

# Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC173946 1 of 191 Page:

# **FCC Radio Test Report** FCC ID: XMF-MID1032

## **Original Grant**

Report No. TB-FCC173946

Lightcomm Technology Co., Ltd. **Applicant** 

**Equipment Under Test (EUT)** 

**EUT Name TABLET** 

Model No. MID1032-MR

Series Model No. DL1036

**Brand Name** 

TBBJ-20200630-10-1#& TBBJ-20200630-10-2# Sample ID

**Receipt Date** 2020-07-02

**Test Date** 2020-07-03 to 2020-07-30

**Issue Date** 2020-07-30

**Standards** FCC Part 15, Subpart E 15.407

: ANSI C63.10: 2013 **Test Method** 

Conclusions **PASS** 

In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC and IC requirements

**Test/Witness Engineer** 

**Test/Witness Engineer** 

**Approved& Authorized** 

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Tel: +86 75526509301



# Contents

| CON | NIENIS                                                       |          |
|-----|--------------------------------------------------------------|----------|
| 1.  | GENERAL INFORMATION ABOUT EUT                                | 5        |
|     | 1.1 Client Information                                       | 5        |
|     | 1.2 General Description of EUT (Equipment Under Test)        | 5        |
|     | 1.3 Block Diagram Showing the Configuration of System Tested | 6        |
|     | 1.4 Description of Support Units                             | <i>6</i> |
|     | 1.5 Description of Test Mode                                 |          |
|     | 1.6 Description of Test Software Setting                     |          |
|     | 1.7 Measurement Uncertainty                                  |          |
|     | 1.8 Test Facility                                            |          |
| 2.  | TEST SUMMARY                                                 | 11       |
| 3.  | TEST SOFTWARE                                                | 11       |
| 4.  | TEST EQUIPMENT                                               | 12       |
| 5.  | CONDUCTED EMISSION TEST                                      | 13       |
|     | 5.1 Test Standard and Limit                                  |          |
|     | 5.2 Test Setup                                               |          |
|     | 5.3 Test Procedure                                           |          |
|     | 5.4 Deviation From Test Standard                             |          |
|     | 5.5 EUT Operating Mode                                       |          |
|     | 5.6 Test Data5                                               |          |
| 6.  | RADIATED EMISSION TEST                                       |          |
|     | 6.1 Test Standard and Limit                                  |          |
|     | 6.2 Test Setup                                               |          |
|     | 6.3 Test Procedure                                           |          |
|     | 6.4 Deviation From Test Standard                             |          |
|     | 6.5 EUT Operating Condition                                  | 18       |
|     | 6.6 Test Data                                                |          |
| 7.  | BAND EDGE EMISSIONS                                          | 19       |
|     | 7.1 Test Standard and Limit                                  | 19       |
|     | 7.2 Test Setup                                               |          |
|     | 7.3 Test Procedure                                           |          |
|     | 7.4 Deviation From Test Standard                             |          |
|     | 7.5 EUT Operating Condition                                  | 20       |
|     | 7.6 Test Data                                                | 20       |
| 8.  | BANDWIDTH TEST                                               | 21       |
|     | 8.1 Test Standard and Limit                                  |          |
|     | 8.2 Test Setup                                               |          |
|     | 8.3 Test Procedure                                           |          |



Report No.: TB-FCC173946
Page: 3 of 191

|     | 8.4 Deviation From Test Standard                       | 22  |
|-----|--------------------------------------------------------|-----|
|     | 8.5 EUT Operating Condition                            | 22  |
|     | 8.6 Test Data                                          |     |
| 9.  | OUTPUT POWER TEST                                      | 23  |
|     | 9.1 Test Standard and Limit                            | 23  |
|     | 9.2 Test Setup                                         |     |
|     | 9.3 Test Procedure                                     |     |
|     | 9.4 Deviation From Test Standard                       | 23  |
|     | 9.5 EUT Operating Condition                            | 23  |
|     | 9.6 Test Date                                          |     |
| 10. | POWER SPECTRAL DENSITY TEST                            | 24  |
|     | 10.1 Test Standard and Limit                           | 24  |
|     | 9.2 Test Setup                                         |     |
|     | 10.3 Test Procedure                                    |     |
|     | 10.4 Deviation From Test Standard                      | 25  |
|     | 10.5 EUT Operating Condition                           | 25  |
|     | 10.6 Test Data                                         | 25  |
| 11. | FREQUENCY STABILITY MEASUREMENT                        | 26  |
|     | 11.1 Test Standard and Limit                           | 26  |
|     | 11.2 Test Setup                                        | 26  |
|     | 11.3 Test Procedure                                    |     |
|     | 11.4 Deviation From Test Standard                      | 26  |
|     | 11.5 EUT Operating Condition                           | 27  |
|     | 11.6 Test Data                                         | 27  |
| 12. | ANTENNA REQUIREMENT                                    | 28  |
|     | 12.1 Standard Requirement                              | 28  |
|     | 12.2 Antenna Connected Construction                    |     |
|     | 12.3 Deviation From Test Standard                      | 28  |
|     | 12.4 Result                                            | 28  |
| ATT | ACHMENT A CONDUCTED EMISSION TEST DATA                 | 29  |
| ATT | ACHMENT B RADIATED EMISSION TEST DATA                  | 31  |
|     | ACHMENT C RESTRICTED BANDS REQUIREMENT AND BAND-EDGE T |     |
|     |                                                        |     |
| ATT | ACHMENT DBANDWIDTH TEST DATA                           | 145 |
|     | ACHMENT EAVG OUTPUT POWER TEST DATA                    |     |
|     | ACHMENT F POWER SPECTRAL DENSITY TEST DATA             |     |
|     |                                                        |     |
| ALL | ACHMENT GFREQUENCY STABILITY MEASUREMENT DATA          | 190 |



Report No.: TB-FCC173946
Page: 4 of 191

# **Revision History**

| Report No.   | Version                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Issued Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TB-FCC173946 | Rev.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Initial issue of report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2020-07-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | THE PARTY OF THE P | - TO 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| and s        | THE PARTY OF THE P |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WILL THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3 - 6        | 133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| mili i       | - MIDE 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | The state of the s | mnBY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| mn .         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Time of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| m(18)        | 4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | The same of the sa |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              | 4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | The state of the s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| and s        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | COUNTY OF THE PARTY OF THE PART |
| 3            | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | The same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m: 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|              | ~ WO 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



Report No.: TB-FCC173946 Page: 5 of 191

## 1. General Information about EUT

## 1.1 Client Information

| Applicant : Lightcomm Technology Co., Ltd.                                                    |  | Lightcomm Technology Co., Ltd.                                                                 |
|-----------------------------------------------------------------------------------------------|--|------------------------------------------------------------------------------------------------|
| Address : UNIT 1306 13/F ARION COMMERCIAL CENTRE,2-12 QUEEN'S ROAD WEST,SHEUNG WAN HK         |  |                                                                                                |
| Manufacturer : Huizhou Hengdu Electronics Co., Ltd.                                           |  | Huizhou Hengdu Electronics Co., Ltd.                                                           |
| Address : No.8 Huitai Road, Huinan High-tech Industrial Park, Huiao Huizhou, Guangdong, China |  | No.8 Huitai Road, Huinan High-tech Industrial Park, Huiao Avenue,<br>Huizhou, Guangdong, China |

## 1.2 General Description of EUT (Equipment Under Test)

| <b>EUT Name</b>        |      | TABLET                                                                                                                     |                                                                                                                                          |  |  |
|------------------------|------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Models No.             | : ,  | MID1032-MR, DL1036                                                                                                         |                                                                                                                                          |  |  |
| Model Difference       | ): \ |                                                                                                                            | All these models are identical in the same PCB, layout and electrical circuit, The only difference is model name for commercial purpose. |  |  |
|                        | 111  | Operation Frequency U-NII-1: 5180M                                                                                         | uency:<br>Hz~5240MHz, U-NII-3: 5745MHz~5825MHz                                                                                           |  |  |
|                        |      | Antenna Gain:                                                                                                              | 1.15dBi FPC Antenna                                                                                                                      |  |  |
| Product<br>Description |      | Modulation<br>Type:                                                                                                        | 802.11a: OFDM (QPSK, BPSK, 16QAM)<br>802.11n: OFDM (QPSK, BPSK, 16QAM, 64QAM)<br>802.11ac: OFDM (QPSK, BPSK, 16QAM, 64QAM,<br>256QAM)    |  |  |
|                        |      | Bit Rate of Transmitter:                                                                                                   | 802.11a: 6/9/12/18/24/36/48/54 Mbps<br>802.11n: up to 150Mbps<br>802.11ac: at most 433.3 Mbps                                            |  |  |
| Power Rating           | 9    | Adapter (TEKA012-052000UK) Input: AC 100-240V, 50/60Hz Output: DC 5V 2A DC 3.8V by 5000mAh Li-ion battery                  |                                                                                                                                          |  |  |
| Software Version       | :    | Android 10                                                                                                                 |                                                                                                                                          |  |  |
| Hardware Version       | :    | MID1032MR_MT8168_LPDDR4_EMMC_V1_0                                                                                          |                                                                                                                                          |  |  |
| Remark                 |      | The adapter and antenna gain provided by the applicant, the verified for the RF conduction test provided by TOBY test lab. |                                                                                                                                          |  |  |

#### Note:

(1) This Test Report is FCC Part 15, Subpart E(15.407) for 802.11a/n/ac, the test procedure follows the KDB 789033 D02 General U-NII Test Procedures New Rules v02r01. More detailed features description, please refer to the manufacturer's specifications or the User's Manual.

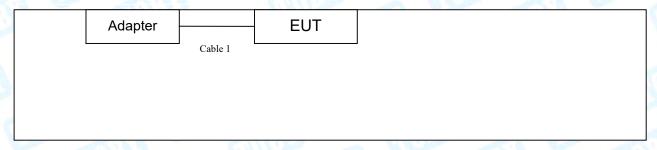


Report No.: TB-FCC173946 Page: 6 of 191

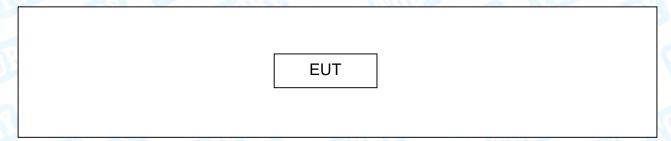
(2) Channel List:

| Frequency Band            | Channel No. | Frequency | Channel No. | Frequency |
|---------------------------|-------------|-----------|-------------|-----------|
| 5400 50401411             | 36          | 5180 MHz  | 44          | 5220 MHz  |
| 5180~5240MHz<br>(U-NII-1) | 38          | 5190 MHz  | 46          | 5230 MHz  |
| (0-1411-1)                | 40          | 5200 MHz  | 48          | 5240 MHz  |
|                           | 42          | 5210 MHz  |             | _         |

For 20 MHz Bandwidth, use channel 36, 40, 44, 48. For 40 MHz Bandwidth, use channel 38, 46.


For 80 MHz Bandwidth, use channel 42.

| Frequency Band            | Channel No. | Frequency | Channel No. | Frequency |
|---------------------------|-------------|-----------|-------------|-----------|
| 5745 5005NAL              | 149         | 5745 MHz  | 157         | 5785 MHz  |
| 5745~5825MHz<br>(U-NII-3) | 151         | 5755 MHz  | 159         | 5795 MHz  |
| (0-1411-3)                | 153         | 5765 MHz  | 161         | 5805 MHz  |
|                           | 155         | 5775 MHz  | 165         | 5825 MHz  |


For 20 MHz Bandwidth, use channel 149, 153, 157, 161, 165. For 40 MHz Bandwidth, use channel 151, 159. For 80 MHz Bandwidth, use channel 155.

## 1.3 Block Diagram Showing the Configuration of System Tested

## **Charging + TX Mode**



#### **TX Mode**



## 1.4 Description of Support Units

The EUT has been test as an independent unit.



Report No.: TB-FCC173946 Page: 7 of 191

### 1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

| respectively.             |             |                                                  |  |  |  |
|---------------------------|-------------|--------------------------------------------------|--|--|--|
| For Conducted Test        |             |                                                  |  |  |  |
| Final Test Mode           |             | Description                                      |  |  |  |
| 1                         | Mode 1      | Charging + TX a Mode(5180MHz)                    |  |  |  |
|                           | For         | Radiated Test Below 1GHz                         |  |  |  |
| Fina                      | I Test Mode | Description                                      |  |  |  |
|                           | Mode 2      | Charging + TX a Mode(5180MHz)                    |  |  |  |
|                           | For I       | Radiated Test Above 1GHz                         |  |  |  |
| Test Band Final Test Mode |             | Description                                      |  |  |  |
|                           | Mode 3      | TX Mode 802.11a Mode Channel 36/40/48            |  |  |  |
|                           | Mode 4      | TX Mode 802.11n(HT20) Mode Channel 36/40/48      |  |  |  |
| U-NII-1                   | Mode 5      | TX Mode 802.11ac(VHT20) Mode Channel 36/40/48    |  |  |  |
| U-INII- I                 | Mode 6      | TX Mode 802.11n(HT40) Mode Channel 38/46         |  |  |  |
|                           | Mode 7      | TX Mode 802.11ac(VHT40) Mode Channel 38/46       |  |  |  |
| 33                        | Mode 8      | TX Mode 802.11ac(VHT80) Mode Channel 42          |  |  |  |
|                           | Mode 9      | TX Mode 802.11a Mode Channel 149/157/165         |  |  |  |
| Mar.                      | Mode 10     | TX Mode 802.11n(HT20) Mode Channel 149/157/165   |  |  |  |
| U-NII-3                   | Mode 11     | TX Mode 802.11ac(vHT20) Mode Channel 149/157/165 |  |  |  |
| U-INII-3                  | Mode 12     | TX Mode 802.11n(HT40) Mode Channel 151/159       |  |  |  |
| O. H. D.                  | Mode13      | TX Mode 802.11ac(VHT40) Mode Channel 151/159     |  |  |  |
|                           | Mode 14     | TX Mode 802.11ac(VHT80) Mode Channel 155         |  |  |  |

#### Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

802.11a Mode: OFDM (6 Mbps) 802.11n (HT20) Mode: MCS 0 802.11n (HT40) Mode: MCS 0 802.11a(VHT20) Mode: MCS 0 802.11a(VHT40) Mode: MCS 0 802.11a(VHT80) Mode: MCS 0



Report No.: TB-FCC173946
Page: 8 of 191

(2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.

(3) The EUT is considered a portable unit; it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.



Report No.: TB-FCC173946 Page: 9 of 191

## 1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of WLAN.

| Test Mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | de: Continuously transmitti | ng         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U-NII-1                     |            |
| Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Frequency (MHz)             | Parameters |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5180                        | DEF        |
| 802.11a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5200                        | DEF        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5240                        | DEF        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5180                        | DEF        |
| 802.11n(HT20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5200                        | DEF        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5240                        | DEF        |
| W. T. C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5180                        | DEF        |
| Mode 802.11a 802.11n(HT20) 802.11ac(VHT20) 802.11ac(VHT40) 802.11ac(VHT80) Mode 802.11a 802.11a 802.11a 802.11a 802.11a 802.11a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5200                        | DEF        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5240                        | DEF        |
| 902 44n/UT40\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5190                        | DEF        |
| ου2. Ι Ι Ι Ι (Π Ι 4U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5230                        | DEF        |
| Mode  802.11a  802.11n(HT20)  802.11ac(VHT20)  802.11ac(VHT40)  802.11ac(VHT80)  Mode  802.11a  802.11a  802.11a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5190                        | DEF        |
| 002.11aC(VI114U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5230                        | DEF        |
| 802.11ac(VHT80)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5210                        | DEF        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U-NII-3                     |            |
| Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Frequency (MHz)             | Parameters |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5745                        | DEF        |
| 802.11a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5785                        | DEF        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5825                        | DEF        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5745                        | DEF        |
| 802.11n(HT20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5785                        | DEF        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5825                        | DEF        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5745                        | DEF        |
| 802.11ac(HT20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5785                        | DEF        |
| 55211185(111 <b>25</b> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5825                        | DEF        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5755                        | DEF        |
| 802.11n(HT40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5795                        | DEF        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             | 2          |
| 802.11ac(VHT40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5755                        | DEF        |
| TALL SHOW THE SHOW TH | 5795                        | DEF        |



Report No.: TB-FCC173946 Page: 10 of 191

### 1.7 Measurement Uncertainty

The reported uncertainty of measurement  $y \pm U$ , where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

| Test Item          | Parameters                                  | Expanded Uncertainty (U <sub>Lab</sub> ) |
|--------------------|---------------------------------------------|------------------------------------------|
| Conducted Emission | Level Accuracy: 9kHz~150kHz 150kHz to 30MHz | ±3.50 dB<br>±3.10 dB                     |
| Radiated Emission  | Level Accuracy:<br>9kHz to 30 MHz           | ±4.60 dB                                 |
| Radiated Emission  | Level Accuracy:<br>30MHz to 1000 MHz        | ±4.50 dB                                 |
| Radiated Emission  | Level Accuracy:<br>Above 1000MHz            | ±4.20 dB                                 |

## 1.8 Test Facility

The testing was performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at:1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China.

At the time of testing, the following bodies accredited the Laboratory:

#### CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

#### A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351.

#### IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A.



Report No.: TB-FCC173946
Page: 11 of 191

2. Test Summary

| Standard Section FCC | Test Item                              | Test Sample(s)                             | Judgment | Remark |
|----------------------|----------------------------------------|--------------------------------------------|----------|--------|
| 15.203               | Antenna Requirement                    | TBBJ-20200630-10-2#                        | PASS     | N/A    |
| 15.207               | Conducted Emission                     | TBBJ-20200630-10-1#                        | PASS     | N/A    |
| 15.407(b)            | Band Edge Emissions                    | TBBJ-20200630-10-2#                        | PASS     | N/A    |
| 15.407(a)            | 26dB Bandwidth&99%<br>Bandwidth        | TBBJ-20200630-10-2#                        | PASS     | N/A    |
| 15.407(e)            | 6dB Bandwidth                          | TBBJ-20200630-10-2#                        | PASS     | N/A    |
| 15.407(a)            | AVG Output Power                       | TBBJ-20200630-10-2#                        | PASS     | N/A    |
| 15.407(a)            | Power Spectral Density                 | TBBJ-20200630-10-2#                        | PASS     | N/A    |
| 15.209<br>15.407(b)  | Transmitter Radiated Spurious Emission | TBBJ-20200630-10-1#<br>TBBJ-20200630-10-2# | PASS     | N/A    |
| 15.407(a)            | Peak Excursion                         | TBBJ-20200630-10-2#                        | PASS     | N/A    |
| 15.407(g)            | Frequency Stability                    | TBBJ-20200630-10-2#                        | PASS     | N/A    |

# 3. Test Software

| Test Item                 | Test Software | Manufacturer | Version No. |
|---------------------------|---------------|--------------|-------------|
| Conducted Emission        | EZ-EMC        | EZ           | CDI-03A2    |
| Radiation Emission        | EZ-EMC        | EZ           | FA-03A2RE   |
| RF Conducted  Measurement | MTS-8310      | MWRFtest     | V2.0.0.0    |



Report No.: TB-FCC173946

Page: 12 of 191

# 4. Test Equipment

| Conducted Emission      | Test                             |                   |               |               |               |
|-------------------------|----------------------------------|-------------------|---------------|---------------|---------------|
| Equipment               | Manufacturer                     | Model No.         | Serial No.    | Last Cal.     | Cal. Due Date |
| EMI Test Receiver       | Rohde & Schwarz                  | ESCI              | 100321        | Jul. 06, 2020 | Jul. 05, 2021 |
| RF Switching Unit       | Compliance Direction Systems Inc | RSU-A4            | 34403         | Jul. 06, 2020 | Jul. 05, 2021 |
| AMN                     | SCHWARZBECK                      | NNBL 8226-2       | 8226-2/164    | Jul. 06, 2020 | Jul. 05, 2021 |
| LISN                    | Rohde & Schwarz                  | ENV216            | 101131        | Jul. 06, 2020 | Jul. 05, 2021 |
| Radiation Emission T    | est                              |                   |               |               |               |
| Equipment               | Manufacturer                     | Model No.         | Serial No.    | Last Cal.     | Cal. Due Date |
| Spectrum Analyzer       | Agilent                          | E4407B            | MY45106456    | Jul. 06, 2020 | Jul. 05, 2021 |
| EMI Test Receiver       | Rohde & Schwarz                  | ESPI              | 100010/007    | Jul. 06, 2020 | Jul. 05, 2021 |
| Spectrum Analyzer       | Rohde & Schwarz                  | FSV40-N           | 102197        | Jul. 06, 2020 | Jul. 05, 2021 |
| Bilog Antenna           | ETS-LINDGREN                     | 3142E             | 00117537      | Mar.01, 2020  | Feb. 28, 2021 |
| Horn Antenna            | ETS-LINDGREN                     | 3117              | 00143207      | Mar.01, 2020  | Feb. 28, 2021 |
| Horn Antenna            | ETS-LINDGREN                     | BBHA 9170         | BBHA9170582   | Aug.07, 2019  | Aug. 06, 2020 |
| Loop Antenna            | SCHWARZBECK                      | FMZB 1519 B       | 1519B-059     | Jul. 06, 2020 | Jul. 05, 2021 |
| Pre-amplifier           | Sonoma                           | 310N              | 185903        | Mar.01, 2020  | Feb. 28, 2021 |
| Pre-amplifier           | HP                               | 8449B             | 3008A00849    | Mar.01, 2020  | Feb. 28, 2021 |
| Cable                   | HUBER+SUHNER                     | 100               | SUCOFLEX      | Mar.01, 2020  | Feb. 28, 2021 |
| Positioning Controller  | ETS-LINDGREN                     | 2090              | N/A           | N/A           | N/A           |
| Antenna Conducted E     | Emission                         |                   |               |               |               |
| Equipment               | Manufacturer                     | Model No.         | Serial No.    | Last Cal.     | Cal. Due Date |
| Spectrum Analyzer       | Agilent                          | E4407B            | MY45106456    | Jul. 06, 2020 | Jul. 05, 2021 |
| Spectrum Analyzer       | Rohde & Schwarz                  | ESCI              | 100010/007    | Jul. 06, 2020 | Jul. 05, 2021 |
| MXA Signal Analyzer     | Agilent                          | N9020A            | MY49100060    | Sep. 16, 2019 | Sep. 15, 2020 |
| Vector Signal Generator | Agilent                          | N5182A            | MY50141294    | Sep. 16, 2019 | Sep. 15, 2020 |
| Analog Signal Generator | Agilent                          | N5181A            | MY50141953    | Sep. 16, 2019 | Sep. 15, 2020 |
| 1                       | DARE!! Instruments               | RadiPowerRPR3006W | 17I00015SNO26 | Sep. 16, 2019 | Sep. 15, 2020 |
|                         | DARE!! Instruments               | RadiPowerRPR3006W | 17I00015SNO29 | Sep. 16, 2019 | Sep. 15, 2020 |
| RF Power Sensor         | DARE!! Instruments               | RadiPowerRPR3006W | 17I00015SNO31 | Sep. 16, 2019 | Sep. 15, 2020 |
|                         |                                  |                   |               |               |               |



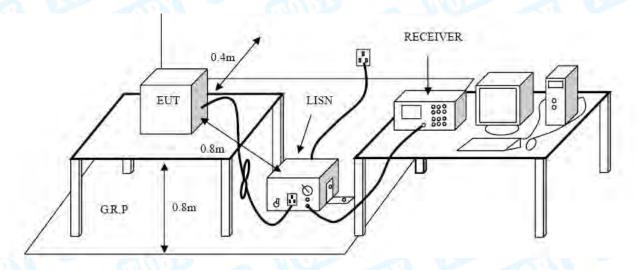
Report No.: TB-FCC173946 Page: 13 of 191

## 5. Conducted Emission Test

### 5.1 Test Standard and Limit

5.1.1Test Standard FCC Part 15.207

#### 5.1.2 Test Limit


### **Conducted Emission Test Limit**

| Eraguanav     | Maximum RF Line Voltage (dBμV) |               |  |
|---------------|--------------------------------|---------------|--|
| Frequency     | Quasi-peak Level               | Average Level |  |
| 150kHz~500kHz | 66 ~ 56 *                      | 56 ~ 46 *     |  |
| 500kHz~5MHz   | 56                             | 46            |  |
| 5MHz~30MHz    | 60                             | 50            |  |

#### Notes:

- (1) \*Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

## 5.2 Test Setup





Report No.: TB-FCC173946
Page: 14 of 191

#### 5.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

#### 5.4 Deviation From Test Standard

No deviation

### 5.5 EUT Operating Mode

Please refer to the description of test mode.

