

FCC 47 CFR PART 15 SUBPART C

CERTIFICATION TEST REPORT

For

Tablet

MODEL No.: MID1026-MA, TTBKB10-01B, TTBKB10-01P, TTBKB10-01G, Tanoshi 2-in-1

FCC ID: XMF-MID1026MA

REPORT NO: ES171130995W03

ISSUE DATE: January 08, 2018

Prepared for

Lightcomm Technology Co., Ltd. RM 1808 18/F, FO TAN INDUSTRIAL CENTRE, NOS. 26-28 AU PUI WAN STREET, FO TAN SHATIN NEW TERRITORIES, HONGKONG

Prepared by

EMTEK(SHENZHEN) CO., LTD. Bldg 69, Majialong Industry Zone, Nanshan District, Shenzhen, Guangdong, China TEL: 86-755-26954280 FAX: 86-755-26954282

TABLE OF CONTENTS

1		ST RESULT CERTIFICATION	
2	EU	T TECHNICAL DESCRIPTION	4
3	SU	MMARY OF TEST RESULT	5
4	TE	ST METHODOLOGY	6
	4.1	GENERAL DESCRIPTION OF APPLIED STANDARDS	6
	4.2 4.3	MEASUREMENT EQUIPMENT USED DESCRIPTION OF TEST MODES	
_		CILITIES AND ACCREDITATIONS	
5	FA	CILITIES AND ACCREDITATIONS	8
	5.1	FACILITIES	
	5.2	LABORATORY ACCREDITATIONS AND LISTINGS	
6	TE	ST SYSTEM UNCERTAINTY	9
7	SE	FUP OF EQUIPMENT UNDER TEST	
	7.1	RADIO FREQUENCY TEST SETUP 1	
	7.2	RADIO FREQUENCY TEST SETUP 2	
	7.3	CONDUCTED EMISSION TEST SETUP	
	7.4	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	
	7.5	SUPPORT EQUIPMENT	
8	TE	ST REQUIREMENTS	
	8.1	DTS(6DB)BANDWIDTH	
	8.2	MAXIMUM PEAK CONDUCTED OUTPUT POWER	
	8.3	MAXIMUM POWER SPECTRAL DENSITY	
	8.4	UNWANTED EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS	
	8.5	RADIATED SPURIOUS EMISSION	
	8.6 8.7	CONDUCTED EMISSIONS TEST ANTENNA APPLICATION	

1 TEST RESULT CERTIFICATION

Applicant:	Lightcomm Technology Co., Ltd. RM 1808 18/F, FO TAN INDUSTRIAL CENTRE, NOS. 26-28 AU PUI WAN STREET, FO TAN SHATIN NEW TERRITORIES, HONGKONG
Manufacturer:	Huizhou Hengdu Electronics Co., Ltd. DIP South Area, Huiao Highway, Huizhou, Guangdong, China
EUT Description:	Tablet
Model Number:	MID1026-MA, TTBKB10-01B, TTBKB10-01P, TTBKB10-01G, Tanoshi 2-in-1 (Note: These models are identical in circuitry and electrical, mechanical and physical construction; the only differences are the trademark and model number. for trading purpose. We prepare MID1026-MA for test.)
File Number:	ES171130995W03

Measurement Procedure Used:

APPLICABLE STANDARDS				
STANDARD	TEST RESULT			
FCC 47 CFR Part 2, Subpart J	PASS			
FCC 47 CFR Part 15, Subpart C	F A33			

The above equipment was tested by EMTEK(SHENZHEN) CO., LTD. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10 (2013) and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements of FCC Rules Part 2 and Part 15.247 The test results of this report relate only to the tested sample identified in this report.

Date of Test : December 02, 2017 to January 08, 2018 Prepared by : ENZH Reviewer : Sevin Li / Supervisor 1 STING Approve & Authorized Signer : Lisa Wang/Manager

2 EUT TECHNICAL DESCRIPTION

Characteristics	Description
IEEE 802.11 WLAN Mode Supported	 ⊠802.11b ⊠802.11g ⊠802.11n(20MHz channel bandwidth) ⊠802.11n(40MHz channel bandwidth)
Data Rate	 ⊠802.11 b:1,2,5.5,11Mbps; ⊠802.11 g:6,9,12,18,24,36,48,54Mbps; ⊠802.11n(HT20):MCS0-MCS7; ⊠802.11n(HT40):MCS0-MCS7;
Modulation	DSSS with DBPSK/DQPSK/CCK for 802.11b; OFDM with BPSK/QPSK/16QAM/64QAM for 802.11g/n;
Operating Frequency Range	 ☑ 2412-2462MHz for 802.11b/g; ☑ 2412-2462MHz for 802.11n(HT20); ☑ 2422-2452MHz for 802.11n(HT40);
Number of Channels	 ☐ 11 channels for 802.11b/g; ☐ 11 channels for 802.11n(HT20); ☐ 7 channels for 802.11n(HT40);
Transmit Power Max	19.99 dBm
Antenna Type	FPC antenna
Gain	2dBi
	☑DC 3.7V internal rechargeable lithium battery ☑DC 5V from Adapter
Power supply	⊠Adapter: Model: TEKA012-0502000UK AC Input: 100-240V~ 50/60Hz, 0.35A MAX DC Output: 5V 2.0A
Temperature Range	-10°C ~ +55°C

3 SUMMARY OF TEST RESULT

FCC PartClause	Test Parameter	Verdict	Remark		
15.247(a)(2)	DTS (6dB) Bandwidth	PASS			
15.247(b)(3)	Maximum Peak Conducted Output Power	PASS			
15.247(e)	Maximum Power Spectral Density Level	PASS			
15.247(d)	Unwanted Emission Into Non-Restricted	PASS			
	Frequency Bands				
15.247(d)	Unwanted Emission Into Restricted Frequency	PASS			
15.209	Bands (conducted)				
15.247(d)	Radiated Spurious Emission	PASS			
15.209					
15.207	Conducted EmissionTest	PASS			
15.247(b)	Antenna Application	PASS			
	NOTE1:N/A (Not Applicable)				
NOTE2: According to FCC OET KDB 558074, the report use radiated			diated		
	measurements in the restricted frequency bands. In addition, the radiated				
	test is also performed to ensure the emissions emanating from the device				
	cabinet also comply with the applicable limits.				

RELATED SUBMITTAL(S) / GRANT(S):

This submittal(s) (test report) is intended for FCC ID: XMF-MID1026MA filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

4 TEST METHODOLOGY

4.1 GENERAL DESCRIPTION OF APPLIED STANDARDS

According to its specifications, the EUT must comply with the requirements of the following standards: FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C FCC KDB 558074 D01 DTS Meas Guidance v04

4.2 MEASUREMENT EQUIPMENT USED

4.2.1 Conducted Emission Test Equipment

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LASTCAL.	DUE CAL.
Test Receiver	Rohde & Schwarz	ESCI	26115-010-0027	May 20, 2017	May 19, 2018
L.I.S.N.	Rohde & Schwarz	ENV216	101161	May 20, 2017	May 19, 2018
50Ω Coaxial Switch	Anritsu	MP59B	6100175589	May 21, 2017	May 20, 2018

4.2.2 Radiated Emission Test Equipment

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LAST CAL.	DUE CAL.
EMI Test Receiver	Rohde & Schwarz	ESU	1302.6005.26	May 21, 2017	May 20, 2018
Pre-Amplifier	HP	8447F	2944A07999	May 20, 2017	May 19, 2018
Bilog Antenna	Schwarzbeck	VULB9163	142	May 20, 2017	May 19, 2018
Loop Antenna	ARA	PLA-1030/B	1029	May 20, 2017	May 19, 2018
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170399	May 21, 2017	May 20, 2018
Horn Antenna	Schwarzbeck	BBHA 9120	D143	May 20, 2017	May 19, 2018
Cable	Schwarzbeck	AK9513	ACRX1	May 21, 2017	May 20, 2018
Cable	Rosenberger	N/A	FP2RX2	May 21, 2017	May 20, 2018
Cable	Schwarzbeck	AK9513	CRPX1	May 21, 2017	May 20, 2018
Cable	Schwarzbeck	AK9513	CRRX2	May 21, 2017	May 20, 2018

4.2.3 Radio Frequency Test Equipment

EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LASTCAL.	DUE CAL.
Spectrum Analyzer	Agilent	E4407B	88156318	May 21, 2017	May 20, 2018
Signal Analyzer	Agilent	N9010A	My53470879	May 21, 2017	May 20, 2018
Power meter	Anritsu	ML2495A	0824006	May 21, 2017	May 20, 2018
Power sensor	Anritsu	MA2411B	0738172	May 21, 2017	May 20, 2018

Remark: Each piece of equipment is scheduled for calibration once a year.

4.3 DESCRIPTION OF TEST MODES

The EUT has been tested under its typical operating condition.

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (802.11b: 1 Mbps; 802.11g: 6 Mbps; 802.11n (HT20): MCS0; 802.11(HT40): MCS0) were used for all test.

Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	5	2432	9	2452
2	2417	6	2437	10	2457
3	2422	7	2442	11	2462
4	2427	8	2447		

Frequency and Channel list for 802.11 b/g/n(HT20)/n(HT40):

Test Frequency and Channel for 802.11 b/g/n (HT20):

Lowest Frequency		Middle F	Frequency	Highest Frequency	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	6	2437	11	2462

Test Frequency and Channel for 802.11 n (HT40):

Lowest Frequency		Middle F	requency	Highest Frequency	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
3	2422	6	2437	9	2452

5 FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

Bldg 69, Majialong Industry Zone District, Nanshan District, Shenzhen, China The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

5.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description

EMC Lab.

- : Accredited by CNAS, 2016.10.24 The certificate is valid until 2022.10.28 The Laboratory has been assessed and proved to be in compliance with CNAS-CL01: 2006(identical to ISO/IEC17025: 2005) The Certificate Registration Number is L229
- : Accredited by TUV Rheinland Shenzhen, 2016.5.19 The Laboratory has been assessed according to the requirements ISO/IEC 17025.
- : Accredited by FCC, August 03, 2017 Designation Number: CN1204 Test Firm Registration Number: 882943
- : Accredited by Industry Canada, November 24, 2015 The Certificate Registration Number is 4480A.

6 TEST SYSTEM UNCERTAINTY

The following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncertainty
Radio Frequency	±1x10^-5
Maximum Peak Output Power Test	±1.0dB
Conducted Emissions Test	±2.0dB
Radiated Emission Test	±2.0dB
Power Density	±2.0dB
Occupied Bandwidth Test	±1.0dB
Band Edge Test	±3dB
All emission, radiated	±3dB
Antenna Port Emission	±3dB
Temperature	±0.5℃
Humidity	±3%

Measurement Uncertainty for a level of Confidence of 95%

7 SETUP OF EQUIPMENT UNDER TEST

7.1 RADIO FREQUENCY TEST SETUP 1

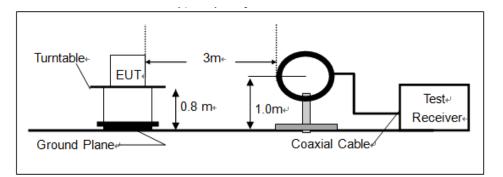
The WLAN component's antenna ports(s) of the EUT are connected to the measurement instrument per an appropriate attenuator. The EUT is controlled by PC/software to emit the specified signals for the purpose of measurements.

7.2 RADIO FREQUENCY TEST SETUP 2

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

Below 30MHz:

The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna (loop antenna). The Antenna should be positioned with its plane vertical at the specified distance from the EUT androtated about its vertical axis formaximum response at each azimuth about the EUT. The center of the loopshall be 1 m above the ground.For certain applications, the loop antennaplane may also need to be positioned horizontally at the specified distance from the EUT.

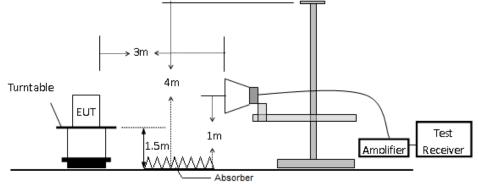

30MHz-1GHz:

The EUT is placed on a turntable 0.8 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).


Above 1GHz:

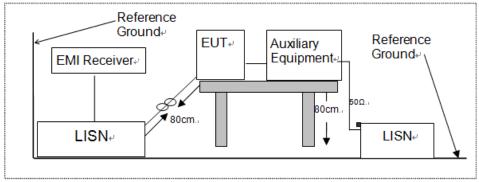
The EUT is placed on a turntable 1.5 meters above the ground in the chamber, 3 meter away from the antenna. The maximal emission value is acquired by adjusting the antenna height, polarisation and turntable azimuth. Normally, the height range of antenna is 1 m to 4 m, the azimuth range of turntable is 0° to 360°, and the receive antenna has two polarizations Vertical (V) and Horizontal (H).

(a) Radiated Emission Test Set-Up, Frequency Below 30MHz



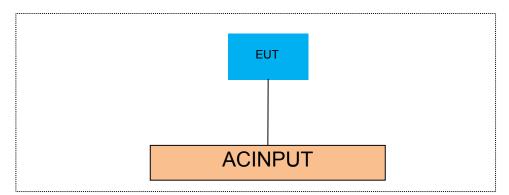
(b)Radiated Emission Test Set-Up, Frequency Below 1000MHz

(c) Radiated Emission Test Set-Up, Frequency above 1000MHz



7.3 CONDUCTED EMISSION TEST SETUP

The mains cable of the EUT (maybe per AC/DC Adapter) must be connected to LISN. The LISN shall be placed 0.8 m from the boundary of EUT and bonded to a ground reference plane for LISN mounted on top of the ground reference plane. This distance is between the closest points of the LISN and the EUT. All other units of the EUT and associated equipment shall be at least 0.8m from the LISN.


Ground connections, where required for safety purposes, shall be connected to the reference ground point of the LISN and, where not otherwise provided or specified by the manufacturer, shall be of same length as the mains cable and run parallel to the mains connection at a separation distance of not more than 0.1 m.

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

7.4 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM

7.5 SUPPORT EQUIPMENT

Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID	Series No.	Note
N/A	N/A	N/A	N/A	N/A	N/A	N/A

Notes:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

8 TEST REQUIREMENTS

8.1 DTS(6DB)BANDWIDTH

8.1.1 Applicable Standard

According to FCC Part15.247(a)(2) and KDB558074 DTS 01 Meas. Guidance v04

8.1.2 Conformance Limit

The minimum -6 dB bandwidth shall be at least 500 kHz.

8.1.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

8.1.4 Test Procedure

The EUT was operating in IEEE 802.11b/g/n mode and controlled its channel. Printed out the test result from the spectrum by hard copy function.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously

Set RBW = 100 kHz.

Set the video bandwidth (VBW) =300kHz.

Set Span=2 times OBW

Set Detector = Peak.

Set Trace mode = max hold.

Set Sweep = auto couple.

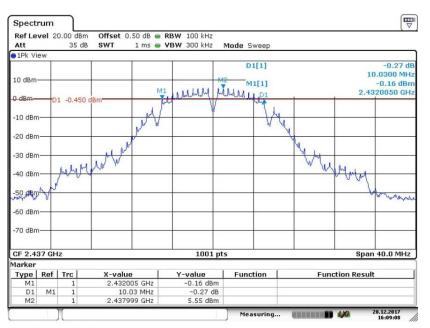
Allow the trace to stabilize.

Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. Measure and record the results in the test report.

8.1.5 Test Results

Temperature :	26 ℃	Test Date :	December 28, 2017
Humidity :	60 %	Test By:	King Kong

Operation	Channel	Channel Frequency	6dB Bandwidth	Limit	Verdict
Mode	Number	(MHz)	(MHz)	(kHz)	Voraiot
	1	2412	10.03	>=500	PASS
802.11b	6	2437	10.03	>=500	PASS
	11	2462	10.05	>=500	PASS
	1	2412	15.78	>=500	PASS
802.11g	6	2437	15.72	>=500	PASS
	11	2462	15.73	>=500	PASS
802.11n	1	2412	16.78	>=500	PASS
	6	2437	16.80	>=500	PASS
(HT20)	11	2462	16.77	>=500	PASS
802.11n	3	2422	35.33	>=500	PASS
(HT40)	6	2437	35.33	>=500	PASS
(1140)	9	2452	35.33	>=500	PASS



DTS (6dB) Bandwidth **Test Model** 802.11b Channel 1: 2412MHz Spectrum Offset 0.50 dB ● RBW 100 kHz SWT 1 ms ● VBW 300 kHz Ref Level 20.00 dBm Att 35 dB Mode Sweep ●1Pk View D1[1] -0.01 d 10.0300 MHz 10 dB -0.10 dBm 2.4070050 GHz M1[1] Lunn Mulu 0 dB D1 -0.350 -10 dBm -20 dBm -30 dBm W 1 mg mg Memm 40 dBm -50 dBm number -60 dBm -70 dBm CF 2.412 GHz 1001 pts Span 40.0 MHz Marker Y-value Function Function Result Type | Ref | Trc X-value 2.407005 GHz 10.03 MHz 2.412519 GHz -0.10 dBm -0.01 dB 5.65 dBm D1 M2 M1 Measuring... 28.12.2017 14:35:18 CONTRACTOR 440

Date: 28.DEC.2017 14:35:17

Test Model

DTS (6dB) Bandwidth 802.11b Channel 6: 2437MHz

Date: 28.DEC.2017 16:09:08

DTS (6dB) Bandwidth **Test Model** 802.11b Channel 11: 2462MHz Spectrum Offset 0.50 dB ● RBW 100 kHz SWT 1 ms ● VBW 300 kHz Ref Level 20.00 dBm Att 35 dB Mode Sweep ●1Pk View 1.20 dB 10.0450 MHz -1.50 dBm 2.4569650 GHz D1[1] 10 dBr M1[1] Munder MMMM M1 0 dB D1 -0.730 -10 dBm -20 dBm -30 dBm type MM 1 40 dBm -50 dBm Unhum. -60 dBm--70 dBm-Span 40.0 MHz CF 2.462 GHz 1001 pts Marker Y-value -1.50 dBm 1.20 dB 5.27 dBm X-value 2.456965 GHz 10.045 MHz 2.462999 GHz Function Result Type | Ref | Trc Function M. D1 M2 M1 Measuring... 28.12.2017 16:10:39

