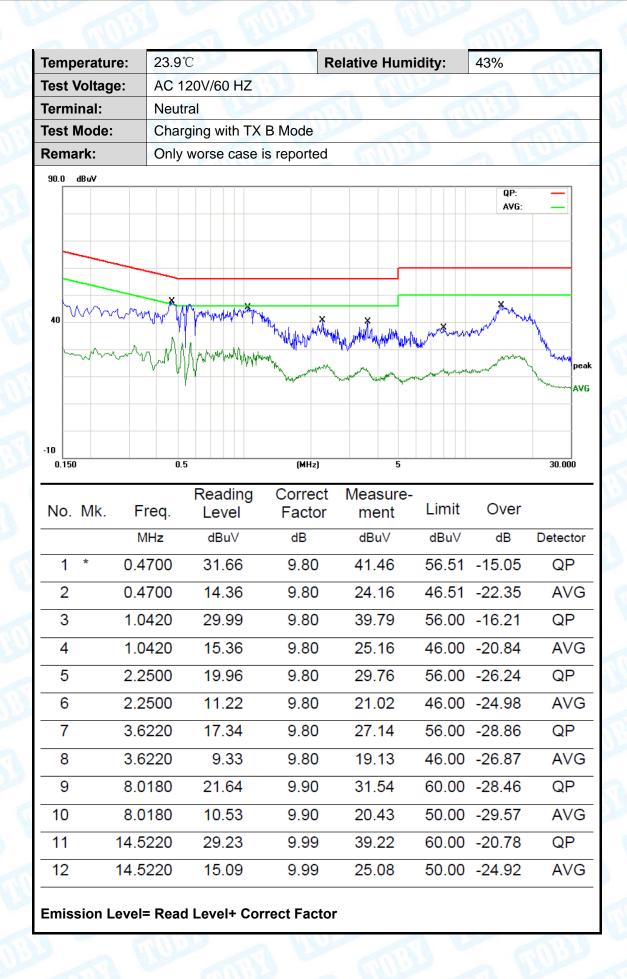
No deviation

7.5 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

7.6 Test Data


Please refer to the Attachment C.


Page: 17 of 21

Attachment A-- Conducted Emission Test Data

Page: 18 of 21

Page: 19 of 21

Attachment B-- Radiated Emission Test Data

9KHz~30MHz

From 9KHz to 30MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB

below the permissible value has no need to be reported.

30MHz~1GHz

empera	ture:	2	23.5	$^{\circ}$ C				Relative	e Hu	midit	y:	42%		
est Volt	t Voltage: AC 120V/60 HZ								ď.	1		200	13	3
Ant. Pol. Horizontal Test Mode: TX B Mode 2412MHz														
										1				
emark:		C	Only	wors	se c	ase i	s reported		V		6	MI!		
80.0 di	BuV/m													_
										(RF)FC	C 15C 3	3M Radiation		
			_									Margin -6	dВ	Ħ
														Ц
30												5	6	
1									4			* who	*.,^~	
X.	my					2 X	3 X	mohim	X~	Jana Maria				
	1,00	Market	~~~~	mm	h-h	man	many many man	777						-
														-
														_
-20														
30.000	40	50	60	70 8	80		(MHz)		300	400	500	600 700	100	00.000
				Re	ead	ling	Correct	Measu	re-					
No. N	1k.	Fre	q.	L	_ev	el	Factor	ment		Limi	it	Over		
		MHz	z		dBu	V	dB/m	dBuV/r	n	dBu\	//m	dB	D	etect
1	3	0.63	79	3	32.8	31	-13.42	19.39	9	40.	00	-20.6	1	pea
2	9	5.42	70	3	34.6	35	-21.90	12.75	5	43.	50	-30.7	5	pea
3	16	32.61	106	3	36.1	11	-20.71	15.40)	43.	50	-28.1	0	pea
4	30	3.54	137	3	34.8	32	-16.16	18.66	3	46.	00	-27.3	4	pea
5	57	78.66	399	3	33.9	98	-8.57	25.4	1	46.	00	-20.5	9	pea
6 *		5.96			33.9	22	-5.73	28.19		46.	00	-17.8	1	pea