#### 5.6 Test Data

Please refer to the Attachment A.



Report No.: TB-FCC173946 Page: 15 of 191

## 6. Radiated Emission Test

### 6.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.209

6.1.2 Test Limit

#### Radiated Emission Limits (9kHz~1000MHz)

| Frequency<br>(MHz | Field Strength (microvolt/meter) | Measurement Distance (meters) |
|-------------------|----------------------------------|-------------------------------|
| 0.009~0.490       | 2400/F(KHz)                      | 300                           |
| 0.490~1.705       | 24000/F(KHz)                     | 30                            |
| 1.705~30.0        | 30                               | 30                            |
| 30~88             | 100                              | 3                             |
| 88~216            | 150                              | 3                             |
| 216~960           | 200                              | 3                             |
| Above 960         | 500                              | 3                             |

### Radiated Emission Limit (Above 1000MHz)

| Frequency  | Distance of 3m (dBuV/m) |         |  |
|------------|-------------------------|---------|--|
| (MHz)      | Peak                    | Average |  |
| Above 1000 | 74                      | 54      |  |

#### Note:

(1) The tighter limit applies at the band edges.

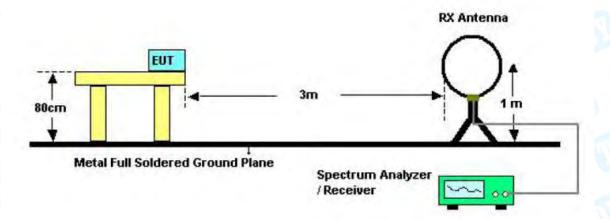
(2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

#### Limits of unwanted emission out of the restricted bands

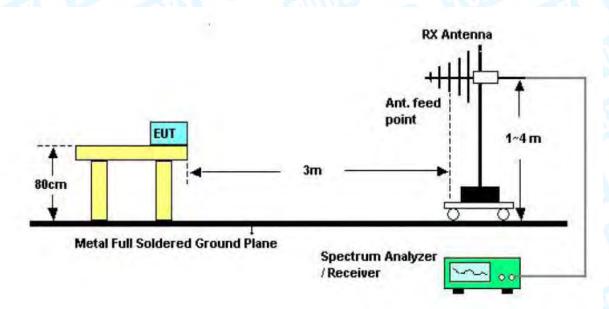
| Frequency (MHz) | EIRP Limits (dBm) | Equivalent Field Strength at 3m (dBuV/m) |
|-----------------|-------------------|------------------------------------------|
| 5150~5250       | -27               | 68.3                                     |
| 5250~5350       | -27               | 68.3                                     |
| 5470~5725       | -27               | 68.3                                     |
|                 | -27(Note 2)       | 68.3                                     |
|                 | 10(Note 2)        | 105.3                                    |
| 5725~5825       | 15.6(Note 2)      | 110.9                                    |
|                 | 27(Note 2)        | 122.3                                    |



Report No.: TB-FCC173946 Page: 16 of 191


NOTE:

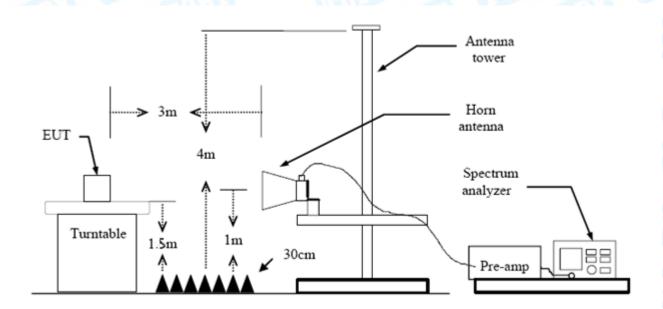
1, The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:


$$\mathsf{E} = \frac{1000000\sqrt{30P}}{3}\,\mathsf{uV/m},\,\mathsf{where}\;\mathsf{P}\;\mathsf{is}\;\mathsf{the\;eirp\;(Watts)}$$

2, According to FCC 16-24,All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below theband edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above orbelow the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27dBm/MHz at the band edge.

### 6.2 Test Setup




## Below 30MHz Test Setup



Below 1000MHz Test Setup



Report No.: TB-FCC173946 Page: 17 of 191



Above 1GHz Test Setup

#### 6.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz. The EUT was placed on a rotating 0.8m high above the ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical Antenna 0re set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.



Report No.: TB-FCC173946 Page: 18 of 191

### 6.4 Deviation From Test Standard

No deviation

## 6.5 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

#### 6.6 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

Please refer to the Attachment B.



Report No.: TB-FCC173946 Page: 19 of 191

## 7. Band Edge Emissions

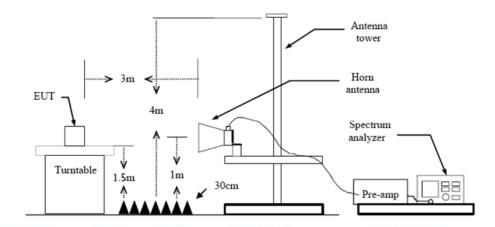
#### 7.1 Test Standard and Limit

7.1.1 Test Standard FCC Part 15.407(b)

#### 7.1.2 Test Limit

Limits of unwanted emission out of the restricted bands

| Frequency (MHz) | EIRP Limits (dBm) | Equivalent Field Strength at 3m (dBuV/m) |
|-----------------|-------------------|------------------------------------------|
| 5150~5250       | -27               | 68.3                                     |
| 5250~5350       | -27               | 68.3                                     |
| 5470~5725       | -27               | 68.3                                     |
|                 | -27(Note 2)       | 68.3                                     |
| 3               | 10(Note 2)        | 105.3                                    |
| 5725~5825       | 15.6(Note 2)      | 110.9                                    |
|                 | 27(Note 2)        | 122.3                                    |


#### NOTE:

1, The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

$$\mathsf{E} = \frac{1000000\sqrt{30P}}{3}\,\mathsf{uV/m}, \,\mathsf{where}\;\mathsf{P}\;\mathsf{is}\;\mathsf{the\;eirp\;(Watts)}$$

2, According to FCC 16-24,All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below theband edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above orbelow the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27dBm/MHz at the band edge.

## 7.2 Test Setup





Report No.: TB-FCC173946
Page: 20 of 191

#### 7.3 Test Procedure

(1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz. The EUT was placed on a rotating 0.8m high above the ground, the table was rotated 360 degrees to determine the position of the highest radiation.

- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical Antenna 0re set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

#### 7.4 Deviation From Test Standard

No deviation

## 7.5 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

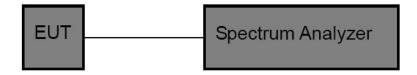
#### 7.6 Test Data

Please refer to the Attachment C.



Report No.: TB-FCC173946
Page: 21 of 191

## 8. Bandwidth Test


## 8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.407

8.1.2 Test Limit

| FCC Part 15 Subpart C(15.407)/RSS-210 |         |                          |  |  |
|---------------------------------------|---------|--------------------------|--|--|
| Test Item                             | Limit   | Frequency Range<br>(MHz) |  |  |
| 26 Bandwidth                          | N/A     | 5150~5250                |  |  |
|                                       |         | 5250~5350                |  |  |
|                                       |         | 5500~5700                |  |  |
| 6 dB Bandwidth                        | >500kHz | 5725~5850                |  |  |

## 8.2 Test Setup



### 8.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) The setting of the spectrum analyser as below:

| 26dB Bandwidth Test |                                            |  |  |
|---------------------|--------------------------------------------|--|--|
| Spectrum Parameters | Setting                                    |  |  |
| Attenuation         | Auto                                       |  |  |
| Span                | >26 dB Bandwidth                           |  |  |
| RBW                 | Approximately 1% of the emission bandwidth |  |  |
| VBW                 | VBW>RBW                                    |  |  |
| Detector            | Peak                                       |  |  |
| Trace               | Max Hold                                   |  |  |
| Sweep Time          | Auto                                       |  |  |



Report No.: TB-FCC173946 Page: 22 of 191

| 6dB Bandwidth Test  |                             |  |  |  |
|---------------------|-----------------------------|--|--|--|
| Spectrum Parameters | Setting                     |  |  |  |
| Attenuation         | Auto                        |  |  |  |
| Span                | >6 dB Bandwidth             |  |  |  |
| RBW                 | 100 kHz                     |  |  |  |
| VBW                 | VBW>=3*RBW                  |  |  |  |
| Detector            | Peak                        |  |  |  |
| Trace               | Max Hold                    |  |  |  |
| Sweep Time          | Auto                        |  |  |  |
|                     | 99% Occupied Bandwidth Test |  |  |  |
| Spectrum Parameters | Setting                     |  |  |  |
| Attenuation         | Auto                        |  |  |  |
| RBW                 | 1% to 5% of the OBW         |  |  |  |
| VBW                 | ≥ 3RBW                      |  |  |  |
| Detector            | Peak                        |  |  |  |
| Trace               | Max Hold                    |  |  |  |

## 8.4 Deviation From Test Standard

No deviation

## 8.5 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

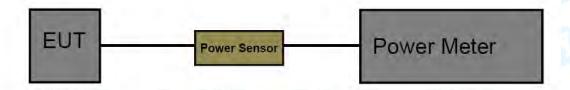
#### 8.6 Test Data

Please refer to the Attachment D.



Report No.: TB-FCC173946 Page: 23 of 191

## 9. Output Power Test


#### 9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.407 (a)

#### 9.1.2 Test Limit

| FCC Part 15 Subpart E(15.407)/RSS-210 |                                                          |                      |  |  |  |
|---------------------------------------|----------------------------------------------------------|----------------------|--|--|--|
| Test Item                             | Limit                                                    | Frequency Range(MHz) |  |  |  |
|                                       | Fixed: 1 Watt (30dBm) Mobile and Portable: 250mW (24dBm) | 5150~5250            |  |  |  |
| Conducted Output Power                | 250mW (24dBm)                                            | 5250~5350            |  |  |  |
|                                       | 250mW (24dBm)                                            | 5500~5700            |  |  |  |
|                                       | 1 Watt (30dBm)                                           | 5725~5850            |  |  |  |

## 9.2 Test Setup



#### 9.3 Test Procedure

The measurement is according to section 3 of KDB 789033 D02 General U-NII Test Procedures New Rules v02r01.

The EUT was connected to RF power meter via a broadband power sensor as show the block above.

#### 9.4 Deviation From Test Standard

No deviation

## 9.5 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

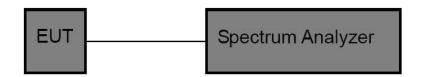
#### 9.6 Test Date

Please refer to the Attachment E.



Report No.: TB-FCC173946
Page: 24 of 191

## 10. Power Spectral Density Test


#### 10.1 Test Standard and Limit

10.1.1 Test Standard FCC Part 15.407 (a)

10.1.2 Test Limit

| FCC Part 15 Subpart E(15.407) |                                                                                     |           |  |  |
|-------------------------------|-------------------------------------------------------------------------------------|-----------|--|--|
| Test Item                     | Frequency Range(MHz)                                                                |           |  |  |
| Power Spectral Density        | Other than Mobile and<br>Portable : 17dBm/MHz<br>Mobile and Portable :<br>11dBm/MHz | 5150~5250 |  |  |
|                               | 11dBm/MHz                                                                           | 5250~5350 |  |  |
|                               | 11dBm/MHz                                                                           | 5500~5700 |  |  |
|                               | 30dBm/500kHz                                                                        | 5725~5850 |  |  |

### 9.2 Test Setup



#### 10.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement is according to KDB 789033 D02 General U-NII Test Procedures New Rules v02r01.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
  - (2) Set analyser centre frequency to transmitting frequency.
  - (3) Set the span to encompass the entire emissions bandwidth (EBW)(alternatively, the entire 99% OBW) of the signal.

(4) Set the RBW to: 1 MHz (5) Set the VBW to: 3 MHz

(6) Detector: RMS(7) Trace: Max Hold(7) Sweep time: auto

(8) Trace average at least 100 traces in power averaging.



Report No.: TB-FCC173946
Page: 25 of 191

(9) User the peak marker function to determine the maximum amplitude level within the RBW. Apply correction to the result if different RBW is used.

### 10.4 Deviation From Test Standard

No deviation

## 10.5 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Middle and high channel for the test.

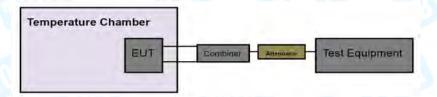
#### 10.6 Test Data

Please refer to the Attachment F.



Report No.: TB-FCC173946
Page: 26 of 191

## 11. Frequency Stability Measurement


#### 11.1 Test Standard and Limit

11.1.1 Test Standard FCC Part 15.407

#### 11.1.2 Test Limit

| FCC Part 15 Subpart C(15.407)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                     |                      |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------|--|--|--|
| Test Item                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Limit                                                                               | Frequency Range(MHz) |  |  |  |
| The state of the s | Manufacturers of U-NII devices are responsible                                      | 5150~5250            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | for ensuring frequency stability such that an                                       | 5250~5350            |  |  |  |
| Peak Excursion  Measurement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | emission is maintained within the band of                                           | 5500~5700            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | operation under all conditions of normal operation as specified in the users manual | 5725~5850            |  |  |  |

## 11.2 Test Setup



#### 11.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
  - (2) Set analyser centre frequency to transmitting frequency.
  - (3) Set the span to encompass the entire emissions bandwidth (EBW) of the signal.
  - (4) Set the RBW to: 10 kHz, VBW=10 kHz with peak detector and maxhold settings.
  - (5) The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value.
  - (6) Extreme temperature is 0°C~50°C

#### 11.4 Deviation From Test Standard

No deviation



Report No.: TB-FCC173946 Page: 27 of 191

## 11.5 EUT Operating Condition

The EUT was set to continuously transmitting in continuously un-modulation transmitting mode.

### 11.6 Test Data

Please refer to the Attachment G.



Report No.: TB-FCC173946
Page: 28 of 191

## 12. Antenna Requirement

### 12.1 Standard Requirement

12.1.1 Standard FCC Part 15.203

#### 12.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

### 12.2 Antenna Connected Construction

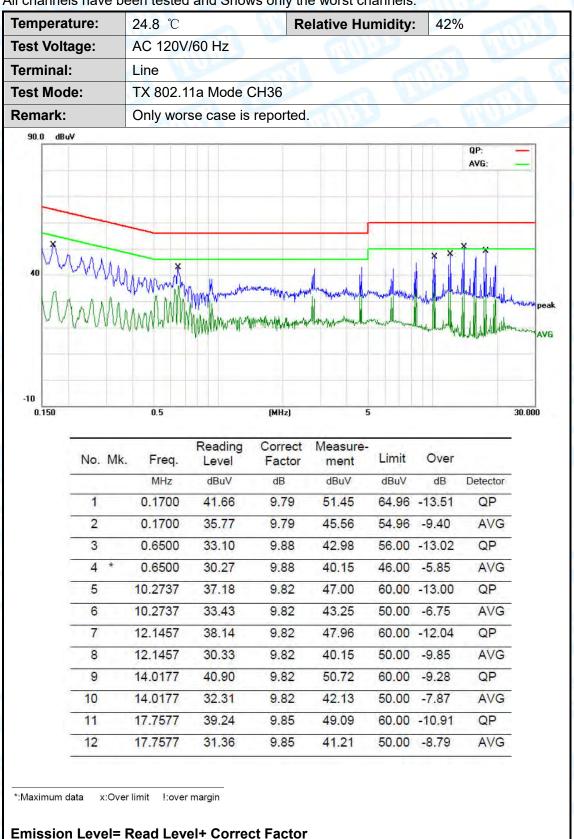
The gains of the antenna used for transmitting is 1.15dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

#### 12.3 Deviation From Test Standard

No deviation

#### 12.4 Result

The EUT antennas are FPC Antenna. It complies with the standard requirement.


| Antenna Type                        |
|-------------------------------------|
| ☐ Permanent attached antenna        |
| ✓ Unique connector antenna          |
| ☐ Professional installation antenna |





## **Attachment A-- Conducted Emission Test Data**

Remark: All channels have been tested and Shows only the worst channels.





Report No.: TB-FCC173946 Page: 30 of 191

| Temperature:  | 24.8 ℃                   | Relative Humidity: | 42%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------|--------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Voltage: | AC 120V/60 Hz            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Terminal:     | Neutral                  | 133                | THE PARTY OF THE P |
| Test Mode:    | TX 802.11a Mode CH36     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Remark:       | Only worse case is repor | ted                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



| No. | Mk. | Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|-----|-----|---------|------------------|-------------------|------------------|-------|--------|----------|
|     |     | MHz     | dBuV             | dB                | dBuV             | dBuV  | dB     | Detector |
| 1   |     | 0.1700  | 40.76            | 9.62              | 50.38            | 64.96 | -14.58 | QP       |
| 2   |     | 0.1700  | 40.76            | 9.62              | 50.38            | 54.96 | -4.58  | AVG      |
| 3   |     | 2.8140  | 35.59            | 9.86              | 45.45            | 56.00 | -10.55 | QP       |
| 4   |     | 2.8140  | 31.26            | 9.86              | 41.12            | 46.00 | -4.88  | AVG      |
| 5   |     | 12.2057 | 39.40            | 9.86              | 49.26            | 60.00 | -10.74 | QP       |
| 6   | *   | 12.2057 | 35.79            | 9.86              | 45.65            | 50.00 | -4.35  | AVG      |
| 7   | Τ.  | 14.0859 | 44.85            | 9.86              | 54.71            | 60.00 | -5.29  | QP       |
| 8   |     | 14.0859 | 31.40            | 9.86              | 41.26            | 50.00 | -8.74  | AVG      |
| 9   | . 3 | 15.9657 | 41.75            | 9.81              | 51.56            | 60.00 | -8.44  | QP       |
| 10  |     | 15.9657 | 33.71            | 9.81              | 43.52            | 50.00 | -6.48  | AVG      |
| 11  |     | 17.8458 | 41.31            | 9.72              | 51.03            | 60.00 | -8.97  | QP       |
| 12  |     | 17.8458 | 33.80            | 9.72              | 43.52            | 50.00 | -6.48  | AVG      |

\*:Maximum data x:Over limit !:over margin



Report No.: TB-FCC173946
Page: 31 of 191

## **Attachment B-- Radiated Emission Test Data**

#### 9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

#### 30MHz~1GHz

| Temperatu                         | ıı <del>c</del> . | 24.                                     | 6 ℃                                          |                                                     | R                                               | elative Hur                                           | nidity:                  | 43%                                      |                   |            |
|-----------------------------------|-------------------|-----------------------------------------|----------------------------------------------|-----------------------------------------------------|-------------------------------------------------|-------------------------------------------------------|--------------------------|------------------------------------------|-------------------|------------|
| Test Voltaç                       | je:               | AC                                      | 120V                                         | //60Hz                                              |                                                 |                                                       |                          |                                          |                   | 65         |
| Ant. Pol.                         |                   | Но                                      | rizonta                                      | al                                                  | 111                                             |                                                       | MAIN                     |                                          | 22.9              | 1          |
| Test Mode                         | :                 | TX                                      | 802.1                                        | 1a Mode s                                           | 5180MHz                                         | (U-NII-1)                                             |                          | CINI                                     |                   |            |
| Remark:                           |                   | On                                      | ly wor                                       | se case is                                          | reported                                        |                                                       |                          |                                          | (                 | 116        |
| 80.0 dBuV/                        | n                 |                                         |                                              |                                                     |                                                 |                                                       |                          |                                          |                   |            |
|                                   |                   |                                         |                                              |                                                     |                                                 |                                                       |                          | - [ - [                                  |                   |            |
|                                   |                   |                                         |                                              |                                                     |                                                 |                                                       |                          |                                          |                   |            |
|                                   |                   |                                         |                                              | -                                                   |                                                 |                                                       | (DF)E                    | CC 15C 3M R                              | adiation          |            |
|                                   |                   |                                         |                                              |                                                     |                                                 | 2-                                                    |                          | Ma                                       | argin -6 df       | 4          |
| 4                                 |                   |                                         |                                              |                                                     |                                                 |                                                       |                          | 4-19                                     | 6<br>X            |            |
|                                   |                   |                                         | +++                                          |                                                     | 5<br>X                                          | T                                                     |                          |                                          |                   |            |
| 301                               |                   |                                         |                                              |                                                     |                                                 |                                                       |                          |                                          | 1                 |            |
| 30 1                              | 2<br>X<br>VI      | No.                                     | × 3                                          | Lummy                                               | * In                                            | A widow.                                              | MAN MORAL                | moderan                                  | Jamos             | John Marie |
| Managara                          | www.              | NA.                                     | × ×                                          | Lummy                                               | Žund                                            | Jana Mark                                             | ngh phonosy              | Andrew                                   | Jhannet           |            |
| -20<br>30.000                     | 40 50             | 60                                      | 70 80                                        |                                                     | (MHz)                                           | 30                                                    |                          | 500 600                                  | 700               | 1000.00    |
| -20<br>30.000                     | 40 50             |                                         | Å                                            |                                                     |                                                 | *                                                     |                          | 500 600<br>Over                          | 700               | 1000.00    |
| -20<br>30.000                     |                   | Fi                                      | 70 80                                        | Reading                                             | (MH₂) Correct                                   | 30<br>Measure-                                        | 10 400                   | Over                                     | 700               |            |
| -20<br>30.000                     |                   | . Fr                                    | 70 80 req.                                   | Reading<br>Level                                    | (MH₂)  Correct Factor                           | 30<br>Measure-<br>ment                                | 00 400<br>Limit          | Over dB                                  | Detec             | tor        |
| -20<br>30.000                     |                   | . Fr<br>M<br>30.6                       | 70 80 req.                                   | Reading<br>Level<br>dBuV                            | (MHz)  Correct Factor dB/m                      | Measure-<br>ment<br>dBuV/m                            | Limit                    | Over dB -13.60                           | Detec             | tor        |
| -20<br>30.000                     |                   | Fi M 30.6                               | 70 80<br>req.                                | Reading<br>Level<br>dBuV<br>39.83                   | (MHz)  Correct Factor dB/m -13.43               | Measure-<br>ment<br>dBuV/m<br>26.40                   | Limit dBuV/m 40.00       | Over  dB  -13.60  -15.52                 | Detec<br>QF<br>QF | tor        |
| -20<br>30.000<br>N                |                   | 30.6<br>49.0<br>77.8                    | 70 80<br>req.<br>1Hz<br>3379                 | Reading<br>Level<br>dBuV<br>39.83<br>47.22          | Correct<br>Factor<br>dB/m<br>-13.43<br>-22.74   | Measure-<br>ment<br>dBuV/m<br>26.40<br>24.48          | Limit dBuV/m 40.00 40.00 | Over  -13.60  -15.52  -15.97             | Detection QF      | tor        |
| -20<br>30.000<br>N<br>1<br>2<br>3 |                   | Fr<br>M<br>30.6<br>49.0<br>77.8<br>138. | 70 80<br>req.<br>IHz<br>6379<br>0145<br>8654 | Reading<br>Level<br>dBuV<br>39.83<br>47.22<br>46.69 | (MH₂)  Correct Factor dB/m -13.43 -22.74 -22.66 | Measure-<br>ment<br>dBuV/m<br>26.40<br>24.48<br>24.03 | Limit dBuV/m 40.00 40.00 | Over  dB  -13.60  -15.52  -15.97  -19.96 | Detection QF      | tor        |