Date: 28.DEC.2017 16:10:39

DTS (6dB) Bandwidth 802.11g Channel 1: 2412MHz

	um		0//		PRUL 400 LU-			
Ref Le	vel 2	0.00 de 35 (RBW 100 kHz VBW 300 kHz r	Mode Sweep		
1Pk Vi	214/	33 (10 3991	I IIIS 🖷	Y D W 300 KH2	Node Sweep		
ALL TH						D1[1]		0.27 di
								15.7840 MH
10 dBm-					202	M1[1]		-6.72 dBn
0 dBm—					M2			2.4040880 GH
Jubin	-	1 -6.01	O dBm	Min Ann	and particultured part	handwordburk	L. BL	
-10 dBm		1 -0.01	U dBm	10000	¥ V		r house	
	~			1				
-20 dBm	-		-	1	-		Z	
				1			5	
-30 dBm		1.1.1.1.1.1	mon				MUMAN	14.4
40 dpA	want	Vyll. a	when	_				Whenter Marian
Million								Manda Marine marcher
-50 dBm	-		-		-			
-60 dBm					-			-
-70 dBm								
CF 2.41	L2 GH	z			1001 pt:	5		Span 40.0 MHz
1arker		- 1						
Type M1	Ref	Trc 1		alue	Y-value -6.72 dBm	Function	Func	tion Result
D1	M1	1		15.784 MHz	0.27 dB			
M2		1		10761 GHz	-0.01 dBm			
	1.2	11			1	Measuring.		28.12.2017 16:16:44

Date: 28.DEC.2017 16:16:45

DTS (6dB) Bandwidth **Test Model** 802.11g Channel 6: 2437MHz Spectrum Ref Level 20.00 dBm Att 35 dB Offset 0.50 dB ● RBW 100 kHz SWT 1 ms ● VBW 300 kHz Mode Sweep 1Pk View D1[1] 0.06 dB 15.7190 MHz -4.55 dBm 2.4292080 GHz 10 dB M1[1] M2 M1[1] 0 dBm D1 -4.030 d -10 dBm -20 dBm-Theman marken warman MAMAMM -30 dBm distant -50 dBm -60 dBm--70 dBm-1001 pts Span 40.0 MHz CF 2.437 GHz Marker Type | Ref | Trc | Y-value -4.55 dBm 0.06 dB 1.97 dBm X-value 2.429208 GHz 15.719 MHz 2.435761 GHz Function **Function Result** M1 D1 M2 M1 Measuring... 28.12.2017 16:20:02 CONSISTE AND AND

Date: 28.DEC.2017 16:20:02

DTS (6dB) Bandwidth 802.11g Channel 11: 2462MHz

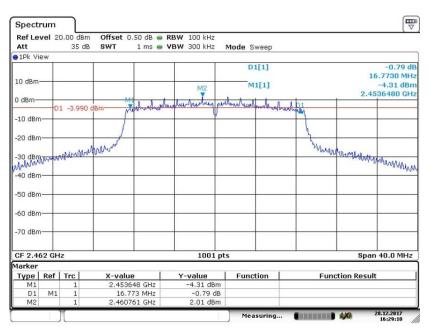
Ref Les	vel 20	0.00 dBm 35 dB			RBW 100 kHz VBW 300 kHz	Mode Sweep		
1Pk Vi	вw							
						D1[1]		-0.99 di
10 40								15.7340 MH
10 dBm-					M2	M1[1]		-4.62 dBr
0 dBm—	_				Y			2.4542080 GH
J dBm—		-4.010	dBm	Filmen uned	section have a	aluntanterelevel	L. bi	
10.10	1000	-4.010	UBIII	And a share	V		- CLANE	
10 dBm				1				
			50	()			2	
-20 dBm			Aller				J.	
		Mala	Wywww				WAAR	manuture
-30 dBm	IPUU!	When an		1				- walled Marken
Junio	~							The start and th
40 dBm	-		+	-				
-50 dBm	-		-					
-60 dBm	-		-	-	-			
-70 dBm	-		-					
CF 2.46	52 GH	z			1001 p	ts		Span 40.0 MHz
1arker								
Type	Ref	Trc	X-valu	ie	Y-value	Function	Fund	ction Result
M1		1	2.454	208 GHz	-4.62 dBm			
D1	M1	1	15.7	734 MHz	-0.99 dB			
M2		1	2,460	761 GHz	1.99 dBm			

Date: 28.DEC.2017 16:24:10

DTS (6dB) Bandwidth **Test Model** 802.11n (HT20) Channel 1: 2412MHz Spectrum Offset 0.50 dB ● RBW 100 kHz SWT 1 ms ● VBW 300 kHz Ref Level 20.00 dBm Att 35 dB Mode Sweep ●1Pk View D1[1] 0.66 dB 16.7830 MHz -7.07 dBm 2.4036080 GHz 10 dB M1[1] M2 0 dBm aloutapples making putres head probes when M1 D1 -6.120 -10 dBm--20 dBm of a defad www.www. Murral who was a second who who who who who who who who was a second of the second of -50 dBm -60 dBm--70 dBm Span 40.0 MHz CF 2.412 GHz 1001 pts Marker Type | Ref | Trc | X-value 2.403608 GHz 16.783 MHz 2.410761 GHz | Function | Function Result Y-value -7.07 dBm 0.66 dB -0.12 dBm D1 M2 M1 Measuring... 28.12.2017 16:25:52

Date: 28.DEC.2017 16:25:52

DTS (6dB) Bandwidth 802.11n (HT20) Channel 6: 2437MHz


Ref Le Att	vel 20	0.00 dBn 35 dB			RBW 100 kHz VBW 300 kHz	Mode Swi	Pen			
1Pk Vi	ew	55 G	UNI	1 115	1011 000 KHZ	HOUE SWI	eep			
						D1[1]			0.37 d
10 - 10									1	6.7980 MH
10 dBm					M2	M1[1]			-4.72 dBr
0 dBm-					T				2.4	286080 GH
o ubin	D	1 -4.080	dBm	Jahren ment	enderstructure	mathentically	duntine	D1	_	
-10 dBm	_		I f		4	1			-	_
	×		1					4		
-20 dBm			1	-	_			1 L		
			uranarana a					John	Wataaddynin	
-30 dBm	Addall	APPENDER	(Wan	-				04.40	and the state	
umm	Anazar									manuth
-40 dBm			+						1	
-50 dBm										
-60 dBm	-									
-00 0611										
-70 dBm								_		-
CF 2.4	17 GH	7			1001	nts			Sna	n 40.0 MHz
larker	// dri	-			1001	pes			opu	10.0 1112
Type	Ref	Trc	X-valu	e	Y-value	Functio	n I	Eur	nction Resu	lt
M1		1		08 GHz	-4.72 dB					
D1	M1	1		98 MHz	0.37 d					
M2		1	2.4357	61 GHz	1.92 dB	m				

Date: 28.DEC.2017 16:27:47

Test Model

DTS (6dB) Bandwidth 802.11n (HT20) Channel 11: 2462MHz

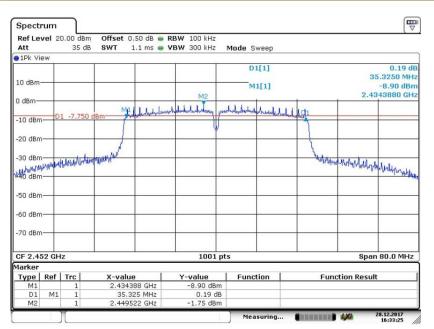
Date: 28.DEC.2017 16:29:10

DTS (6dB) Bandwidth **Test Model** 802.11n(HT40) Channel 3: 2422MHz Spectrum Offset 0.50 dB • RBW 100 kHz SWT 1.1 ms • VBW 300 kHz Ref Level 20.00 dBm Att 35 dB Mode Sweep ●1Pk View 0.32 dB 35.3250 MHz -8.99 dBm 2.4044180 GHz D1[1] 10 dB M1[1] M2 0 dBm ash de parte burne by the barde deal D1 -7.800 -10 dBm--20 dBm und alm and a stand of the ditte -50 dBm -60 dBm--70 dBm-1001 pts CF 2.422 GHz Span 80.0 MHz Marker X-value 2.404418 GHz 35.325 MHz 2.419522 GHz Type | Ref | Trc Y-value Function Function Result -8.99 dBm 0.32 dB -1.80 dBm M D1 M2 M1 Measuring... 28.12.2017 16:30:46

Date: 28.DEC.2017 16:30:46

Test Model

DTS (6dB) Bandwidth 802.11n(HT40) Channel 6: 2437MHz


Ref Le	vel 2	0.00 dBr 35 d			RBW 100 kHz VBW 300 kHz	Mode Sweep		
1Pk Vi	ew					Houe Sweep		
						D1[1]		0.14 df
10 dBm								35.3250 MH
TO ORM						M1[1]		-8.44 dBn
0 dBm-					M2			2.4194430 GH
b abin			M11	1171	Alobulahiling wa	tenter berturbertenterterterterterter	11 tes	
-10 dBn	D	1 -7.700) dBm 🚽 🚧	A The second sec		and a second by	Madedlard	
					. ₩			
-20 dBn	n							
-30 dBn	1	1 au thick	Later Hot Hall		-		Uniterral	what is a second
mahren	appleter	Man way	to unauto tu				Low C Law	and the particular parties
40 dBn	1-							Land
-50 dBn	1							
-60 dBn								
-70 dBn								
-70 ubn								
CF 2.4	37 GH	z			1001 pt	s		Span 80.0 MHz
1arker								
Type M1	Ref	Trc 1	2.41944	2 CH2	-8,44 dBm	Function	Fund	ion Result
D1	M1	1	2.41944		-8.44 uBm			
M2	1011	1	2.43452		-1.70 dBm			

Date: 28.DEC.2017 16:32:18

Test Model

DTS (6dB) Bandwidth 802.11n(HT40) Channel 9: 2452MHz

Date: 28.DEC.2017 16:33:26

8.2 MAXIMUM PEAK CONDUCTED OUTPUT POWER

8.2.1 Applicable Standard

According to FCC Part15.247(b)(3) and KDB558074 DTS 01 Meas. Guidance v04

8.2.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm).