*:Maximum data x:Over limit !:over margin

Emission Level= Read Level+ Correct Factor

Page: 20 of 21

	erature	· ·	23.5 °C Relative Humidity							ity: 42%					
Test V	/oltage	: /	AC 1	20V/6	0 HZ	ND '					e à	1			
Ant. P	Pol.	,	Vertic	cal			180		6						
Test N	/lode:		TX B Mode 2412MHz												
Rema	rk:		Only	worse	case	is report	ed	1103	2						
80.0	dBuV/m													_	
									(RF)FC	C 15C 3					
											Marg	gin -6 d	iB	H	
_				<u> </u>										Ц	
30 1													6 		
M	2 X	3							whenh	Married Wall	en	V-4/~~			
	w/	×.		4		a_k.wh.vh.	Munder	mmmmm							
		NAWAY.	Muh	, was	- AND THE PARTY OF	AN-ALIANA									
														-	
														-	
	0 40	50 6	SO 70	80		(MHz)		300	400	500	600	700	100	0.000	
-20 30.00	0 40	50 6	60 70	80		(MHz)		300	400	500	600	700	100	0.000	
30.00				Rea		Correc		sure-					100	0.000	
	0 40 . Mk.	Fred	٦.					sure-	400 Limit		600 Ove		100	0.000	
30.00			٦.	Rea	/el	Correc		sure- ent				er	100		
30.00	. Mk.	Fred	q.	Rea Le	vel u∀	Correc	r me	sure- ent V/m	Limit	/m	Ove	er	Det		
30.000 No.	. Mk.	Fred	q. : 95	Rea Lev	vel u∨ .04	Correct Factor	r me dBu 25.	sure- ent V/m	Limit dBuV	/m	Ove dB	er 3	Det	ecto	
No.	. Mk.	Fred MHz 31.509	7. : 95	Rea Lev dB	vel uV .04 .65	Correct Factor dB/m -14.08	r me dBu 25.	sure- ent V/m .96	Limit	/m 0	Ove dB -14.	er .04	Det	ecto eak	
No. 1 2 3	. Mk.	Fred MHz 31.509 36.766 46.340	95 62	Rea Lev dB 40.	vel uV .04 .65	Correct Factor dB/m -14.08 -17.50 -21.87	r me dBu 25. 19.	sure- ent V/m 96 .15	Limit dBuV 40.0 40.0	/m 0 0	Ove dB -14. -20.	er .04 .85	Det pe pe	ecto eak eak	
No. 1 2 3 4	. Mk.	Fred MHz 31.509 36.766 46.340 91.494	95 62 02	Rea Lev dB 40. 36. 37.	vel uV 04 65 43 00	Correct Factor	r me dBu 25. 19. 15.	sure- ent V/m 96 15 56	Limit dBuV/40.0 40.0 40.0 43.5	/m 00 00 00	Ove dB -14. -20. -24.	er .04 .85 .44	Dete	ecto eak eak eak	
No. 1 2 3	. Mk.	Fred MHz 31.509 36.766 46.340	95 62 02 49	Rea Lev dB 40. 36. 37. 34.	vel uV 04 65 43 00	Correct Factor dB/m -14.08 -17.50 -21.87	r me dBu 25. 19.	96 15 56 13	Limit dBuV 40.0 40.0	/m 00 00 00 00	Ove dB -14. -20.	er .04 .85 .44 .37	Dete	ecto eak eak	

Page: 21 of 21

Attachment C-- Peak Output Power Test Data

Test Conditions	: Continuous Transmit	ting Mode	
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 3.8V	U. B.	
Mode	Channel frequency (MHz)	Test Result (dBm)	Limit (dBm)
	2412	15.36	
802.11b	2437	15.25	
	2462	15.16	
	2412	14.23	
802.11g	2437	14.35	
	2462	14.36	30
802.11n	2412	12.86	30
(HT20)	2437	13.35	
(11120)	2462	13.42	
802.11n	2422	12.63	
(HT40)	2437	12.59	
(11170)	2452	12.64	
	Result	: PASS	

----END OF REPORT----