\*:Maximum data x:Over limit !:over margin



Report No.: TB-FCC173946

Page: 32 of 191

| _      |         |                                   |                    |       |  |  |  |
|--------|---------|-----------------------------------|--------------------|-------|--|--|--|
| Tempe  | rature: | <b>24.6</b> ℃                     | Relative Humidity: | 43%   |  |  |  |
| Test V | oltage: | AC 120V/60Hz                      |                    | THUE  |  |  |  |
| Ant. P | ol.     | Vertical                          |                    |       |  |  |  |
| Test M | ode:    | TX 802.11a Mode 5180MHz (U-NII-1) |                    |       |  |  |  |
| Remai  | ·k:     | Only worse case is repor          | ted.               | 1/193 |  |  |  |



| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|
|     |     | MHz      | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |     | 31.5095  | 47.10            | -14.08            | 33.02            | 40.00  | -6.98  | QP       |
| 2   | *   | 46.6664  | 56.91            | -21.96            | 34.95            | 40.00  | -5.05  | QP       |
| 3   |     | 77.3212  | 53.39            | -22.71            | 30.68            | 40.00  | -9.32  | QP       |
| 4   |     | 140.3421 | 53.19            | -22.35            | 30.84            | 43.50  | -12.66 | QP       |
| 5   |     | 183.2005 | 51.92            | -20.01            | 31.91            | 43.50  | -11.59 | QP       |
| 6   |     | 665.8035 | 41.19            | -7.59             | 33.60            | 46.00  | -12.40 | QP       |
| 6   |     | 665.8035 | 41.19            | -7.59             | 33.60            | 46.00  | -1     | 2.40     |

<sup>\*:</sup>Maximum data x:Over limit !:over margin



Report No.: TB-FCC173946
Page: 33 of 191

5180MHz-5240MHz(U-NII-1)

| Temperature:  | <b>25</b> ℃               | Relative Humidity:     | 55%          |
|---------------|---------------------------|------------------------|--------------|
| Test Voltage: | DC 3.8V                   | (1) T                  | Min a        |
| Ant. Pol.     | Horizontal                |                        |              |
| Test Mode:    | TX 802.11a Mode 5180M     | 1Hz (U-NII-1)          | 1            |
| Remark:       | No report for the emissio | n which more than 10 o | dB below the |
|               | prescribed limit. Only wo | rse case is reported.  |              |

| No | . Mk | Freq.     | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|------|-----------|------------------|-------------------|------------------|--------|--------|----------|
|    |      | MHz       | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1  | *    | 10359.171 | 24.41            | 20.50             | 44.91            | 54.00  | -9.09  | AVG      |
| 2  |      | 10359.735 | 34.88            | 20.50             | 55.38            | 68.30  | -12.92 | peak     |



Report No.: TB-FCC173946
Page: 34 of 191

| Temperature:  | 25 ℃                       | Relative Humidity:     | 55%          |
|---------------|----------------------------|------------------------|--------------|
| Test Voltage: | DC 3.8V                    |                        |              |
| Ant. Pol.     | Vertical                   |                        |              |
| Test Mode:    | TX 802.11a Mode 5180M      | IHz (U-NII-1)          |              |
| Remark:       | No report for the emission | n which more than 10 o | dB below the |
|               | prescribed limit. Only wor | rse case is reported.  |              |

| No | . M | k. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|-----|----|----------|------------------|-------------------|------------------|--------|--------|----------|
|    |     |    | MHz      | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1  | *   | 10 | 0360.949 | 23.73            | 20.50             | 44.23            | 54.00  | -9.77  | AVG      |
| 2  |     | 10 | 0361.011 | 34.61            | 20.50             | 55.11            | 68.30  | -13.19 | peak     |



Report No.: TB-FCC173946
Page: 35 of 191

|               |                           |                        | E. 11 1 1 1 2 2 |
|---------------|---------------------------|------------------------|-----------------|
| Temperature:  | 25 ℃                      | Relative Humidity:     | 55%             |
| Test Voltage: | DC 3.8V                   | (1) T                  | MODE            |
| Ant. Pol.     | Horizontal                |                        |                 |
| Test Mode:    | TX 802.11a Mode 5200M     | IHz (U-NII-1)          |                 |
| Remark:       | No report for the emissio | n which more than 10 o | dB below the    |
|               | prescribed limit.         |                        |                 |

| No | . Mk | Freq.     | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|------|-----------|------------------|-------------------|------------------|--------|--------|----------|
|    |      | MHz       | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1  | *    | 10399.738 | 23.32            | 20.56             | 43.88            | 54.00  | -10.12 | AVG      |
| 2  |      | 10401.421 | 33.84            | 20.56             | 54.40            | 68.30  | -13.90 | peak     |



Report No.: TB-FCC173946
Page: 36 of 191

| ì | Temperature:  | 25 ℃                                                       | Relative Humidity: | 55% |  |  |  |
|---|---------------|------------------------------------------------------------|--------------------|-----|--|--|--|
|   | Test Voltage: | DC 3.8V                                                    | (1) T              |     |  |  |  |
|   | Ant. Pol.     | Vertical                                                   |                    |     |  |  |  |
|   | Test Mode:    | TX 802.11a Mode 5200MHz (U-NII-1)                          |                    |     |  |  |  |
|   | Remark:       | No report for the emission which more than 10 dB below the |                    |     |  |  |  |
|   |               | prescribed limit.                                          |                    |     |  |  |  |

| No. N |   | . Freq.   | Reading<br>Level | Correct<br>Factor |        | Limit  | Over   |          |
|-------|---|-----------|------------------|-------------------|--------|--------|--------|----------|
|       |   | MHz       | dBuV             | dB/m              | dBuV/m | dBuV/m | dB     | Detector |
| 1     | * | 10399.377 | 38.08            | 20.56             | 58.64  | 68.30  | -9.66  | peak     |
| 2     |   | 10399.377 | 19.80            | 20.56             | 40.36  | 54.00  | -13.64 | AVG      |



Report No.: TB-FCC173946
Page: 37 of 191

| Temperature:  | 25 ℃                      | Relative Humidity:     | 55%          |
|---------------|---------------------------|------------------------|--------------|
| Test Voltage: | DC 3.8V                   | (B)                    | THE STATE OF |
| Ant. Pol.     | Horizontal                |                        |              |
| Test Mode:    | TX 802.11a Mode 5240M     | IHz (U-NII-1)          | 7            |
| Remark:       | No report for the emissio | n which more than 10 o | dB below the |
|               | prescribed limit.         |                        |              |

| No. | Mk | Freq.     | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|----|-----------|------------------|-------------------|------------------|--------|--------|----------|
|     |    | MHz       | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1   | *  | 10479.838 | 23.55            | 20.68             | 44.23            | 54.00  | -9.77  | AVG      |
| 2   |    | 10481.708 | 34.25            | 20.68             | 54.93            | 68.30  | -13.37 | peak     |



Report No.: TB-FCC173946
Page: 38 of 191

|               |                           |                      | E 111111     |
|---------------|---------------------------|----------------------|--------------|
| Temperature:  | <b>25</b> ℃               | Relative Humidity:   | 55%          |
| Test Voltage: | DC 3.8V                   |                      |              |
| Ant. Pol.     | Vertical                  |                      |              |
| Test Mode:    | TX 802.11a Mode 5240M     | 1Hz (U-NII-1)        | - D          |
| Remark:       | No report for the emissio | n which more than 10 | dB below the |
|               | prescribed limit.         |                      |              |

| No. | Mk | . Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|----|-----------|------------------|-------------------|------------------|--------|--------|----------|
|     |    | MHz       | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |    | 10480.125 | 34.14            | 20.68             | 54.82            | 68.30  | -13.48 | peak     |
| 2   | *  | 10481.733 | 23.45            | 20.68             | 44.13            | 54.00  | -9.87  | AVG      |



Report No.: TB-FCC173946
Page: 39 of 191

| Temperature:  | 25 ℃                      | Relative Humidity:   | 55%          |
|---------------|---------------------------|----------------------|--------------|
| Test Voltage: | DC 3.8V                   |                      |              |
| Ant. Pol.     | Horizontal                |                      |              |
| Test Mode:    | TX 802.11n(HT20) Mode     | 5180MHz (U-NII-1)    |              |
| Remark:       | No report for the emissio | n which more than 10 | dB below the |
|               | prescribed limit.         |                      |              |

| No | . Mk | . Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|------|-----------|------------------|-------------------|------------------|--------|--------|----------|
|    |      | MHz       | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1  | *    | 10358.030 | 22.92            | 20.50             | 43.42            | 54.00  | -10.58 | AVG      |
| 2  |      | 10358.990 | 33.66            | 20.50             | 54.16            | 68.30  | -14.14 | peak     |



Report No.: TB-FCC173946
Page: 40 of 191

| Temperature  | e: 25 °C                | Relative Humidity:     | 55%          |
|--------------|-------------------------|------------------------|--------------|
| Test Voltage | : DC 3.8V               |                        | Min and      |
| Ant. Pol.    | Vertical                |                        |              |
| Test Mode:   | TX 802.11n(HT20) Mod    | le 5180MHz (U-NII-1)   | TO THE       |
| Remark:      | No report for the emiss | ion which more than 10 | dB below the |
|              | prescribed limit.       | 10 m                   |              |

| No | . Mk | . Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|------|-----------|------------------|-------------------|------------------|--------|--------|----------|
|    |      | MHz       | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1  |      | 10360.287 | 34.49            | 20.50             | 54.99            | 68.30  | -13.31 | peak     |
| 2  | *    | 10361.509 | 24.36            | 20.50             | 44.86            | 54.00  | -9.14  | AVG      |



Report No.: TB-FCC173946
Page: 41 of 191

| Temperature:  | <b>25</b> ℃               | Relative Humidity:     | 55%          |
|---------------|---------------------------|------------------------|--------------|
| Test Voltage: | DC 3.8V                   |                        |              |
| Ant. Pol.     | Horizontal                |                        |              |
| Test Mode:    | TX 802.11n(HT20) Mode     | 5200MHz (U-NII-1)      |              |
| Remark:       | No report for the emissio | n which more than 10 o | dB below the |
|               | prescribed limit.         |                        |              |

| No | . Mk | . Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|------|-----------|------------------|-------------------|------------------|--------|--------|----------|
|    |      | MHz       | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1  | *    | 10398.865 | 23.60            | 20.56             | 44.16            | 54.00  | -9.84  | AVG      |
| 2  |      | 10399.177 | 33.92            | 20.56             | 54.48            | 68.30  | -13.82 | peak     |



Report No.: TB-FCC173946
Page: 42 of 191

| Temperature:  | <b>25</b> ℃               | Relative Humidity:     | 55%          |
|---------------|---------------------------|------------------------|--------------|
| Test Voltage: | DC 3.8V                   |                        |              |
| Ant. Pol.     | Vertical                  |                        |              |
| Test Mode:    | TX 802.11n(HT20) Mode     | 5200MHz (U-NII-1)      | - The same   |
| Remark:       | No report for the emissio | n which more than 10 o | dB below the |
|               | prescribed limit.         |                        |              |

| No | . Mk | . Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|------|-----------|------------------|-------------------|------------------|--------|--------|----------|
|    |      | MHz       | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1  | *    | 10400.673 | 23.86            | 20.56             | 44.42            | 54.00  | -9.58  | AVG      |
| 2  |      | 10401.870 | 33.74            | 20.56             | 54.30            | 68.30  | -14.00 | peak     |



Report No.: TB-FCC173946
Page: 43 of 191

|               |                            |                        | E. (1.1.1.1.1.2) |
|---------------|----------------------------|------------------------|------------------|
| Temperature:  | 25 ℃                       | Relative Humidity:     | 55%              |
| Test Voltage: | DC 3.8V                    | 133                    |                  |
| Ant. Pol.     | Horizontal                 |                        |                  |
| Test Mode:    | TX 802.11n(HT20) Mode      | 5240MHz (U-NII-1)      | - The same       |
| Remark:       | No report for the emission | n which more than 10 o | dB below the     |
|               | prescribed limit.          | - a W                  |                  |

| No. | . Mk | . Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|------|-----------|------------------|-------------------|------------------|--------|--------|----------|
|     |      | MHz       | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |      | 10480.374 | 34.35            | 20.68             | 55.03            | 68.30  | -13.27 | peak     |
| 2   | *    | 10480.611 | 23.68            | 20.68             | 44.36            | 54.00  | -9.64  | AVG      |



Report No.: TB-FCC173946
Page: 44 of 191

| Temperature:  | 25 ℃                      | Relative Humidity:                      | 55%          |  |  |
|---------------|---------------------------|-----------------------------------------|--------------|--|--|
| Test Voltage: | DC 3.8V                   | (B)                                     |              |  |  |
| Ant. Pol.     | Vertical                  |                                         |              |  |  |
| Test Mode:    | TX 802.11n(HT20) Mode     | TX 802.11n(HT20) Mode 5240MHz (U-NII-1) |              |  |  |
| Remark:       | No report for the emissio | n which more than 10 o                  | dB below the |  |  |
|               | prescribed limit.         |                                         |              |  |  |

| No | . Mk | . Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|------|-----------|------------------|-------------------|------------------|--------|--------|----------|
|    |      | MHz       | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1  |      | 10480.536 | 33.69            | 20.68             | 54.37            | 68.30  | -13.93 | peak     |
| 2  | *    | 10480.586 | 22.87            | 20.68             | 43.55            | 54.00  | -10.45 | AVG      |



Report No.: TB-FCC173946
Page: 45 of 191

| Temperature:  | 25 ℃                      | Relative Humidity:   | 55%          |
|---------------|---------------------------|----------------------|--------------|
| Test Voltage: | DC 3.8V                   | 033                  |              |
| Ant. Pol.     | Horizontal                |                      |              |
| Test Mode:    | TX 802.11ac(VHT20) Mo     | de 5180MHz (U-NII-1) |              |
| Remark:       | No report for the emissio | n which more than 10 | dB below the |
|               | prescribed limit.         | - a U                |              |

| No | . Mk | . Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|------|-----------|------------------|-------------------|------------------|--------|--------|----------|
|    |      | MHz       | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1  |      | 10360.820 | 34.05            | 20.68             | 54.73            | 68.30  | -13.57 | peak     |
| 2  | *    | 10360.120 | 23.42            | 20.68             | 44.10            | 54.00  | -9.90  | AVG      |



Report No.: TB-FCC173946
Page: 46 of 191

|               |                            |                        | E. Al A V Ma |
|---------------|----------------------------|------------------------|--------------|
| Temperature:  | 25 ℃                       | Relative Humidity:     | 55%          |
| Test Voltage: | DC 3.8V                    | 033                    |              |
| Ant. Pol.     | Vertical                   |                        |              |
| Test Mode:    | TX 802.11ac(VHT20) Mo      | de 5180MHz (U-NII-1)   |              |
| Remark:       | No report for the emission | n which more than 10 o | dB below the |
|               | prescribed limit.          |                        |              |

| No. | Mk | Freq.     | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|----|-----------|------------------|-------------------|------------------|--------|--------|----------|
|     |    | MHz       | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1   | *  | 10360.878 | 23.02            | 20.68             | 43.70            | 54.00  | -10.30 | AVG      |
| 2   |    | 10360.998 | 34.46            | 20.68             | 55.14            | 68.30  | -13.16 | peak     |
| 2   | _  | 10300.990 | 34.40            | 20.00             | 33.14            | 00.30  | -10.   | 10       |



Report No.: TB-FCC173946
Page: 47 of 191

| Temperature:  | <b>25</b> ℃               | Relative Humidity:                                         | 55%          |  |  |  |
|---------------|---------------------------|------------------------------------------------------------|--------------|--|--|--|
| Test Voltage: | DC 3.8V                   | (B) - (                                                    | THE STATE OF |  |  |  |
| Ant. Pol.     | Horizontal                |                                                            |              |  |  |  |
| Test Mode:    | TX 802.11ac(VHT20) Mo     | TX 802.11ac(VHT20) Mode 5200MHz (U-NII-1)                  |              |  |  |  |
| Remark:       | No report for the emissio | No report for the emission which more than 10 dB below the |              |  |  |  |
|               | prescribed limit.         | - O                                                        |              |  |  |  |

| No | Mk | . Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|----|-----------|------------------|-------------------|------------------|--------|--------|----------|
|    |    | MHz       | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1  |    | 10400.703 | 34.66            | 20.68             | 55.34            | 68.30  | -12.96 | peak     |
| 2  | *  | 10400.414 | 23.85            | 20.68             | 44.53            | 54.00  | -9.47  | AVG      |



Report No.: TB-FCC173946
Page: 48 of 191

| Temperature:  | 25 ℃                       | Relative Humidity:     | 55%          |
|---------------|----------------------------|------------------------|--------------|
| Test Voltage: | DC 3.8V                    | (1) T                  |              |
| Ant. Pol.     | Vertical                   |                        |              |
| Test Mode:    | TX 802.11ac(VHT20) Mo      | de 5200MHz (U-NII-1)   |              |
| Remark:       | No report for the emission | n which more than 10 o | dB below the |
|               | prescribed limit.          | - a U                  |              |

| No. M | . Mk | . Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-------|------|-----------|------------------|-------------------|------------------|--------|--------|----------|
|       |      | MHz       | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1     | *    | 10400.606 | 23.48            | 20.67             | 44.15            | 54.00  | -9.85  | AVG      |
| 2     |      | 10400.030 | 34.46            | 20.68             | 55.14            | 68.30  | -13.16 | peak     |



Report No.: TB-FCC173946
Page: 49 of 191

| Ì | Temperature:  | 25 ℃                                                       | Relative Humidity: | 55% |  |  |
|---|---------------|------------------------------------------------------------|--------------------|-----|--|--|
|   | Test Voltage: | DC 3.8V                                                    | (1) T              |     |  |  |
|   | Ant. Pol.     | Horizontal                                                 |                    |     |  |  |
|   | Test Mode:    | TX 802.11 ac(VHT20) Mode 5240MHz (U-NII-1)                 |                    |     |  |  |
|   | Remark:       | No report for the emission which more than 10 dB below the |                    |     |  |  |
| ١ |               | prescribed limit.                                          |                    |     |  |  |

| No. Mk. | . Freq. | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |        |          |
|---------|---------|------------------|-------------------|------------------|--------|--------|--------|----------|
|         |         | MHz              | dBuV              | dB/m             | dBuV/m | dBuV/m | dB     | Detector |
| 1       | *       | 10478.616        | 23.30             | 20.68            | 43.98  | 54.00  | -10.02 | AVG      |
| 2       |         | 10482.481        | 33.69             | 20.68            | 54.37  | 68.30  | -13.93 | peak     |



Report No.: TB-FCC173946
Page: 50 of 191

| Temperature:  | 25 ℃                  | Relative Humidity:   | 55% |
|---------------|-----------------------|----------------------|-----|
| Test Voltage: | DC 3.8V               | (1) T                |     |
| Ant. Pol.     | Vertical              |                      |     |
| Test Mode:    | TX 802.11ac(VHT20) Mo | de 5240MHz (U-NII-1) |     |
| Remark:       | dB below the          |                      |     |
|               | prescribed limit.     | - a U                |     |

| No | . Mk | Freq.     | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|------|-----------|------------------|-------------------|------------------|--------|--------|----------|
|    |      | MHz       | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1  | *    | 10478.678 | 23.59            | 20.68             | 44.27            | 54.00  | -9.73  | AVG      |
| 2  | - 1  | 10480.973 | 34.19            | 20.68             | 54.87            | 68.30  | -13.43 | peak     |



Report No.: TB-FCC173946
Page: 51 of 191

| Temperature:  | 25 ℃                                    | Relative Humidity:     | 55%          |  |  |
|---------------|-----------------------------------------|------------------------|--------------|--|--|
| Test Voltage: | DC 3.8V                                 | 133                    |              |  |  |
| Ant. Pol.     | Horizontal                              |                        |              |  |  |
| Test Mode:    | TX 802.11n(HT40) Mode 5190MHz (U-NII-1) |                        |              |  |  |
| Remark:       | No report for the emission              | n which more than 10 o | dB below the |  |  |
|               | prescribed limit.                       |                        |              |  |  |

| No | . Mk | . Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|------|-----------|------------------|-------------------|------------------|--------|--------|----------|
|    |      | MHz       | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1  |      | 10380.529 | 34.03            | 20.68             | 54.71            | 68.30  | -13.59 | peak     |
| 2  | *    | 10380.641 | 23.33            | 20.68             | 44.01            | 54.00  | -9.99  | AVG      |



Report No.: TB-FCC173946
Page: 52 of 191

| Temperature:                                       | 25 ℃                      | Relative Humidity:                                      | 55% |  |  |  |
|----------------------------------------------------|---------------------------|---------------------------------------------------------|-----|--|--|--|
| Test Voltage:                                      | DC 3.8V                   | (1)33 - (                                               | MOD |  |  |  |
| Ant. Pol.                                          | Vertical                  | ertical                                                 |     |  |  |  |
| Test Mode: TX 802.11n(HT40) Mode 5190MHz (U-NII-1) |                           |                                                         |     |  |  |  |
| Remark:                                            | No report for the emissio | report for the emission which more than 10 dB below the |     |  |  |  |
|                                                    | prescribed limit.         |                                                         |     |  |  |  |

| No | . Mk | . Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|------|-----------|------------------|-------------------|------------------|--------|--------|----------|
|    |      | MHz       | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1  | *    | 10380.855 | 23.59            | 20.67             | 44.26            | 54.00  | -9.74  | AVG      |
| 2  |      | 10380.332 | 35.42            | 20.68             | 56.10            | 68.30  | -12.20 | peak     |