8.2.3 Test Configuration

Test according to clause 7.1 radio frequency test setup 1

8.2.4 Test Procedure

For Peak Power

According to FCC Part15.247(b)(3)

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

The RF output of EUT was connected to the power meter by RF cable and attnuator. The path loss was compensated to the results for each measurement.

Set to the maximum output power setting and enable the EUT transmit continuously.

Measure the conducted output power with cable loss and record the results in the test report.

Measure and record the results in the report.

According to FCC Part 15.247(b)(4):

Conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Note: If antenna Gain exceeds 6 dBi, then Output power Limit=30-(Gain- 6)

For Average Power

The maximum average conducted output power can be measured using Method PM-G (Measurement using a gated RF average power meter):

Measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

- a. The Transmitter output (antenna port) was connected to the power meter.
- b. Turn on the EUT and power meter and then record the power value.
- c. Repeat above procedures on all channels needed to be tested.

8.2.5 Test Results

Temperature :	26 ℃	Test Date :	December 28, 2017
Humidity :	60 %	Test By:	King Kong

See the Follow Page

Max Peak Power

Operation	Channel	Channel	Measurement Level	Limit	
Mode	Number	Frequency	(dBm)	(dBm)	Verdict
		(MHz)			
	1	2412	17.02	30	PASS
802.11b	6	2437	17.08	30	PASS
	11	2462	16.97	30	PASS
	1	2412	18.15	30	PASS
802.11g	6	2437	19.95	30	PASS
	11	2462	19.96	30	PASS
000 11n	1	2412	18.29	30	PASS
802.11n (ht20)	6	2437	19.92	30	PASS
(1120)	11	2462	19.97	30	PASS
900 11p	3	2422	19.99	30	PASS
802.11n (ht40)	6	2437	19.98	30	PASS
(1140)	9	2452	19.87	30	PASS

Average Power

Operation	Channel	Channel	Measurement Level	Limit	
Mode	Number	Frequency	(dBm)	(dBm)	Verdict
		(MHz)			
	1	2412	14.69	30	PASS
802.11b	6	2437	14.87	30	PASS
	11	2462	14.75	30	PASS
	1	2412	14.12	30	PASS
802.11g	6	2437	14.22	30	PASS
	11	2462	14.14	30	PASS
802.11n	1	2412	13.85	30	PASS
(ht20)	6	2437	13.54	30	PASS
(1120)	11	2462	13.74	30	PASS
802.11n	3	2422	13.11	30	PASS
(ht40)	6	2437	13.05	30	PASS
(1140)	9	2452	13.05	30	PASS

Duty cycle: (8.5217-0.1014)/8.5217*100%=98.8%

Att	evel	10.00 dBn 20 dB	e SWT	 RBW 1 MHz VBW 3 MHz 					
SGL 1Pk Cl	rw.								
MH2					D	3[1]			-0.06 di
0 dBro-	+			 	M	1[1]			D38.5217 m
-10 dBn	+			 ++			_	_	405.8 µ
-20 dBn	+						_	_	-
-30 dBn	+			 			_	_	
-40 dBn	+						_	_	
50 dBm	-						_	_	
60 dBn	-						_	_	
70 dBm	-								-
-80 dBn	+						_	_	_
CF 2.4	12 CH	2		 691 pl					1.0 ms/
larker				071					110 11137
	ype Ref Trc X-value		Y-value	Fund	tion	F	unction Res	ult	
M1		1	405.	1.33 dBm					
D2 D3	M1 M1	1	101.	-0.02 dB -0.06 dB					
			0.001	 0100 00		eady	CONTRACTOR OF CO		08,01,2018

Date: 8 JAN 2018 10:40:36

8.3 MAXIMUM POWER SPECTRAL DENSITY

8.3.1 Applicable Standard

According to FCC Part15.247(e) and KDB558074 DTS 01 Meas. Guidance v04

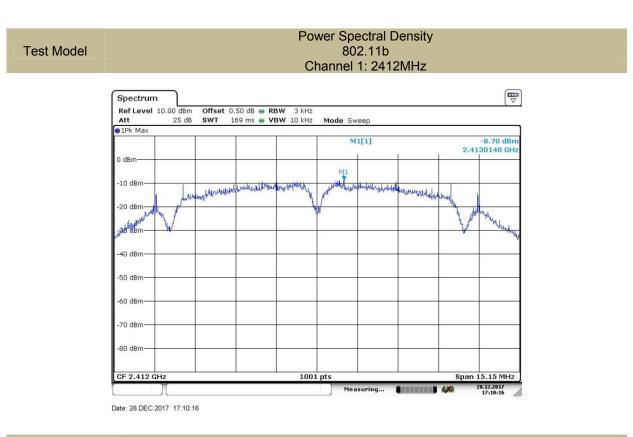
8.3.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

8.3.3 Test Configuration

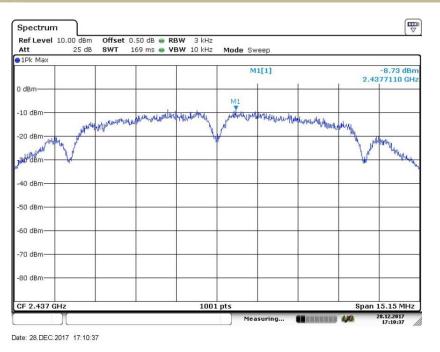
Test according to clause 7.1 radio frequency test setup 1

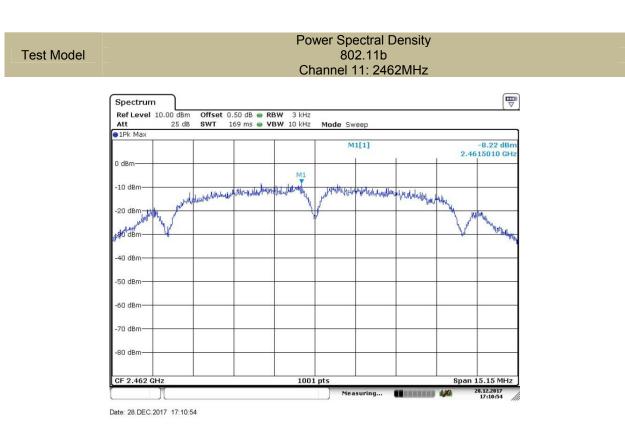
8.3.4 Test Procedure


This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance

The transmitter output (antenna port) was connected to the spectrum analyzer Set analyzer center frequency to DTS channel center frequency. Set the span to 1.5 times the DTS bandwidth. Set the RBW to: 3 kHz Set the VBW to:10 kHz. Set Detector = peak. Set Detector = peak. Set Sweep time = auto couple. Set Trace mode = max hold. Allow trace to fully stabilize. Use the peak marker function to determine the maximum amplitude level within the RBW. Note: If antenna Gain exceeds 6 dBi, then PSD Limit=8-(Gain- 6)