Report No.: TB-FCC173946
Page: 53 of 191

| Temperature:  | 25 ℃                  | Relative Humidity:    | 55% |  |  |
|---------------|-----------------------|-----------------------|-----|--|--|
| Test Voltage: | DC 3.8V               | (1) T                 |     |  |  |
| Ant. Pol.     |                       |                       |     |  |  |
| Test Mode:    | TX 802.11n(HT40) Mode | ode 5230MHz (U-NII-1) |     |  |  |
| Remark:       | dB below the          |                       |     |  |  |
|               | prescribed limit.     |                       |     |  |  |

| No | Mk | . Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|----|-----------|------------------|-------------------|------------------|--------|--------|----------|
|    |    | MHz       | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1  | *  | 10460.591 | 22.91            | 20.68             | 43.59            | 54.00  | -10.41 | AVG      |
| 2  |    | 10460.810 | 33.74            | 20.68             | 54.42            | 68.30  | -13.88 | peak     |



Report No.: TB-FCC173946
Page: 54 of 191

|               |                                         |                        | E. M. M. Marie |  |  |  |
|---------------|-----------------------------------------|------------------------|----------------|--|--|--|
| Temperature:  | 25 ℃                                    | Relative Humidity:     | 55%            |  |  |  |
| Test Voltage: | DC 3.8V                                 | 133                    |                |  |  |  |
| Ant. Pol.     | Vertical                                |                        |                |  |  |  |
| Test Mode:    | TX 802.11n(HT40) Mode 5230MHz (U-NII-1) |                        |                |  |  |  |
| Remark:       | No report for the emission              | n which more than 10 o | dB below the   |  |  |  |
|               | prescribed limit.                       |                        |                |  |  |  |

| No | Mk | . Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|----|-----------|------------------|-------------------|------------------|--------|--------|----------|
|    |    | MHz       | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1  |    | 10460.506 | 34.26            | 20.67             | 54.93            | 68.30  | -13.37 | peak     |
| 2  | *  | 10460.065 | 23.02            | 20.68             | 43.70            | 54.00  | -10.30 | AVG      |



Report No.: TB-FCC173946
Page: 55 of 191

| Temperature:  | 25 ℃                      | Relative Humidity:     | 55%          |
|---------------|---------------------------|------------------------|--------------|
| Test Voltage: | DC 3.8V                   | (1) T                  |              |
| Ant. Pol.     | Horizontal                |                        |              |
| Test Mode:    | TX 802.11ac(VHT40) Mo     | de 5190MHz (U-NII-1)   |              |
| Remark:       | No report for the emissio | n which more than 10 o | dB below the |
|               | prescribed limit.         | - a U                  |              |

| No | Mk | Freq.     | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|----|-----------|------------------|-------------------|------------------|--------|--------|----------|
|    |    | MHz       | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1  | *  | 10380.766 | 22.93            | 20.68             | 43.61            | 54.00  | -10.39 | AVG      |
| 2  |    | 10380.738 | 34.40            | 20.68             | 55.08            | 68.30  | -13.22 | peak     |



Report No.: TB-FCC173946
Page: 56 of 191

|               |                            |                        | E. Al A V Ma |
|---------------|----------------------------|------------------------|--------------|
| Temperature:  | 25 ℃                       | Relative Humidity:     | 55%          |
| Test Voltage: | DC 3.8V                    | 033                    |              |
| Ant. Pol.     | Vertical                   |                        |              |
| Test Mode:    | TX 802.11ac(VHT40) Mo      | de 5190MHz (U-NII-1)   |              |
| Remark:       | No report for the emission | n which more than 10 o | dB below the |
|               | prescribed limit.          | - O                    |              |

| No | . Mk | . Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|------|-----------|------------------|-------------------|------------------|--------|--------|----------|
|    |      | MHz       | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1  |      | 10380.978 | 35.21            | 20.68             | 55.89            | 68.30  | -12.41 | peak     |
| 2  | *    | 10380.100 | 23.59            | 20.68             | 44.27            | 54.00  | -9.73  | AVG      |



Report No.: TB-FCC173946
Page: 57 of 191

| Temperature:  | 25 ℃                      | Relative Humidity:     | 55%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------|---------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Voltage: | DC 3.8V                   | (1) T                  | Min and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Ant. Pol.     | Horizontal                |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Test Mode:    | TX 802.11ac(VHT40) Mo     | de 5230MHz (U-NII-1)   | TO THE PARTY OF TH |
| Remark:       | No report for the emissio | n which more than 10 o | dB below the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|               | prescribed limit.         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| No | . Mk | . Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|------|-----------|------------------|-------------------|------------------|--------|--------|----------|
|    |      | MHz       | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1  | *    | 10460.077 | 23.96            | 20.68             | 44.64            | 54.00  | -9.36  | AVG      |
| 2  | - 1  | 10460.661 | 35.16            | 20.68             | 55.84            | 68.30  | -12.46 | peak     |



Report No.: TB-FCC173946
Page: 58 of 191

| Temperature:  | 25 ℃                      | Relative Humidity:     | 55%          |
|---------------|---------------------------|------------------------|--------------|
| Test Voltage: | DC 3.8V                   | (1) T                  | MOD TO       |
| Ant. Pol.     | Vertical                  |                        |              |
| Test Mode:    | TX 802.11ac(VHT40) Mo     | de 5230MHz (U-NII-1)   |              |
| Remark:       | No report for the emissio | n which more than 10 o | dB below the |
|               | prescribed limit.         |                        |              |

| No | . Mk. Freq. | . Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|-------------|-----------|------------------|-------------------|------------------|--------|--------|----------|
|    |             | MHz       | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1  |             | 10460.551 | 34.58            | 20.68             | 55.26            | 68.30  | -13.04 | peak     |
| 2  | *           | 10460.322 | 22.88            | 20.68             | 43.56            | 54.00  | -10.44 | AVG      |



Report No.: TB-FCC173946
Page: 59 of 191

| Temperature:  | 25 ℃                      | Relative Humidity:     | 55%          |
|---------------|---------------------------|------------------------|--------------|
| Test Voltage: | DC 3.8V                   | (1) T                  | Mary To      |
| Ant. Pol.     | Horizontal                |                        |              |
| Test Mode:    | TX 802.11ac(VHT80) Mo     | de 5210MHz (U-NII-1)   |              |
| Remark:       | No report for the emissio | n which more than 10 o | dB below the |
|               | prescribed limit.         | - a U                  |              |

|         | Over   | Limit  | Measure-<br>ment | Correct<br>Factor | Reading<br>Level | Freq.    | Mk. | No. |
|---------|--------|--------|------------------|-------------------|------------------|----------|-----|-----|
| Detecto | dB     | dBuV/m | dBuV/m           | dB/m              | dBuV             | MHz      |     |     |
| peak    | -12.44 | 68.30  | 55.86            | 20.68             | 35.18            | 0420.127 | 1   | 1   |
| AVG     | -9.59  | 54.00  | 44.41            | 20.68             | 23.73            | 0420.125 | * 1 | 2   |



Report No.: TB-FCC173946
Page: 60 of 191

| Temperature:  | <b>25</b> ℃               | Relative Humidity:     | 55%          |
|---------------|---------------------------|------------------------|--------------|
| Test Voltage: | DC 3.8V                   | 033                    |              |
| Ant. Pol.     | Vertical                  |                        |              |
| Test Mode:    | TX 802.11ac(VHT80) Mo     | de 5210MHz (U-NII-1)   |              |
| Remark:       | No report for the emissio | n which more than 10 o | dB below the |
|               | prescribed limit.         | - O                    |              |

| No | . Mk | . Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|------|-----------|------------------|-------------------|------------------|--------|--------|----------|
|    |      | MHz       | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1  |      | 10420.531 | 34.21            | 20.67             | 54.88            | 68.30  | -13.42 | peak     |
| 2  | *    | 10420.222 | 22.52            | 20.68             | 43.20            | 54.00  | -10.80 | AVG      |



Report No.: TB-FCC173946
Page: 61 of 191

5745MHz-5825MHz(U-NII-3)

|               | ( )                       |                        |              |
|---------------|---------------------------|------------------------|--------------|
| Temperature:  | 25 ℃                      | Relative Humidity:     | 55%          |
| Test Voltage: | DC 3.8V                   | (1) T                  |              |
| Ant. Pol.     | Horizontal                |                        |              |
| Test Mode:    | TX 802.11a Mode 5745M     | 1Hz (U-NII-3)          |              |
| Remark:       | No report for the emissio | n which more than 10 o | dB below the |
|               | prescribed limit.         |                        |              |

| No | . Mk | . Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|------|-----------|------------------|-------------------|------------------|--------|--------|----------|
|    |      | MHz       | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1  | *    | 11488.631 | 19.73            | 21.81             | 41.54            | 54.00  | -12.46 | AVG      |
| 2  |      | 11488.930 | 29.68            | 21.81             | 51.49            | 68.30  | -16.81 | peak     |



Report No.: TB-FCC173946
Page: 62 of 191

|               |                           |                      | E 111111     |
|---------------|---------------------------|----------------------|--------------|
| Temperature:  | <b>25</b> ℃               | Relative Humidity:   | 55%          |
| Test Voltage: | DC 3.8V                   |                      |              |
| Ant. Pol.     | Vertical                  |                      |              |
| Test Mode:    | TX 802.11a Mode 5745M     | 1Hz (U-NII-3)        | - D          |
| Remark:       | No report for the emissio | n which more than 10 | dB below the |
|               | prescribed limit.         |                      |              |

| No | Mk | . Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|----|-----------|------------------|-------------------|------------------|--------|--------|----------|
|    |    | MHz       | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1  | *  | 11488.661 | 19.56            | 21.81             | 41.37            | 54.00  | -12.63 | AVG      |
| 2  |    | 11488.945 | 30.63            | 21.81             | 52.44            | 68.30  | -15.86 | peak     |



Report No.: TB-FCC173946
Page: 63 of 191

| Temperature:  | 25 ℃                      | Relative Humidity:     | 55%          |
|---------------|---------------------------|------------------------|--------------|
| Test Voltage: | DC 3.8V                   |                        |              |
| Ant. Pol.     | Horizontal                |                        |              |
| Test Mode:    | TX 802.11a Mode 5785M     | IHz (U-NII-3)          | TO THE       |
| Remark:       | No report for the emissio | n which more than 10 o | dB below the |
|               | prescribed limit.         |                        |              |

| No | . Mk | . Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|------|-----------|------------------|-------------------|------------------|--------|--------|----------|
|    |      | MHz       | dBu∀             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1  | *    | 11569.147 | 20.68            | 21.88             | 42.56            | 54.00  | -11.44 | AVG      |
| 2  |      | 11570.883 | 30.73            | 21.88             | 52.61            | 68.30  | -15.69 | peak     |



Report No.: TB-FCC173946
Page: 64 of 191

| Temperature:  | <b>25</b> ℃               | Relative Humidity:     | 55%          |
|---------------|---------------------------|------------------------|--------------|
| Test Voltage: | DC 3.8V                   | (1) T                  | MOD TO       |
| Ant. Pol.     | Vertical                  |                        |              |
| Test Mode:    | TX 802.11a Mode 5785M     | IHz (U-NII-3)          | 1            |
| Remark:       | No report for the emissio | n which more than 10 o | dB below the |
|               | prescribed limit.         |                        |              |

| No | . Mk | . Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|------|-----------|------------------|-------------------|------------------|--------|--------|----------|
|    |      | MHz       | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1  | *    | 11569.454 | 21.89            | 21.88             | 43.77            | 54.00  | -10.23 | AVG      |
| 2  |      | 11571.496 | 30.98            | 21.88             | 52.86            | 68.30  | -15.44 | peak     |



Report No.: TB-FCC173946
Page: 65 of 191

|               |                           |                        | E. M. M. Marie |
|---------------|---------------------------|------------------------|----------------|
| Temperature:  | 25 ℃                      | Relative Humidity:     | 55%            |
| Test Voltage: | DC 3.8V                   |                        |                |
| Ant. Pol.     | Horizontal                |                        |                |
| Test Mode:    | TX 802.11a Mode 5825M     | IHz (U-NII-3)          | - The same     |
| Remark:       | No report for the emissio | n which more than 10 o | dB below the   |
|               | prescribed limit.         |                        |                |

| No | . Mk | . Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|------|-----------|------------------|-------------------|------------------|--------|--------|----------|
|    |      | MHz       | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1  | *    | 11648.818 | 19.63            | 21.96             | 41.59            | 54.00  | -12.41 | AVG      |
| 2  |      | 11650.973 | 31.09            | 21.96             | 53.05            | 68.30  | -15.25 | peak     |



Report No.: TB-FCC173946
Page: 66 of 191

|               |                           |                        | E 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
|---------------|---------------------------|------------------------|----------------------------------------|
| Temperature:  | 25 ℃                      | Relative Humidity:     | 55%                                    |
| Test Voltage: | DC 3.8V                   |                        |                                        |
| Ant. Pol.     | Vertical                  |                        |                                        |
| Test Mode:    | TX 802.11a Mode 5825M     | IHz (U-NII-3)          | - The same                             |
| Remark:       | No report for the emissio | n which more than 10 o | dB below the                           |
|               | prescribed limit.         |                        |                                        |

| No | Mk | . Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|----|-----------|------------------|-------------------|------------------|--------|--------|----------|
|    |    | MHz       | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1  |    | 11648.818 | 29.90            | 21.96             | 51.86            | 68.30  | -16.44 | peak     |
| 2  | *  | 11650.052 | 21.49            | 21.96             | 43.45            | 54.00  | -10.55 | AVG      |



Report No.: TB-FCC173946
Page: 67 of 191

|   | Temperature:  | 25 ℃                                                       | Relative Humidity: | 55% |  |  |  |
|---|---------------|------------------------------------------------------------|--------------------|-----|--|--|--|
|   | Test Voltage: | DC 3.8V                                                    | (1) T              |     |  |  |  |
|   | Ant. Pol.     | Horizontal                                                 |                    |     |  |  |  |
| f | Test Mode:    | TX 802.11n(HT20) Mode 5745MHz (U-NII-3)                    |                    |     |  |  |  |
|   | Remark:       | No report for the emission which more than 10 dB below the |                    |     |  |  |  |
|   |               | prescribed limit.                                          |                    |     |  |  |  |

| No | Mk | . Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|----|-----------|------------------|-------------------|------------------|--------|--------|----------|
|    |    | MHz       | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1  | *  | 11488.706 | 21.13            | 21.81             | 42.94            | 54.00  | -11.06 | AVG      |
| 2  |    | 11489.888 | 31.75            | 21.81             | 53.56            | 68.30  | -14.74 | peak     |



Report No.: TB-FCC173946
Page: 68 of 191

| Temperature:  | 25 ℃                      | Relative Humidity:   | 55%          |  |  |  |
|---------------|---------------------------|----------------------|--------------|--|--|--|
| Test Voltage: | DC 3.8V                   | (1)3 T               | MOD TO       |  |  |  |
| Ant. Pol.     | Vertical                  |                      |              |  |  |  |
| Test Mode:    | TX 802.11n(HT20) Mode     | 5745MHz (U-NII-3)    |              |  |  |  |
| Remark:       | No report for the emissio | n which more than 10 | dB below the |  |  |  |
|               | prescribed limit.         |                      |              |  |  |  |

| No | Mk | . Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|----|-----------|------------------|-------------------|------------------|--------|--------|----------|
|    |    | MHz       | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1  |    | 11488.631 | 29.46            | 21.81             | 51.27            | 68.30  | -17.03 | peak     |
| 2  | *  | 11490.591 | 19.34            | 21.81             | 41.15            | 54.00  | -12.85 | AVG      |



Report No.: TB-FCC173946
Page: 69 of 191

| Temperature:  | 25 ℃                                                       | Relative Humidity: | 55% |  |  |
|---------------|------------------------------------------------------------|--------------------|-----|--|--|
| Test Voltage: | DC 3.8V                                                    | (1) T              |     |  |  |
| Ant. Pol.     | Horizontal                                                 |                    |     |  |  |
| Test Mode:    | TX 802.11n(HT20) Mode 5785MHz (U-NII-3)                    |                    |     |  |  |
| Remark:       | No report for the emission which more than 10 dB below the |                    |     |  |  |
|               | prescribed limit.                                          |                    |     |  |  |

| No. | . Mk | Freq.     | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|------|-----------|------------------|-------------------|------------------|--------|--------|----------|
|     |      | MHz       | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |      | 11570.576 | 30.66            | 21.88             | 52.54            | 68.30  | -15.76 | peak     |
| 2   | *    | 11570.838 | 19.88            | 21.88             | 41.76            | 54.00  | -12.24 | AVG      |



Report No.: TB-FCC173946
Page: 70 of 191

| Temperature  | e: 25 °C                | Relative Humidity:                                         | 55%  |  |  |  |
|--------------|-------------------------|------------------------------------------------------------|------|--|--|--|
| Test Voltage | : DC 3.8V               |                                                            | Mora |  |  |  |
| Ant. Pol.    | Vertical                | Vertical                                                   |      |  |  |  |
| Test Mode:   | TX 802.11n(HT20) Mod    | TX 802.11n(HT20) Mode 5785MHz (U-NII-3)                    |      |  |  |  |
| Remark:      | No report for the emiss | No report for the emission which more than 10 dB below the |      |  |  |  |
|              | prescribed limit.       |                                                            |      |  |  |  |

| No | . Mk | . Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|------|-----------|------------------|-------------------|------------------|--------|--------|----------|
|    |      | MHz       | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1  |      | 11569.095 | 30.85            | 21.88             | 52.73            | 68.30  | -15.57 | peak     |
| 2  | *    | 11569,222 | 20.32            | 21.88             | 42.20            | 54.00  | -11.80 | AVG      |



Report No.: TB-FCC173946
Page: 71 of 191

| Temperature:  | 25 ℃                      | Relative Humidity:     | 55%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------|---------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Voltage: | DC 3.8V                   | (1) T                  | Min and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Ant. Pol.     | Horizontal                |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Test Mode:    | TX 802.11n(HT20) Mode     | 5825MHz (U-NII-3)      | TO THE PARTY OF TH |
| Remark:       | No report for the emissio | n which more than 10 o | dB below the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|               | prescribed limit.         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| No | . Mk | . Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|------|-----------|------------------|-------------------|------------------|--------|--------|----------|
|    |      | MHz       | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1  |      | 11649.948 | 31.02            | 21.96             | 52.98            | 68.30  | -15.32 | peak     |
| 2  | *    | 11651.451 | 20.43            | 21.96             | 42.39            | 54.00  | -11.61 | AVG      |



Report No.: TB-FCC173946
Page: 72 of 191

| Temperature:  | 25 ℃                                                       | Relative Humidity: | 55% |  |  |  |
|---------------|------------------------------------------------------------|--------------------|-----|--|--|--|
| Test Voltage: | DC 3.8V                                                    | (1) T              |     |  |  |  |
| Ant. Pol.     | Vertical                                                   |                    |     |  |  |  |
| Test Mode:    | TX 802.11n(HT20) Mode 5825MHz (U-NII-3)                    |                    |     |  |  |  |
| Remark:       | No report for the emission which more than 10 dB below the |                    |     |  |  |  |
|               | prescribed limit.                                          |                    |     |  |  |  |

| No | . Mk | . Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|------|-----------|------------------|-------------------|------------------|--------|--------|----------|
|    |      | MHz       | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1  |      | 11650.419 | 30.51            | 21.96             | 52.47            | 68.30  | -15.83 | peak     |
| 2  | *    | 11650.606 | 20.36            | 21.96             | 42.32            | 54.00  | -11.68 | AVG      |



Report No.: TB-FCC173946
Page: 73 of 191

|               |                            |                        | E. 11 1 1 1 2 |
|---------------|----------------------------|------------------------|---------------|
| Temperature:  | 25 ℃                       | Relative Humidity:     | 55%           |
| Test Voltage: | DC 3.8V                    | (1) T                  |               |
| Ant. Pol.     | Horizontal                 |                        |               |
| Test Mode:    | TX 802.11ac(VHT20) Mo      | de 5745MHz (U-NII-3)   |               |
| Remark:       | No report for the emission | n which more than 10 o | dB below the  |
|               | prescribed limit.          | - a U                  |               |

| No. | Mk. | Mk. Freq. | Reading Correct<br>Level Factor | Measure-<br>ment | Limit  | Over   |        |          |
|-----|-----|-----------|---------------------------------|------------------|--------|--------|--------|----------|
|     |     | MHz       | dBuV                            | dB/m             | dBuV/m | dBuV/m | dB     | Detector |
| 1   | *   | 11490.808 | 20.35                           | 21.81            | 42.16  | 54.00  | -11.84 | AVG      |
| 2   |     | 11491.055 | 30.78                           | 21.81            | 52.59  | 68.30  | -15.71 | peak     |



Report No.: TB-FCC173946
Page: 74 of 191

|               |                                                            |                      | E. 11 1 1 1 2 |  |  |  |
|---------------|------------------------------------------------------------|----------------------|---------------|--|--|--|
| Temperature:  | 25 ℃                                                       | Relative Humidity:   | 55%           |  |  |  |
| Test Voltage: | DC 3.8V                                                    | (1) T                |               |  |  |  |
| Ant. Pol.     | Vertical                                                   |                      |               |  |  |  |
| Test Mode:    | TX 802.11ac(VHT20) Mo                                      | de 5745MHz (U-NII-3) |               |  |  |  |
| Remark:       | No report for the emission which more than 10 dB below the |                      |               |  |  |  |
|               | prescribed limit.                                          | - a U                |               |  |  |  |

| No. | Mk | . Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|----|-----------|------------------|-------------------|------------------|--------|--------|----------|
|     |    | MHz       | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |    | 11488.818 | 29.94            | 21.81             | 51.75            | 68.30  | -16.55 | peak     |
| 2   | *  | 11489.461 | 19.36            | 21.81             | 41.17            | 54.00  | -12.83 | AVG      |



Report No.: TB-FCC173946
Page: 75 of 191

|               |                                                                           |                      | E 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |  |  |  |
|---------------|---------------------------------------------------------------------------|----------------------|----------------------------------------|--|--|--|
| Temperature:  | 25 ℃                                                                      | Relative Humidity:   | 55%                                    |  |  |  |
| Test Voltage: | DC 3.8V                                                                   | 133                  |                                        |  |  |  |
| Ant. Pol.     | Horizontal                                                                |                      |                                        |  |  |  |
| Test Mode:    | TX 802.11ac(VHT20) Mo                                                     | de 5785MHz (U-NII-3) | 1                                      |  |  |  |
| Remark:       | <b>lemark:</b> No report for the emission which more than 10 dB below the |                      |                                        |  |  |  |
|               | prescribed limit.                                                         |                      |                                        |  |  |  |

| No. | . Mk | . Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|------|-----------|------------------|-------------------|------------------|--------|--------|----------|
|     |      | MHz       | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |      | 11568.960 | 30.83            | 21.88             | 52.71            | 68.30  | -15.59 | peak     |
| 2   | *    | 11571.369 | 21.08            | 21.88             | 42.96            | 54.00  | -11.04 | AVG      |



Report No.: TB-FCC173946
Page: 76 of 191

| Temperature:                                                      | <b>25</b> ℃           | Relative Humidity:   | 55%          |  |  |
|-------------------------------------------------------------------|-----------------------|----------------------|--------------|--|--|
| Test Voltage:                                                     | DC 3.8V               | (B) - (              | THE STATE OF |  |  |
| Ant. Pol.                                                         | Vertical              |                      |              |  |  |
| Test Mode:                                                        | TX 802.11ac(VHT20) Mo | de 5785MHz (U-NII-3) | 1            |  |  |
| Remark: No report for the emission which more than 10 dB below to |                       |                      |              |  |  |
|                                                                   | prescribed limit.     |                      |              |  |  |

| No. | . Mk | . Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|------|-----------|------------------|-------------------|------------------|--------|--------|----------|
|     |      | MHz       | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |      | 11568.534 | 30.00            | 21.88             | 51.88            | 68.30  | -16.42 | peak     |
| 2   | *    | 11570.284 | 19.42            | 21.88             | 41.30            | 54.00  | -12.70 | AVG      |



Report No.: TB-FCC173946
Page: 77 of 191

| Temperature:  | 25 ℃                       | Relative Humidity:     | 55%          |
|---------------|----------------------------|------------------------|--------------|
| Test Voltage: | DC 3.8V                    | (1) T                  |              |
| Ant. Pol.     | Horizontal                 |                        |              |
| Test Mode:    | TX 802.11ac(VHT20) Mo      | de 5825MHz (U-NII-3)   | 7            |
| Remark:       | No report for the emission | n which more than 10 o | dB below the |
|               | prescribed limit.          | - a U                  |              |

| No. | ). M | lk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|------|-----|----------|------------------|-------------------|------------------|--------|--------|----------|
|     |      |     | MHz      | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1   | *    | 1   | 1649.693 | 21.59            | 21.96             | 43.55            | 54.00  | -10.45 | AVG      |
| 2   |      | 1   | 1651.249 | 31.18            | 21.96             | 53.14            | 68.30  | -15.16 | peak     |



Report No.: TB-FCC173946
Page: 78 of 191

| Temperature:  | <b>25</b> ℃                                                        | Relative Humidity:   | 55%        |  |  |  |  |
|---------------|--------------------------------------------------------------------|----------------------|------------|--|--|--|--|
| Test Voltage: | DC 3.8V                                                            |                      |            |  |  |  |  |
| Ant. Pol.     | Vertical                                                           |                      |            |  |  |  |  |
| Test Mode:    | TX 802.11ac(VHT20) Mo                                              | de 5825MHz (U-NII-3) | - The same |  |  |  |  |
| Remark:       | Remark: No report for the emission which more than 10 dB below the |                      |            |  |  |  |  |
|               | prescribed limit.                                                  |                      |            |  |  |  |  |

| No. Mk | lk. | Freq. | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |        |          |
|--------|-----|-------|------------------|-------------------|------------------|--------|--------|--------|----------|
|        |     |       | MHz              | dBuV              | dB/m             | dBuV/m | dBuV/m | dB     | Detector |
| 1      | *   | 1     | 1648.930         | 21.46             | 21.96            | 43.42  | 54.00  | -10.58 | AVG      |
| 2      |     | 1     | 1650.943         | 31.65             | 21.96            | 53.61  | 68.30  | -14.69 | peak     |



Report No.: TB-FCC173946
Page: 79 of 191

|               |                           |                        | E. M. M. Marie |
|---------------|---------------------------|------------------------|----------------|
| Temperature:  | 25 ℃                      | Relative Humidity:     | 55%            |
| Test Voltage: | DC 3.8V                   |                        |                |
| Ant. Pol.     | Horizontal                |                        |                |
| Test Mode:    | TX 802.11n(HT40) Mode     | 5755MHz (U-NII-3)      |                |
| Remark:       | No report for the emissio | n which more than 10 o | dB below the   |
|               | prescribed limit.         | - a W                  |                |

| No | . Mk | . Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|------|-----------|------------------|-------------------|------------------|--------|--------|----------|
|    |      | MHz       | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1  |      | 11509.080 | 30.78            | 21.82             | 52.60            | 68.30  | -15.70 | peak     |
| 2  | *    | 11510.800 | 20.88            | 21.82             | 42.70            | 54.00  | -11.30 | AVG      |



Report No.: TB-FCC173946
Page: 80 of 191

| Temperature:  | <b>25</b> ℃               | Relative Humidity:     | 55%          |
|---------------|---------------------------|------------------------|--------------|
| Test Voltage: | DC 3.8V                   | (1) T                  |              |
| Ant. Pol.     | Vertical                  |                        |              |
| Test Mode:    | TX 802.11n(HT40) Mode     | 5755MHz (U-NII-3)      |              |
| Remark:       | No report for the emissio | n which more than 10 o | dB below the |
|               | prescribed limit.         |                        |              |

| No | . Mk | . Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|------|-----------|------------------|-------------------|------------------|--------|--------|----------|
|    |      | MHz       | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1  | *    | 11510.748 | 21.64            | 21.82             | 43.46            | 54.00  | -10.54 | AVG      |
| 2  |      | 11511.496 | 31.48            | 21.82             | 53.30            | 68.30  | -15.00 | peak     |



Report No.: TB-FCC173946
Page: 81 of 191

| Temperature:  | 25 ℃                      | Relative Humidity:   | 55%          |
|---------------|---------------------------|----------------------|--------------|
| Test Voltage: | DC 3.8V                   | (1) T                |              |
| Ant. Pol.     | Horizontal                |                      |              |
| Test Mode:    | TX 802.11n(HT40) Mode     | 5795MHz (U-NII-3)    | - The same   |
| Remark:       | No report for the emissio | n which more than 10 | dB below the |
|               | prescribed limit.         |                      |              |

| No | . Mk | . Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|------|-----------|------------------|-------------------|------------------|--------|--------|----------|
|    |      | MHz       | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1  | 2.7  | 11588.983 | 31.72            | 21.90             | 53.62            | 68.30  | -14.68 | peak     |
| 2  | *    | 11589.993 | 21.43            | 21.90             | 43.33            | 54.00  | -10.67 | AVG      |



Report No.: TB-FCC173946
Page: 82 of 191

| Temperature:  | 25 ℃                       | Relative Humidity:     | 55%          |
|---------------|----------------------------|------------------------|--------------|
| Test Voltage: | DC 3.8V                    | 133                    |              |
| Ant. Pol.     | Vertical                   |                        |              |
| Test Mode:    | TX 802.11n(HT40) Mode      | 5795MHz (U-NII-3)      |              |
| Remark:       | No report for the emission | n which more than 10 o | dB below the |
|               | prescribed limit.          |                        |              |

| No | Mk | . Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|----|-----------|------------------|-------------------|------------------|--------|--------|----------|
|    |    | MHz       | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1  |    | 11589.993 | 29.04            | 21.90             | 50.94            | 68.30  | -17.36 | peak     |
| 2  | *  | 11590.591 | 18.93            | 21.90             | 40.83            | 54.00  | -13.17 | AVG      |



Report No.: TB-FCC173946
Page: 83 of 191

| Temperature:  | <b>25</b> ℃               | Relative Humidity:     | 55%          |
|---------------|---------------------------|------------------------|--------------|
| Test Voltage: | DC 3.8V                   | (B) - (                | THE STATE OF |
| Ant. Pol.     | Horizontal                |                        |              |
| Test Mode:    | TX 802.11ac(VHT40) Mo     | de 5755MHz (U-NII-3)   |              |
| Remark:       | No report for the emissio | n which more than 10 c | dB below the |
|               | prescribed limit.         |                        |              |

| Mk | . Freq.   | Reading<br>Level |                 |                                                                                                                                        | Limit                                                                                                                                                                              | Over                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                   |
|----|-----------|------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | MHz       | dBuV             | dB/m            | dBuV/m                                                                                                                                 | dBuV/m                                                                                                                                                                             | dB                                                                                                                                                                                                                          | Detector                                                                                                                                                                                                                                                                          |
|    | 11509.259 | 31.83            | 21.82           | 53.65                                                                                                                                  | 68.30                                                                                                                                                                              | -14.65                                                                                                                                                                                                                      | peak                                                                                                                                                                                                                                                                              |
| *  | 11510.127 | 21.28            | 21.82           | 43.10                                                                                                                                  | 54.00                                                                                                                                                                              | -10.90                                                                                                                                                                                                                      | AVG                                                                                                                                                                                                                                                                               |
|    | Mk<br>*   | MHz<br>11509.259 | Mk. Freq. Level | Mk.         Freq.         Level         Factor           MHz         dBuV         dB/m           11509.259         31.83         21.82 | Mk.         Freq.         Level         Factor         ment           MHz         dBuV         dBuV/m         dBuV/m           11509.259         31.83         21.82         53.65 | Mk.         Freq.         Level         Factor         ment         Limit           MHz         dBuV         dBuV         dBuV/m         dBuV/m           11509.259         31.83         21.82         53.65         68.30 | Mk.         Freq.         Level         Factor         ment         Limit         Over           MHz         dBuV         dBuV         dBuV/m         dBuV/m         dBuV/m         dB           11509.259         31.83         21.82         53.65         68.30         -14.65 |



Report No.: TB-FCC173946
Page: 84 of 191

| Temperature:  | 25 ℃                      | Relative Humidity:     | 55%          |
|---------------|---------------------------|------------------------|--------------|
| Test Voltage: | DC 3.8V                   | 133                    |              |
| Ant. Pol.     | Vertical                  |                        |              |
| Test Mode:    | TX 802.11ac(VHT40) Mo     | de 5755MHz (U-NII-3)   | - The same   |
| Remark:       | No report for the emissio | n which more than 10 o | dB below the |
|               | prescribed limit.         |                        |              |

| No | Mk | . Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|----|-----------|------------------|-------------------|------------------|--------|--------|----------|
|    |    | MHz       | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1  | *  | 11510.980 | 20.87            | 21.82             | 42.69            | 54.00  | -11.31 | AVG      |
| 2  |    | 11511.332 | 30.43            | 21.82             | 52.25            | 68.30  | -16.05 | peak     |



Report No.: TB-FCC173946
Page: 85 of 191

|               |                            |                                                            | E. Al A V Ma |  |  |  |  |  |
|---------------|----------------------------|------------------------------------------------------------|--------------|--|--|--|--|--|
| Temperature:  | 25 ℃                       | Relative Humidity:                                         | 55%          |  |  |  |  |  |
| Test Voltage: | DC 3.8V                    | 033                                                        |              |  |  |  |  |  |
| Ant. Pol.     | Horizontal                 |                                                            |              |  |  |  |  |  |
| Test Mode:    | TX 802.11ac(VHT40) Mo      | de 5795MHz (U-NII-3)                                       |              |  |  |  |  |  |
| Remark:       | No report for the emission | No report for the emission which more than 10 dB below the |              |  |  |  |  |  |
|               | prescribed limit.          | - O D                                                      |              |  |  |  |  |  |

| No. | . Mk | . Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|------|-----------|------------------|-------------------|------------------|--------|--------|----------|
|     |      | MHz       | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1   | *    | 11589.828 | 20.51            | 21.90             | 42.41            | 54.00  | -11.59 | AVG      |
| 2   |      | 11590.860 | 30.26            | 21.90             | 52.16            | 68.30  | -16.14 | peak     |



Report No.: TB-FCC173946
Page: 86 of 191

| Temperature:  | 25 ℃                       | Relative Humidity:                                         | 55%          |  |  |  |  |  |
|---------------|----------------------------|------------------------------------------------------------|--------------|--|--|--|--|--|
| Test Voltage: | DC 3.8V                    | (1) To (1)                                                 | THE STATE OF |  |  |  |  |  |
| Ant. Pol.     | Vertical                   |                                                            |              |  |  |  |  |  |
| Test Mode:    | TX 802.11ac(VHT40) Mo      | de 5795MHz (U-NII-3)                                       |              |  |  |  |  |  |
| Remark:       | No report for the emission | No report for the emission which more than 10 dB below the |              |  |  |  |  |  |
|               | prescribed limit.          | - a W                                                      |              |  |  |  |  |  |

| No. | Mk | k. Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|----|-----------|------------------|-------------------|------------------|--------|--------|----------|
|     |    | MHz       | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1   | *  | 11588.623 | 20.77            | 21.90             | 42.67            | 54.00  | -11.33 | AVG      |
| 2   |    | 11589.200 | 30.68            | 21.90             | 52.58            | 68.30  | -15.72 | peak     |



Report No.: TB-FCC173946
Page: 87 of 191

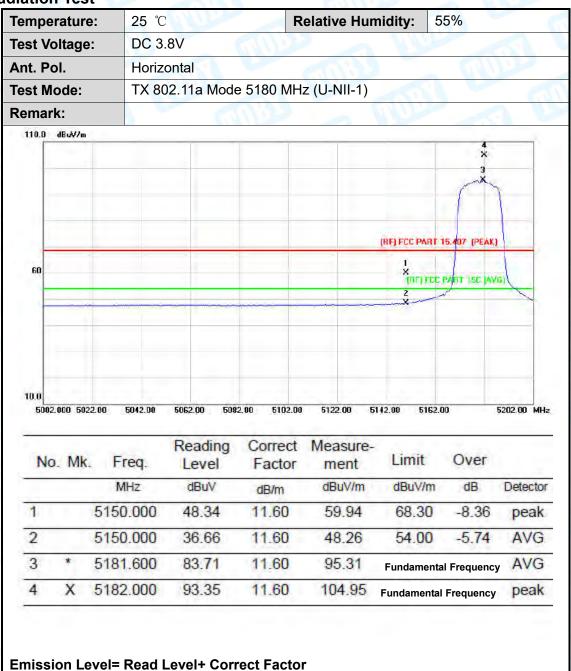
| Temperature:  | 25 ℃                       | Relative Humidity:                                         | 55%          |  |  |  |  |  |
|---------------|----------------------------|------------------------------------------------------------|--------------|--|--|--|--|--|
| Test Voltage: | DC 3.8V                    | (B) - (                                                    | THE STATE OF |  |  |  |  |  |
| Ant. Pol.     | Horizontal                 |                                                            |              |  |  |  |  |  |
| Test Mode:    | TX 802.11ac(VHT80) Mo      | de 5775MHz (U-NII-3)                                       | 7            |  |  |  |  |  |
| Remark:       | No report for the emission | No report for the emission which more than 10 dB below the |              |  |  |  |  |  |
|               | prescribed limit.          |                                                            |              |  |  |  |  |  |

| No. | . Mk | . Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|------|-----------|------------------|-------------------|------------------|--------|--------|----------|
|     |      | MHz       | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1   | *    | 11549.611 | 20.70            | 21.86             | 42.56            | 54.00  | -11.44 | AVG      |
| 2   |      | 11551.302 | 30.63            | 21.86             | 52.49            | 68.30  | -15.81 | peak     |



Report No.: TB-FCC173946
Page: 88 of 191

| Temperature:  | 25 ℃                       | Relative Humidity:     | 55%          |
|---------------|----------------------------|------------------------|--------------|
| Test Voltage: | DC 3.8V                    | 033                    |              |
| Ant. Pol.     | Vertical                   |                        |              |
| Test Mode:    | TX 802.11ac(VHT80) Mo      | de 5775MHz (U-NII-3)   |              |
| Remark:       | No report for the emission | n which more than 10 o | dB below the |
|               | prescribed limit.          |                        |              |


| No | . MI | k. Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|------|-----------|------------------|-------------------|------------------|--------|--------|----------|
|    |      | MHz       | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1  | *    | 11548.594 | 21.33            | 21.86             | 43.19            | 54.00  | -10.81 | AVG      |
| 2  |      | 11548.870 | 31.88            | 21.86             | 53.74            | 68.30  | -14.56 | peak     |





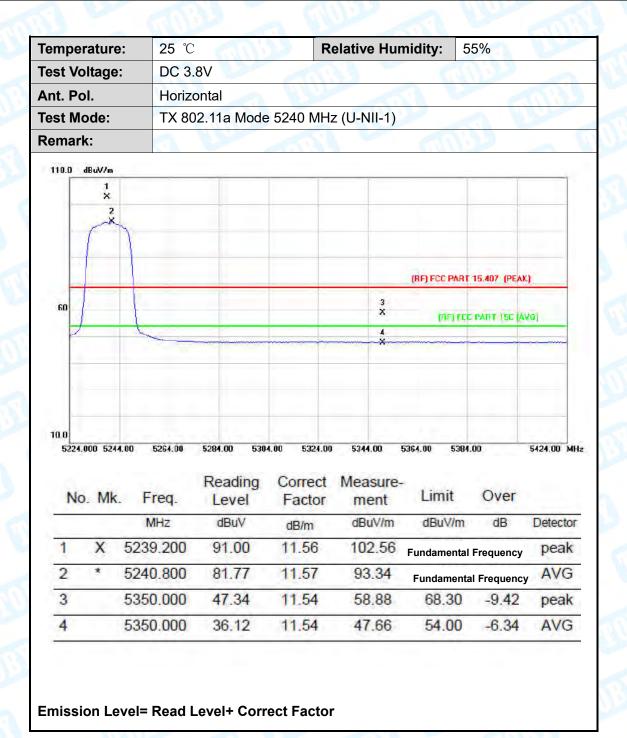
# Attachment C-- Restricted Bands Requirement and Band-edge Test Data


## (1) Radiation Test





Report No.: TB-FCC173946 90 of 191 Page:

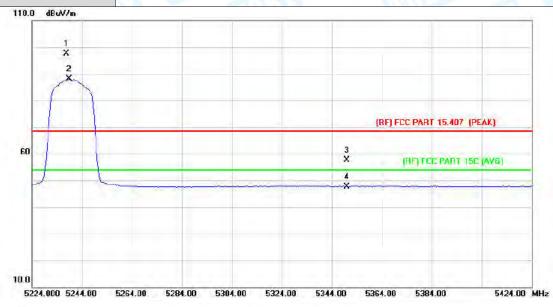

Temperature: **Relative Humidity:** 25 ℃ 55% **Test Voltage:** DC 3.8V Ant. Pol. Vertical **Test Mode:** TX 802.11a Mode 5180 MHz (U-NII-1) Remark:



| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit                 | Over        |          |
|-----|-----|----------|------------------|-------------------|------------------|-----------------------|-------------|----------|
|     |     | MHz      | dBu∀             | dB/m              | dBuV/m           | dBuV/m                | dB          | Detector |
| 1   | 1.7 | 5150.000 | 46.49            | 11.60             | 58.09            | 68.30                 | -10.21      | peak     |
| 2   |     | 5150.000 | 35.76            | 11.60             | 47.36            | 54.00                 | -6.64       | AVG      |
| 3   | X   | 5178.800 | 85.72            | 11.60             | 97.32            | Fundamental Frequency |             | peak     |
| 4   | *   | 5178.800 | 76.14            | 11.60             | 87.74            | Fundamenta            | I Frequency | AVG      |



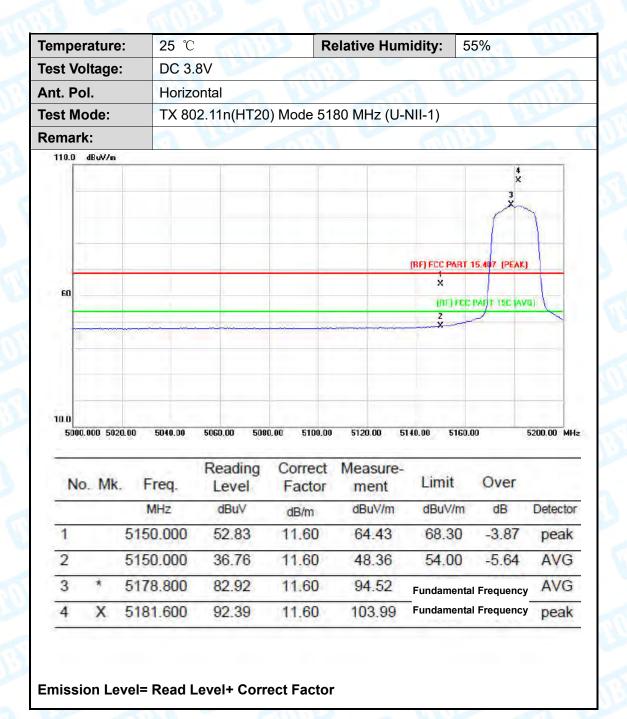
Page: 91 of 191





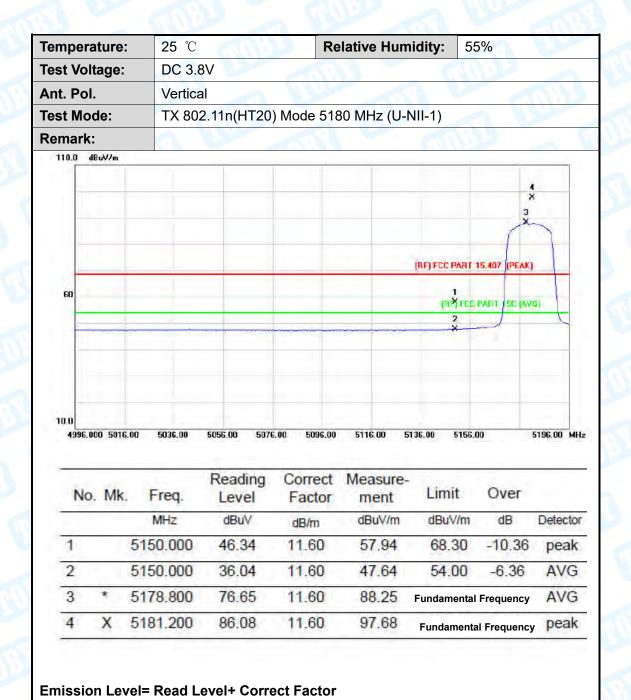

Report No.: TB-FCC173946 Page: 92 of 191

Temperature:25 °CRelative Humidity:55%Test Voltage:DC 3.8VAnt. Pol.VerticalTest Mode:TX 802.11a Mode 5240 MHz (U-NII-1)