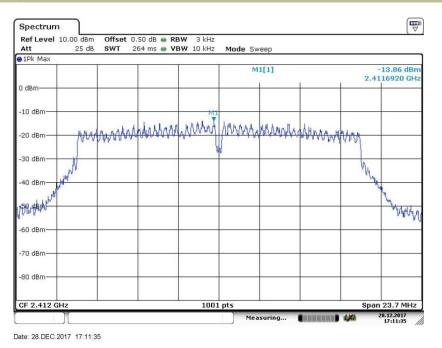
8.3.5 Test Results

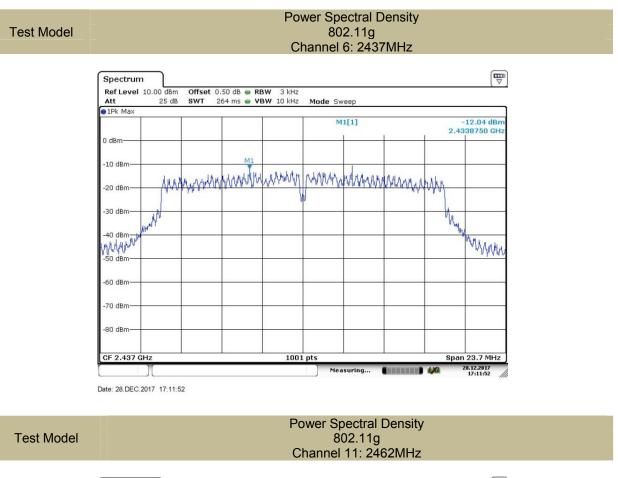

Temperature Humidity :):	-	est Date : est By:	December 28, 2017 King Kong		
Operation Mode	Channel Number	Channel Frequency (MHz)	Measurement Level (dBm/3kHz)	Limit (dBm/3kHz)	Verdict	
	1	2412	-8.70	=<8	PASS	
802.11b	6	2437	-8.73	=<8	PASS	
	11	2462	-8.22	=<8	PASS	
	1	2412	-13.86	=<8	PASS	
802.11g	6	2437	-12.04	=<8	PASS	
	11	2462	-12.76	=<8	PASS	
802.11n	1	2412	-14.92	=<8	PASS	
(HT20)	6	2437	-11.77	=<8	PASS	
(1120)	11	2462	-12.61	=<8	PASS	
802.11n	3	2422	-16.42	=<8	PASS	
(HT40)	6	2437	-16.18	=<8	PASS	
(1140)	9	2452	-15.52	=<8	PASS	

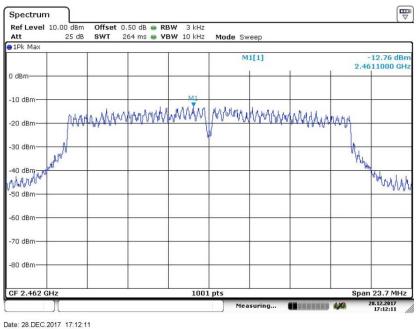


Test Model

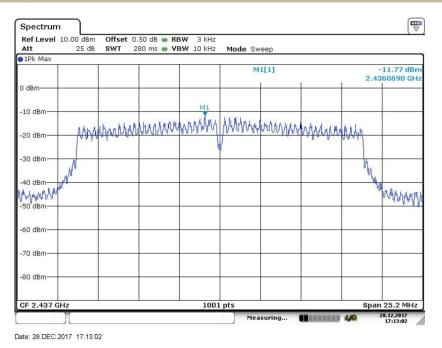
Power Spectral Density 802.11b Channel 6: 2437MHz






Test Model

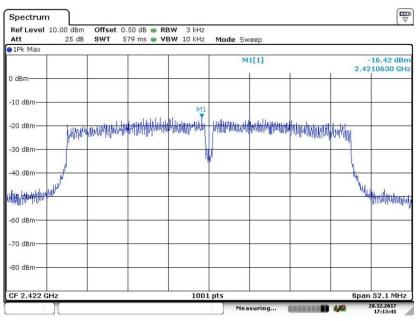
Power Spectral Density 802.11g Channel 1: 2412MHz



Power Spectral Density Test Model 802.11n (HT20) Channel 1: 2412MHz Spectrum Ref Level 10.00 dBm Att 25 dB Mode Sweep 1Pk Max M1[1] -14.92 dBm 2.4116220 GHz 0 dBn -10 dBm -20 dBm--30 dBm 1/1 40 dBm TRAPPERTY UNAN -60 dBm--70 dBm -80 dBm Span 25.2 MHz CF 2.412 GHz 1001 pts Measuring... 8.12.2017 17:12:38

Date: 28.DEC.2017 17:12:37

Power Spectral Density 802.11n (HT20) Channel 6: 2437MHz



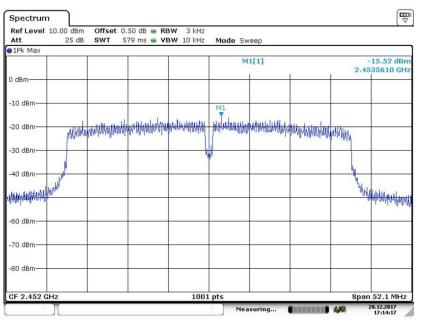
Power Spectral Density Test Model 802.11n (HT20) Channel 11: 2462MHz Spectrum Offset 0.50 dB ● RBW 3 kHz SWT 280 ms ● VBW 10 kHz Ref Level 10.00 dBm Att 25 dB Mode Sweep ●1Pk Max M1[1] -12.61 dBm 2.4607410 GHz 0 dBn -10 dBm -20 dBm -30 dBm 14 40 dBm -50 dBmwhith -60 dBm -70 dBm -80 dBm Span 25.2 MHz 1001 pts CF 2.462 GHz Measuring.. 8.12.2017 17:13:20

Date: 28.DEC.2017 17:13:20

Test Model

Power Spectral Density 802.11n(HT40) Channel 3: 2422MHz

Date: 28.DEC.2017 17:13:41



Power Spectral Density Test Model 802.11n (HT40) Channel 6: 2437MHz Spectrum Offset 0.50 dB ● RBW 3 kHz SWT 579 ms ● VBW 10 kHz Ref Level 10.00 dBm Att 25 dB Mode Sweep ●1Pk Max M1[1] -16.18 dBm 2.4473050 GHz 0 dBm -10 dBm Halomannan and a standard the standard and the standard the standard the standard the standard the standard the -20 dBm -30 dBm -40 dBm HER HER HUNH where the second -60 dBm -70 dBm -80 dBm 1001 pts Span 52.1 MHz CF 2.437 GHz Measuring... 8.12.2017 17:13:59

Date: 28.DEC.2017 17:13:59

Test Model

Power Spectral Density 802.11n(HT40) Channel 9: 2452MHz

Date: 28.DEC.2017 17:14:17

8.4 UNWANTED EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS

8.4.1 Applicable Standard

According to FCC Part15.247(d) and KDB558074 DTS 01 Meas. Guidance v04

8.4.2 Conformance Limit

According to FCC Part 15.247(d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

8.4.3 **Test Configuration**

Test according to clause 7.1 radio frequency test setup 1

8.4.4 Test Procedure

The transmitter output (antenna port) was connected to the spectrum analyzer

Reference level measurement

Establish a reference level by using the following procedure:

Set instrument center frequency to DTS channel center frequency.

Set the span to \geq 1.5 times the DTS bandwidth.

Set the RBW = 100 kHz.

Set the VBW \geq 3 x RBW.

Set Detector = peak.

Set Sweep time = auto couple.

Set Trace mode = max hold.

Allow trace to fully stabilize.

Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level. **Emission level measurement**

Set the center frequency and span to encompass frequency range to be measured.

Set the RBW = 100 kHz.

Set the VBW =300 kHz.

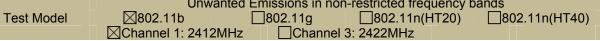
Set Detector = peak

Sweep time = auto couple.

Trace mode = max hold.

Allow trace to fully stabilize.

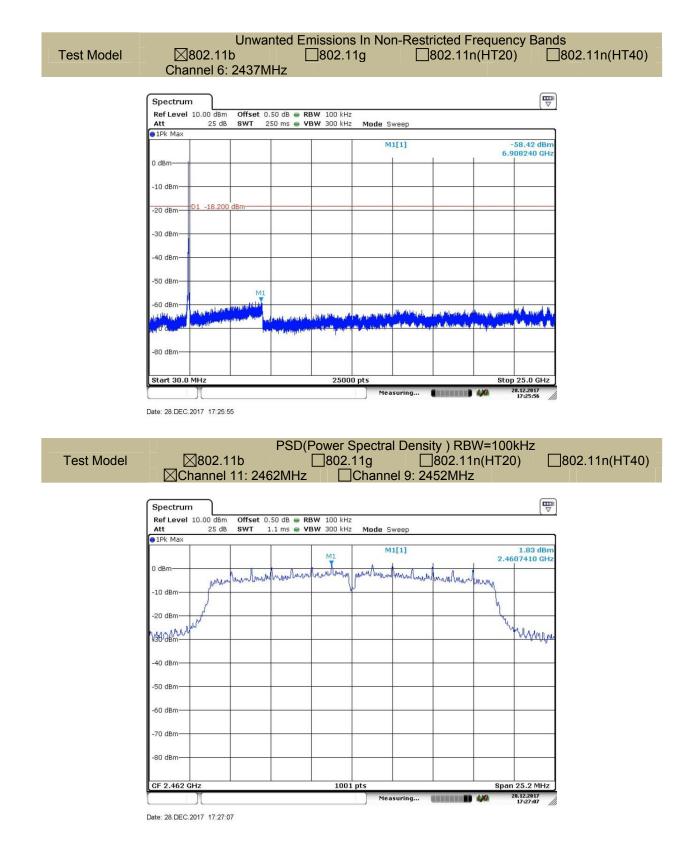
Use the peak marker function to determine the maximum amplitude level.


Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements. Report the three highest emissions relative to the limit.