### Remark:

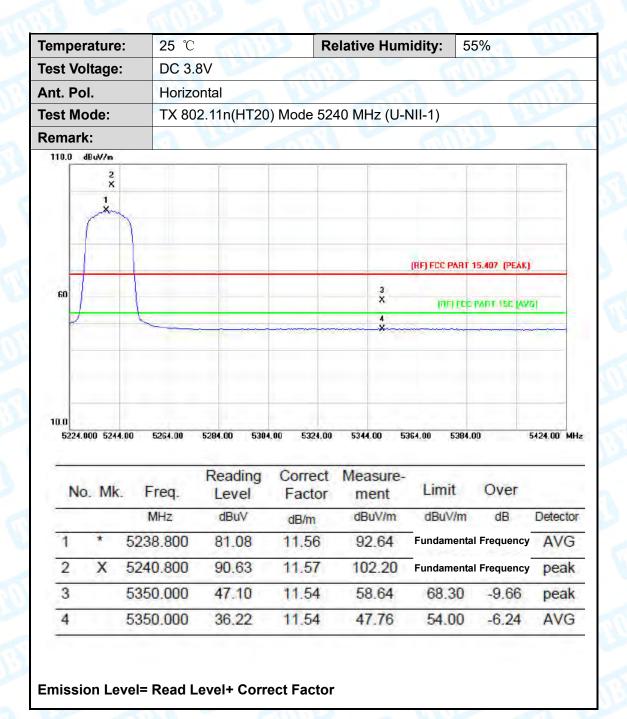


| No | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit            | Over      |          |
|----|-----|----------|------------------|-------------------|------------------|------------------|-----------|----------|
|    |     | MHz      | dBuV             | dB/m              | dBuV/m           | dBuV/m           | dB        | Detector |
| 1  | X   | 5237.600 | 86.03            | 11.57             | 97.60            | -<br>Fundamental | Frequency | peak     |
| 2  | *   | 5238.800 | 76.58            | 11.56             | 88.14            | –<br>Fundamental | Frequency | AVG      |
| 3  |     | 5350.000 | 46.14            | 11.54             | 57.68            | 68.30            | -10.62    | peak     |
| 4  |     | 5350.000 | 36.16            | 11.54             | 47.70            | 54.00            | -6.30     | AVG      |




Page: 93 of 191






Page: 94 of 191



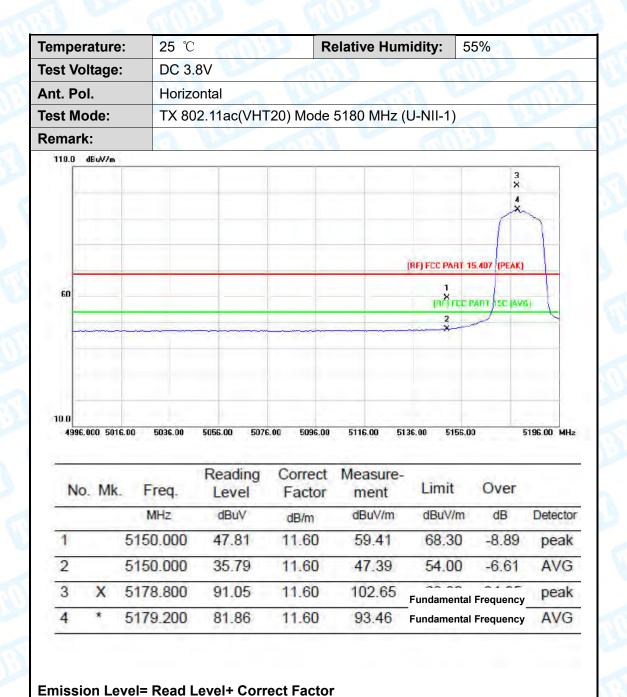


Page: 95 of 191



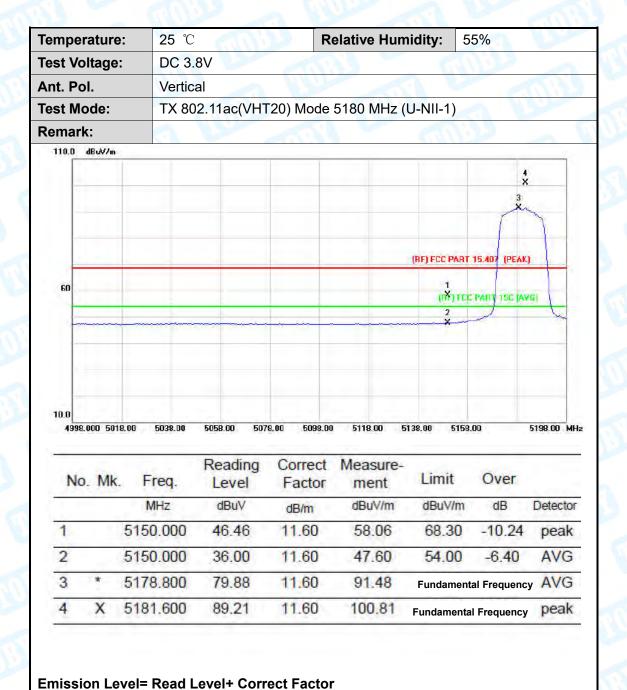


Report No.: TB-FCC173946 Page: 96 of 191


Temperature:25 °CRelative Humidity:55%Test Voltage:DC 3.8VAnt. Pol.VerticalTest Mode:TX 802.11n(HT20) Mode 5240 MHz (U-NII-1)Remark:Remark:



| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit       | Over      |          |
|-----|-----|----------|------------------|-------------------|------------------|-------------|-----------|----------|
|     |     | MHz      | dBuV             | dB/m              | dBuV/m           | dBuV/m      | dB        | Detector |
| 1   | X   | 5237.600 | 85.80            | 11.57             | 97.37            | Fundamental | Frequency | peak     |
| 2   | *   | 5238.800 | 76.49            | 11.56             | 88.05            | Fundamental | Frequency | AVG      |
| 3   |     | 5350.000 | 46.77            | 11.54             | 58.31            | 68.30       | -9.99     | peak     |
| 4   |     | 5350.000 | 35.62            | 11.54             | 47.16            | 54.00       | -6.84     | AVG      |




Page: 97 of 191





Page: 98 of 191





5222.000 5242.00

Report No.: TB-FCC173946 Page: 99 of 191

Temperature: 25 °C Relative Humidity: 55%

Test Voltage: DC 3.8V

Ant. Pol. Horizontal

Test Mode: TX 802.11ac(VHT20) Mode 5240 MHz (U-NII-1)

Remark:

## 

| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit                 | Over        |          |
|-----|-----|----------|------------------|-------------------|------------------|-----------------------|-------------|----------|
|     |     | MHz      | dBuV             | dB/m              | dBuV/m           | dBuV/m                | dB          | Detector |
| 1   | X   | 5238.400 | 91.52            | 11.56             | 103.08           | Fundamental Frequency |             | peak     |
| 2   | *   | 5238.400 | 81.88            | 11.56             | 93.44            | -<br>Fundamenta       | I Frequency | AVG      |
| 3   |     | 5350.000 | 45.82            | 11.54             | 57.36            | 68.30                 | -10.94      | peak     |
| 4   |     | 5350.000 | 36.18            | 11.54             | 47.72            | 54.00                 | -6.28       | AVG      |
|     |     |          |                  |                   |                  |                       |             |          |

5362.00

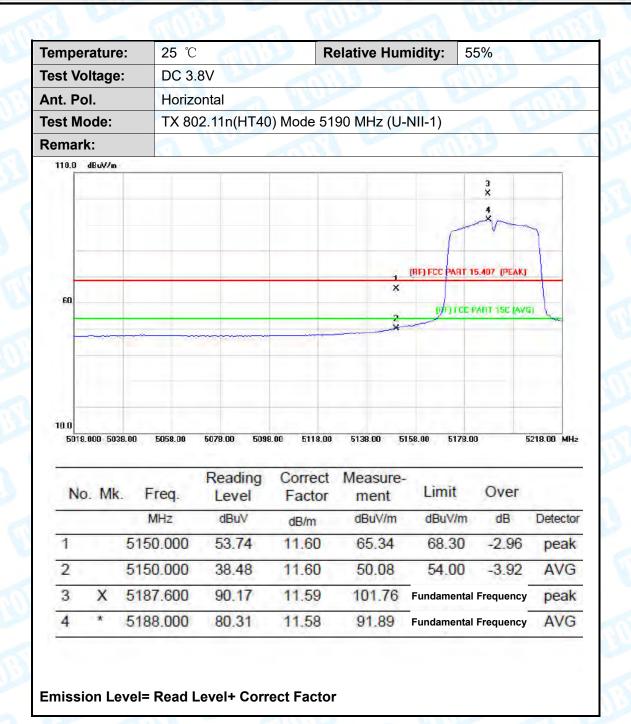
5382.00

5422.00 MHz

**Emission Level= Read Level+ Correct Factor** 

5282.00

5302,00




Page: 100 of 191

| Tempe       | eratu   | re:    | 2        | 5 °C                                       |         |       |      | )    | Rel  | ative | Hum   | idity   | 5      | 5%     |          |        |      |
|-------------|---------|--------|----------|--------------------------------------------|---------|-------|------|------|------|-------|-------|---------|--------|--------|----------|--------|------|
| est V       | oltag   | e:     | D        | C 3.8                                      | V       |       |      | 4    | 0    |       |       |         |        |        |          |        | a    |
| Ant. Pol.   |         | Ve     | Vertical |                                            |         |       |      |      |      |       | 13    |         |        |        |          |        |      |
| Test M      | lode:   |        | T        | TX 802.11ac(VHT20) Mode 5240 MHz (U-NII-1) |         |       |      |      |      |       |       |         |        |        |          |        |      |
| Remai       | rk:     |        |          |                                            |         |       | d    | 50   |      | 1     |       | M       | W      | 33     |          |        | N    |
| 110.0       | dBuV/i  | n      |          |                                            |         |       |      |      |      |       |       |         |        |        |          |        | 7    |
|             |         | 2<br>X |          |                                            |         |       |      |      |      |       |       |         |        |        |          |        |      |
|             |         | 1<br>X |          |                                            |         |       |      |      |      |       |       |         |        |        |          |        |      |
|             | 1       | and in | 1        |                                            |         |       |      |      |      |       |       |         |        |        |          |        |      |
|             |         |        | 1        |                                            |         |       |      |      |      |       |       |         |        |        |          |        | 1    |
| -           | +       |        | 1        |                                            |         |       |      |      |      |       |       | (RF) FC | CPART  | 15.407 | (PEAK)   |        |      |
| 60          |         |        | +        |                                            |         |       |      |      |      |       | 3     | -       | an ret | PART   | 15C (AV6 | il     |      |
| -           | )       | T      | 1        |                                            |         |       | 3170 |      |      |       | 4     |         |        |        |          |        |      |
|             |         |        |          |                                            |         |       |      |      |      |       |       |         |        |        |          |        |      |
|             |         |        |          |                                            |         |       |      |      |      |       |       |         |        |        |          |        |      |
|             |         |        |          |                                            |         |       |      |      |      |       |       |         |        |        |          |        |      |
| 10.0        |         | 1      |          |                                            |         |       |      |      |      |       |       |         |        |        |          |        |      |
| 10.0<br>522 | 2.000 5 | 242.00 | 526      | 2.00                                       | 5282.00 | 530:  | 2.00 | 532  | 2.00 | 5342. | 00 53 | 62.00   | 5382   | .00    | 5        | 422.00 | MHz  |
|             |         |        |          |                                            |         |       |      |      |      |       |       |         |        |        |          |        |      |
|             |         |        | 100      |                                            |         | ading |      | Corr |      |       | asure | - 10    | imit   | ,      | Over     |        |      |
|             | No.     | MK.    |          | eq.                                        |         | evel  |      | Fac  | tor  |       | nent  |         |        |        | . 4      |        |      |
|             |         |        | 110      | Hz                                         |         | iBu∀  |      | dB/r |      | dE    | BuV/m | d       | BuV/r  | n      | dB       | 5,170  | ecto |
| 1           | 3       | t      | 5238     | .400                                       | 7       | 9.05  |      | 11.5 | 6    | 9     | 0.61  | Fund    | ament  | al Fre | quency   | A      | VG   |
| 2           | )       | X      | 5240     | .800                                       | 8       | 8.79  |      | 11.5 | 57   | 10    | 00.36 | Fund    | ament  | al Fre | quency   | p      | eak  |
| 3           |         |        | 5350     | .000                                       | 4       | 7.64  |      | 11.5 | 54   | 5     | 9.18  | 6       | 8.30   | )      | 9.12     | р      | eak  |
| 4           |         |        | 5350     | 000                                        | 2       | 5.40  |      | 11.5 | 1    | 4     | 6.94  | -       | 4.00   | 1      | -7.06    | ۸      | VG   |

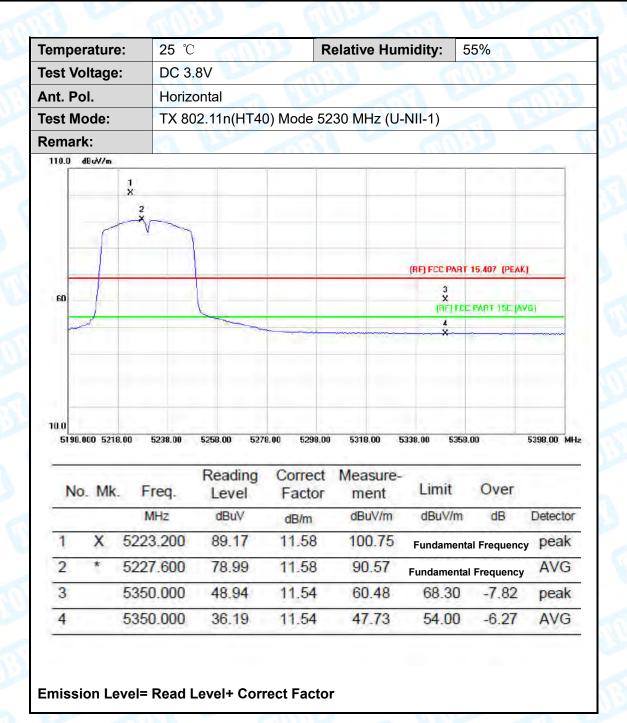



Page: 101 of 191



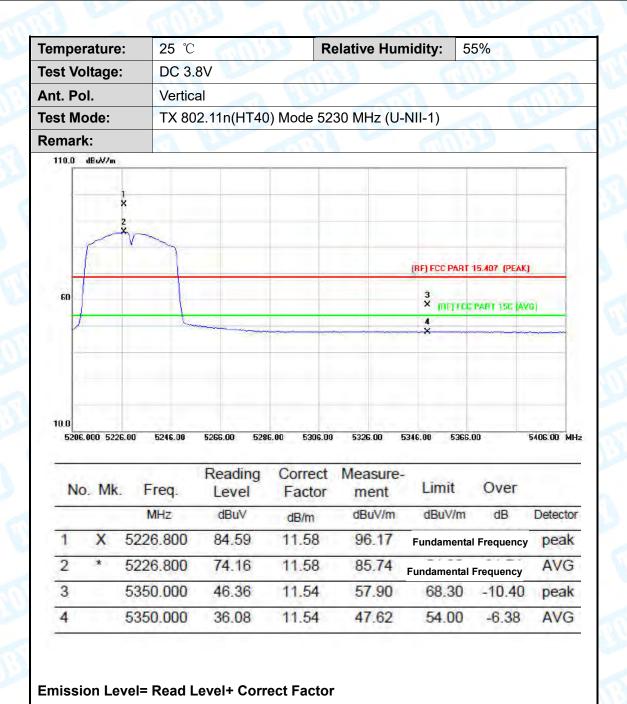


Page: 102 of 191


| Temperature:  | 25 ℃                                     | Relative Humidity: | 55%   |  |  |  |
|---------------|------------------------------------------|--------------------|-------|--|--|--|
| Test Voltage: | DC 3.8V                                  | (1)3 T             | Min a |  |  |  |
| Ant. Pol.     | Vertical                                 |                    |       |  |  |  |
| Test Mode:    | TX 802.11n(HT40) Mode 5190 MHz (U-NII-1) |                    |       |  |  |  |
| Remark:       |                                          |                    |       |  |  |  |

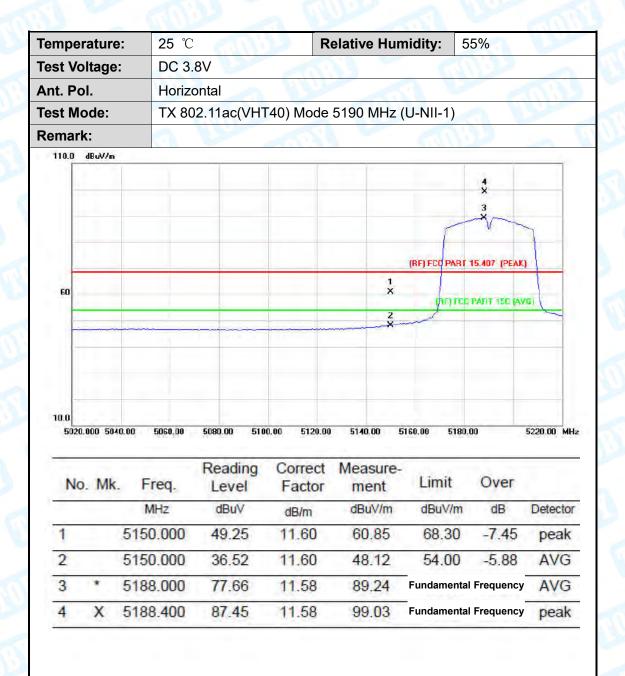


| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit           | Over         |          |
|-----|-----|----------|------------------|-------------------|------------------|-----------------|--------------|----------|
|     |     | MHz      | dBuV             | dB/m              | dBuV/m           | dBuV/m          | dB           | Detector |
| 1   |     | 5150.000 | 52.77            | 11.60             | 64.37            | 68.30           | -3.93        | peak     |
| 2   | 1.0 | 5150.000 | 35.46            | 11.60             | 47.06            | 54.00           | -6.94        | AVG      |
| 3   | *   | 5188.400 | 73.60            | 11.58             | 85.18            | Fundamenta      | l Frequency  | AVG      |
| 4   | X   | 5190.800 | 83.72            | 11.58             | 95.30            | —<br>Fundamenta | al Frequency | peak     |
|     |     |          |                  |                   |                  |                 |              |          |



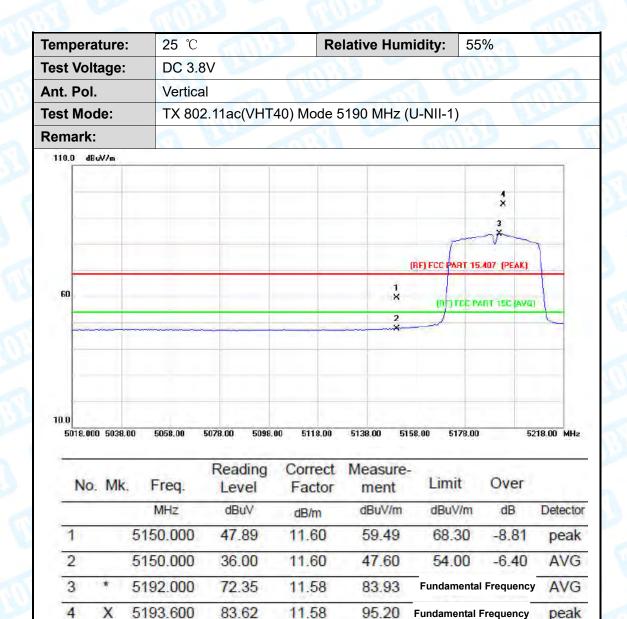

Page: 103 of 191






Page: 104 of 191






Page: 105 of 191





Page: 106 of 191



95.20

**Fundamental Frequency** 

**Emission Level= Read Level+ Correct Factor** 

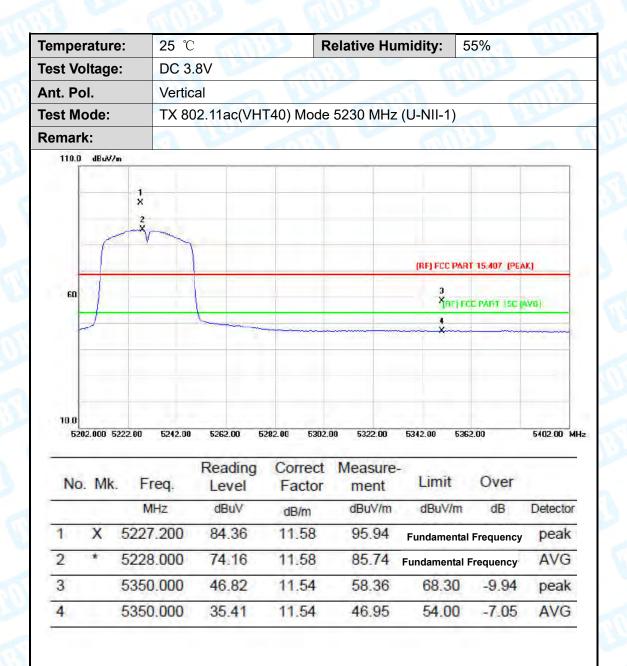
83.62

X

peak



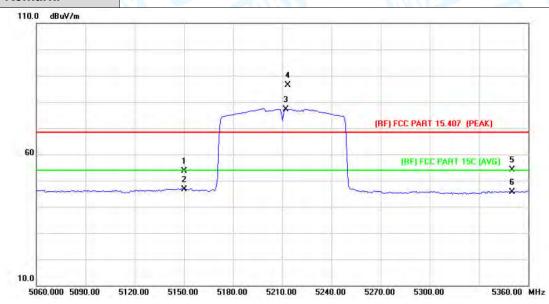
Page: 107 of 191


| Temperature:  | 25 ℃                  | Relative Humidity:    | 55%     |  |  |  |
|---------------|-----------------------|-----------------------|---------|--|--|--|
| Test Voltage: | DC 3.8V               | (1) T                 | MOD .   |  |  |  |
| Ant. Pol.     | Horizontal            |                       |         |  |  |  |
| Test Mode:    | TX 802.11ac(VHT40) Mo | de 5230 MHz (U-NII-1) |         |  |  |  |
| Remark:       |                       |                       | 11.20 C |  |  |  |



| No | . Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit       | Over      |          |
|----|-------|----------|------------------|-------------------|------------------|-------------|-----------|----------|
|    |       | MHz      | dBuV             | dB/m              | dBuV/m           | dBuV/m      | dB        | Detector |
| 1  | X     | 5228.000 | 87.18            | 11.58             | 98.76            | Fundamental | Frequency | peak     |
| 2  | *     | 5228.000 | 77.25            | 11.58             | 88.83            | Fundamental | Frequency | AVG      |
| 3  |       | 5350.000 | 46.04            | 11.54             | 57.58            | 68.30       | -10.72    | peak     |
| 4  |       | 5350.000 | 36.06            | 11.54             | 47.60            | 54.00       | -6.40     | AVG      |



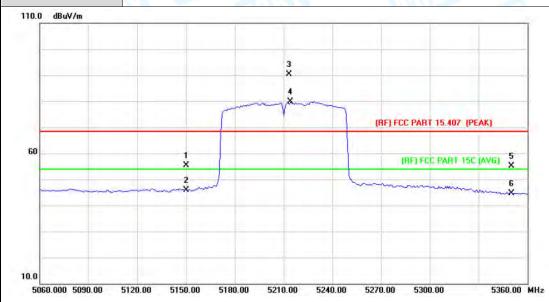

Page: 108 of 191





Page: 109 of 191

| Temperature:  | 25 ℃                  | Relative Humidity:    | 55%          |
|---------------|-----------------------|-----------------------|--------------|
| Test Voltage: | DC 3.8V               | (B) (                 | THE STATE OF |
| Ant. Pol.     | Horizontal            |                       |              |
| Test Mode:    | TX 802.11ac(VHT80) Mo | de 5210 MHz (U-NII-1) |              |
| Remark:       | 0                     |                       |              |

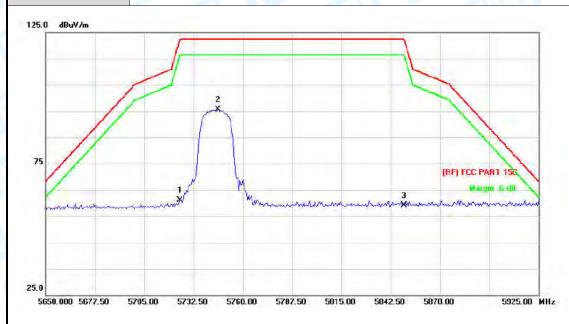



| No. | Mk. | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit      | Over         |          |
|-----|-----|----------|------------------|-------------------|------------------|------------|--------------|----------|
|     |     | MHz      | dBuV             | dB/m              | dBuV/m           | dBuV/m     | dB           | Detector |
| 1   |     | 5150.000 | 40.02            | 13.54             | 53.56            | 68.30      | -14.74       | peak     |
| 2   |     | 5150.000 | 33.18            | 13.54             | 46.72            | 54.00      | -7.28        | AVG      |
| 3   | *   | 5212.400 | 63.75            | 13.49             | 77.24            | Fundamenta | al Frequency | AVG      |
| 4   | X   | 5213.590 | 72.83            | 13.49             | 86.32            | Fundamenta | al Frequency | peak     |
| 5   |     | 5350.000 | 40.68            | 13.40             | 54.08            | 68.30      | -14.22       | peak     |
| 6   |     | 5350.000 | 32.31            | 13.40             | 45.71            | 54.00      | -8.29        | AVG      |
|     |     |          |                  |                   |                  |            |              |          |



Page: 110 of 191

| Temperature:  | 25 ℃                  | Relative Humidity:    | 55%          |
|---------------|-----------------------|-----------------------|--------------|
| Test Voltage: | DC 3.8V               | (B) - (               | THE STATE OF |
| Ant. Pol.     | Vertical              |                       |              |
| Test Mode:    | TX 802.11ac(VHT80) Mo | de 5210 MHz (U-NII-1) |              |
| Remark:       | 0                     |                       |              |

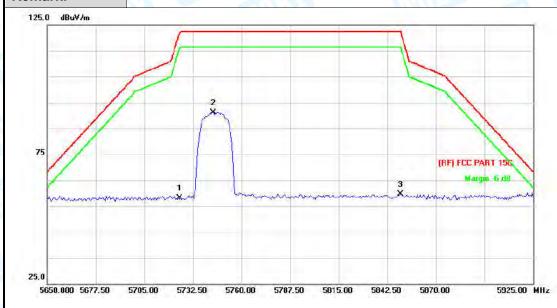



| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit       | Over      |          |
|-----|-----|----------|------------------|-------------------|------------------|-------------|-----------|----------|
|     |     | MHz      | dBuV             | dB/m              | dBuV/m           | dBuV/m      | dB        | Detector |
| 1   |     | 5150.000 | 41.82            | 13.54             | 55.36            | 68.30       | -12.94    | peak     |
| 2   |     | 5150.000 | 32.39            | 13.54             | 45.93            | 54.00       | -8.07     | AVG      |
| 3   | X   | 5213.590 | 76.87            | 13.49             | 90.36            | Fundamental | Frequency | peak     |
| 4   | *   | 5214.200 | 66.43            | 13.49             | 79.92            | Fundamental | Frequency | AVG      |
| 5   |     | 5350.000 | 41.83            | 13.40             | 55.23            | 68.30       | -13.07    | peak     |
| 6   |     | 5350.000 | 31.21            | 13.40             | 44.61            | 54.00       | -9.39     | AVG      |
|     |     |          |                  |                   |                  |             |           |          |



Page: 111 of 191

| Temperature:  | 25 ℃                   | Relative Humidity:  | 55%    |
|---------------|------------------------|---------------------|--------|
| Test Voltage: | DC 3.8V                |                     |        |
| Ant. Pol.     | Horizontal             | THE PERSON NAMED IN |        |
| Test Mode:    | TX 802.11a Mode 5745 N | MHz (U-NII-3)       | 1.73 C |
| Remark:       | DES LIMIT              | - O                 |        |

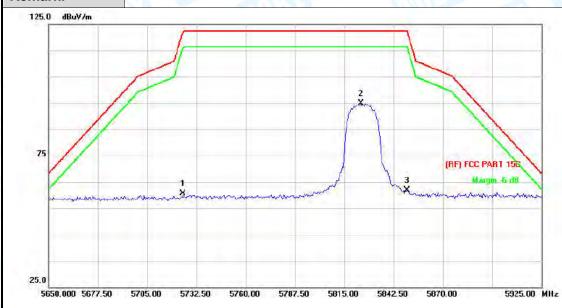



| No | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|
|    |     | MHz      | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1  |     | 5725.000 | 47.14            | 13.89             | 61.03            | 122.30 | -61.27 | peak     |
| 2  | *   | 5746.250 | 81.80            | 13.95             | 95.75            | 122.30 | -26,55 | peak     |
| 3  |     | 5850.000 | 44.89            | 14.23             | 59.12            | 122.30 | -63.18 | peak     |



Page: 112 of 191

| Temperature:  | 25 ℃                   | Relative Humidity: | 55%     |
|---------------|------------------------|--------------------|---------|
| Test Voltage: | DC 3.8V                | (1)3 T             | Miles - |
| Ant. Pol.     | Vertical               |                    |         |
| Test Mode:    | TX 802.11a Mode 5745 M | MHz (U-NII-3)      | 1       |
| Remark:       |                        |                    | 1/42    |




| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|
|     |     | MHz      | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |     | 5725.000 | 44.31            | 13.89             | 58.20            | 122.30 | -64.10 | peak     |
| 2   | *   | 5744.050 | 77.15            | 13.95             | 91.10            | 122.30 | -31.20 | peak     |
| 3   |     | 5850.000 | 45.32            | 14.23             | 59.55            | 122.30 | -62.75 | peak     |
|     |     |          |                  |                   |                  |        |        |          |



Page: 113 of 191

| Temperature:  | 25 ℃                   | Relative Humidity: | 55%     |
|---------------|------------------------|--------------------|---------|
| Test Voltage: | DC 3.8V                | (1)3 T             | Miles - |
| Ant. Pol.     | Horizontal             |                    |         |
| Test Mode:    | TX 802.11a Mode 5825 M | MHz (U-NII-3)      | 1       |
| Remark:       |                        |                    | 1/42    |

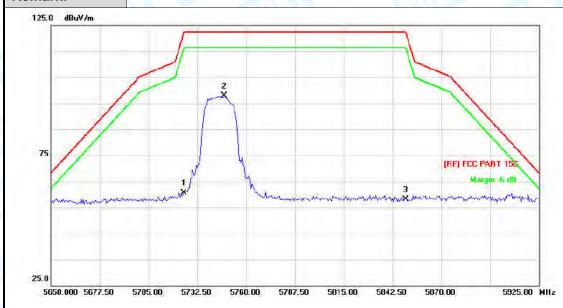


| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|
|     |     | MHz      | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |     | 5725.000 | 46.85            | 13.89             | 60.74            | 122.30 | -61.56 | peak     |
| 2   | *   | 5824.350 | 80.67            | 14.16             | 94.83            | 122.30 | -27.47 | peak     |
| 3   |     | 5850.000 | 47.71            | 14.23             | 61.94            | 122.30 | -60.36 | peak     |



Page: 114 of 191

| Temperature:  | 25 ℃                   | Relative Humidity: | 55%       |
|---------------|------------------------|--------------------|-----------|
| Test Voltage: | DC 3.8V                |                    | Min a     |
| Ant. Pol.     | Vertical               |                    | Salar.    |
| Test Mode:    | TX 802.11a Mode 5825 N | MHz (U-NII-3)      |           |
| Remark:       |                        |                    | 1199 - 10 |

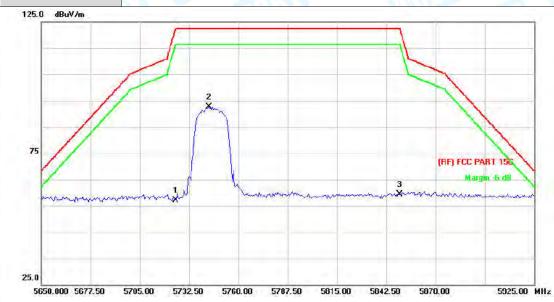

## 75 (RF) FCC PART 156 Malgin 6 dB 1 25.0 5650.000 5677.50 5705.00 5732.50 5760.00 5787.50 5815.00 5842.50 5870.00 5925.00 MHz

| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|
|     |     | MHz      | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |     | 5725.000 | 44.28            | 13.89             | 58.17            | 122.30 | -64.13 | peak     |
| 2   | *   | 5824.350 | 77.30            | 14.16             | 91.46            | 122.30 | -30.84 | peak     |
| 3   |     | 5850.000 | 45.59            | 14.23             | 59.82            | 122.30 | -62.48 | peak     |
|     |     |          |                  |                   |                  |        |        |          |



Page: 115 of 191

|               |                       |                    | E. (1.1.1.1.1.2m) |
|---------------|-----------------------|--------------------|-------------------|
| Temperature:  | 25 ℃                  | Relative Humidity: | 55%               |
| Test Voltage: | DC 3.8V               | (1) T              | MOD TO            |
| Ant. Pol.     | Horizontal            |                    |                   |
| Test Mode:    | TX 802.11n(HT20) Mode | 5745 MHz (U-NII-3) |                   |
| Remark:       |                       |                    | (1)               |

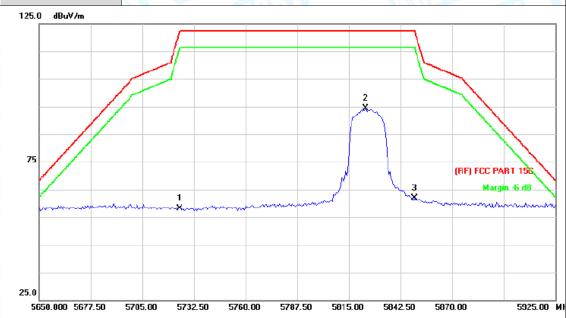



| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|
|     |     | MHz      | dBuV dB/m        | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |     | 5725.000 | 46.67            | 13.89             | 60.56            | 122.30 | -61.74 | peak     |
| 2   | *   | 5747.900 | 83.89            | 13.96             | 97.85            | 122.30 | -24.45 | peak     |
| 3   |     | 5850,000 | 43.79            | 14.23             | 58.02            | 122.30 | -64.28 | peak     |



Page: 116 of 191

| Temperature:  | <b>25</b> ℃           | Relative Humidity: | 55%        |
|---------------|-----------------------|--------------------|------------|
| Test Voltage: | DC 3.8V               |                    | Min a      |
| Ant. Pol.     | Vertical              |                    | Salar.     |
| Test Mode:    | TX 802.11n(HT20) Mode | 5745 MHz (U-NII-3) | - The same |
| Remark:       | 0 13                  |                    | 1.73       |

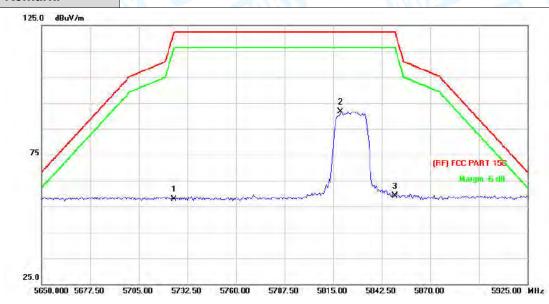



| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit         | Over   |          |
|-----|-----|----------|------------------|-------------------|------------------|---------------|--------|----------|
|     | MHz | MHz      | dBuV             | dB/m dBuV         | dBuV/m           | dBuV/m dBuV/m | dB     | Detector |
| 1   | -7  | 5725.000 | 43.36            | 13.89             | 57.25            | 122.30        | -65.05 | peak     |
| 2   | *   | 5743.500 | 78.59            | 13.95             | 92.54            | 122.30        | -29.76 | peak     |
| 3   |     | 5850.000 | 45.19            | 14.23             | 59.42            | 122.30        | -62.88 | peak     |



Page: 117 of 191

| Temperature:  | 25 ℃                  | Relative Humidity: | 55% |
|---------------|-----------------------|--------------------|-----|
| Test Voltage: | DC 3.8V               | 133                |     |
| Ant. Pol.     | Horizontal            |                    |     |
| Test Mode:    | TX 802.11n(HT20) Mode | 5825 MHz (U-NII-3) |     |
| Remark:       |                       |                    |     |

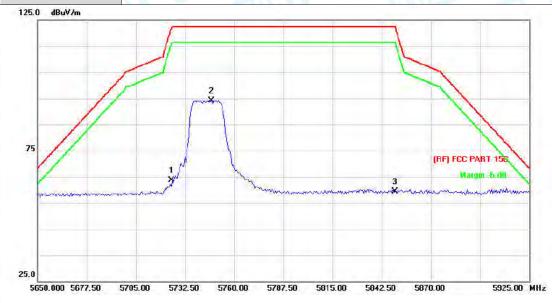



| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|
|     |     | MHz      | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |     | 5725.000 | 44.23            | 13.89             | 58.12            | 122.30 | -64.18 | peak     |
| 2   | *   | 5823.800 | 80.18            | 14.16             | 94.34            | 122.30 | -27.96 | peak     |
| 3   |     | 5850.000 | 47.69            | 14.23             | 61.92            | 122.30 | -60.38 | peak     |
|     |     |          |                  |                   |                  |        |        |          |



Page: 118 of 191

| Temperature:  | 25 ℃                  | Relative Humidity: | 55%     |
|---------------|-----------------------|--------------------|---------|
| Test Voltage: | DC 3.8V               | (1) T              | MODE    |
| Ant. Pol.     | Vertical              |                    |         |
| Test Mode:    | TX 802.11n(HT20) Mode | 5825 MHz (U-NII-3) | - The - |
| Remark:       | 0                     |                    |         |

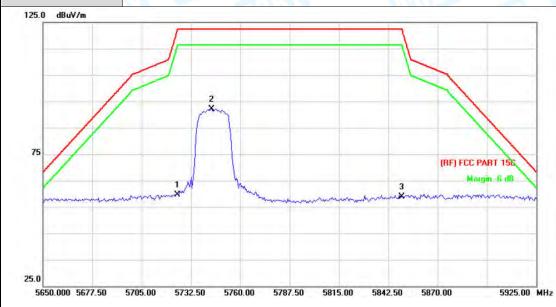



| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|
|     |     | MHz      | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |     | 5725.000 | 44.02            | 13.89             | 57.91            | 122.30 | -64.39 | peak     |
| 2   | *   | 5819.400 | 77.48            | 14.14             | 91.62            | 122.30 | -30.68 | peak     |
| 3   |     | 5850.000 | 44.85            | 14.23             | 59.08            | 122.30 | -63.22 | peak     |
|     |     |          |                  |                   |                  |        |        |          |



Page: 119 of 191

| Temperature:  | 25 ℃                  | Relative Humidity:    | 55%          |
|---------------|-----------------------|-----------------------|--------------|
| Test Voltage: | DC 3.8V               | (B) - (               | THE STATE OF |
| Ant. Pol.     | Horizontal            |                       |              |
| Test Mode:    | TX 802.11ac(VHT20) Mo | de 5745 MHz (U-NII-3) |              |
| Remark:       |                       |                       |              |

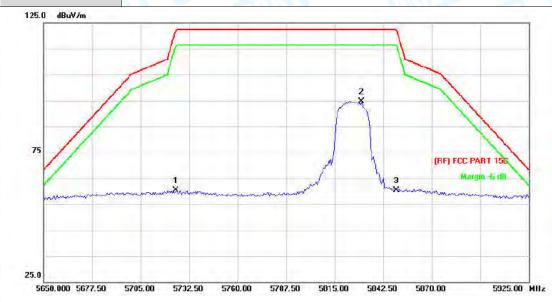



| No. | Mk.  | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|------|----------|------------------|-------------------|------------------|--------|--------|----------|
|     |      | MHz      | MHz dBuV dB/m    | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1   | 1,11 | 5725.000 | 49.75            | 13.89             | 63.64            | 122.30 | -58.66 | peak     |
| 2   | *    | 5747.350 | 80.22            | 13.96             | 94.18            | 122.30 | -28.12 | peak     |
| 3   | -:   | 5850.000 | 45.13            | 14.23             | 59.36            | 122.30 | -62.94 | peak     |
|     |      |          |                  |                   |                  |        |        |          |



Page: 120 of 191

| Temperature:  | 25 ℃                  | Relative Humidity:    | 55%          |
|---------------|-----------------------|-----------------------|--------------|
| Test Voltage: | DC 3.8V               | (B) (                 | THE STATE OF |
| Ant. Pol.     | Vertical              |                       |              |
| Test Mode:    | TX 802.11ac(VHT20) Mo | de 5745 MHz (U-NII-3) | 1 The        |
| Remark:       |                       |                       |              |

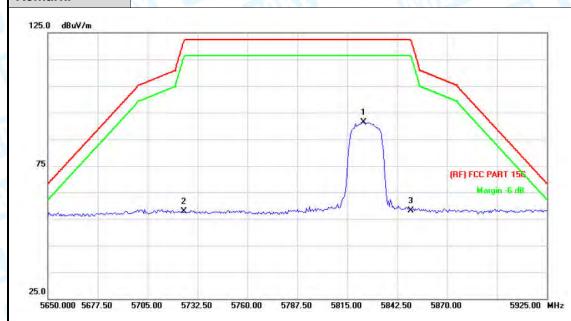



| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|
|     |     | MHz      | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |     | 5725.000 | 45.63            | 13.89             | 59.52            | 122.30 | -62.78 | peak     |
| 2   | *   | 5744.050 | 78.07            | 13.95             | 92.02            | 122.30 | -30.28 | peak     |
| 3   |     | 5850.000 | 44.75            | 14.23             | 58.98            | 122.30 | -63.32 | peak     |
|     |     |          |                  |                   |                  |        |        |          |



Page: 121 of 191

| Temperature:  | <b>25</b> ℃           | Relative Humidity:                         | 55%          |  |  |  |  |  |
|---------------|-----------------------|--------------------------------------------|--------------|--|--|--|--|--|
| Test Voltage: | DC 3.8V               | (B) (                                      | THE STATE OF |  |  |  |  |  |
| Ant. Pol.     | Horizontal            | Horizontal                                 |              |  |  |  |  |  |
| Test Mode:    | TX 802.11ac(VHT20) Mo | TX 802.11ac(VHT20) Mode 5825 MHz (U-NII-3) |              |  |  |  |  |  |
| Remark:       | 0                     |                                            |              |  |  |  |  |  |

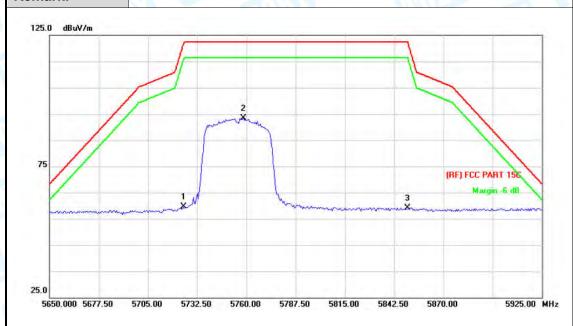



| No | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|
|    |     | MHz      | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1  | . 1 | 5725.000 | 46.50            | 13.89             | 60.39            | 122.30 | -61.91 | peak     |
| 2  | *   | 5830.400 | 80.52            | 14.17             | 94.69            | 122.30 | -27.61 | peak     |
| 3  |     | 5850.000 | 46.07            | 14.23             | 60.30            | 122.30 | -62.00 | peak     |



Page: 122 of 191

|               |                       |                                           | E. Al A V Mark |  |  |  |  |  |
|---------------|-----------------------|-------------------------------------------|----------------|--|--|--|--|--|
| Temperature:  | 25 ℃                  | Relative Humidity:                        | 55%            |  |  |  |  |  |
| Test Voltage: | DC 3.8V               | 3.8V                                      |                |  |  |  |  |  |
| Ant. Pol.     | Vertical              | ertical                                   |                |  |  |  |  |  |
| Test Mode:    | TX 802.11ac(VHT20) Mo | X 802.11ac(VHT20) Mode 5825 MHz (U-NII-3) |                |  |  |  |  |  |
| Remark:       |                       |                                           | (19.5)         |  |  |  |  |  |

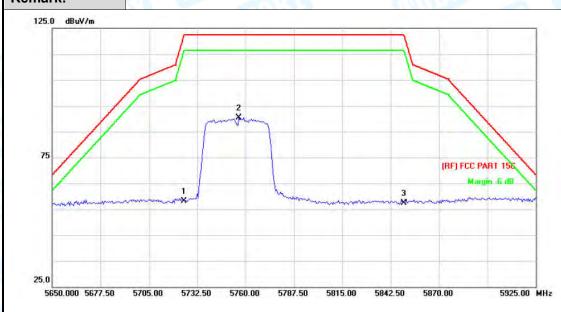



| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|
|     |     | MHz      | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1   | -   | 5725.000 | 44.02            | 13.89             | 57.91            | 122.30 | -64.39 | peak     |
| 2   | *   | 5823.800 | 77.20            | 14.16             | 91.36            | 122.30 | -30.94 | peak     |
| 3   |     | 5850.000 | 43.89            | 14.23             | 58.12            | 122.30 | -64.18 | peak     |
|     |     |          |                  |                   |                  |        |        |          |



Page: 123 of 191

| Temperature:  | 25 ℃                  | Relative Humidity:                       | 55%   |  |  |  |  |  |
|---------------|-----------------------|------------------------------------------|-------|--|--|--|--|--|
| Test Voltage: | DC 3.8V               | C 3.8V                                   |       |  |  |  |  |  |
| Ant. Pol.     | Horizontal            |                                          |       |  |  |  |  |  |
| Test Mode:    | TX 802.11n(HT40) Mode | TX 802.11n(HT40) Mode 5755 MHz (U-NII-3) |       |  |  |  |  |  |
| Remark:       |                       |                                          | (1) C |  |  |  |  |  |