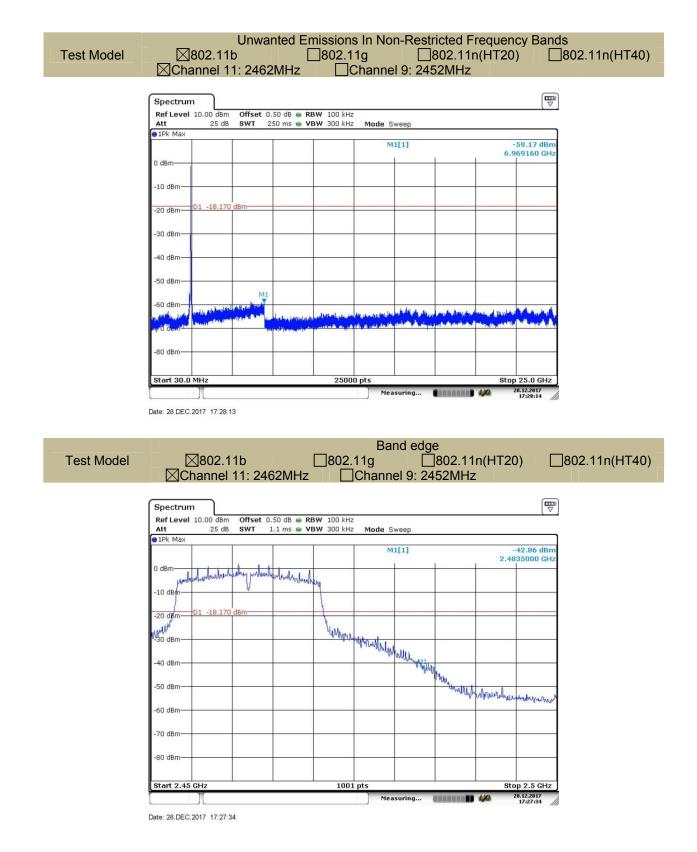
8.4.5 Test Results

All modes 2.4G 802.11b/g/n(HT20)/n(HT40) have been tested, and the worst result recorded was report as below:

Spectrum Ref Level 10.00 dBm Offset 0.50 dB RBW 100 kHz
Att 25 dB SWT 1.1 ms • VBW 300 kHz Mode Sweep
M1[1] -0.13 dBm M1 2.4107410 GHz
O dBm way weat and weat my weathing we have been have been broken broken broken been been been been been been been b
-10 dBm
-20 dBm / 1
-30 dem the second seco
-40 dBm
-50 dBm
-60 dBm
-70 dBm
-80 dBm-
CF 2.412 GHz 1001 pts Span 25.2 MHz
OF 2-112 drie Opport 2012 fills Measuring 1724-07



Att	10.00 dBm 25 dB	SWT	0.50 dB 👄 RE 250 ms 👄 VI			weep			
1Pk Max	,		-						
					M	1[1]			-58.04 dBn 331930 GH
dBm		-				+	+		a seconde en
10 dBm									
20 dBm-	D1 -20.130	dBm							
30 dBm—				, ó					
10 dBm-									
IU UBIII									
50 dBm									
		M1							
60 dBm	بالمعاد الأسال والمدو	LUL OF STREET		La Balla	te la recipición	uther had	. La phane of an o	the second	M. A. H. M. A.
1.000	with and the first of the	and appendix states	and the second		al and a second second	and the store	a chudhadha dha		a distanting the
			And the second second						
80 dBm—				-					
tart 30.0	MHz		_	2500	0 pts				25.0 GHz



8.5 RADIATED SPURIOUS EMISSION

8.5.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and KDB558074 DTS 01 Meas. Guidance v04

8.5.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

MHz	MHz MHz		GHz				
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15				
10.495-0.505	10.495-0.505 16.69475-16.69525		5.35-5.46				
2.1735-2.1905	735-2.1905 16.80425-16.80475 960-1240		7.25-7.75				
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5				
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2				
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5				
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7				
6.26775-6.26825	6.26775-6.26825 123-138		14.47-14.5				
8.291-8.294	8.291-8.294 149.9-150.05		15.35-16.2				
8.362-8.366	8.362-8.366 156.52475-156.52525		17.7-21.4				
8.37625-8.38675	8.37625-8.38675 156.7-156.9		22.01-23.12				
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0				
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8				
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5				
12.57675-12.57725	322-335.4	3600-4400	(2)				
13.36-13.41							

According to FCC Part15.205, the level of any transmitter spurious emission in Restricted bands shall not exceed the level of the emission specified in the following table

Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009-0.490	2400/F(KHz)	20 log (uV/m)	300
0.490-1.705	2400/F(KHz)	20 log (uV/m)	30
1.705-30	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

8.5.3 Test Configuration

Test according to clause 7.2 radio frequency test setup 2

8.5.4 Test Procedure

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

The EUT was placed on a turn table which is 0.8m above ground plane.

Maximum procedure was performed on the highest emissions to ensure EUT compliance.

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for $f \ge 1$ GHz(1GHz to 25GHz), 100 kHz for f < 1 GHz(30MHz to 1GHz), 200Hz for f<150KHz(9KHz to 150KHz), 9KHz for f<30MHz(150KHz to 30KHz)

VBW ≥ RBW Sweep = auto

Detector function = peak

Trace = max hold

Follow the guidelines in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT,

measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization, etc. A pre-amp and a high pass filter are required for this test, in order to provide the measuring system with sufficient sensitivity. Allow the trace to stabilize. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, which must comply with the limit specified in Section 15.35(b). Submit this data. Now set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit. Submit this data.

Repeat above procedures until all frequency measured was complete.

8.5.5 Test Results

■ Spurious Emission below 30MHz(9KHz to 30MHz)

Temperature:	24 °C	Test Date:	December 23, 2017
Humidity:	53 %	Test By:	King Kong
Test mode:	TX Mode	-	

Freq. (MHz)	Ant.Pol.	Emission Level(dBuV/m)		Limit 3m(dBuV/m)		Over(dB)	
	H/V	PK	ÂV	PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor

Spurious Emission Above 1GHz(1GHz to 25GHz)

All modes 2.4G 802.11b/g/n have been tested, and the worst result 802.11b recorded was report as below:

Temperature :	26 ℃	Test Date :	December 23, 2017
Humidity :	60 %	Test By:	King Kong
Test mode:	802.11b	Frequency:	Channel 1: 2412MHz

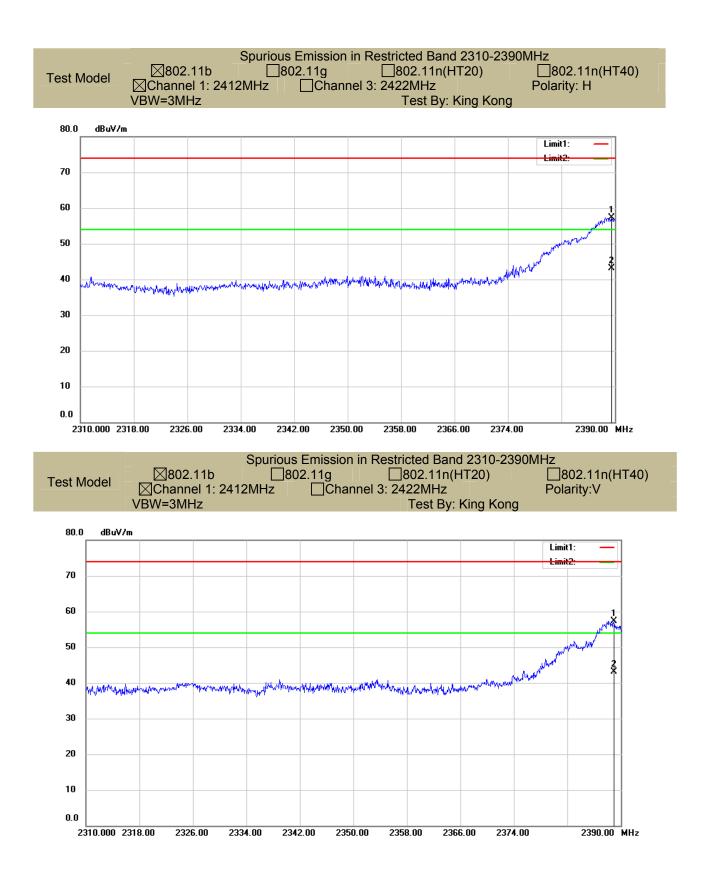
Freq.	Ant.Pol.	Emission Level(dBuV/m)		Limit 3r	n(dBuV/m)	Ov	er(dB)
(MHz)	H/V	PK	AV	PK	AV	PK	AV
4824.00	V	46.13	37.23	74.00	54.00	-27.87	-16.77
7236.00	V	47.83	38.82	74.00	54.00	-26.17	-15.18
9155.00	V	52.24	34.24	74.00	54.00	-21.76	-19.76
4824.00	Н	46.88	37.20	74.00	54.00	-27.12	-16.80
7238.00	Н	47.77	38.14	74.00	54.00	-26.23	-15.86
10004.00	Н	52.84	34.21	74.00	54.00	-21.16	-19.79