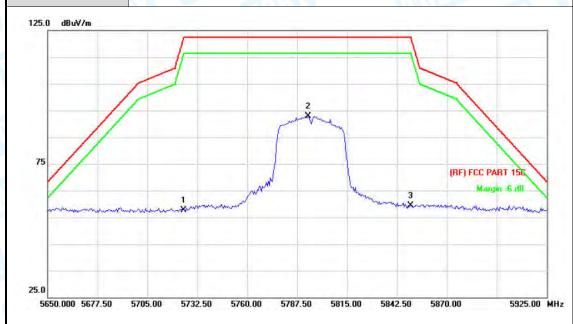



| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|
|     |     | MHz      | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |     | 5725.000 | 45.79            | 13.89             | 59.68            | 122.30 | -62.62 | peak     |
| 2   | *   | 5758.350 | 79.52            | 13.97             | 93.49            | 122.30 | -28.81 | peak     |
| 3   |     | 5850.000 | 44.96            | 14.23             | 59.19            | 122.30 | -63.11 | peak     |
|     |     |          |                  |                   |                  |        |        |          |



Page: 124 of 191

| Temperature:  | 25 ℃                  | Relative Humidity:                       | 55% |  |  |  |  |  |
|---------------|-----------------------|------------------------------------------|-----|--|--|--|--|--|
| Test Voltage: | DC 3.8V               | C 3.8V                                   |     |  |  |  |  |  |
| Ant. Pol.     | Vertical              | /ertical                                 |     |  |  |  |  |  |
| Test Mode:    | TX 802.11n(HT40) Mode | TX 802.11n(HT40) Mode 5755 MHz (U-NII-3) |     |  |  |  |  |  |
| Remark:       |                       |                                          | (1) |  |  |  |  |  |

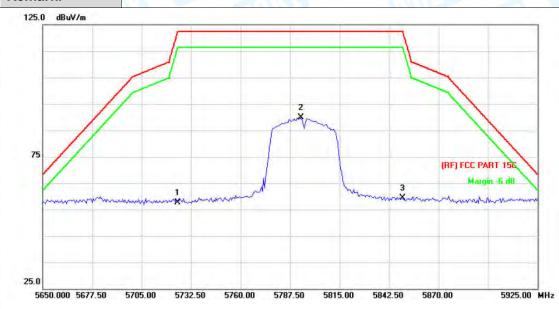



| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|
|     |     | MHz      | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |     | 5725.000 | 44.28            | 13.89             | 58.17            | 122.30 | -64.13 | peak     |
| 2   | *   | 5756.150 | 76.52            | 13.97             | 90.49            | 122.30 | -31.81 | peak     |
| 3   |     | 5850.000 | 43.17            | 14.23             | 57.40            | 122.30 | -64.90 | peak     |



Page: 125 of 191

| Temperature:  | 25 ℃                  | Relative Humidity:                       | 55%        |  |  |  |  |  |
|---------------|-----------------------|------------------------------------------|------------|--|--|--|--|--|
| Test Voltage: | DC 3.8V               | C 3.8V                                   |            |  |  |  |  |  |
| Ant. Pol.     | Horizontal            |                                          |            |  |  |  |  |  |
| Test Mode:    | TX 802.11n(HT40) Mode | TX 802.11n(HT40) Mode 5795 MHz (U-NII-3) |            |  |  |  |  |  |
| Remark:       |                       |                                          | (12) _ (I) |  |  |  |  |  |

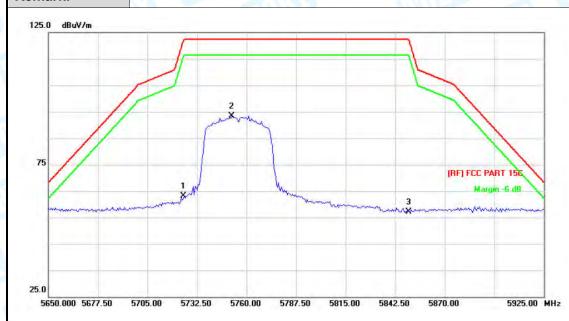



| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|
|     |     | MHz      | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |     | 5725.000 | 43.84            | 13,89             | 57.73            | 122.30 | -64.57 | peak     |
| 2   | *   | 5793.550 | 78.85            | 14.08             | 92.93            | 122.30 | -29.37 | peak     |
| 3   |     | 5850.000 | 45.23            | 14.23             | 59.46            | 122.30 | -62.84 | peak     |



Page: 126 of 191

| Temperature:  | 25 ℃                  | Relative Humidity:                       | 55% |  |  |  |  |  |
|---------------|-----------------------|------------------------------------------|-----|--|--|--|--|--|
| Test Voltage: | DC 3.8V               | C 3.8V                                   |     |  |  |  |  |  |
| Ant. Pol.     | Vertical              |                                          |     |  |  |  |  |  |
| Test Mode:    | TX 802.11n(HT40) Mode | TX 802.11n(HT40) Mode 5795 MHz (U-NII-3) |     |  |  |  |  |  |
| Remark:       |                       |                                          |     |  |  |  |  |  |

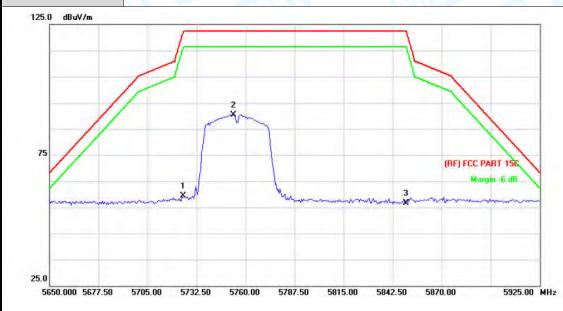



| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   | 1        |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|
|     |     | MHz      | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |     | 5725.000 | 43.66            | 13.89             | 57.55            | 122.30 | -64.75 | peak     |
| 2   | *   | 5793.550 | 75.76            | 14.08             | 89.84            | 122.30 | -32.46 | peak     |
| 3   |     | 5850.000 | 45.18            | 14.23             | 59.41            | 122.30 | -62.89 | peak     |
|     |     |          |                  |                   |                  |        |        |          |



Page: 127 of 191

| Temperature:  | 25 ℃                  | Relative Humidity:    | 55%    |
|---------------|-----------------------|-----------------------|--------|
| Test Voltage: | DC 3.8V               | (1) T                 | MODE   |
| Ant. Pol.     | Horizontal            |                       | Salar. |
| Test Mode:    | TX 802.11ac(VHT40) Mo | de 5755 MHz (U-NII-3) |        |
| Remark:       |                       |                       | 11.50  |




| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|
|     |     | MHz      | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |     | 5725.000 | 49.36            | 13.89             | 63.25            | 122.30 | -59.05 | peak     |
| 2   | *   | 5751.750 | 79.48            | 13.96             | 93.44            | 122.30 | -28.86 | peak     |
| 3   |     | 5850.000 | 42.99            | 14.23             | 57.22            | 122.30 | -65.08 | peak     |



Page: 128 of 191

| Temperature:  | 25 ℃                  | Relative Humidity:    | 55%     |
|---------------|-----------------------|-----------------------|---------|
| Test Voltage: | DC 3.8V               | (1)3 T                | THUS TO |
| Ant. Pol.     | Vertical              |                       |         |
| Test Mode:    | TX 802.11ac(VHT40) Mo | de 5755 MHz (U-NII-3) |         |
| Remark:       |                       |                       |         |



| Mk. | Freq.    | Reading<br>Level              | Correct<br>Factor                                           | Measure-<br>ment                                                                                                                                                                               | Limit                                                                                                                                                                                                                                                    | Over                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                        |
|-----|----------|-------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | MHz      | dBuV                          | dB/m                                                        | dBuV/m                                                                                                                                                                                         | dBuV/m                                                                                                                                                                                                                                                   | dB                                                                                                                                                                                                                                                                                                                | Detector                                                                                                                                                                                                                                                                                                                                                                               |
|     | 5725.000 | 45.41                         | 13.89                                                       | 59.30                                                                                                                                                                                          | 122.30                                                                                                                                                                                                                                                   | -63.00                                                                                                                                                                                                                                                                                                            | peak                                                                                                                                                                                                                                                                                                                                                                                   |
| *   | 5753.400 | 76.44                         | 13.97                                                       | 90.41                                                                                                                                                                                          | 122.30                                                                                                                                                                                                                                                   | -31.89                                                                                                                                                                                                                                                                                                            | peak                                                                                                                                                                                                                                                                                                                                                                                   |
|     | 5850.000 | 42.28                         | 14.23                                                       | 56.51                                                                                                                                                                                          | 122.30                                                                                                                                                                                                                                                   | -65.79                                                                                                                                                                                                                                                                                                            | peak                                                                                                                                                                                                                                                                                                                                                                                   |
|     |          | MHz<br>5725.000<br>* 5753.400 | Mk. Freq. Level  MHz dBuV  5725.000 45.41  * 5753.400 76.44 | Mk.         Freq.         Level         Factor           MHz         dBuV         dB/m           5725.000         45.41         13.89           *         5753.400         76.44         13.97 | Mk.         Freq.         Level         Factor         ment           MHz         dBuV         dBuV/m         dBuV/m           5725.000         45.41         13.89         59.30           *         5753.400         76.44         13.97         90.41 | Mk.         Freq.         Level         Factor         ment         Limit           MHz         dBuV         dBuV         dBuV/m         dBuV/m           5725.000         45.41         13.89         59.30         122.30           *         5753.400         76.44         13.97         90.41         122.30 | Mk.         Freq.         Level         Factor         ment         Limit         Over           MHz         dBuV         dBuV         dBuV/m         dBuV/m         dBuV/m         dB           5725.000         45.41         13.89         59.30         122.30         -63.00           *         5753.400         76.44         13.97         90.41         122.30         -31.89 |



5650.000 5677.50

Report No.: TB-FCC173946

Page: 129 of 191

|               |                       | F                     |         |
|---------------|-----------------------|-----------------------|---------|
| Temperature:  | <b>25</b> ℃           | Relative Humidity:    | 55%     |
| Test Voltage: | DC 3.8V               |                       | THUS TO |
| Ant. Pol.     | Horizontal            |                       |         |
| Test Mode:    | TX 802.11ac(VHT40) Mc | de 5795 MHz (U-NII-3) |         |
| Remark:       |                       |                       | 1.33    |

## 125.0 dBuV/m (FIF) FCC PART 15ts Margin 6 dBu

| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|
|     |     | MHz      | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |     | 5725.000 | 44.77            | 13.89             | 58.66            | 122.30 | -63.64 | peak     |
| 2   | *   | 5791.350 | 77.54            | 14.07             | 91.61            | 122.30 | -30.69 | peak     |
| 3   | 7   | 5850.000 | 45.52            | 14.23             | 59.75            | 122.30 | -62.55 | peak     |

5787.50

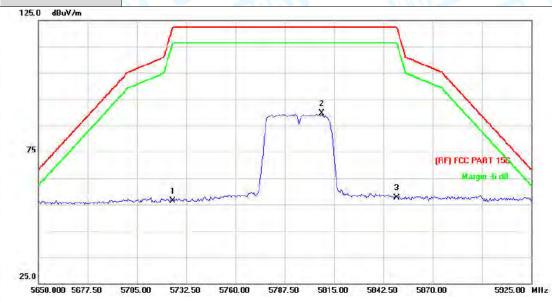
5815.00

5842.50

5870.00

5925.00 MHz

**Emission Level= Read Level+ Correct Factor** 

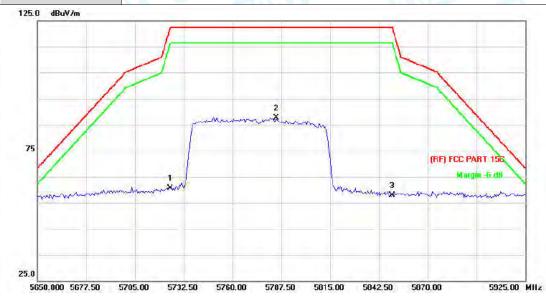

5732.50

5760.00



Page: 130 of 191

| Temperature:  | 25 ℃                  | Relative Humidity:    | 55%    |
|---------------|-----------------------|-----------------------|--------|
| Test Voltage: | DC 3.8V               | (1) T                 |        |
| Ant. Pol.     | Vertical              |                       |        |
| Test Mode:    | TX 802.11ac(VHT40) Mo | de 5795 MHz (U-NII-3) |        |
| Remark:       | 0 13                  |                       | (1.72) |

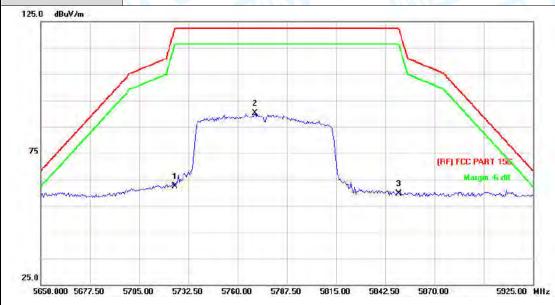



| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|
|     |     | MHz      | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |     | 5725.000 | 42.48            | 13.89             | 56.37            | 122.30 | -65.93 | peak     |
| 2   | *   | 5808.400 | 75.46            | 14.12             | 89.58            | 122.30 | -32.72 | peak     |
| 3   |     | 5850.000 | 43.29            | 14.23             | 57.52            | 122.30 | -64.78 | peak     |



Page: 131 of 191

| Temperature:  | 25 ℃                  | Relative Humidity:    | 55%     |
|---------------|-----------------------|-----------------------|---------|
| Test Voltage: | DC 3.8V               | (1) T                 | MOD .   |
| Ant. Pol.     | Horizontal            |                       |         |
| Test Mode:    | TX 802.11ac(VHT80) Mo | de 5775 MHz (U-NII-3) |         |
| Remark:       |                       |                       | 11.20 C |



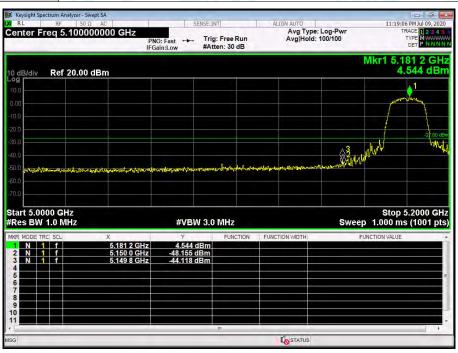

| Mk. | Freq.    | Reading<br>Level | Correct<br>Factor                                           | Measure-<br>ment                                                                                                                                                                               | Limit                                                                                                                                                                                                                                                    | Over                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                        |
|-----|----------|------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | MHz      | dBuV             | dB/m                                                        | dBuV/m                                                                                                                                                                                         | dBuV/m                                                                                                                                                                                                                                                   | dB                                                                                                                                                                                                                                                                                                                | Detector                                                                                                                                                                                                                                                                                                                                                                               |
|     | 5725.000 | 46.73            | 13.89                                                       | 60.62                                                                                                                                                                                          | 122.30                                                                                                                                                                                                                                                   | -61.68                                                                                                                                                                                                                                                                                                            | peak                                                                                                                                                                                                                                                                                                                                                                                   |
| *   | 5784.750 | 73.46            | 14.05                                                       | 87.51                                                                                                                                                                                          | 122.30                                                                                                                                                                                                                                                   | -34.79                                                                                                                                                                                                                                                                                                            | peak                                                                                                                                                                                                                                                                                                                                                                                   |
|     | 5850.000 | 43.69            | 14.23                                                       | 57.92                                                                                                                                                                                          | 122.30                                                                                                                                                                                                                                                   | -64.38                                                                                                                                                                                                                                                                                                            | peak                                                                                                                                                                                                                                                                                                                                                                                   |
|     | *        | MHz<br>5725.000  | Mk. Freq. Level  MHz dBuV  5725.000 46.73  * 5784.750 73.46 | Mk.         Freq.         Level         Factor           MHz         dBuV         dB/m           5725.000         46.73         13.89           *         5784.750         73.46         14.05 | Mk.         Freq.         Level         Factor         ment           MHz         dBuV         dBuV/m         dBuV/m           5725.000         46.73         13.89         60.62           *         5784.750         73.46         14.05         87.51 | Mk.         Freq.         Level         Factor         ment         Limit           MHz         dBuV         dBuV         dBuV/m         dBuV/m           5725.000         46.73         13.89         60.62         122.30           *         5784.750         73.46         14.05         87.51         122.30 | Mk.         Freq.         Level         Factor         ment         Limit         Over           MHz         dBuV         dBuV         dBuV/m         dBuV/m         dBuV/m         dB           5725.000         46.73         13.89         60.62         122.30         -61.68           *         5784.750         73.46         14.05         87.51         122.30         -34.79 |



Page: 132 of 191

| Temperature:  | 25 ℃                  | Relative Humidity:    | 55% |
|---------------|-----------------------|-----------------------|-----|
| Test Voltage: | DC 3.8V               |                       | Mos |
| Ant. Pol.     | Vertical              |                       |     |
| Test Mode:    | TX 802.11ac(VHT80) Mo | de 5775 MHz (U-NII-3) |     |
| Remark:       | 0                     |                       |     |




| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|
|     |     | MHz      | dBuV             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |     | 5725.000 | 48.60            | 13.89             | 62.49            | 122.30 | -59.81 | peak     |
| 2   | *   | 5769.900 | 76.00            | 14.02             | 90.02            | 122.30 | -32.28 | peak     |
| 3   |     | 5850.000 | 45.52            | 14.23             | 59.75            | 122.30 | -62.55 | peak     |



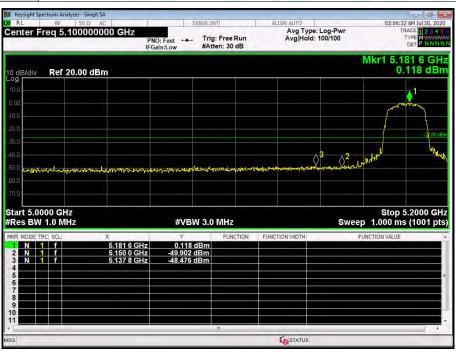
Page: 133 of 191

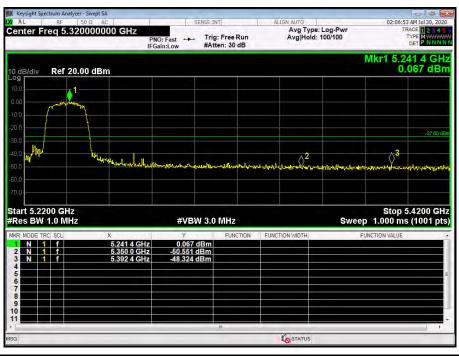
## (1) Conducted Test







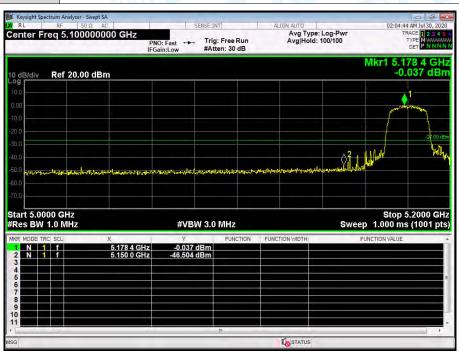


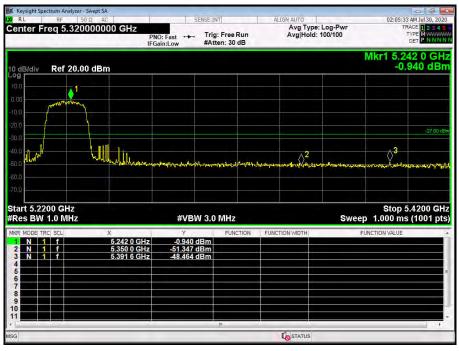


Report No.: TB-FCC173946 Page: 134 of 191

Temperature:25  $^{\circ}$ Relative Humidity:55%Test Voltage:DC 3.8V

**Test Mode:** TX 802.11n(HT20) mode(U-NII-1) / 5180MHz&5240MHz

**Remark:** The EUT is programmed in continuously transmitting mode



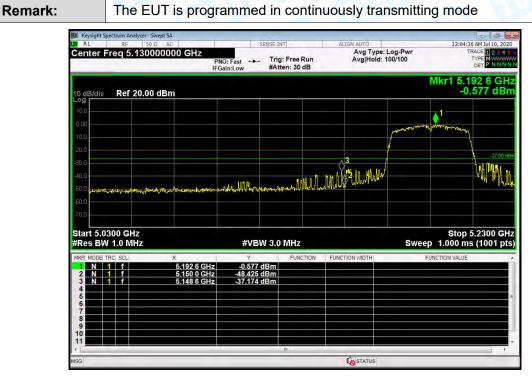



Report No.: TB-FCC173946 Page: 135 of 191

Temperature:25 °CRelative Humidity:55%Test Voltage:DC 3.8VTest Mode:TX 802.11ac(VHT20) mode(U-NII-1) / 5180MHz&5240MHzRemark:The EUT is programmed in continuously transmitting mode





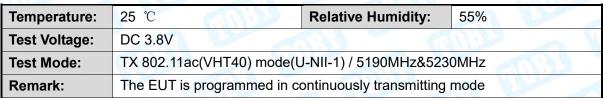


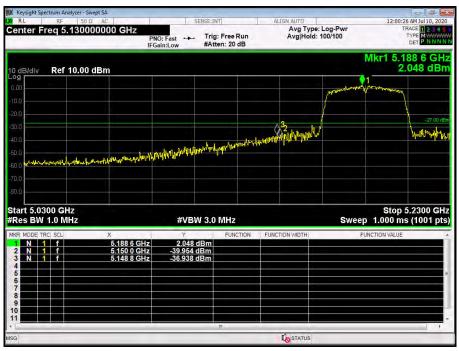


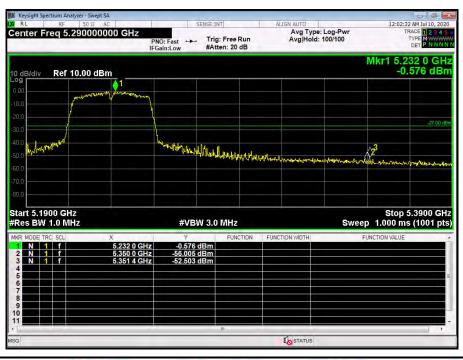
Report No.: TB-FCC173946 Page: 136 of 191

 Temperature:
 25 °C
 Relative Humidity:
 55%

 Test Voltage:
 DC 3.8V

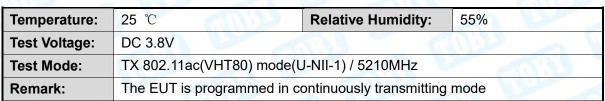

 Test Mode:
 TX 802.11n(HT40) mode(U-NII-1) / 5190MHz&5230MHz

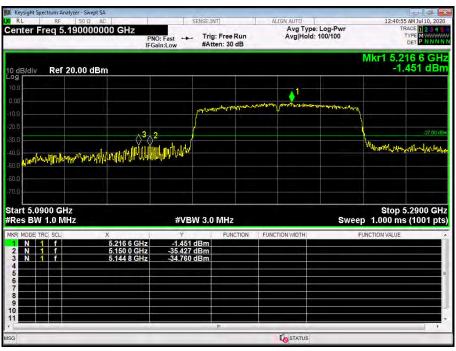





Page: 137 of 191








Page: 138 of 191