Temperature Humidity : Test mode:	9: 26℃ 60 % 802.	, 0	Test Da Test By: Frequer		King Kong	December 23, 2017 King Kong Channel 6: 2437MHz			
Freq.	Ant.Pol.	Emission L	_evel(dBuV/m)	Limit 3	m(dBuV/m)	Ov	er(dB)		
(MHz)	H/V	PK	ÀV Í	PK	` AV ´	PK	ÂV		
4874.00	V	45.65	38.17	74.00	54.00	-28.35	-15.83		
7312.00	V	47.11	37.87	74.00	54.00	-26.89	-16.13		
9890.00	V	51.39	34.29	74.00	54.00	-22.61	-19.71		
4874.00	Н	46.4	37.32	74.00	54.00	-27.60	-16.68		
7311.00	Н	46.98	37.96	74.00	54.00	-27.02	-16.04		
9355.00	Н	53.62	34.21	74.00	54.00	-20.38	-19.79		
Temperature Humidity :	e: 26℃ 60 %		Test Da Test By:		Decembe King Kong	r 23, 2017 a			
Test mode:	802.	11b	Frequer			Í1: 2462M⊦	łz		
Freq.	Ant.Pol.	Emission Le	evel(dBuV/m)	Limit 3	m(dBuV/m)	0	/er(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	ÂV		
4925.00	V	45.3	38.44	74.00	54.00	-28.70	-15.56		
7388.00	V	47.48	38.7	74.00	54.00	-26.52	-15.30		
9292.00	V	51.5	35.12	74.00	54.00	-22.50	-18.88		
4924.00	Н	45.77	37.22	74.00	54.00	-28.23	-16.78		
7387.00	Н	47.95	38.25	74.00	54.00	-26.05	-15.75		
9451.00	Н	54.04	33.51	74.00	54.00	-19.96	-20.49		

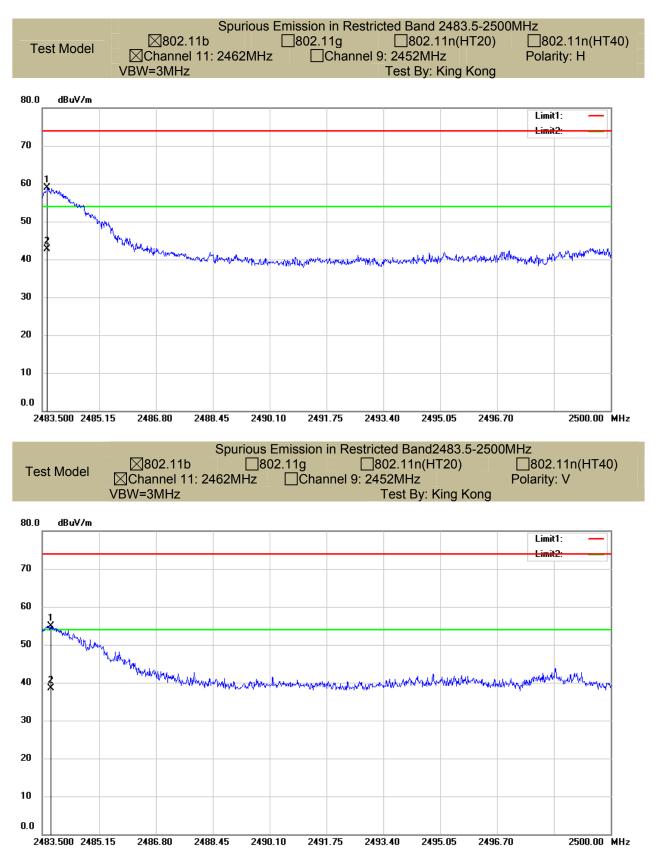
Note: (1) All Readings are Peak Value (VBW=3MHz) and Average Value (VBW=10Hz).
(2) Emission Level= Reading Level+Probe Factor +Cable Loss.
(3) Data of measurement within this frequency range shown " -- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the Salded and the table approximate. field strength is too small to be measured.

■ Spurious Emission in Restricted Band 2310-2390MHz and 2483.5-2500MHz

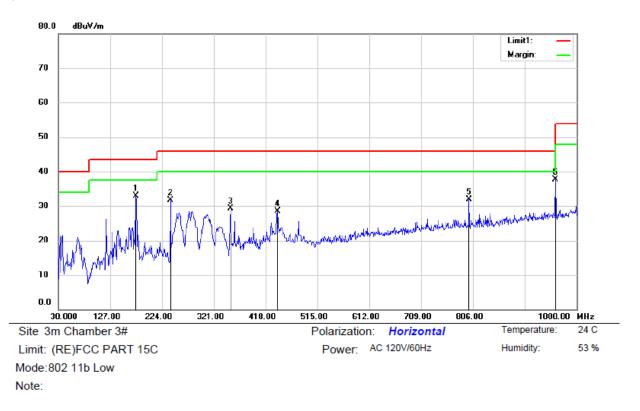
All modes 2.4G 802.11b/g/n have been tested, and the worst result 802.11b recorded was report as below:


Temperature : Humidity : Test mode:	26℃ 60 % 802.11t	T	est Date : est By: requency:	King k	mber 23, 2017 Kong nel 1: 2412MHz		
Frequency (MHz)	Polarity	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	Margin (dB)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)	Margin (dB)
2389.52	Н	57.39	74.00	-16.61	43.10	54.00	-10.90
2388.96	V	57.32	74.00	-16.68	43.20	54.00	-10.80
Temperature : Humidity : Test mode:	26℃ 60 % 802.11b	Т	est Date : est By: requency:	King ł	nber 23, 2017 Kong nel 11: 2462MHz	:	
Frequency (MHz)	Polarity	PK(dBuV/m) (VBW=3MHz)	Limit 3m (dBuV/m)	Margin (dB)	AV(dBuV/m) (VBW=10Hz)	Limit 3m (dBuV/m)	Margin (dB)
2483.65	Н	58.88	74.00	-15.12	42.80	54.00	-11.20
2483.75	V	54.90	74.00	-19.10	38.50	54.00	-15.50

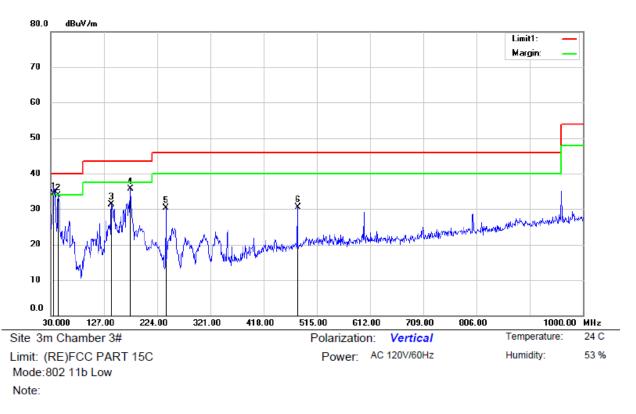
Note: (1) All Readings are Peak Value (VBW=3MHz) and Average Value (VBW=10Hz).


(2) Emission Level= Reading Level+Probe Factor +Cable Loss.

(3) Data of measurement within this frequency range shown " -- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

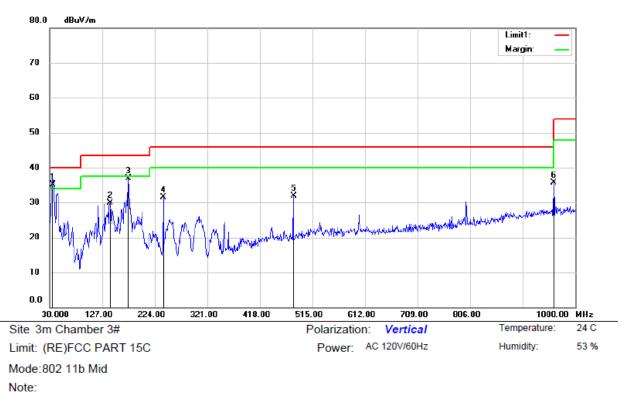


■ Spurious Emission below 1GHz (30MHz to 1GHz)


All modes 2.4G 802.11b/g/n(HT20)/n(HT40) have been tested, and the worst result 802.11b recorded was report as below:

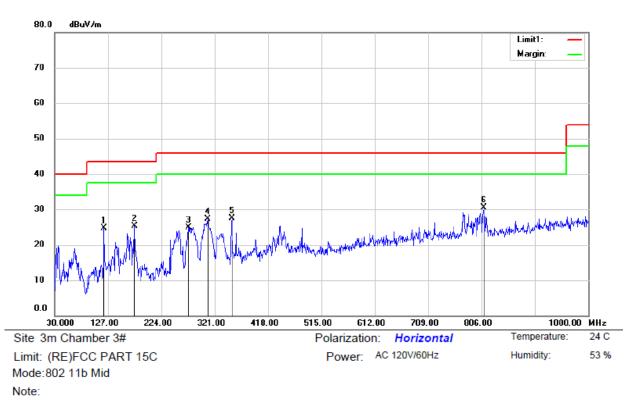
No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	175.5000	50.72	-17.76	32.96	43.50	-10.54	QP			
2		239.5200	45.57	-13.92	31.65	46.00	-14.35	QP			
3		352.0400	39.88	-10.61	29.27	46.00	-16.73	QP			
4		440.3100	37.25	-8.77	28.48	46.00	-17.52	QP			
5		799.2100	33.97	-2.13	31.84	46.00	-14.16	QP			
6		960.2300	37.06	0.71	37.77	54.00	-16.23	QP			

*:Maximum data x:Over limit !:over margin

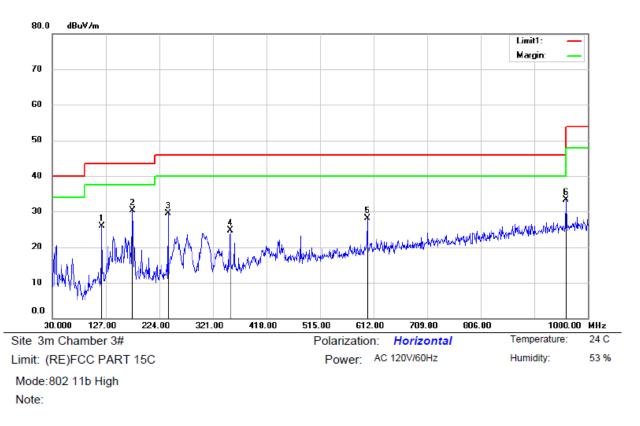


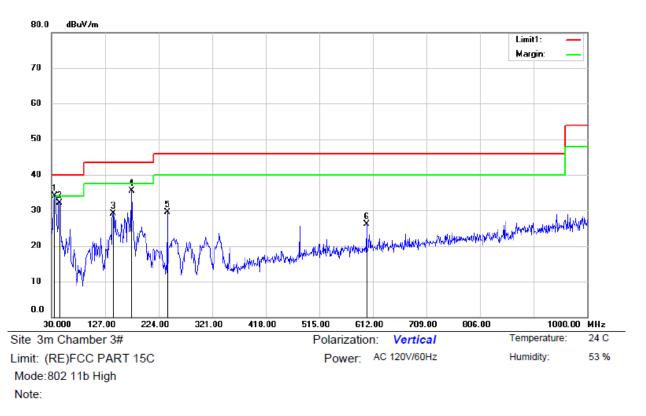
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	35.8200	50.88	-16.58	34.30	40.00	-5.70	QP			
2		43.5800	48.11	-14.25	33.86	40.00	-6.14	QP			
3		140.5800	50.44	-19.19	31.25	43.50	-12.25	QP			
4		175.5000	53.45	-17.76	35.69	43.50	-7.81	QP			
5	1	239.5200	44.18	-13.92	30.26	46.00	-15.74	QP			
6	4	480.0800	38.59	-7.99	30.60	46.00	-15.40	QP			

*:Maximum data x:Over limit !:over margin



No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	35.8200	51.78	-16.58	35.20	40.00	-4.80	QP			
2		141.5500	49.14	-19.24	29.90	43.50	-13.60	QP			
3		175.5000	54.70	-17.76	36.94	43.50	-6.56	QP			
4		239.5200	45.46	-13.92	31.54	46.00	-14.46	QP			
5		480.0800	39.93	-7.99	31.94	46.00	-14.06	QP			
6		960.2300	34.91	0.71	35.62	54.00	-18.38	QP			


*:Maximum data x:Over limit !:over margin


No.	Mł	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		120.2100	42.06	-17.45	24.61	43.50	-18.89	QP			
2		175.5000	43.04	-17.76	25.28	43.50	-18.22	QP			
3		273.4700	38.02	-13.11	24.91	46.00	-21.09	QP			
4		308.3900	39.62	-12.26	27.36	46.00	-18.64	QP			
5		352.0400	38.06	-10.61	27.45	46.00	-18.55	QP			
6	*	809.8800	32.47	-2.01	30.46	46.00	-15.54	QP			

No.	M	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		120.2100	43.31	-17.45	25.86	43.50	-17.64	QP			
2	*	175.5000	48.16	-17.76	30.40	43.50	-13.10	QP			
3		239.5200	43.35	-13.92	29.43	46.00	-16.57	QP			
4		352.0400	35.37	-10.61	24.76	46.00	-21.24	QP			
5		600.3600	33.07	-5.01	28.06	46.00	-17.94	QP			
6		960.2300	32.55	0.71	33.26	54.00	-20.74	QP			

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	*	35.8200	50.76	-16.58	34.18	40.00	-5.82	QP			
2		44.5500	46.28	-14.18	32.10	40.00	-7.90	QP			
3		141.5500	48.31	-19.24	29.07	43.50	-14.43	QP			
4		175.5000	53.35	-17.76	35.59	43.50	-7.91	QP			
5		239.5200	43.44	-13.92	29.52	46.00	-16.48	QP			
6		600.3600	31.17	-5.01	26.16	46.00	-19.84	QP			

8.6 CONDUCTED EMISSIONS TEST

8.6.1 Applicable Standard

According to FCC Part 15.207(a)

8.6.2 Conformance Limit

	Conducted Emission Limit	
Frequency(MHz)	Quasi-peak	Average
0.15-0.5	66-56	56-46
0.5-5.0	56	46
5.0-30.0	60	50

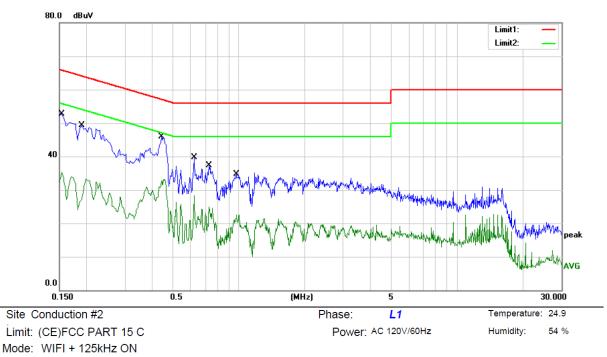
Note: 1. The lower limit shall apply at the transition frequencies

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

8.6.3 Test Configuration

Test according to clause 7.3 conducted emission test setup

8.6.4 Test Procedure


The EUT was placed on a table which is 0.8m above ground plane. Maximum procedure was performed on the highest emissions to ensure EUT compliance. Repeat above procedures until all frequency measured were complete.

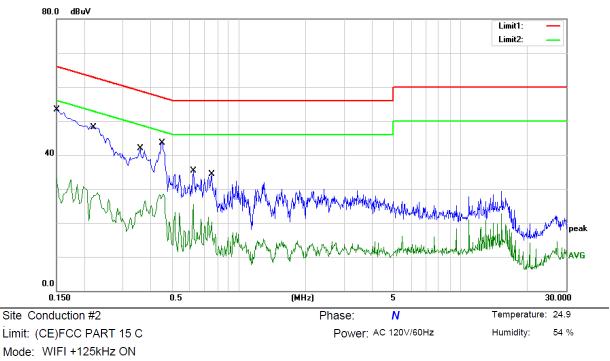
8.6.5 Test Results

Pass

120V/60Hz & 240V/60Hz have been tested, and the worst result recorded was report as below:

Note:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBu∨	dB	dBu∨	dBuV	dB	Detector	Comment
1	0.1540	42.90	9.89	52.79	65.78	-12.99	QP	
2	0.1540	25.48	9.89	35.37	55.78	-20.41	AVG	
3	0.1900	39.45	9.89	49.34	64.04	-14.70	QP	
4	0.1900	23.76	9.89	33.65	54.04	-20.39	AVG	
5 *	0.4420	35.99	9.91	45.90	57.02	-11.12	QP	
6	0.4420	23.20	9.91	33.11	47.02	-13.91	AVG	
7	0.6220	29.84	9.93	39.77	56.00	-16.23	QP	
8	0.6220	18.36	9.93	28.29	46.00	-17.71	AVG	
9	0.7300	27.36	9.94	37.30	56.00	-18.70	QP	
10	0.7300	14.94	9.94	24.88	46.00	-21.12	AVG	
11	0.9700	24.79	9.96	34.75	56.00	-21.25	QP	
12	0.9700	12.59	9.96	22.55	46.00	-23.45	AVG	


*:Maximum data x:Over lir

x:Over limit !:over margin

Comment: Factor build in receiver.

Operator: KK

Note:

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment
1 *	0.1500	43.38	9.89	53.27	66.00	-12.73	QP	
2	0.1500	23.03	9.89	32.92	56.00	-23.08	AVG	
3	0.2220	38.11	9.90	48.01	62.74	-14.73	QP	
4	0.2220	18.96	9.90	28.86	52.74	-23.88	AVG	
5	0.3580	31.91	9.91	41.82	58.77	-16.95	QP	
6	0.3580	16.62	9.91	26.53	48.77	-22.24	AVG	
7	0.4500	33.66	9.92	43.58	56.88	-13.30	QP	
8	0.4500	18.54	9.92	28.46	46.88	-18.42	AVG	
9	0.6220	25.46	9.93	35.39	56.00	-20.61	QP	
10	0.6220	15.63	9.93	25.56	46.00	-20.44	AVG	
11	0.7580	24.45	9.94	34.39	56.00	-21.61	QP	
12	0.7580	11.86	9.94	21.80	46.00	-24.20	AVG	

*:Maximum data x:Over limit !:over margin

margin Cor

Comment: Factor build in receiver.

Operator: KK

8.7 ANTENNA APPLICATION

8.7.1 Antenna Requirement

Standard	Requirement
FCC CRF Part15.203	An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217,§15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

8.7.2 Result

The EUT'S antenna is FPC antenna. The antenna's gain is 2 dBi, and the antenna can't be replaced by the userwhich in accordance to section 15.203, please refer to the photos.